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Small first zeros of L-functions

BERNARD Damien

Abstract

From a family of L-functions with unitary symmetry, Hughes and Rudnick obtained
results on the height of its lowest zero. We extend their results to other families of L-
functions according to the type of symmetry coming from statistics for low-lying zeros.
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1 Introduction

1.1 Preview of results

The existence of a deep link between non-trivial zeros of natural families of L-functions and
eigenvalues of random matrices has been speculated since Montgomery’s work ([Mon73]) in the
seventies. So, we are able to assign a classical compact group of matrices to many classical
families of L-functions. We can refer to [ILS00], [FI03], [HR03], [RR11] or [Mil04]. Using the
one-level density, Hughes and Rudnick obtained informations about the lowest zero of Dirichlet
L-functions ([HR03], section 8). Our aim is to generalise these results.

Extreme low-lying zeros of a natural family of L-functions Let F(Q) be a finite set
of L-functions with analytic conductor Q. We build the associate family F =

⋃
Q≥1F(Q). We

assume Riemann hypothesis for any function in F . We also assume the density theorem for F
with test functions Φ satisfying supp Φ̂ ⊂ [−ν; ν] with ν < νmax(F). We write W ∗[F ] for the
one-level density for non-trivial low-lying zeros of functions in F . It turns out that the one-level
densities that have been identified up to now have always been of the shapeW [G] whose Fourier
transform is given by

Ŵ [G](y) = δ0(y) +
δ

2
η(y) + ε (1.1)

where δ0 is the Dirac function, η is defined on R by

η(y) =





1 if |y| < 1
1
2 if |y| = 1
0 if |y| > 1

and δ and ε are given in table 1.

G U O Sp SO+ SO−

δ 0 0 −1 1 −1

ε 0 1/2 0 0 1

Table 1: Value of (δ, ε).

Finally, for G = Sp, SO+ or SO−, let n ≥ 1 be the only integer such that n− 1 < νmax(F) ≤ n
and consider the equation in λ given by

δ

λ
cos θλ −

n−1∑

k=0

Uk(λ) sin
(
θλ − kδ

π

2

)[δαR(k)

2
− 1 + εβR(k)

]
+

2ε

λ

n−1∑

k=0

Uk(λ) cos
(
θλ − kδ

π

2

)
= 0. (1.2)

In this equation, let Uk be the k-th Chebyshev polynomial of the second kind, (δ, ε) is given in
the table 1 and parameters θλ, αR and βR are defined in lemma 20 (page 35) and proposition 4
(page 38). We prove the following theorem on the smallest non negative imaginary part γ̃f,1 of
a non-trivial normalised zero of L(f, .) in F .
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Theorem 1 We have

lim sup
Q→+∞

min
L(f,.)∈F(Q)

γ̃f,1 ≤
1

2νmax(F)
×





1 if W ∗[F ] =W [U ]

4V −1
(
1 + 2

νmax(F)

)
if W ∗[F ] =W [O]

4V −1
(
1 + (δ + 2ε) 2

νmax(F)

)
if W ∗[F ] =W [Sp],W [SO+] or W [SO−] and νmax(F) ≤ 1

νmax(F)
π lim

R→νmax(F)/2−
λR if W ∗[F ] =W [Sp],W [SO+] or W [SO−] and νmax(F) > 1

where λR is the smallest positive root of equation (1.2) which is not a root of UnUn−1 (with
n− 1 < νmax(F) ≤ n) and where V is defined by

V :

{
[0, 14 [∪]14 , x1[ −→ R

x 7−→ tan(2πx)
2πx

with x1 = inf
{
x > 0, tan(2πx)

2πx = 1
}
≈ 0, 71.

Remark 1 We plot the upper bound in theorem 1, denoted MW ∗[F ](νmax(F)), for each W ∗[F ].
From top to bottom, we have W ∗[F ] = W [Sp], W ∗[F ] = W [U ], W ∗[F ] = W [SO+], W ∗[F ] =
W [O] and W ∗[F ] =W [SO−].

Representative curves of νmax(F) 7−→MW ∗[F ](νmax(F))

Remark 2 In the orthogonal case, when νmax(F) goes to infinity, we have
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2
νmax(F)V

−1
(
1 + 2

νmax(F)

)
=

√
6

πνmax(F)3/2

(
1− 6

5νmax(F) + o
(

1
νmax(F)3/2

))
.

Representative curve of V −1

Remark 3 In the case 1 < νmax(F) ≤ 2, we can simplify equation (1.2) as follows

(δ + 2ε)
1− 4λ2

λ
(sinλ(1−R)− 2δλ cosλR)

− [(δ + 2ε)(1−R)− 1 + 4ε] [cosλ(1 −R)− 2δλ sinλR− 2λ tanΘR(sinλ(1 −R)− 2δλ cosλR)] = 0

where

ΘR =
1

2

(
R− 1

2

)
+
π

2

(
1 +

δ

2

)
.

Moreover, this relation always vanishes in λ = 1/2 which is a root of U2.

In order to give several instances, let H∗
k (q) be the set of primitive holomorphic cusp forms

of prime level q end even weight k ≥ 2. Let r be a positive integer. We define

Hr(q) = {L(Symrf, s), f ∈ H∗
k (q)}

and if r is odd,
H±

r (q) = {L(Symrf, s), f ∈ H∗
k (q) and ε(Sym

rf) = ±1} .
Then, we have several families of symmetric power L-functions

Hr =
⋃

q prime

Hr(q) and H±
r =

⋃

q prime

H±
r (q).

These families have been studied in [ILS00] (theorem 1.1, for the case r = 1) and [RR11]
(theorem B). We may sum up some properties of these natural families of L-functions in the
following table where

ν1,max(1, k, θ0) = 2 and ν1,max(r, k, θ0) =

(
1− 1

2(k − 2θ0)

)
2

r2
if r ≥ 2 with θ0 =

7

64
,

and for ǫ = ±1,

νǫ1,max(1, k, θ0) = 2 and νǫ1,max(r, k, θ0) = inf

{
ν1,max(r, k, θ0),

3

r(r + 1)

}
if r ≥ 2.
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F Hr (r even) Hr (r odd) H+
r (r odd) H−

r (r odd)

νmax(F) ν1,max(r, k, θ0) ν1,max(r, k, θ0) νǫ1,max(r, k, θ0) νǫ1,max(r, k, θ0)

ρmax(F) 1
r2

1
r2

1
2r(r+2)

1
2r(r+2)

W [F ] W [Sp] W [O] W [SO+] W [SO−]

W ∗[F ] W [Sp] W [O] W [SO+] W [Sp]

Table 2: Several natural families of L-functions

Thus, thanks to theorem 1, we have

lim sup
N→+∞

min
f∈H∗

k(N)
γ̃f,1 ≤ V −1(2) < 0, 19

lim sup
N→+∞

min
f∈H+

k (N)
γ̃f,1 ≤ 0, 22

lim sup
N→+∞

min
f∈H−

k (N)
γ̃f,1 ≤ 0, 39

and

lim sup
q→+∞
q prime

min
f∈H∗

k (q)
γ̃Symrf,1 ≤

2

ν1,max(r, k, θ0)
V −1

(
1 + (−1)r+1 2

ν1,max(r, k, θ0)

)

and if r is odd, ǫ = ±1, we have

lim sup
q→+∞
q prime

min
f∈H∗

k (q)

ε(Symrf)=ǫ

γ̃Symrf,1 ≤
2

νǫ1,max(r, k, θ0)
V −1

(
1 + ǫ

2

νǫ1,max(r, k, θ0)

)
.

Actually, since H−(N) 6= ∅ for large N , we get (see lemma 1 page 9) lim
N→+∞

min
f∈H∗

k (N)
γ̃f,1 = 0.

Proportion of L-functions which have a small first zero Combining Bienaymé-Chebyshev
inequality and statistics for low-lying zeros of symmetric power L-functions, we can obtain a
positive proportion of L-functions in our family which have a small first zero. Hughes and
Rudnick exposed this phenomenon in the case of Dirichlet L-functions which have a unitary
symmetry. Symmetric power L-functions allows us to deal with all currently known symmetry
group. H∗

k(q) denotes the set of primitive holomorphic cusp forms of prime level q and even
weight k ≥ 2 and let ωq(f) be the harmonic weight associated to f in H∗

k(q). Let also ε(Sym
rf)

denotes the sign of the functional equation associated to the L-function L(Symrf, s).
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Theorem 2 Let r be a fixed positive integer. Assuming the Riemann hypothesis for all sym-
metric power L-functions of order r.

If β ≥
√
πr4

4

6π3r4 − 24(−1)rπr2 + 9π − π3 + 2
√
6
√
−π4 + 6π4r4 + 7π2 + 12− 24(−1)rπ2r2

6π4r4 + 48(−1)r+1π2r2 + 96− 3π2 − π4

then

lim inf
q→+∞
q prime

∑

f∈H∗
k(q)

γ̃Symrf,1≤β

ωq(f) ≥ 1− π2

6

16(π2 + 3)β4 + 8r4(9− π2)β2 + (3 + π2)r8

[r6π2 − 4β2r2π2 + 16β2(−1)r]2
.

Moreover, if r is odd and σ = ±1. If β
r(r+2)

√
π
≥

√
π[24π2r2(r + 2)2 + 48σr(r + 2) + 9− π2] + 2

√
6
√
−π4 + 24π4r2(r + 2)2 + 7π2 + 12 + 48σπ2r(r + 2)

24π4r2(r + 2)2 + 96σπ2r(r + 2) + 96− 3π2 − π4

then

lim inf
q→+∞
q prime

2
∑

f∈H∗
k(q)

ε(Symrf)=σ
γ̃Symrf,1≤β

ωq(f) ≥ 1− π2

24

(π2 + 3)β4 + 2r2(r + 2)2(9− π2)β2 + (π2 + 3)r4(r + 2)4

[2σβ2 + π2β2r(r + 2)− π2r3(r + 2)3]2
.

In order to give some examples for small values of r, we plot the graph of the function with
parameter β which is associated to the lower bound in the first part of theorem 2. On these
representative curves, the critical value of β corresponds to the minimal value of β which appears
in theorem 2.

r = 1 r = 2 r = 3 r = 4

Similarly, for a fixed small odd value of r, we plot the lower bounds of theorem 2 in different
cases: when there is no restriction on the sign ε(Symrf) of the functional equation, when
ε(Symrf) = +1 and, finally, when ε(Symrf) = −1.
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First, if r = 1:

ε(Symrf) = ±1 ε(Symrf) = +1 ε(Symrf) = −1

Second, if r = 3:

ε(Symrf) = ±1 ε(Symrf) = +1 ε(Symrf) = −1

1.2 Notations

The following notations will be used throughout this paper.

• ⌊x⌋ denotes the floor of the real number x.

• ∑∗
n≥0 means the sum is running over odd non-negative integers.

• C∞
c (R) denotes the set of infinitely differentiable functions which are compactly supported.

• For 1 ≤ p < +∞, Lp(R) refers to the set of functions f : R → R such that
∫
R
|f(x)|pdx <

+∞. In this case, we put ||f ||p =
(∫

R
|f(x)|pdx

)1/p
. If f and g are in L2(R), let (f, g)L2 =∫

R f(x)g(x)dx.

