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Abstract

This paper introduces a novel image representation cap-

turing feature dependencies through the mining of mean-

ingful combinations of visual features. This representation

leads to a compact and discriminative encoding of images

that can be used for image classification, object detection

or object recognition. The method relies on (i) multiple ran-

dom projections of the input space followed by local bina-

rization of projected histograms encoded as sets of items,

and (ii) the representation of images as Histograms of Pat-

tern Sets (HoPS). The approach is validated on four pub-

licly available datasets (Daimler Pedestrian, Oxford Flow-

ers, KTH Texture and PASCAL VOC2007), allowing com-

parisons with many recent approaches. The proposed im-

age representation reaches state-of-the-art performance on

each one of these datasets.

1. Introduction

The representation of images, and more specifically

the representation of the dependencies between visual fea-

tures is a central question in computer vision. Interest-

ingly, since a few years, pattern mining has been shown

to be a promising avenue for discovering these dependen-

cies e.g. [11, 12, 23, 33]. Pattern mining algorithms are

used for extracting a subset of ‘meaningful’ groups of fea-

tures (so-called patterns), such as groups of features which

frequently appear together in the images of a given class.

These algorithms use safe pruning strategies to extract pat-

terns without having to evaluate all possible feature combi-

nations, which is typically not tractable. In addition, since

these algorithms use exhaustive search, the extracted pat-

terns provide a fairly complete picture of the information

content of the data.

Despite the use of pruning strategies, these mining algo-

rithms are limited by the potential size of the search space

which grows exponentially with the number of features.

Most of the work in the literature addresses this problem by

reducing the number of visual features and by down-scaling

the problem to the mining of image subregions. However,
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Figure 1: Overview of the approach: image histograms are

tranformed into lists of binary items by projecting them into

low-dimensional spaces (e.g. R1, ..., Rp) and by top-K bi-

narizing their projections (Section 3.1). Patterns are then

mined from each set of training transactions. Images are fi-

nally encoded by counting the number of patterns found in

each projection. The counts are concatenated to obtain the

HoPS representation (Section 3.2).

large visual vocabularies are necessary to capture variations

of object’s appearance and obtaining good performance,

while mining patterns in sub-regions cuts-off the possibil-

ity to capture dependencies between distant features.

Another issue raised by the use of mining algorithms

is the production of binary visual features. Indeed, min-

ing algorithms can process items (binary elements) that are

included or not in the image. Such a binary representa-

tion is different from common image representations such

as the Local Binary Patterns (LBP), the Histograms of Ori-

ented Gradients (HOG), or the Bag-of-Words (BoW), which

are real-valued histograms. Transforming these histogram-

based representations into sets of meaningful items – with

minimum information loss – is still an open issue.

Once the patterns are discovered, the following question

raised by the use of mining algorithms for computer vision

tasks is how to use them. In the literature, patterns are often

used as new features. Due to the number of patterns (usu-

ally very high i.e. up to several millions), encoding each

pattern as a single image feature in the learning process is
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often not feasible. A post processing step for selecting a

smaller subset of patterns is usually applied e.g. [11]. How-

ever, finding the best subset is a nontrivial combinatorial

problem for which greedy search is often the only feasible

solution. Unfortunately, greedy search is not guaranteed to

find a globally optimal solution, despite it’s high computa-

tional cost. Another drawback of pattern selection is that

some useful patterns can be inopportunely discarded.

This paper addresses the three previously mentioned is-

sues (i.e. vocabulary size, binary visual items, and usage of

mined patterns) by proposing a new framework for discov-

ering sets of interesting groups of features from real-valued

image representations (such as the LBP, HOG, BoW), and

for efficiently constructing an distinctive image represen-

tation from the so-discovered patterns (Figure 1 gives an

overview of the approach). It opens a new avenue for tak-

ing benefit of the integration of data mining techniques in

computer vision applications.