• If Φ is in L1(R), Φ̂(u) =
∫
R
Φ(x)e−2iπxudx is called the Fourier transform of Φ. When it

is allowed, we can apply the inverse transform formula Φ(x) =
∫
R
Φ̂(u)e2iπxudu.

• If f and g are in L2(R), f ∗ g(u) =
∫
R
f(t)g(u− t)dt is the convolution product of f and g.

• Sν(R) denotes the set of even Schwartz functions whose Fourier transforms are compactly
supported in [−R,R] with 0 < R < ν.

Acknowledgements I would like to thank Frederic Bayart for his availability and all their
advices on Sobolev spaces.
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1.3 Statistics for low-lying zeros

Let F be a natural family of L-functions1 all of whose satisfies the Riemann hypothesis. Con-
sider a L-function L(f, s) in F with analytic conductor cf . Let F(Q) = {L(f, s) ∈ F , cf = Q}.
Each zero ρf of L(f, s) which is on the critical line ℜ(s) = 1/2 can be written ρf = 1

2 + iγf , and

we denote ρ̃f = 1
2 + iγ̃f with γ̃f = γf

ln cf
2π the normalized zero.

In order to study the distribution of low-lying zeros of L(f, s), for any test function Φ in
Sν(R), we define the low-zeros sum

D[Φ](f) =
∑

γ̃f

Φ(γ̃f )

where the sum is running over the imaginary parts of normalised zeros counted with multiplicity.
F(Q) can be seen as a measurable space where measurable sets are all its subsets and which
is equipped with the counting probability measure µF(Q). D[Φ] is a measurable function on
F(Q). However, we are unable to determine the asymptotic behaviour of D[Φ](f) for a single
L-function. As a consequence, we must take into account a family of L-functions in order to
obtain a significant result. That is why, we define the one-level density as the expectation of
D[Φ]:

EF(Q)(D[Φ]) =
1

|F(Q)|
∑

L(f,s)∈F(Q)

D[Φ](f)

We also define the variance of the one-level density:

VF(Q)(D[Φ]) = E([D[Φ]−EF(Q)(D[Φ])]2) =
1

|F(Q)|
∑

L(f,s)∈F(Q)


D[Φ](f)− 1

|F(Q)|
∑

L(f,s)∈F(Q)

D[Φ](f)



2

Our purpose is to find the asymptotic behaviour of EF(Q)(D[Φ]) and VF(Q)(D[Φ]) when Q goes
to infinity. The density conjecture predicts

lim
Q→+∞

1

|F(Q)|
∑

L(f,s)∈F(Q)

D[Φ](f) =

∫

R

Φ(t)W [F ](t)dt

where W [F ] is a density function characterised by F . In order to estimate the one-level density,
we convert sums over zeros to sums over primes. Unfortunately, we are able to evaluate these
sums over primes only if the support of the test function is small. That’s why, density theorems
are proved only for test functions in Sνmax(F)(R) with νmax(F) fixed. Currently, the maximal
value for νmax(F) is 2 whereas the density conjecture does not predict any restriction on the
support of test functions.

Sometimes, we will prefer using the harmonic measure for technical conveniences, rather than
the Dirac one. For instance, in the case of symmetric power L-functions. Precisely, if A is a
subset of Hr(q), let

µhHr(q)
(A) =

∑

L(Symrf,s)∈A
wq(f)

1Our definition of L-function is the one of [IK04] chapter 5.
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and

E
h
Hr(q)

(D[Φ]) =
∑

f∈H∗
k
(q)

ωq(f)D[Φ](Symrf) where ωq(f) =
Γ(k − 1)

(4π)k−1〈f, f〉q

and V
h
Hr(q)

(D[Φ]) =
∑

f∈H∗
k
(q)

ωq(f)
[
D[Φ](Symrf)− E

h
Hr(q)

(D[Φ])
]2
.

Then, if r is odd and if A is a subset of H±
r (q), let

µhH±
r (q)

(A) = 2
∑

L(Symrf,s)∈A
wq(f)

and
E
h
H±

r (q)
(D[Φ]) = 2

∑

f∈H∗
k(q)

ε(Symrf)=±1

ωq(f)D[Φ](Symrf)

and V
h
H±

r (q)
(D[Φ]) = 2

∑

f∈H∗
k(q)

ε(Symrf)=±1

ωq(f)
[
D[Φ](Symrf)− E

h
H±

r (q)
(D[Φ])

]2
.

Actually, harmonic measures are asymptotic probability measures since we only have

lim
q→+∞
q prime

∑

f∈H∗
k(q)

ωq(f) = 1 and lim
q→+∞
q prime

∑

f∈H∗
k(q)

ε(Symrf)=±1

ωq(f) =
1

2
. (1.3)

The first relation comes from Petersson trace formula ([RR11], proposition 2.2) and the second
one is subject to an assumption (Hypothesis Nice(r, f) of [RR11]) we are assuming in order to
get density theorems for these families.

1.4 What is the smallest zero of a L-function ?

If L(f, s) is a self-dual L-function, the sign of the functional equation is equal to ±1. Moreover,
due to the following observation, we need to define γ̃f,1 which appears in theorems 1 and 2 and
to explain the consequences on density theorems.

Lemma 1 ([IK04], proposition 5.1) Let L(f, s) be a self-dual L-function with ε(f) = −1.
Then L

(
f, 12

)
= 0.

If F is a natural family, all of whose L-functions L(f, s) are self-duals and satisfy ε(f) = −1.
Due to the previous lemma, we can denote non-trivial zeros of L(f, s) by

{ρf,0} ∪ {ρf,i, i ∈ Z
∗}

where ρf,0 = 1/2 and ρf,i = 1− ρf,−i if i 6= 0. Moreover, we have:

... ≤ Im(ρf,−1) ≤ Im(ρf,0) = 0 ≤ Im(ρf,1) ≤ Im(ρf,2) ≤ ...

In the other cases, we use the same notations without ρf,0.
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We are going to expose its consequences on statistics of low-lying zeros. Let F a natural
family of L-functions, we define

D∗[Φ](f) =
∑

i∈Z∗

Φ(γ̃f,i).

The density function W ∗[F ] is defined to satisfy

lim
Q→+∞

EF(Q)(D
∗[Φ]) =

∫

R

Φ(t)W ∗[F ](t)dt. (1.4)

If all L-functions L(f, s) in F are self-duals and satisfy ε(f) = −1, we have

EF(Q)(D[Φ]) = Φ(0) + EF(Q)(D
∗[Φ]) and VF(Q)(D[Φ]) = VF(Q)(D

∗[Φ]). (1.5)

This phenomenon occurs for the family H−. It has been shown in [ILS00] (equation (1.18)) that
the symmetry group associated to H− is SO−. In other words, we have

lim
N→+∞

N squarefree

EH−(N)(D[Φ]) =

∫

R

Φ(t)W [SO−](t)dt ie W [H−] =W [SO−].

As a result, we deduce

lim
N→+∞

N squarefree

EH−(N)(D
∗[Φ]) =

∫

R

Φ(t)W [Sp](t)dt ie W ∗[H−] =W [Sp]. (1.6)

Similarly, the family H−
r (r odd) has also SO− as symmetry group ([RR11], theorem A). Nev-

ertheless, for the harmonic measure, relation (1.5) becomes

E
h
H−

r (q)
(D[Φ]) = 2Φ(0)µh

Hr(q)

(
H−

r (q)
)
+ E

h
H−

r (q)
(D∗[Φ])

and

V
h
H−

r (q)
(D[Φ]) = V

h
H−

r (q)
(D∗[Φ])+2Φ(0)

[
Φ(0)µh

Hr(q)

(
H−

r (q)
)
+ E

h
H−

r (q)
(D∗[Φ])

] [
1− 2µh

Hr(q)

(
H−

r (q)
)]2

.

Thanks to relation (1.3), we have

lim
q→+∞
q prime

E
h
H−

r (q)
(D[Φ]) = Φ(0) + lim

q→+∞
q prime

E
h
H−

r (q)
(D∗[Φ]) and lim

q→+∞
q prime

V
h
H−

r (q)
(D[Φ]) = lim

q→+∞
q prime

V
h
H−

r (q)
(D∗[Φ]).

As a result, with theorems A and D of [RR11], we get

lim
q→+∞
q prime

E
h
H−

r (q)
(D∗[Φ]) =

∫

R

Φ(t)W [Sp](t)dt and lim
q→+∞
q prime

V
h
H−

r (q)
(D∗[Φ]) = 2

∫

R

|u|Φ̂(u)2du. (1.7)
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2 Proportion of L-functions with a small smallest zero

In this part, we prove theorem 2. The starting point is the following proposition. We do not give
a proof of this result since it is essentially the same than the proof theorem 8.3 from [HR03].

Proposition 1 Let g be in SR(R) and Φ(x) = (x2 − β2)g2(x). Let

B(g) =

√∫
R
x2g2(x)W ∗[F ](x)dx∫
R
g2(x)W ∗[F ](x)dx

.

We assume

lim
q→+∞
q prime

E
h
F(q)(D

∗[Φ]) =

∫

R

Φ(t)W ∗[F ](t)dt and lim
q→+∞
q prime

V
h
F(q)(D

∗[Φ]) = VF (Φ).

Then, if β > B(g), we have

lim inf
q→+∞
q prime

µhF(q) ({L(f, s) ∈ F ; γ̃f,1 < β}) ≥ 1− VF (Φ)[∫
R
Φ(t)W ∗[F ](t)dt

]2 =: BorneF(β
2). (2.1)

Remark 4 The same result holds for all natural family of L-functions with the counting prob-
ability measure instead of the harmonic measure.

This proposition gives a result only if the right member term is positive. We denote βmin(g)
the smallest value of β > B(g) such that this property is satisfied. Thanks to βmin(g) > B(g),
we may detect a zero. We have:

lim inf
q→+∞
q prime

min
L(f,s)∈F(q)

γ̃f,1 ≤ βmin(g)

Actually, we prove a better upper bound in theorem 1.

Ricotta and Royer proved in [RR11] (theorems A, B and D), that if Φ is in Sρmax(F)(R), then

lim
q→+∞
q prime

E
h
F(q)(D[Φ]) =

∫

R

Φ(t)W [F ](t)dt and lim
q→+∞
q prime

V
h
F(q)(D[Φ]) = 2

∫

R

|u|Φ̂(u)2du

where ρmax(F) and W [F ] are given in table 2. Since ρmax(F) < 1, we have
∫

R

Φ(t)W ∗[F ](t)dt = Φ̂(0) +
σF
2
Φ(0)

with:

F Hr (r even) Hr (r odd) H+
r (r odd) H−

r (r odd)

σF (−1)r+1 = −1 (−1)r+1 = 1 1 −1

In order to obtain explicit lower bound in the previous proposition, we specialise relation (2.1)
in a fixed test function.

11



Lemma 2 If 0 < R < 1/2, ĝ0(u) = cos
(
πu
2R

)
1[−R,R](u) and Φ(x) = (x2 − β2)g20(x), then

BorneF (β
2) = 1− 2π2R2

3

256(3 + π2)R4β4 + 32(9− π2)R2β2 + π2 + 3

(128σFR3β2 + 16π2R2β2 − π2)
2 and B(g0) =

1

4R
√
1 + σF

8R
π2

.

Proof: We have

Φ̂(u) =
[
2R−|u|

2

(
1

16R2 − β2
)
cos
(
πu
2R

)
− 1

π

(
1

16R + β2R
)
sin
(

π|u|
2R

)]
.1[−2R,2R](u)

Φ̂(0) = 1
16R − β2R and Φ(0) = − 16β2R2

π2 .

Thanks to several integration by parts, we obtain

∫

R

|u|Φ̂(u)2du =
768R4β4 + 3 + 288β2R2 + π2 − 32β2R2π2 + 256R4β4π2

768π2
.

�

Lemma 3 Let Borne+F(β
2) = max

{
0;BorneF (β2)

}
. The following table sums up variations

of β 7−→ Borne+F(β
2) where

βmin(g0) =
1

4R

√
π2(3π2 + 24σFR − 2(π2 − 9)R2) + 4πR

√
9π4 + 72σFRπ2 − 6(π4 − 7π2 − 12)R2

3π4 + 48σFRπ2 + (192− 6π2 − 2π4)R2
.

β B(g0) βmin(g0) +∞

Borne+F (β2)

0 −→ 0

�✒
�

�

1− 2π2R2

3
π2+3

(π2+8RσF )2

Proof: First, we study the sign of BorneF (X). It is the same as the quadratic polynomial’s

Y (X) = 3π4 − 6π2R2 − 2π4R2 +X
(
−96R2π4 − 768σFπ

2R3 − 576R4π2 + 64R4π4
)

+X2
(
768R4π4 + 12288σFR

5π2 + 49152R6 − 1536R6π2 − 512R6π4
)
.

Let L(R) be its leading coefficient and ∆(R) its discriminant. We get

∆(R) = −98304(π4 − 7π2 − 12)π2

︸ ︷︷ ︸
<0

R6(R−R1)(R−R2)

with

R1 = min

{
π2 12σF +

√
6(π2 − 3)(π2 − 4)

2(π4 − 7π2 − 12)
;π2 12σF −

√
6(π2 − 3)(π2 − 4)

2(π4 − 7π2 − 12)

}

R2 = max

{
π2 12σF +

√
6(π2 − 3)(π2 − 4)

2(π4 − 7π2 − 12)
;π2 12σF −

√
6(π2 − 3)(π2 − 4)

2(π4 − 7π2 − 12)

}
.

Numerical values If σF = −1, then R1 ≈ −8, 330 and R2 ≈ 1, 074.
If σF = 1, then R1 ≈ −1, 074 and R2 ≈ 8, 330.
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In addition,

L(R) = 256(192− 6π2 − 2π4)︸ ︷︷ ︸
<0

R4(R −R3)(R −R4)

with

R3 = min

{
π2−24σF +

√
6π2(π2 + 3)

192− 6π2 − 2π4
, π2−24σF −

√
6π2(π2 + 3)

192− 6π2 − 2π4

}

R4 = max

{
π2−24σF +

√
6π2(π2 + 3)

192− 6π2 − 2π4
, π2−24σF −

√
6π2(π2 + 3)

192− 6π2 − 2π4

}
.

Numerical values If σF = −1, then R3 ≈ −8, 210 and R4 ≈ 0, 573.
If σF = 1, then R3 ≈ −0, 573 and R4 ≈ 8, 210.

Therefore, we always have

R1 < R3 < 0 <
1

2
< R4 < R2.

Let W (R) be degree 1 monomial coefficient in Y , then

W (R) = 32π2R2(−3π2 − 24σFR+ 2(π2 − 9)R2).

Since 0 < R < 1/2, we have ∆(R) ≥ 0 and L(R) ≥ 0. The polynomial Y has two real roots,

X1(R) =
−W (R)−

√
∆(R)

2L(R)
and X2(R) =

−W (R) +
√
∆(R)

2L(R)
.

Now, we want compare to X1(R), X2(R) and B(g0)
2. Since L(R) is positive , X1(R) ≤ X2(R).

Moreover,

[B(g0)
2 −X1(R)][B(g0)

2 −X2(R)]

=
π2(π4 + 3π2 − 96)(8π2R2 + 24R2 + 24σFπ2R+ 3π4)

8R2[π2 + 8RσF ]2[−3π4 − 48σFRπ2 + 2(π4 + 3π2 − 96)R2]2︸ ︷︷ ︸
>0

(R−R3)(R −R4).

As a result, we have X1(R) ≤ B(g0)
2 ≤ X2(R) and βmin(g0)

2 = X2(R).
Then, we prove that BorneF(X) is increasing on [X2(R);+∞[. We compute

dBorneF
dX

(X) = − 256R4B(g0)
6

3π4(X −B(g0)2)3
[
16R2(2RσF (π

2 − 9)− 3π2)X − 2RσF(π
2 + 3)− 3π2

]
.

If 0 < R < 1/2, then 2RσF (π2 − 9)− 3π2 < 0. As a consequence:

dBorneF
dX

(X) ≥ 0 ⇐⇒ X ≥ 1

16R2

2RσF (π2 + 3) + 3π2

2RσF (π2 − 9)− 3π2

Since the right member of this inequality is always negative (when 0 < R < 1/2), then Borne+F
is an increasing function.

�
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Proof of theorem 2 We specialise the inequality in proposition 1 in the test function g0 with
0 < R < ρmax(F). Using lemma 2, if β > B(g0), we have

lim inf
q→+∞
q prime

µhF(q) ({L(f, s) ∈ F ; γ̃f,1 < β}) ≥ Borne+F(β
2).

Thanks to lemma 3, if β > βmin(g0), we get

lim inf
q→+∞
q prime

µhF(q) ({L(f, s) ∈ F ; γ̃f,1 < β}) ≥ BorneF(β
2).

To obtain theorem 2 , we evaluate the right member in R = ρmax(F)/2.

3 The smallest zero

In this part, we prove theorem 1. Our starting point is the following proposition. We do not
write the proof that is essentially given in [HR03] (theorem 8.1).

Proposition 2 The infimum being taken over functions g in Sνmax(F)/2(R), we have

lim sup
Q→+∞

min
L(f,s)∈F(Q)

γ̃f,1 ≤ inf

{√∫
R
x2g2(x)W ∗[F ](x)dx∫
R
g2(x)W ∗[F ](x)dx

}
. (3.1)

We give a sketch of the proof of theorem 1.

Sketch of the proof We have to determine an explicit expression of the right member term
in (3.1). Let

m := inf
g∈Sν(R)\{0}

∫
R
x2g2(x)W [G](x)dx∫
R
g2(x)W [G](x)dx

with ν = νmax(F)/2 and W [G] =W ∗[F ].

• In subsection 3.1 (lemma 5), we prove the existence of a function B̃ and a set H∞
ν such

that m = inf ĝ∈H∞
ν \{0} B̃(ĝ). Precisely, we define B̃ by

B̃(h) =
1

4π2

∫
R
h′(u)2du− δ

2

∫ 1
−1 h

′ ∗ h′(u)du
∫
R
h(u)2du+ δ

2

∫ 1
−1 h ∗ h(u)du + ε

(∫
R
h(u)du

)2 (3.2)

where (δ, ε) is given in table 1.

• In subsection 3.1 (lemma 6), by a density argument, if

HR =
{
h : R → R even, continuous, C1 on ]−R,R[, with supp h ⊂ [−R,R]

}

and
m̃R = inf

h∈HR\{0}
B̃(h),

we prove m = limR→ν− m̃R.

14



• In subsection 3.1 (lemma 7), by topological arguments, there exists hR in the Sobolev
space H1

0 such that B̃(hR) = m̃R.

• In subsection 3.3 (lemma 10), thanks to Fourier theory, hR satisfies a Volterra equation
with temporal shifts

hR(u) = ϕ(u) +
δ

2

∫ R

u
hR(t+ 1)− hR(t− 1)dt (3.3)

where ϕ is an explicit function which is defined with the unknown parameter m̃R. Then,
hR is in HR.

• Then, we solve the previous Volterra equation in subsection 3.4. As a result, we obtain an
explicit expression of hR which also depends on the unknown parameter m̃R.

• We determine
√
m̃R in subsection 3.5 by solving the equation m̃R = B̃(hR).

• To conclude, we use
√
m = limR→ν−

√
m̃R.

3.1 Density and topological arguments

This section is devoted to the proof of the following lemma which sums up the three first steps
of the preceding sketch of the proof. Let H1

0 be the Sobolev space defined by

H1
0 =

{
u ∈ L2(]−R,R[) with u(−R) = u(R) = 0,

∃v ∈ L2(R) such that ∀φ ∈ C∞
c (]−R,R[),

∫

R

uφ′ = −
∫

R

vφ

}
.

If u is in H1
0 then v is called the weak derivative of u and is denoted by u′. The space H1

0 is
equipped with the inner product

〈u, v〉H1
0
= 〈u′, v′〉L2 =

∫ R

−R
u′v′.

H1
0 is a reflexive separable Hilbert space ([Bre11], paragraphe VIII.3).

Lemma 4 We have
m = lim

R→ν−
m̃R.

In addition, for each R > 0, there exists hR in H1
0 such that m̃R = B̃(hR).

Before proving this result, we need to prove some technical lemmas.

A new expression

Lemma 5 Let H∞
ν = {h ∈ C∞

c (R), even and with supp h ⊂ [−R,R] such that 0 < R < ν}.
Then,

m = inf
h∈H∞

ν \{0}
B̃(h).

15



Proof: Thanks to Plancherel theorem, inversion formula, Parseval formula and relation (1.1),
we have:

∫

R

g2(x)W [G](x)dx =

∫

R

ĝ2(y)Ŵ [G](y)dy = ĝ2(0) +
δ

2

∫ 1

−1

ĝ2(y)dy + ε

∫

R

ĝ2(y)dy

=

∫

R

g2(x)dx +
δ

2

∫ 1

−1

ĝ(y) ∗ ĝ(y)dy + εg2(0)

=

∫

R

ĝ2(y)dy +
δ

2

∫ 1

−1

ĝ(y) ∗ ĝ(y)dy + ε

(∫

R

ĝ(y)dy

)2

Similarly, since x̂g(x) = −1
2iπ ĝ

′, we prove

∫

R

x2g2(x)W [G](x)dx =
1

4π2

∫

R

ĝ′(u)2du − δ

2

∫ 1

−1

ĝ′ ∗ ĝ′(u)du.

In addition, since the set of Schwartz functions is invariant by Fourier transformation, we have:

g ∈ Sν(R) ⇔ ĝ ∈ H∞
ν

Therefore,
m = inf

ĝ∈H∞
ν \{0}

B̃(ĝ).

�

A density argument

Lemma 6 We have
inf

h∈H∞
ν \{0}

B̃(h) = lim
R→ν−

m̃R.

Proof: We define mollifiers (ρn) by

ρn :

{
R −→ R

x 7−→ n∫
R
ρ(t)dt

ρ(nx) where ρ(x) =

{
e

1
|x|2−1 if |x| < 1
0 if |x| ≥ 1

.

The function ρn is non-negative, smooth with supp ρn ⊂ [−1/n; 1/n] and such that
∫
R
ρn(u)du =

1. We recall two properties (see e.g. [Bre11], Theorem 4.22 and Theorem 4.15).

P1 Let 1 ≤ p <∞, if g ∈ Lp(R) then ρn ∗ g tends to g in Lp(R).