In this context, our contribution is threefold. First, we

propose a new method for transforming real-valued vec-

tors (e.g. histogram-based image representations) into bi-

nary item transactions (set of binary visual elements), us-

ing random projections and adaptive thresholding. The pro-

posed method addresses the two first mentioned problem

regarding the dimensionality and the binarization loss. The

patterns are mined from multiple sets of low-dimensional

(projected) features and embed the relative order of initial

real-valued representation (Section 3.1). Second, we in-

troduce the concept of Histograms of Pattern Sets (HoPS);

HoPS consist in finding interesting patterns (with the help

of standard pattern mining algorithms), and using some rel-

evant statistics of these patterns to represent images, hence

condensing the information. Consequently, no pattern se-

lection is required, which is an answer to the third issue

(Section 3.2). Finally, we perform an extensive experimen-

tal validation on several different supervised image classifi-

cation and object recognition/detection tasks. The proposed

approach not only gives better performance than the base-

line algorithms neglecting feature dependencies, but it also

reaches state-of-the art performance on most of these tasks.

2. Related Work

Pattern mining allows the discovery of sets of features

capturing local regularities and has been reported as be-

ing an efficient tool for discovering relevant dependencies

between visual features (e.g. [11, 12, 22, 23, 25, 29, 33]).

These methods differ in the way they transform images into

sets of items which can be mined out.

Several works suggest extracting keypoints and repre-

senting local descriptors by visual words. The list of vi-

sual words contained in the image is then seen as a trans-

action [22, 23, 25]. However, such a coding is very sparse,

losing potentially interesting information. Dense local fea-

tures overcome this limitation, but in this case most of the

visual words will appear at least once in the image, lead-

ing to transactions containing all possible items. Conse-

quently, rather than encoding the whole image as a single

transaction, [11, 29] divide the images into rectangular re-

gions and produce one set of items per region. In addi-

tion to limiting the number of visual words per transac-

tions, it allows the discovery of spatial relations between

densely sampled quantized features. However, a drawback

is that the combinations of features with high mutual sep-

aration distance cannot be discovered. Since the encoding

has been reduced to local regions, a visual word can as, a

consequence, appear multiple times in a single image re-

gion. Then, not representing its frequency would lead to an

important binarization loss. To address this issue, [11] pro-

posed a method using visual word frequencies when build-

ing items. This method improves the performance but ex-

ponentially increases the dimensionality of the binary fea-

tures, which is not desirable, and also limits the size of the

visual vocabulary that can be used. Reducing the size of

the vocabulary is not a good option since vocabulary size

is positively correlated with good performance. Differently,

[32, 33] mine patterns from high-level semantic features for

which smaller representational space are needed. However,

such techniques can work only if the high-level features are

correctly detected, which is an open question. In contrast,

we show Section 3.1 how our binarization approach is able

to preserve the information of the initial real-valued repre-

sentation while providing a limited number of items.

The approaches using data mining for visual recognition

also differ in the way they use mined patterns. Surprisingly,

frequent patterns are often used [11, 23] even if contrast

measures e.g. emerging patterns [21] would allow – by con-

struction and more efficiently – to produce discriminative

patterns suitable for classification tasks. As the set of fre-

quent patterns can be very large (e.g. several millions) and

redundant, a post-processing step is usually applied to select

a tractable subset of discriminant patterns. [11] proposed an

algorithm to select the frequent patterns that are discrimina-

tive, representative, and non-redundant. However, there is

no efficient way to generate a set of patterns that can sat-

isfy global constraints (e.g. cover all data while giving good

prediction accuracy) [3] and all of the mentioned methods

require costly or ad-hoc post-processing stages for selecting

the patterns. In contrast, the proposed histogram of pattern

sets does capture the discriminative power of the whole set

of patterns and provides an efficient image representation

for supervised tasks.

3. Method

As mentioned in the introduction, the proposed method

has two steps: (i) real-valued histograms are turned into

lists of binary items, Section 3.1 (Fig. 1, green block), and



(ii) image representations are computed from histograms of

mined patterns, Section 3.2 (Fig. 1, red block). The discov-

ering of patterns is done using standard mining algorithms.

In order to illustrate the presentation of the method, we

use the bag-of-words (BoW) representation as a prototypi-

cal example i.e. an image I is represented as an histogram

of visual words h = (p(w0|I), . . . , p(wd|I)), where L =
{w0, . . . , wd} is a vocabulary of size d. Any histogram-

based representation, such as those used in our experiments,

falls into this formalism and can be used in the same way.