P2 Let 1 ≤ p ≤ ∞, if f ∈ L1(R) and g ∈ Lp(R) then f ∗ g ∈ Lp(R) and ||f ∗ g||p ≤ ||f ||1||g||p.

Let 0 < R < ν and η > 0.
There exists h in HR such that m̃R ≤ B̃(h) ≤ m̃R + η. Let hn = ρn ∗ h. For large n, hn is in
H∞

ν . We also have h′n = ρn ∗ h′. Thanks to property P1, we have

lim
n→+∞

||hn||22 = ||h||22, lim
n→+∞

||h′n||22 = ||h′||22 and lim
n→+∞

∫

R

hn(u)du =

∫

R

h(u)du.
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Thanks to property P2, we may write

∣∣∣∣
∫ 1

−1
hn ∗ hn(u)− h ∗ h(u)du

∣∣∣∣ ≤
∫

R

|hn ∗ hn(u)− h ∗ h(u)| du

≤ ||(hn − h) ∗ hn||1 + ||h ∗ (hn − h)||1 ≤ (||hn||1 + ||h||1)||h− hn||1.

Therefore,

lim
n→+∞

∫ 1

−1
hn∗hn(u)du =

∫ 1

−1
h∗h(u)du and similarly lim

n→+∞

∫ 1

−1
h′n∗h′n(u)du =

∫ 1

−1
h′∗h′(u)du.

Then, limn→+∞ B̃(hn) = B̃(h). There exists hn in H∞
ν such that |B̃(h) − B̃(hn)| ≤ η. As a

result, for all η > 0, there exists hn in H∞
ν such that |m̃R − B̃(hn)| ≤ 2η. Then, for all R < ν,

we have infh∈H∞
ν \{0} B̃(h) ≤ m̃R. As a consequence, we have

inf
h∈H∞

ν \{0}
B̃(h) ≤ lim

R→ν−
m̃R.

On the other side, let h be in H∞
ν . There exists R0 < ν such that supp h ⊂ [−R0;R0]. Since h

is in HR0 and R 7→ m̃R is decreasing, we get

lim
R→ν−

m̃R ≤ m̃R0 ≤ B̃(h).

Therefore,
lim

R→ν−
m̃R ≤ inf

h∈H∞
ν \{0}

B̃(h).

�

Some compact operators Relation (3.2) allows us to extend B̃ to H1
0\{0}.

Lemma 7 If R > 0, there exists hR in H1
0\{0} such that m̃R = B̃(hR).

Proof: Let K be the operator of L2(]−R,R[) defined by

K[h](u) =
δ

2

∫ u+1

u−1
h(t)dt + ε

∫

R

h(t)dt.

We may write B̃ on the shape

B̃(h) =
〈h′, h′〉L2 + 〈Kh′, h′〉L2

〈h, h〉L2 + 〈Kh, h〉L2

.

Since K is a Hilbert-Schmidt operator, it is a compact operator of L2(] − R,R[). Denote by I
the identity function of L2(]−R,R[), the transformations that have been done in lemma 5 show
that, for all h in L2(]−R,R[), 〈(I +K)[h], h〉L2 ≥ 0 with equality if and only if h = 0.

Since smooth function compactly supported in ]− R,R[ are dense in H1
0 , the infimum of B̃

over H1
0 is also equal to m̃R.
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Let (gn) be a sequence of non zero functions in HR such that limn→+∞ B̃(gn) = m̃R. We
consider hn = gn/〈g′n, g′n〉L2 . Since for all real number t 6= 0 and all h in HR, B̃ satisfies
B̃(t.h) = B̃(h), we have

lim
n→+∞

B̃(hn) = m̃R and ‖h′n‖L2 = ‖hn‖H1
0
= 1.

Sequences (hn) and (h′n) are bounded in the Hilbert space L2(]−R,R[). Since the unit ball
of L2(] − R,R[) is compact for the weak topology, up to consider sub-sequences, there exists
h and k in L2(] − R,R[) such that (hn) (respectively (h′n)) tends to h (respectively k) weakly.
Moreover, for all function φ in C∞

c (]−R,R[), we may write
∫
gφ′ = lim

n→+∞

∫
gnφ

′ = − lim
n→+∞

∫
g′nφ = −

∫
kφ.

Then g belongs to H1, g′ = k and gn tends to g weakly in H1. In addition, there exists
a compact embedding of H1 into the set of continuous function on [−R,R] equipped with
the norm of uniform convergence ([Bre11], theorem 8.2 et 8.8), we may conclude ([Bre11],
6.1 remark 2) hn converges uniformly to h (precisely to its continuous representative which
will be always identified with h). As a result, h is an even functions belonging to H1

0 and
limn→+∞ ‖hn‖L2 = ‖h‖L2 .

Since (hn) and (h′n) are weakly convergent in L2(]−R,R[) and since K is a compact operator,
the sequence (Khn) and (Kh′n) converge respectively to Kh and Kh′ strongly in L2(]−R,R[).
Then, we get ([Bre11], proposition 3.5 (iv))

lim
n→+∞

〈Khn, hn〉L2 = 〈Kh, h〉L2 and lim
n→+∞

〈Kh′n, h′n〉L2 = 〈Kh′, h′〉L2 .

To sum up, we have

lim
n→+∞

〈(I +K)h′n, h
′
n〉L2 = 1 + 〈Kh′, h′〉L2 , lim

n→+∞
〈(I +K)hn, hn〉L2 = 〈(I +K)h, h〉L2

and, since (h′n) tends weakly to h′ in L2, we may deduce ‖h′‖L2 ≤ lim inf ‖h′n‖L2 = 1.
Furthermore, 1 + 〈Kh′, h′〉L2 is non zero. Indeed, if it was zero, we would have

0 = 1 + 〈Kh′, h′〉L2 ≥ ‖h′‖L2 + 〈Kh′, h′〉L2 = 〈(I +K)h′, h′〉L2 ≥ 0.

So, ‖h′‖L2 = 1 and 〈(I +K)h′, h′〉L2 = 0, thus ‖h′‖L2 = 1 and h′ should be zero !
As a result 〈(I +K)h, h〉L2 6= 0 because m̃R is finite and 1 + 〈Kh′, h′〉L2 is non zero.
Then

‖h′‖L2 + 〈Kh′, h′〉L2

〈(I +K)h, h〉L2

= B̃(h) ≥ m̃R = lim
n→+∞

B̃(hn) =
1 + 〈Kh′, h′〉L2

〈(I +K)h, h〉L2

,

and ‖h′‖L2 ≥ 1. Since we already have ‖h′‖L2 ≤ 1, it comes ‖h′‖L2 = 1. To conclude, the
function h is non zero and satisfies B̃(h) = m̃R.

�

Remark 5 B̃ is not continuous when B||·||H1
(0, 1) → R is equipped with the weak topology.

Indeed, since the unit ball is weakly compact, B̃ should be bounded. However, by considering

hn(u) = cos
(
(2n+1)πu

2R

)
1[−R,R](u), we remark that B̃ cannot be bounded.
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The proof of lemma 4 comes from lemmas 5, 6 and 7.

3.2 Fourier analysis

For technical conveniences, let B(h) = 16R2B̃(h) and mR = infh∈HR
B(h). Then

mR = B(hR) = 16R2m̃R.

Let

ΩR =



(cn) ∈ R

N, such that c2n = 0 and x 7→
∑

n≥0

cn cos
(πnx
2R

)
is continuous and inH1

0



 .

In this section, we prove some technical lemmas.

Lemma 8 Let

Ψ :

{
H1

0 ∩ {continuous, even} −→ ΩR

h 7−→
(
1−(−1)n

2R

∫ R
0 h(t) cos

(
πnt
2R

)
dt
)
n≥0

.

Then, Ψ is a bijective function.

Proof: For each h in H1
0 , we associate an even 4R-periodic function h̃ which is defined by:

for all x ∈ [0, R], h̃(x) = h(x) and h̃(R+ x) = −h(R− x).

We also have h = h̃ · 1[−R,R].

representative curve of h representative curve of h̃

As a result, the mean value of h̃ is equal to zero. Actually, if cn denotes the n-th Fourier
coefficient of h̃, we have

cn =
1

4R

∫ 2R

−2R
h̃(t)e−

iπnt
2R dt =

1− (−1)n

2R

∫ R

0
h(t) cos

(
πnt

2R

)
dt.
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Since the Fourier series of a function in H1
0 is normally convergent, we get

h(u) = h̃(u) · 1[−R,R](u) = 2


∑

n≥0

cn cos
(πnx
2R

)

1[−R,R](u).

Then Ψ is well defined and the last relation gives us an explicit expression of Ψ−1.

�

As a consequence, since B is defined on the set of continuous and even functions in H1
0 , we may

define B on ΩR by B(c) := B(Ψ−1(c)).

Lemma 9 Let c = (cn) be in ΩR. If R ≤ 1/2 then

B(c) =

∑∗
n≥0 n

2c2n

∑∗
n≥0 c

2
n + (δ + 2ε)8Rπ2

(∑∗
n≥0

(−1)
n−1
2

n cn

)2

and, if R > 1/2, we have

B(c) =

∑∗
n≥0 n

2c2n − δ
2R

∑∑
m,n≥0mnµm,ncmcn

∑∗
n≥0 c

2
n + δ

2R

∑∑
m,n≥0 λm,ncmcn + 16Rε

π2

(∑∗
n≥0

(−1)
n−1
2 cn

n

)2

where, for n and m odd numbers:

λm,n =





8R2mn(−1)
m+n

2

π2(m2−n2)

[
1
n2 cos

πn
2R − 1

m2 cos
πm
2R

]
− 8R2(−1)

m+n
2

mnπ2 si m 6= n
2R(2R−1)

nπ sin πn
2R − 8R2

π2n2 cos
nπ
2R + 8R2

π2n2 si m = n

and µm,n =





8R2(−1)
m+n

2

π2(m2−n2)

[
cos πm

2R − cos πn
2R

]
si m 6= n

−2R(2R−1)
nπ sin πn

2R si m = n

Proof: We are giving an explicit expression of B on ΩR. Let h be an even and continuous
function in H1

0 such that c = (cn) = Ψ(h). Thanks to Parseval formula, we have:

1

2R

∫

R

h(u)2du =
1

4R

∫ 2R

−2R

h̃(u)2du =
∑

n∈Z

|cn|2 = 2
∑

n≥0

c2n

1

2R

∫

R

h′(u)2du =
1

4R

∫ 2R

−2R

h̃′(u)2du =
π2

4R2

∑

n∈Z

n2|cn|2 =
π2

2R2

∑

n≥0

n2c2n

In addition, we may write

∫

R

h(u)du =

∫ R

−R

h̃(u)du =
4R

π

∑

n∈Z

(−1)n

(2n+ 1)
c2n+1 =

8R

π

∑

n≥0

(−1)n

(2n+ 1)
c2n+1.
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Remember B(h) = 16R2B̃(h) where B̃(h) is given in (3.2). We obtain an explicit expression of
B(c) using

∫ 1

−1

h ∗ h(x)dx =

{ (∫
R
h(x)dx

)2
if R ≤ 1

2
4
∑

m≥0

∑
n≥0 cmcnλm,n if R > 1

2

and ∫ 1

−1

h′ ∗ h′(x)dx =

{
0 if R ≤ 1

2
π2

R2

∑
m≥0

∑
n≥0mncmcnµm,n if R > 1

2

.

�

Hughes and Rudnick proved that m = 1
16ν2

if G = U . We extend their result.

Corollary 1 If G = O or if G = SO± and 0 < R ≤ 1/2 then

1

1 +R
< mR ≤ 1

1 + 8
π2R

< 1.

If G = SO± with R > 1/2, then mR < 1. If G = Sp and 0 < R < 1/2, then

1 < mR <
1

1− 8
π2R

< 2.

Proof: Thanks to the Cauchy-Schwarz inequality, if G = O or if G = SO± with 0 < R ≤ 1/2,
we have

B(c) =

∑∗
n≥0 n

2c2n

∑∗
n≥0 c

2
n + (δ + 2ε)8Rπ2

(∑∗
n≥0

(−1)
n−1
2

n cn

)2 ≥
∑∗

n≥0 n
2c2n

(1 +R)
∑∗

n≥0 c
2
n

≥ 1

1 +R

and one of both inequalities is strict. In order to obtain an upper bound for mR, we specialise
B in e = (en) which is defined by en = 0 for all n except e1 = 1. The upper bound comes easily
if G = O, if G = SO± or if G = Sp and 0 < R ≤ 1/2. If G = SO± and R > 1/2, we have

B(e) =
1− δ

2Rµ1,1

1 + δ
2Rλ1,1 +

16Rε
π2

=
1 + δ(2R−1)

π sin π
2R

1 + δ(2R−1)
π sin π

2R + 4Rδ
π2

(
1− cos π

2R

)
+ 16Rε

π2

< 1.

Finally, if G = Sp and R < 1/2, for all c in ΩR, we have

B(c) =

∑∗
n≥0 n

2c2n

∑∗
n≥0 c

2
n − 8R

π2

(∑∗
n≥0

(−1)
n−1
2

n cn

)2 ≥
∑∗

n≥0 n
2c2n∑∗

n≥0 c
2
n

≥ 1

and one of both inequalities is strict. Therefore, thanks to lemma 7, we have mR > 1.

�

Corollary 1 implies, except if G = Sp and R > 1/2, that mR is not the square of an integer. We
make the following hypothesis which will be justified page 43.
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“Sp hypothesis”: If G = Sp and R > 1/2 then mR is not the square of an integer.

Remark 6 In the symplectic case with R > 1/2, by evaluating B in e, we get:

mR ≤ B(e) =
1− 2R−1

π sin π
2R

1− 2R−1
π sin π

2R − 4R
π2

(
1− cos π

2R

) =
12R

π2
+O(1)

Therefore, since mR = 16R2m̃R, corollary 1 and proposition 2 show:

lim sup
Q→+∞

min
L(f,s)∈F(Q)

γ̃f,1 ≤ lim
R→νmax(F)/2

√
m̃R ≪





1
νmax(F)1/2

if W ∗[F ] =W [Sp]
1

νmax(F) if W ∗[F ] =W [SO+]
1

νmax(F)3/2
if W ∗[F ] =W [O]

1
νmax(F)2

if W ∗[F ] =W [SO−]

As a result, density conjecture agrees with random matrix prediction.

3.3 A Volterra equation with temporal shifts

Since the unitary case has been solved, we assume G is one of the following compact groups O,
SO−, SO+ or Sp. In this section, we prove the following lemma.

Lemma 10 The optimal test function hR satisfies, for all 0 ≤ u ≤ R,

hR(u) = ϕ(u) +
δ

2

∫ R

u
hR(t+ 1)− hR(t− 1)dt (3.4)

where (δ, ε) is given in the table 1 and with

ϕ(u) =
πkδ,ε

2mR cos
√
mRπ
2

[
cos

√
mRπu

2R
− cos

√
mRπ

2

]
· 1[−R,R](u)

where

kδ,ε =
2mR

π

[
δ

2

∫ R

R−1
hR(x)dx+ ε

∫ R

−R
hR(x)dx

]
. (3.5)

Remark 7 We identify hR to its continuous representative. As a result, equation (3.4) proves
that hR is of class C1 on ]−R,R[. In other words, the function hR belongs to HR.

Before proving this result, we need to prove some technical lemmas. However, we may
immediately deduce the following corollary.

Corollary 2 If G = O or if G = SO± or Sp with R ≤ 1/2, then

√
m =

1

ν
V −1

(
1 + (δ + 2ε)

1

ν

)

where V has been defined in section “Preview of results”.
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Proof: If G = O, then δ = 0 and lemma 10 gives us immediately hR = ϕ. Similarly, if G = SO+,
SO− or Sp, R ≤ 1/2 and if 0 < t < R then t+ 1 /∈ [−R,R] and t− 1 /∈ [−R,R]. Therefore, in
this case, we also have hR = ϕ. We may sum up these remarks by

hR(u) = ϕ(u) =
(δ + 2ε)

∫ R

−R hR(x)dx

2 cos
(

π
√
mR

2

)
[
cos

√
mRπu

2R
− cos

√
mRπ

2

]
· 1[−R,R](u).

As a result, we have

∫ R

−R

hR(u)du ·
[
1− (δ + 2ε)R

(
2

π
√
mR

tan

(
π
√
mR

2

)
− 1

)]
= 0.

Since
∫ R
−R hR(u)du 6= 0 (otherwise hR = 0), we may conclude

2

π
√
mR

tan

(
π
√
mR

2

)
= 1 +

δ + 2ε

R
.

The result comes easily from lemmas 5 and 6.

�

Remark 8 We will use this phenomenon in the next section in order to determine hR in full
generality.

Let

Sn(t) = sin

(
πnt

2R

)
1[−R,R](t) and Cn(t) = cos

(
πnt

2R

)
1[−R,R](t).

Lemma 11 n denotes an odd positive integer. Let h be in HR with c = (cm) = Ψ(h), then:

∑

m≥0

[mnµm,n +mRλm,n] cm

= −2R

nπ
(n2 −mR)(Sn ∗ h)(1) + 8R2(−1)

n−1
2

nπ2
mR

∑

m≥0

(−1)
m−1

2

m

[
1− cos

mπ

2R

]
cm

Proof: We have:
∑

m≥0

[mnµm,n +mRλm,n] cm

= −(n2 −mR)


2R(2R− 1)

nπ
sin
(πn
2R

)
cn +

8R2

nπ2

∑

m 6=n

m(−1)
m+n

2

m2 − n2
cos
(πn
2R

)
cm




−8R2mR

n2π2
cos
(πn
2R

)
cn −mR

∑

m≥0

8R2(−1)
m+n

2

nmπ2
cm +

8R2

π2

∑

m 6=n

n(−1)
m+n

2

m(m2 − n2)
(m2 −mR) cos

(πm
2R

)
cm

Since
n

m(m2 − n2)
=

1

n

(
m

m2 − n2
− 1

m

)
,
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we may conclude
∑

m≥0

[mnµm,n +mRλm,n] cm

= −(n2 −mR)


2R(2R− 1)

nπ
sin
(πn
2R

)
cn +

8R2

nπ2

∑

m 6=n

∗ (−1)
m+n

2 m

m2 − n2

[
cos
(πn
2R

)
− cos

(πm
2R

)]
cm




+
8R2mR(−1)

n−1
2

nπ2

∑

m≥0

∗ (−1)
m−1

2

m

[
1− cos

(πm
2R

)]
cm.

In addition, we have

(Sn ∗ h)(1) =
∫ R

1−R

h(u) sin
(πn
2R

(1− u)
)
du

=
∑

m≥0

∗
cm

∫ R

1−R

sin

(
π(m− n)u

2R
+
πn

2R

)
− sin

(
π(m+ n)u

2R
− πn

2R

)
du

= (2R− 1) sin
(πn
2R

)
cn +

4R

π

∑

m 6=n

∗ (−1)
m+n

2 m

m2 − n2

[
cos
(πn
2R

)
− cos

(πm
2R

)]
cm.

�

Lemma 12 Let c = (cn) = Ψ(hR). Then, for all odd positive integer n, we have

cn =
(−1)

n−1
2 kδ,ε

n[n2 −mR]
− δ

nπ
(Sn ∗ hR)(1) =

(−1)
n−1
2 kδ,ε

n[n2 −mR]
+

2Rδ

n2π2
(Cn ∗ h′R)(1).

Proof: We define a norm on ΩR by

||c|| =
+∞∑

n=0

n|cn|+
(

+∞∑

n=0

n2c2n

)1/2

and we consider five differentiable functions H, T , S, A and G on (ΩR, || · ||) defined by:

H(c) =
∑

n≥0

n2c2n, T (c) =
∑

n≥0

c2n, S(c) =
∑

n≥0

∗ (−1)
n−1
2

n
cn,

A(c) =
∑

m≥0

∑

n≥0

mnµm,ncmcn and G(c) =
∑

m≥0

∑

n≥0

λm,ncmcn.

With lemma 9, we may write

B =
H − δ

2RA

T + δ
2RG+ 16Rε

π2 S2
if R >

1

2
or B =

H

T + (δ + 2ε)8Rπ2 S2
if R ≤ 1

2
.

Since B(c) = mR, c is a critical point. Therefore, if R > 1/2, we have dB|c = 0 hence:

∀n odd, (n2 −mR)cn =
δ

2R

∑

m≥0

[mnµm,n +mRλm,n] cm + ε
16RS(c)mR

π2

(−1)
n−1
2

n
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Thanks to lemma 11, “Sp hypothesis” and corollary 1, we may conclude

cn =
(−1)

n−1
2 kδ,ε

n[n2 −mR]
− δ

nπ
(Sn ∗ hR)(1) =

(−1)
n−1
2 kδ,ε

n[n2 −mR]
+

2Rδ

n2π2
(Cn ∗ h′R)(1) (3.6)

where

kδ,ε =
4RmR

π2


δ
∑

m≥0

∗ (−1)
m−1

2

m

(
1− cos

mπ

2R

)
cm + 4ε

∑

m≥1

∗ (−1)
m−1

2

m
cm




=
2mR

π

[
δ

2

∫ R

R−1

hR(x)dx + ε

∫ R

−R

hR(x)dx

]
. (3.7)

Similarly, c satisfies (3.6) and (3.7) in the case R ≤ 1/2 due to the fact that, if R ≤ 1/2, we

have (Sn ∗ hR)(1) = 0 and
∫ R
R−1 hR(x)dx =

∫ R
−R hR(x)dx.

�

Proof of lemma 10 Assume 0 ≤ u ≤ R. Since hR(u) = 2
∑

n≥0 cn cos
(
πnu
2R

)
, lemma 12 gives

hR(u) = 2kδ,ε
∑

n≥0

∗ (−1)
n−1
2 cos

(
πnu
2R

)

n(n2 −mR)
+

4Rδ

π2

∑

n≥0

∗ (Cn ∗ h′R)(1)
n2

cos
(πnu
2R

)
.

First, using relation 1.444.6 of [GR07], we have

∑

n≥0

∗ (Cn ∗ h′R)(1)
n2

cos
(πnu
2R

)
=

π

8

∫ R

−R

(
π − π|u+ t|

2R
− π|u − t|

2R

)
h′R(1− t)dt

=
π2

8R

∫ R

u

hR(t+ 1)− hR(t− 1)dt.