3.1. From realvalued vectors to binary items

Pattern mining algorithms cannot be used to process

high-dimensional real-valued representations as (i) pattern

mining algorithms handle only binary items, and (ii) al-

though pattern mining algorithms are very efficient in ex-

tracting patterns from a large number of transactions (e.g.

millions), they can only tackle a moderate number of items,

typically up to a few hundreds, depending on the density of

the data. This is due to the search space which grows ex-

ponentially with the number of items. As image represen-

tations usually have several thousand components, mining

patterns from such high-dimensional image data is not only

slow but also memory consuming.

Multiple projections of the original representation into

small dimensional spaces is one of the key ideas for ad-

dressing this issue. The rational for doing this is that (i)

following the Johnson-Lindenstrauss lemma, representing

high-dimensional data by multiple projections leads to good

approximations of the data e.g. [15] and (ii) mining is more

efficient when the dimensionality is low. In practice, the

projection is done by simply randomly selecting p visual

words from the original BoW. This can be seen as projecting

the original d-dimensional data to a p-dimensional subspace

where the projection matrix is obtained by randomly choos-

ing the p basis vectors from the standard basis (more com-

plex projections have been investigated, without improving

the performance). Let R denote the d × p projection ma-

trix, such that hp = h × R, ∀hp ∈ Hp. Hp is denoted

as the set of p-dimensional projected histograms. Once the

histogram is projected, the bins whose values are among the

top-K highest values are set to ‘1’ while other bins are set to

‘0’ (e.g. if the histograms are projected into a 10-d space and

if k = 4, we will obtain 10-bit histogram signatures having

4 ones and 6 zeros). More formally, h
bp
j = 1 ⇐⇒ h

p
j ≥ τ

where τ = h
p

rankk(hp)
, and rankk(h) returns the index of

the histogram bin with the kth highest value (Figure 2).

This process to obtain binary representation bears some

similarity with Locality-Sensitive Hashing (LSH) [13].

However, the main difference is that in LSH, a fixed thresh-

old is used instead of top-K. The motivation in using top-

K binarization instead of a fixed threshold is to reduce and

control the size of the search space. Top-K binarization en-
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Figure 2: Top-K binarization. Numbers inside bins are

ranking orders. Trans. {1,2,6,9} is produced in this case.

sures that all images will be represented by exactly K items.

Moreover, we believe (as illustrated by [31]) that the rela-

tive frequency of visual words is more important than their

absolute frequency.

We repeat this two-step process several times. After a

sufficient number of projections, the relative order of the

feature frequencies is captured. To illustrate this, let us con-

sider the toy example given Figure 3. The original BoW

representation contains four different real-valued features

namely p(A), p(B), p(C), and p(D). The first random pro-

cess selects the visual words A, B, and C. When applying

the top-K binarization with K = 2, the visual words A and

C are kept (and considered as a transaction). This infers that

both p(A) and p(C) have higher values than p(B). After the

second random projection, the fact that p(C) is smaller than

p(A) and p(D) can also be deduced. From these two itera-

tions, we are able to conclude that (i) both p(A) and p(D) are

higher than p(C), and (ii) p(C) is higher than p(B). In this

example, it is not possible to determine which one of p(A)

or p(D) is higher. However, this information can be discov-

ered if we negate the features hp∗ = (1 − h
p
0, . . . , 1 − hp

p)

and apply the same binarization1. Section 4.1 gives experi-

ments showing that multiple random projections can handle

the instability which occurs with a single projection.

As an alternative to random projections, we evaluated

the use of principal component analysis (PCA) to reduce

the dimensionality of input histograms. However, we ob-

tained much worse results, which can be explained by the

fact that it produces a single (low-dimentional) representa-

tion per input vector and therefore loses a lot of information

once thresholded. In contrast, the proposed method to trans-

form real-valued vectors into multiple sets of binary trans-

actions reduces the dimensionality as well as limits the loss

caused by the binarization process.

3.2. Representing images by histograms of patterns

Each random projection generates a set of binary items

so-called a transaction. At this stage, standard data mining

algorithms can be used to discover interesting combinations

1For the experiments on image classification and object recogni-

tion/detection, an image transaction is the concatenation of two sets, the

non-negate and the negate top-K visual words.