Then, using relation 1.445.6 of [GR07], we compute

2kδ,ε
∑

n≥0

∗ (−1)
n−1
2 cos

(
πnu
2R

)

n(n2 −mR)
=

πkδ,ε

2mR cos
√
mRπ
2

[
cos

√
mRπu

2R
− cos

√
mRπ

2

]
= ϕ(u).

3.4 Optimal test Function

In this section, we solve the Volterra equation with temporal shifts which appears in lemma 10.
Precisely, we prove that, except for a countable or finite number of value of R, the previous
Volterra equation admits one and only one solution in HR. We are giving an explicit expression
of hR.

An appropriate partition

For technical convenience, since R will tend to ν (thanks to lemma 6), we may assume that 2R
is not an integer. Similarly, since n ≥ 1 is the only integer such that n − 1 < 2ν ≤ n, we may
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assume n−1
2 < R < n

2 , then n = ⌊2R⌋+ 1.

Let D be the derivative operator and T , T−1 the shift operators defined by:

D[f ] = f ′, T [f ](u) = f(u+ 1) and T−1[f ](u) = f(u− 1).

We build a partition of [−R,R] which is invariant by T [id], T−1[id] and by symmetry. We define

{
an−2i = R− i if 0 ≤ i ≤ n−1

2
an−2i−1 = ⌊2R⌋ −R− i if 0 ≤ i ≤ n−2

2

and I0 =]− a1, a1[, Ik =]ak, ak+1[, I−k =]− ak+1,−ak[ for 1 ≤ k ≤ n− 1. We have

[−R,R] =
⌊2R⌋⋃

k=−⌊2R⌋
Ik.

Moreover, if |k| < n−2 then T±1(Ik) = Ik±2 and, if k ∈ {n−2, n−1} then T (Ik)∩ supp hR = ∅.

A differential equation with temporal shifts

By derivation and integration, we remark that hR satisfies the previous Volterra equation is
equivalent to hR satisfies the following differential equation with temporal shifts:
for all u in ]−R,R[,

h′R(u) = ϕ′(u)− δ

2
[hR(u+ 1)− hR(u− 1)] . (3.8)

Let

λ =

√
mRπ

2R
and w =

−π2kδ,ε
4R

√
mR cos

π
√
mR

2

.

We consider polynomial sequences (Tn) and (Un) which are defined by induction:





T0 = 1
T1 = X
Tn+1 = 2XTn − Tn−1





U0 = 1
U1 = 2X
Un+1 = 2XUn − Un−1

Polynomials Tn (resp. Un) are called Chebychev polynomials of first kind (resp. second kind).
They satisfy, for all real number θ and all non-negative integer n,

Tn(cos θ) = cosnθ and Un(cos θ) =
sin(n+ 1)θ

sin θ
.

As a result, we have

Tn(X) =

n−1∏

k=0

[
X − cos

(
π

2n
+
kπ

n

)]
, Un(X) =

n∏

k=1

[X − θn(k)] where θn(k) = cos

(
kπ

n+ 1

)
.
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In this subsection, we prove the following proposition:

Proposition 3 Even functions h which are compactly supported on [−R,R], C1 on each Ik and
which satisfy the differential equation (3.8) on ∪Ik are those that satisfy:

• If 0 ≤ k ≤ n− 1, then:

h|In−(2k+1)
(u) =

⌊n+1
2 ⌋∑

j=1

rj(In−1)Uk (θn(j)) sin

([
u− n− 2k − 1

2

]
θn(j)−

π

2

[
j + δ

n− 2k − 1

2

])

+ rλn(k) sin

(
λ

[
u− n− 2k − 1

2

]
+ θλn(k)

)

• If 0 ≤ k ≤ n− 2, then:

h|In−2(k+1)
(u) =

⌊n
2 ⌋∑

j=1

rj(In−2)Uk (θn−1(j)) sin

([
u− n− 2(k + 1)

2

]
θn−1(j)−

π

2

[
j + δ

n− 2(k + 1)

2

])

+ rλn−1(k) sin

(
λ

[
u− n− 2k − 2

2

]
+ θλn−1(k)

)

where rj(In−1) with 1 ≤ j ≤
⌊
n+1
2

⌋
and rj(In−2) with 1 ≤ j ≤

⌊
n
2

⌋
are arbitrary real numbers

and where rλn(k) and θλn(k) refer respectively to the modulus and the argument of the complex
number

iw

λ+ δ sinλ

[
Uk (λ)

Un (λ)
e−i(λ+πδ

2 )
n+1
2 − ei(λ+

πδ
2 )

n−2k−1
2 +

Un−k−1(λ)

Un (λ)
ei(λ+

πδ
2 )

n+1
2

]
e−iπδ

2
n−2k−1

2 .

Before proving this result, we need to prove some technical lemmas.

Transformation in a linear differential equation With corollary 2, we may assume δ 6= 0
(hence δ2 = 1) and n ≥ 2. Moreover, throughout this section h refers to an even function which
is compactly supported on [−R,R], C1 on each Ik and which satisfies the differential equation
(3.8) on ∪Ik.
Let Qk the operator which has the following recursive definition:





Q1 = I

Q2 = D + δ
2(T

−1 − T )

Qk+1 = DQk +
1
4Qk−1 +

(
δ
2

)k (
T−k + (−1)kT k

)

Lemma 13 h satisfies the following linear differential equations:

• On In−1, if 1 ≤ k ≤ n, h satisfies:

(
i

2

)k

Uk

(
1

i
D

)
[h] = Qk[ϕ

′] +

(
δ

2

)k

T−k[h]
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• On In−2, if 1 ≤ k ≤ n− 1, h satisfies:
(
i

2

)k

Uk

(
1

i
D

)
[h] = Qk[ϕ

′] +

(
δ

2

)k

T−k[h]

• On I0, if 1 ≤ k ≤ ⌊n+1
2 ⌋, h satisfies:

2

(
i

2

)k

Tk

(
1

i
D

)
[h] = Qk[ϕ

′] +

(
δ

2

)k (
T−k[h] + (−1)kT k[h]

)

Proof: We prove the first relation by induction for k = 1, ..., n. If k = 1,the differential equation
(3.8) gives:

if u ∈ In−1, h
′(u) = ϕ′(u) +

δ

2
h(u− 1). (3.9)

The result comes easily from the definition of Q1 and U1. If k = 2, we derive relation (3.9) and
we apply the differential equation (3.8).
We assume the result holds for k and k − 1 with 2 ≤ k ≤ n − 1. Then, with recursive relation
on Uk, we get:

(
i

2

)k+1

Uk+1

(
1

i
D

)
[h] =

2

i

(
i

2

)k+1

DUk

(
1

i
D

)
[h]−

(
i

2

)k+1

Uk−1

(
1

i
D

)
[h]

= D

((
i

2

)k

Uk

(
1

i
D

)
[h]

)
+

1

4

(
i

2

)k−1

Uk−1

(
1

i
D

)
[h]

= DQk[ϕ
′] +

1

4
Qk−1[ϕ

′] +

(
δ

2

)k

T−k[h′] +

(
δ

2

)k+1

T−(k−1)[h]

since k ≤ n− 1 we may apply differential equation (3.8).

= DQk[ϕ
′] +

1

4
Qk−1[ϕ

′] +

(
δ

2

)k

T−k[ϕ′] +

(
δ

2

)k+1

T−(k+1)[h]

Since we apply this relation with u in In−1, we have T k+1[h](u) = 0. Therefore, we have
(
i

2

)k+1

Uk+1

(
1

i
D

)
[h] = Qk+1[ϕ

′] +

(
δ

2

)k+1

T−(k+1)[h] on In−1.

We prove the other relations of this lemma in the same way.

�

Lemma 14 Let f be a function which is C1 on ]−R,R[ and with supp f ⊂ [−R,R]. Then, for
all 1 ≤ k ≤ n we have

Qk[f |In−1 ] =

(
i

2

)k−1 k−1∑

j=0

(
δ

i

)j

Uk−j−1

(
1

i
D

)
T−j[f |In−1 ].

Similarly, for all 1 ≤ k ≤ n− 1 we have

Qk[f |In−2 ] =

(
i

2

)k−1 k−1∑

j=0

(
δ

i

)j

Uk−j−1

(
1

i
D

)
T−j[f |In−2 ].
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Proof: By induction on k = 1, ..., n. The result comes easily from the definition of Qk if k = 1
or k = 2. We assume the result holds for k and k − 1 with 2 ≤ k ≤ n− 1. Since T k[f |In−1 ] = 0,
we have

Qk+1 = DQk +
1

4
Qk−1 +

(
δ

2

)k

T−k

=

(
i

2

)k



k−1∑

j=0

(
δ

i

)j
2D

i
Uk−j−1

(
1

i
D

)
T−j −

k−2∑

j=0

(
δ

i

)j

Uk−j−2

(
1

i
D

)
T−j


+

(
δ

2

)k

T−k

=

(
i

2

)k k−2∑

j=0

(
δ

i

)j [
2D

i
Uk−j−1

(
1

i
D

)
− Uk−j−2

(
1

i
D

)]
T−j +

(
i

2

)k (
δ

i

)k−1

U1

(
1

i
D

)
T−(k−1)

+

(
δ

2

)k

T−k

=

(
i

2

)k k∑

j=0

(
δ

i

)j

Uk−j

(
1

i
D

)
T−j.

Similarly, we prove the other relation of this lemma.

�

Using lemmas 13 and 14, we prove that h|In−1 and h|In−2 satisfy linear non-homogeneous differ-
ential equations with constant coefficients. Precisely,

Corollary 3 We have

inUn

(
1

i
D

)
[h|In−1 ] = Im

[
iwδneiλ(u−n) 1− (iδeiλ)nUn(λ) + (iδeiλ)n+1Un−1(λ)

λ+ δ sinλ

]

and

in−1Un−1

(
1

i
D

)
[h|In−2 ] = Im

[
iwδn−1eiλ(u−n+1) 1− (iδeiλ)n−1Un−1(λ) + (iδeiλ)nUn−2(λ)

λ+ δ sinλ

]
.

Proof: We have T−n[h|In−1 ] = 0 and T−(n−1)[h|In−2 ] = 0. Thus, with lemma 13, we get

inUn

(
1

i
D

)
[h|In−1 ] = 2nQn[ϕ

′|In−1 ] and in−1Un−1

(
1

i
D

)
[h|In−2 ] = 2n−1Qn−1[ϕ

′|In−2 ].

Let eλ(u) = weiλu. We have ϕ′(u) = Im [eλ(u)]. Since D2(eλ) = (iλ)2eλ, thanks to lemma 14,
we write

Qn(eλ|In−1) =

(
i

2

)n−1 n−1∑

j=0

(
δ

i

)j

Un−j−1(λ)T
−j(eλ|In−1)

and

Qn−1(eλ|In−2) =

(
i

2

)n−2 n−2∑

j=0

(
δ

i

)j

Un−j−2(λ)T
−j(eλ|In−2).
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Due to the fact that

n−1∑

j=0

Uj(X)zj =
1− znUn(X) + zn+1Un−1(X)

1− 2zX + z2
, (3.10)

we have

Qn(eλ|In−1) =
δn−1ie−iλ

2n
1− (iδeiλ)nUn(λ) + (iδeiλ)n+1Un−1(λ)

λδ + sinλ
eλ(u− n+ 1)

and

Qn(eλ|In−2) =
δn−2ie−iλ

2n−1

1− (iδeiλ)n−1Un−1(λ) + (iδeiλ)nUn−2(λ)

λδ + sinλ
eλ(u− n+ 2).

We may conclude since Qn(ϕ
′) = Im(Qn(eλ)).

�

Lemma 15 R 7→ m̃R is a strictly decreasing function.

Proof: We are assuming that there exist R1 < R2 such that m̃R1 = m̃R2 . Since R 7→ m̃R is a
decreasing function, we may assume there exists an integer n0 such that

n0 − 1

2
< R1 < R2 <

n0

2
.

Let λ = λR1 = λR2 = 2π
√

m̃R1 . There exists hR1 in HR1 such that B̃(hR1) = m̃R1 = m̃R2 .
Thanks to the Volterra equation (3.4), hR1 |In0−1(R2) is smooth. Using corollary 3, we have:

in0Un0

(
1

i
D

)
[hR1 |In0−1(R2)](u) = Im

[
iwR2δ

n0eiλ(u−n0)
1− (iδeiλ)n0Un0(λ) + (iδeiλ)n0+1Un0−1(λ)

λ+ δ sinλ

]

Since supp hR1 ⊂ [−R1, R1], we have hR1 |In0−1(R2)\In0−1(R1) = 0. Thus, for all u in In0−1(R2),

we have

Im

[
iwR2δ

neiλ(u−n0)
1− (iδeiλ)n0Un0(λ) + (iδeiλ)n0+1Un0−1(λ)

λ+ δ sinλ

]
= 0.

Then, on In0−1(R2), hR1 |In0−1(R2) satisfies Un0

(
1
iD
)
[hR1 |In0−1(R2)](u) = 0 and hR1(u) = 0 on

In0−1(R2)\In0−1(R1) 6= ∅. Using Picard-Lindelöf theorem, we may conclude hR1 |In0−1(R2) = 0.
Thus, supp hR1 ⊂ [−an0−1(R2), an0−1(R2)] and m̃an0−1(R2) = m̃R2 with an0−1(R2) = ⌊2R2⌋−R2.
As a result, for all R such that an0−1(R2) < R < R2, we have m̃R = m̃R2 . By induction,
there exists rk (with r1 = an−1(R2)) in ]n0−k−1

2 , n0−k
2 [ such that for all R in [rk, R2[, we have

m̃R = m̃R2 . As a result, R 7→ m̃R is a constant function on ]rn0−1, 1/2[ which contradicts
corollary 2.

�

Corollary 4 Except for at most n− 1 values of R in ]n−1
2 , n2 [, we have Un(λ)Un−1(λ) 6= 0.

Proof: Un(λ)Un−1(λ) = 0 if λ is one of the n−1 positive roots of UnUn−1. SinceR 7→ λ = 2π
√
m̃R

is a strictly decreasing function, Un(λ)Un−1(λ) 6= 0 excepted for at most n − 1 values of R in
]n−1

2 , n2 [.
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Since R will tends to ν, we may assume Un(λ)Un−1(λ) 6= 0.

Lemma 16 There exists 2n−1 complex numbers z1(In−1), ..., zn(In−1) and z1(In−2), ..., zn−1(In−2)such
that

h|In−1(u) = Im




n∑

j=1

zj(In−1)e
iuθn(j) + zλn(0)e

iλ(u−n−1
2 )




and h|In−2(u) = Im



n−1∑

j=1

zj(In−2)e
iuθn−1(j) + zλn−1(0)e

iλ(u−n−2
2 )




where

zλn(0) = rλn(0)e
iθλn(0) =

iw

(iδ)nUn(λ)
e−iλn+1

2
1− (iδeiλ)nUn(λ) + (iδeiλ)n+1Un−1(λ)

λ+ δ sinλ
.

Proof: We solve differential equations of corollary 3. The general solution of the homogeneous
equation is any functions which may be written

u 7−→ Im




n∑

j=1

zj(In−1)e
iuθn(j)


 .

Finally, with corollary 4, it is easy to check that u 7−→ Im
[
zλn(0)e

iλ(u−n−1
2 )
]
is a particular

solution of our differential equation. Similarly, we success in obtaining an explicit expression of
h|In−2 .

�

Extension of the optimal test function In lemma 16, we have an explicit expression of h
only on In−2 ∪ In−1. Thanks to the differential equation with temporal shifts (3.8), we extend
this explicit expression to [−R,R].

Lemma 17 With U−1 = 0, if k = 0, ..., n − 1 then:

h|In−(2k+1)
=

(
i

δ

)k

T kUk

(
1

i
D

)
[h|In−1 ]−

2

δ

k∑

j=0

(
i

δ

)j−1

Uj−1

(
1

i
D

)
T j[ϕ′]

Similarly, if k = 0, ..., n − 2, then:

h|In−2(k+1)
=

(
i

δ

)k

T kUk

(
1

i
D

)
[h|In−2 ]−

2

δ

k∑

j=0

(
i

δ

)j−1

Uj−1

(
1

i
D

)
T j[ϕ′]
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Proof: We prove the first relation by induction on k = 0, .., n − 1. If k = 0, there is nothing to
prove. If k = 1, the result comes easily from relation (3.8). Assume the result holds for k − 1
and k with 1 ≤ k ≤ n− 2. Using relation (3.8), we get

h′|In−(2k+1)
(u+ 1) = ϕ′(u+ 1) +

δ

2

(
h|In−(2k+3)

(u)− h|In−(2k−1)
(u+ 2)

)
.

Therefore, we have

h|In−(2k+3)
= T 2[h|In−(2k−1)

] +
2

δ

(
TD[h|In−(2k+1)

]− T [ϕ′]
)
.

The result follows easily from the induction hypothesis.

�

Lemma 18 If 0 ≤ k ≤ n− 1, then

h|In−(2k+1)
(u) = Im


(iδ)k

n∑

j=1

zj(In−1)Uk(θn(j))e
i(u+k)θn(j) + zλn(k)e

iλ(u−n−2k−1
2 )




and if 0 ≤ k ≤ n− 2, then

h|In−2(k+1)
(u) = Im


(iδ)k

n−1∑

j=1

zj(In−2)Uk(θn−1(j))e
i(u+k)θn−1(j) + zλn−1(k)e

iλ(u−n−2k−2
2 )




where

zλn(k) = rλn(k)e
iθλn(k) (3.11)

=
iw

λ+ δ sinλ

[
(iδ)k−ne−iλn+1

2
Uk(λ)

Un(λ)
− eiλ

n−2k−1
2 + (iδ)k+1eiλ

n+1
2
Un−k−1(λ)

Un(λ)

]
.

Proof: With lemmas 16 and 17, we may write

h|In−(2k+1)
(u) = Im




n∑

j=1

zj(In−1)

(
i

δ

)k

Uk(θn(j))e
i(u+k)θn(j) + zλn(0)

(
i

δ

)k

Uk(λ)e
iλ(u−n−2k−1

2 )

−2w

δ

k∑

j=0

(
i

δ

)j−1

Uj−1

(
1

i
D

)
eiλ(u+j)


 .

Thanks to relation (3.10), we get

2w

δ

k∑

j=0

(
i

δ

)j−1

Uj−1

(
1

i
D

)
eiλ(u+j) = 2wδeiλ(u+1)

k−1∑

j=0

(
i

δ

)j

Uj(λ)e
iλj

= iweiλu
1− (iδeiλ)kUk(λ) + (iδeiλ)k+1Uk−1(λ)

λ+ δ sinλ
.
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Thus we have:

zλn(0)

(
i

δ

)k

Uk(λ)e
iλ(u−n−2k−1

2 ) − 2w

δ

k∑

j=0

(
i

δ

)j−1

Uj−1

(
1

i
D

)
eiλ(u+j)

=
iw

λ+ δ sinλ
eiλ(u−

n−2k−1
2 )

(
(iδ)k−ne−iλn+1

2
Uk(λ)

Un(λ)
+ (iδ)k+1eiλ

n+1
2
Uk(λ)Un−1(λ)

Un(λ)
− eiλ

n−2k−1
2

−(iδ)k+1eiλ
n+1
2 Uk−1(λ)

)

We may conclude since, if n ≥ 2 and 1 ≤ j ≤ n− 1, then

Un−1Uj − UnUj−1 = Un−1−j . (3.12)

�

Even conditions h is assumed to be even. We are exploiting this fact in order to obtain some
restrictions on complex numbers zj.

Lemma 19 h is given lemma 18. Then h is an even function if and only if we have:
For 1 ≤ j ≤

⌊
n+1
2

⌋
,

zj(In−1)− zn+1−j(In−1) + (iδ)n−1Un−1(θn(j))e
i(n−1)θn(j)

(
zj(In−1)− zn+1−j(In−1)

)
= 0,

and, for 1 ≤ j ≤
⌊
n
2

⌋
,

zj(In−2)− zn−j(In−2) + (iδ)n−2Un−2(θn−1(j))e
i(n−2)θn−1(j)

(
zj(In−2)− zn−j(In−2)

)
= 0.

Proof: First, using relation (3.8), we prove that h is even if and only if h(u) = h(−u) for all

u ∈ In−2 ∪ In−1. Then, due to the fact that zλn(n− 1) = −zλn(0), if u ∈ In−1, we have:

h|In−1(u) = hI−(n−1)
(−u)

⇐⇒ Im




n∑

j=1

zj(In−1)e
iuθn(j)


 = Im


(iδ)n−1

n∑

j=1

zj(In−1)Un−1(θn(j))e
i(n−1)θn(j)e−iuθn(j)




Since θn(n+ 1− k) = −θn(k), we get

Im




n∑

j=1

zj(In−1)e
iuθn(j)


 = Im



⌊n+1

2 ⌋∑

j=1

(
zj(In−1)− zn+1−j(In−1

)
eiuθn(j)




and

Im


(iδ)n−1

n∑

j=1

zj(In−1)Un−1(θn(j))e
i(n−1)θn(j)e−iuθn(j)




= −Im


(−iδ)n−1

⌊n+1
2 ⌋∑

j=1

(
zj(In−1)− zn+1−j(In−1)

)
Un−1(θn(j))e

−i(n−1)θn(j)eiuθn(j)


 .
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Therefore, for all 1 ≤ j ≤
⌊
n+1
2

⌋
, we get

zj(In−1)− zn+1−j(In−1) + (iδ)n−1Un−1(θn(j))e
i(n−1)θn(j)

(
zj(In−1)− zn+1−j(In−1)

)
= 0.

�

Corollary 5 For all 1 ≤ j ≤ ⌊n+1
2 ⌋, there exists a real number rj(In−1) (which may be negative)

such that
zj(In−1)− zn+1−j(In−1) = rj(In−1)e

i[n−1
2 (θn(j)+πδ

2 )+
jπ
2 ].

For all 1 ≤ j ≤ ⌊n2 ⌋, there exists a real number rj(In−2) (which may be negative) such that

zj(In−2)− zn−j(In−2) = rj(In−2)e
i[n−2

2 (θn−1(j)+
πδ
2 )+

jπ
2 ].