Input BoW: p(A)=.4 p(B)=.1p(C)=.2 p(D)=.3

BoW relative order p(A) > p(D) > p(C) > p(B)

Random projections Top-K, K = 2
R1 : p(A) p(B) p(C) {A C}
R2 : p(A) p(C) p(D) {A D}

Discovered from R1 p(C) > p(B)

Discovered from R2 p(A) > p(C)

Discovered from R2 p(D) > p(C)

Figure 3: Toy example showing that after two random pro-

jections followed by top-K (K = 2) binarizations, relative

relations between the BoW features are preserved and im-

plicitely encoded within the representaion.

of features in each projection-related transactions.

Data Mining has defined several types of patterns, but

Frequent Patterns (FPs) [1] and Jumping Emerging Patterns

(JEPs) [7] are among the most common ones. Given a

specified minimum threshold Fmin, a pattern (i.e. a set of

items) is frequent if it appears in no less than Fmin trans-

actions. Finding the exhaustive set of patterns is a major

issue. Fortunately, the collection of frequent patterns can be

condensed by the set of frequent closed patterns [27]. The

intuition is that a closed pattern condenses a set of patterns

whose frequency is computed from the same transactions.

By definition, closed patterns are patterns to which it is im-

possible to add any item without decreasing its frequency.

We can therefore derive frequent patterns from closed pat-

terns, resulting in a lower complexity: mining closed pat-

terns is on average polynomial in the number of items [17]

whereas usual techniques are exponential in the worst case.

While FP mining is designed for discovering patterns from

single classes, JEP mining is based on the growth-rate – a

contrast measure [21] – and is relevant for two-class prob-

lems. More precisely, a JEP is defined as a pattern appear-

ing in one and only one class. If the frequency of a JEP is

no less than Fmin, it is called a frequent JEP. Closed pat-

terns make the mining of JEP mining much easier. Indeed,

closed patterns have optimal growth rates, as they concen-

trate those patterns having highest growth rate values [18].

In the following, we take benefit from the good properties

JEPS offer regarding the representation of classes.

One key idea of the paper is to compute statistics of pat-

terns found for each random projection to build the new im-

age representation. The complete representation is indeed

obtained by aggregating histograms of the whole set of pat-

terns coming from the different projections. For supervised

tasks – which are those considered in this paper – JEPs are

highly relevant as they are discriminative by construction.

More precisely, for each random projection, a set of posi-

tive JEPs (found only in the positive images) and a set of

negative JEPs (found only in the negative images) are ex-

I Class
Vis. words distrib. After proj. R1

Transactions
A B C D E F A C E F

1
H

+ .2 .3 .2 .0 .1 .2 .2 .2 .1 .2 {A,C,F}
2 .0 .3 .4 .1 .1 .1 .0 .4 .1 .1 {C,E,F}

3
H

−
.3 .3 .0 .2 .1 .1 .3 .0 .1 .1 {A,E,F}

4 .2 .2 .0 .3 .1 .2 .2 .0 .1 .2 {A,E,F}

5
Test

.0 .3 .1 .1 .4 .1 .0 .1 .4 .1 {C,E,F}
6 .1 .3 .0 .2 .1 .3 .1 .0 .1 .3 {A,E,F}

Figure 4: Toy example showing how patterns are obtained.

tracted. We therefore build a histogram with two bins, the

first is the count of positive JEPs (those found in positive

images) and the other is the count of negative JEPs. For P

random projections, we hence obtain a (2×P )-dimensional

histogram image representation, so-called the HoPS repre-

sentation. The HoPS representation is intended to be used

with classifiers. The underlying idea is to condense the in-

formation given by the set of patterns, rather than using each

individual pattern as an individual image feature. As men-

tioned in the introduction, the number of patterns is high

and using each pattern as a feature would result in a too

large representation.

3.3. Toy example

Figure 4 shows a toy example illustrating the encoding

of HoPS using JEPs. There are 6 image histograms (4 train-

ing ones for discovering the JEPs, and 2 for testing). The

dimensionality of the input space is d = 6 while the di-

mensionality of the projected space is p = 4. We set the

number of random projection P to 1 in order to simplify

the illustration (the other projections follow the same prin-

ciple). This projection is such that the projected vectors

are made of the 1st, 3rd, 5th and the 6th component of the

original ones. In this example K = 3, meaning that the 3

visual words having the highest probabilities are kept in the

transactions. After obtaining the transactions (also given

in Figure 4), the JEPs with minimum frequency threshold

Fmin = 1 are computed. In this example, positive JEPs

are {A,C,F}, {C,E,F}, and {C,F} while {A,E,F} is the sin-

gle negative JEP. Note that e.g. {C} is not generated by our

method since {C} is not a closed pattern ({C} is covered by

{C,F}.) Finally, the two test images are coded by counting

the number of positive and negative JEPs. The final repre-

sentation consists in these two values, i.e. (2, 0) for image 5

and (0, 1) for image 6.

3.4. Complexity analysis

Encoding new images is very fast: the histogram bina-

rization procedure involves the search of the k-th highest

values, which can be done in O(p× log(k)) using a partial

sort algorithm. Counting the JEPs supported by the trans-

actions can be done in O(Np) where Np is the number of



mined patterns. To give some insights about the run time,

encoding 100,000 images with 500 JEPs (which is in av-

erage the number of JEPs in our experiments), on a single

core of CPU, takes around 0.3 second for the binarization

and around 1 sec. for counting JEPs. Regarding training,

mining the JEPs takes about 1 sec. with the typical set-

tings/datasets used in our experiments.

4. Experiments

These experiments validate our approach on several su-

pervised classification tasks. These experiments show that

HoPS are compact, perform well, and are very generic.

HoPS are generic in the sense that they can be built on top

of various histogram-based image representations. In our

experiments, HOG, LTP and FLH are used, but other could

be considered.

We validated HoPS in four recognition tasks: (a) texture

recognition on the KTH-TIPS2a dataset [4], (b) pedestrian

recognition on the Daimler Multi-Cue, Occluded Pedestrian

Classification dataset [8], (c) image classification on the

Oxford-Flowers 17 dataset [20], and (d) object detection on

the PASCAL VOC 2007 dataset [9]. The type of patterns

used are positive/negative JEPs. We use the code of DPM-

delta [18] to extract them. We set the Fmin threshold to 1%

of the number of positive images. For many categories, the

number of positive images is about one hundred and 1% is

the minimum frequency that can be set. For each task, HoPS

is compared against the baseline which is the original first

order representation i.e. without taking into account feature

dependencies. The same classifier and the same protocol

are used for HoPS and the baseline representation. Since

all of the representations including HoPS are histograms,

we L1-normalize and square-root the representations before

training linear SVM classifiers.

4.1. Influence of the parameters

To get some insight on the proposed method, we present

several experiments on a simplified dataset and show the in-

fluence of the parameters on the behaviour of the algorithm

(especially the performance). This simple dataset is a sub-

part of the KTH-TIPS2a [4] dataset, in which the lettuce

leaf category is considered as the positive class while the re-

maining categories are considered as the negative class. We

observed that there results generalize to other categories.

The training set contains 3,420 images with 324 positives.

The category of test images are predicted taking HoPS as

input, and the performance is measured by the Average Pre-

cision (AP). As low-level features, we use single scale cir-

cular sampling of uniform-LTP, as proposed by [26]. Con-

sequently, the HoPS are computed from 118-d histograms

of LTP.

To encode HoPS, there are three key parameters to be

considered: (i) the number of projections (P ), (ii) the di-

mensionality of the projection space (p) and (iii) the number

of items (K) per transactions obtained by top-K binariza-

tion of the projected histograms.

Regarding the number of random projections (P ), Fig-

ure 5a shows the AP as a function of P for different values

of K and p. The AP increases with P until it saturates. As

described in Section 3.1, the loss from binarization can be

reduced by applying multiple projections. It seems that after

a certain number of projections, the information contained

in the original representation is well covered, explaining

why the performance stops increasing. P depends on the

dimensionality of the original feature d. In the toy example,

in Figure 3, there are only 4 features, and only 2 random

selections are sufficient to cover the relative order of the

features. Clearly, when the original feature has higher di-

mensions, more random processes are required to capture

the relative order of the features.

The influence of the binarization threshold (K) is repre-

sented Figure 5(b), which shows the performance according

to the number of items (K) and the dimensionality of the

projection space (p). K has been set from 2 to 18 while p

varies from 10% to 100% of the size of the input dimen-

sionality (in this experiment d = 118). We observed that K

and p are correlated. The optimal score is reached when K

is set to about 20% of p.

Finally, the impact of the size of the projection space p

is illustrated Figure 5(b). p has to be chosen accordingly to

the dimension of the input space d. Let’s refer once again

to the toy example in Figure 3 to explain this. In the toy

example, if instead of 3, p was set to 4 which is equal to d,

there will be only one possible transaction per image. After

the top-K binarization, only the information that p(A) and

p(D) are higher than p(C) and p(B) would be encoded. The

relative order between p(A) and p(D), and the relative order

between p(C) and p(B) could not be discovered. For this

reason p should not be too high. In addition, as discussed

earlier that p and K are related to each other, setting p to a

high value leads to a high value of K. Recall that the min-

ing complexity increases with K, although different values

of p can result in similar performance, a low value of p is

preferred. However, if p is too small, transactions will not

have enough items and finding useful combinations will not

be possible. This explains behavior observed in Figure 5(b).

In the forthcoming experiments (next sections), the pa-

rameters are cross-validated using a validation set.

4.2. Nonlinear SVM and combination of first and
higher order features.

As the proposed representation encodes some non-

linearities of the features, it is interesting to compare it

against a non-linear classifier applied to the features taken

as independent (i.e. the original histogram). In this experi-

ment, we compared the performance of a linear SVM using
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Kernel 1st order HoPS 1st + HoPS

Linear 68.8 74.1 75.0

RBF-χ2 71.2 73.7 74.0

Table 1: Comparing linear / non-linear classifiers (mAP).

our HoPS with a RBF-χ2 SVM (known to perform well on

histograms) using histograms of the original features. The

parameters of the RBF-χ2 kernel were set by cross vali-

dation. We computed the Average Precision (AP) on the 11

classes of the KTH- TIPS2a dataset and report in Table 1 the

mean Average Precision (mAP). It is worth pointing out that

the HoPS used with a linear classifier outperformed the first

order features with the non-linear SVM. As combining, by

a simple concatenation, first-order features (histograms of

features) and HoPS gave a slightly better performance than

HoPS alone, this combination has been done in all classifi-

cation experiments.

4.3. Image classification

Our primary motivation for doing these experiments was

to provide comparison with the approach of [11], the most

recent pattern mining based approach on image classifica-

tion. The interesting point is that the authors made the im-

age features (FLH) for the Oxford-Flowers 17 database pub-

licly available2, allowing us to give some meaningful com-

parisons (as our patterns are made from strictly the same

low-level image features as theirs).

The Oxford-Flowers 17 database3 contains 17 flower cat-

egories with 80 images per category. To compare results, we

followed the same protocol as [11], i.e. 20-fold cross vali-

dation, and reported the mean classification accuracy (mA).

Results are given in Table 2. Note that we did not give com-

parisons with the features of [11] obtained by combining

shape (FLH S) and color (FLH C), as the authors has only

publicized FLH S features. With a mA of 93.8± 1.4, our

2
http://homes.esat.kuleuven.be/˜bfernand/eccv_flh

3
http://www.robots.ox.ac.uk/˜vgg/data/flowers

method mA(%)

Nilsback [20] 88.3± 0.3
CA [16] 89.0

L1BRD [31] 89.0± 0.6
FLH S [11] (baseline) 92.0± 1.5

HoPS (ours) 93.8± 1.4

Table 2: Comparison with state-of-the-art results on the Ox-

ford Flower 17 dataset.

Method mA(%)

Chen et al. [5] 64.7
Caputo et al.[4] 71.0

LHS [24] 73.0± 4.7
Color+MLBP[19] 73.1± 4.6

histogram of LTP (baseline) 69.9± 3.0
HoPS (ours) 75.0±3.3

Table 3: mean accuracy(mA) on the KTH-TIPS2a dataset.

approach outperformed the performance of all the recent ap-

proaches we are aware of, including [11].

4.4. Texture recognition

The experiments on texture recognition have been done

on the KTH-TIPS2a [4] dataset, which is a dataset includ-

ing images of 11 different materials (e.g. wool, linen, cork).

For each material there are 4 image samples in which the

samples were photographed at 9 scales, 3 poses and 4 dif-

ferent illumination conditions. The evaluation was done by

following the protocol proposed in [4], which consists in

reporting the mean Accuracy (mA) over the 4 runs (multi-

class classification). During each run, all images of one

sample were taken for testing while the remaining images

of the 3 samples were used for training. As in Section 4.1,

the features used for the experiments were 118-d histograms

of uniform-LTP features [26]. As shown in Table 3, our

method improves the performance the baseline more than

5%, validating the relevance of modeling the dependency

between features. In addition, our method significantly out-

performed other approaches4.

4.5. Object detection

The experiments on object detection are achieved on the

PASCAL VOC 2007 dataset, consisting in 9,963 images

of 20 different object classes with 5,011 training images

and 4,952 testing images. The task is to predict bound-

ing boxes of the objects of interest if they are present in

the images. It is the most popular dataset for object detec-

4We did not report the results of [4] using multi scale features and com-

plex decision trees (with non-linear classifiers at every node), as our point

is to demonstrate the strength of our features for a given classifier.

http://homes.esat.kuleuven.be/~bfernand/eccv_flh
http://www.robots.ox.ac.uk/~vgg/data/flowers


tion and several competitive methods have been proposed

for this dataset. Note that it is very difficult to improve re-

sults on this dataset. The top recently reported results are

only slightly different.

We built on the well known part-based detector [10] ver-

sion 5 (the latest released). As our goal is to validate the

proposed image representation (and not to propose a new

detector), we used the detection framework of [10] as it is

but replaced the original image features (HOG) by ours in

the scoring function. Following several works showing that

combining texture and shape together gives better results

(e.g. [14, 34]), we combined LTP and HOG features. In

practice, the representation was obtained as follows. We

first rescaled the bounding boxes of training object (roots

and parts obtained by using the standard pre-trained detec-

tor) to the size of 128 × 128 pixels. Uniform LTP features

were then extracted from a 6× 6 non-overlapping grid, giv-

ing a total dimension of 4,248.

With the combination of (HOG+LTP), we obtained a

gain of 1.0% mAP over the original detector. Then, the

distribution of HOGs and LTPs are used as the input of our

algorithm for computing the HoPS. As shown in Table 4,

the gain of our full system is of 1.7% mAP over the orig-

inal detector. We believe than the improvement is less on

this dataset as JEP suffers from the very high imbalance

of the positive/negative samples in this task (i.e. few hun-

dreds positives vs hundred thousand negatives). Other types

of patterns which can handle this issue have to be investi-

gated. Since our method is independent of the type of pat-

terns used, JEPs can easily be replaced by other types of

patterns. Nevertheless, JEPs improve the baseline. Most

of all, we achieved state-of-the-art result on this extremely

competitive dataset.

4.6. Pedestrian recognition

The Daimler pedestrian classification dataset [8] consists

of manually labeled pedestrian and non-pedestrian bound-

ing boxes in images captured from a vehicle. The images

have a resolution of 48 x 96 pixels with a 12-pixel border

around the pedestrians. The dataset is split into three sub-

sets (i) 52,112 non-occluded pedestrian samples for train-

ing (ii) 25,608 non-occluded pedestrians for testing and (iii)

11,160 partially occluded pedestrian samples, also for test-

ing.

For our baseline, we extracted Histograms of Oriented

Gradients (HOG) descriptors (HOG) from intensity gray-

scale images, using the same setting as in [8], which is 12

orientation bins and 6x6 pixel cells, accumulated to over-

lapping 12× 12 pixel blocks with a spatial shift of 6 pixels.

As shown in Figure 6 our baseline is already better than the

best result of [8] which combined intensity, stereo, and op-

tical flow, probably due to the square-root normalization.

The proposed HoPS improves significantly over the base-
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Figure 6: Pedestrian recognition on the non-occluded testset

of Daimler pedestrian dataset.

line, with a reduction of about 30% of the false positive rate.

HoPS outperforms other state-of-the-art approaches such as

[30] as well.

5. Conclusions

This paper proposes a new method for discovering

dependencies between image features, and encode them

through Histograms of Pattern Sets (HoPS). The key of the

proposed approach lies in (i) multiple random selections

and top-K binarization – making pattern mining tractable

while minimizing the information loss caused by the bina-

rization – allowing to represent images by compact sets of

meaningful transactions, and (ii) the introduction of His-

tograms of Pattern Sets, shown to be a very efficient and

compact way to represent images. The proposed approach

is generic and can be built on top of several image fea-

tures. The proposed approach is validated on four different

datasets, achieving state-of-the-art performance in the con-

text of image classification and object detection.
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