Proof: We have

Un−1(θn(j)) = Un−1

(
cos

(
jπ

n+ 1

))
= (−1)j+1.

Therefore, if zj(In−1)− zn+1−j(In−1) = rje
iθj , the previous lemma gives

rj

(
eiθj + (iδ)n−1(−1)j−1ei(n−1)θje−iθj

)
= 0.

Then rj = 0 or eiθj = ±ei[n−1
2 (θn(j)+πδ

2 )+
jπ
2 ].

�

Proof of proposition 3 From lemma 18, we have for 0 ≤ k ≤ n− 1:

h|In−(2k+1)
(u) = Im


(iδ)k

⌊n+1
2 ⌋∑

j=1

(
zj(In−1)− zn+1−j(In−1)

)
Uk(θn(j))e

i(u+k)θn(j) + zλn(k)e
iλ(u−n−2k−1

2 )




Then, corollary 5 gives:

h|In−(2k+1)
(u) = Im



⌊n+1

2 ⌋∑

j=1

rj(In−1)Uk(θn(j))e
i[(u−n−2k−1

2 )θn(j)−π
2 (j+δ n−2k−1

2 )]

+rλn(k)e
i[λ(u−n−2k−1

2 )+θλ
n(k)]

]

We obtain h|In−(2k+2)
in the same way. To conclude, one can easily check that such a function

satisfies the differential equation with temporal shifts (3.8).

�
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Continuity conditions

Since hR satisfies the differential equation (3.8), we have an explicit expression of hR thanks
to proposition 3. However, due to the fact that hR is a continuous function, there are some
restrictions on coefficients rj which are associated to the explicit expression of hR. In this
subsection, we prove that, except for at most a finite number of R in ]n−1

2 , n2 [, there is one and
only one continuous function which satisfies the differential equation (3.8) and we give the exact
values of the corresponding coefficients rj .

Lemma 20 hR is a continuous function if and only if coefficients rj(In−1) and rj(In−2) are
satisfying the following linear system: for 0 ≤ k ≤ n− 1,

⌊n
2 ⌋∑

j=1

rj(In−2)Uk (θn−1(j)) sin

([
an−1 −

n− 2

2

]
θn−1(j)−

π

2

[
j + δ

n− 2k − 2

2

])

−
⌊n+1

2 ⌋∑

j=1

rj(In−1)Uk (θn(j)) sin

([
an−1 −

n− 1

2

]
θn(j)−

π

2

[
j + δ

n− 2k − 1

2

])

= rλn(k) sin

(
λ

[
an−1 −

n− 1

2

]
+ θλn(k)

)
− rλn−1(k) sin

(
λ

[
an−1 −

n− 2

2

]
+ θλn−1(k)

)

= rλUk (λ) sin
(
θλ − kδ

π

2

)

where rλ and θλ refer to the modulus and the argument of the complex number:

zλ =
−2iwe−iλan−1

Un(λ)Un−1(λ)

1− (iδeiλ)nUn(λ) + (iδeiλ)n+1Un−1(λ)

−2iδeiλ(λ+ δ sinλ)
=

−2iwe−iλan−1

Un(λ)Un−1(λ)

n−1∑

k=0

(iδeiλ)kUk(λ)

Proof: We use the fact that hR is a continuous function on inf Ij for j = −(n − 1)...n − 1.
Precisely, hR is continuous on an−(2k+1) > 0 (ie an−1, an−3...) then

for 0 ≤ k ≤
⌊
n− 2

2

⌋
, lim

u→a−

n−(2k+1)

hR|In−2(k+1)
(u) = lim

u→a+
n−(2k+1)

hR|In−(2k+1)
(u).

Moreover, hR is continuous on an−2(k+1) < 0 (ie a−n, a−(n−2), ...) then

for
⌊n
2

⌋
≤ k ≤ n− 1, lim

u→a−

n−2(k+1)

hR|In−2(k+1)
(u) = lim

u→a+
n−2(k+1)

hR|In−(2k+1)
(u).

Therefore, for 0 ≤ k ≤ n− 1, we have

⌊n
2 ⌋∑

j=1

rj(In−2)Uk (θn−1(j)) sin

([
an−1 −

n− 2

2

]
θn−1(j)−

π

2

[
j + δ

n− 2k − 2

2

])

−
⌊n+1

2 ⌋∑

j=1

rj(In−1)Uk (θn(j)) sin

([
an−1 −

n− 1

2

]
θn(j)−

π

2

[
j + δ

n− 2k − 1

2

])

= rλn(k) sin

(
λ

[
an−1 −

n− 1

2

]
+ θλn(k)

)
− rλn−1(k) sin

(
λ

[
an−1 −

n− 2

2

]
+ θλn−1(k)

)
.

Reciprocally, if hR is continuous on inf Ij , since hR is even and − inf Ij = sup I−j , then hR is a
continuous function.
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We consider the real matrix MR which is associated to this linear system and detMR refers to
the determinant of MR. Precisely, let MR = (mk,j) k = 0, ..., n − 1

j = 1, ..., n

defined by:

{
mk,j = Uk (θn−1(j)) sin

([
an−1 − n−2

2

]
θn−1(j) − π

2

[
j + δn−2k−2

2

])
if 1 ≤ j ≤ ⌊n2 ⌋

mk,j+⌊n
2
⌋ = Uk (θn(j)) sin

([
an−1 − n−1

2

]
θn(j)− π

2

[
j + δn−2k−1

2

])
if 1 ≤ j ≤ ⌊n+1

2 ⌋

Therefore, the linear system of lemma 20 is

MR ·




r1(In−2)
...

r⌊n
2 ⌋(In−2)

−r1(In−1)
...

−r⌊n+1
2 ⌋(In−1))




= rλ




U0 (λ) sin (θλ)
...

Uk (λ) sin
(
θλ − kδ π

2

)

...
Un−1 (λ) sin

(
θλ − (n− 1)δ π

2

)



.

Lemma 21 Except for a finite number of values of R in ]n−1
2 ; n2 [, the matrix MR is invertible.

Proof: We may decompose Chebychev polynomials as

U2k(X) =
k∑

j=0

a2k,jX
2j , U2k+1(X) =

k∑

j=0

a2k+1,jX
2j+1 with a2k,k = 22k and a2k+1,k = 22k+1. (3.13)

We consider NR the real matrix which is defined by NR = (nk,j) such that, for 0 ≤ k ≤ n− 1:

{
nk,j = θn−1(j)

k sin
([
an−1 − n−2

2

]
θn−1(j)− π

2

[
j + δn−2k−2

2

])
if 1 ≤ j ≤ ⌊n2 ⌋

nk,j+⌊n
2
⌋ = θn(j)

k sin
([
an−1 − n−1

2

]
θn(j) − π

2

[
j + δn−2k−1

2

])
if 1 ≤ j ≤ ⌊n+1

2 ⌋

We consider rows of MR and NR. Precisely, let

MR =




L0

...
Ln−1


 and NR =




L̃0

...

L̃n−1


 .

Thanks to relation (3.13), for 0 ≤ k ≤ ⌊n−1
2 ⌋, we have

L2k =

k∑

j=0

a2k,j(−1)k−iL̃2j , and for 0 ≤ k ≤ ⌊n− 2

2
⌋, L2k+1 =

k∑

j=0

a2k+1,j(−1)k−iL̃2j+1.

As a result, we have

detMR =




n−1∏

j=0

2k


detNR = 2

n(n−1)
2 detNR.
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In addition, we may write NR = (nk,j) with:
{
nk,j =

1
2i

(
[iδθn−1(j)]

kei(Rθn−1(j)+Φj) − [−iδθn−1(j)]
ke−i(Rθn−1(j)+Φj)

)
if 1 ≤ j ≤ ⌊n2 ⌋

nk,j+⌊n
2
⌋ =

1
2i

(
[iδθn(j)]

kei(Rθn(j)+Φ̃j) − [−iδθn(j)]ke−i(Rθn(j)+Φ̃j)
)

if 1 ≤ j ≤ ⌊n+1
2 ⌋

Due to the multilinearity of determinant, we have

detNR =
(iδ)

n(n−1)
2

(2i)n

∑

ǫ=(ǫ′,ǫ′′)

V [ǫ′, ǫ′′](−1)σ(ǫ)e
i

[∑⌊n
2 ⌋

j=1 ǫ′(j)(Rθn−1(j)+Φj)+
∑⌊n+1

2 ⌋

j=1 ǫ′′(j)(Rθn(j)−Φ̃)
]

where the sum is running over functions ǫ : {1, .., n} 7−→ {−1,+1} which may split in ǫ = (ǫ′, ǫ′′)
where ǫ(j) = ǫ′(j) if 1 ≤ j ≤ ⌊n2 ⌋ and ǫ(j + ⌊n2 ⌋) = ǫ′′(j) if 1 ≤ j ≤ ⌊n+1

2 ⌋. In addition, σ(ǫ) =
|{1 ≤ j ≤ n; ǫ(j) = −1}|. Finally, V [ǫ′, ǫ′′] refers to the determinant of the Vandermonde matrix
associated to real numbers (ǫ′(1)θn−1(1), .., ǫ

′(⌊n2 ⌋)θn−1(⌊n2 ⌋), ǫ′′(1)θn(1), .., ǫ′′(⌊n+1
2 ⌋)θn(⌊n+1

2 ⌋)).
Since V [ǫ′, ǫ′′] 6= 0 for all ǫ, we may conclude R 7−→ detNR vanishes at most a finite number of

times on ]n−1
2 ; n2 [. The same result holds for R 7−→ detMR since detMR = 2

n(n−1)
2 detNR.

�

Corollary 6 For all R in ]n−1
2 ; n2 [ such that detMR 6= 0, there exists one and only one contin-

uous function satisfying the differential equation with temporal shifts (3.8). Moreover:

• If 1 ≤ j ≤ ⌊n2 ⌋,

rj(In−2) = rλ

n−1∑

k=0

Uk(λ) sin
(
θλ − kδ

π

2

)
∆k+1,j. (3.14)

• If 1 ≤ j ≤ ⌊n+1
2 ⌋,

rj(In−1) = −rλ
n−1∑

k=0

Uk(λ) sin
(
θλ − kδ

π

2

)
∆k+1,j+⌊n

2
⌋. (3.15)

with ∆k,j = (−1)k+j

detMR
Mk,j where Mk,j denotes the minor of MR obtained by removing from MR

its k-th row and j-th column.

3.5 Exact value of the minimum

In this section, we finish proving theorem 1. Remember that some cases have been solved in
corollary 2.

Thanks to the previous section, we have an explicit expression of the optimal test function
hR. Nevertheless, this explicit expression depends on the unknown parameter λ which is related
to m̃R by the following relation:

λ2 = 4π2m̃R

In order to conclude, we solve the equation m̃R = B̃(hR) where m̃R is the only unknown param-
eter.
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Two equations, one unknown parameter It is technically easier to express λ instead of
m̃R. Thanks to relation (3.2), the relation m̃R = B̃(hR) may be written:

λ2 =

∫
R
h′R(u)

2du− δ
2

∫ 1
−1 h

′
R ∗ h′R(u)du∫

R
hR(u)2du+ δ

2

∫ 1
−1 hR ∗ hR(u)du+ ε

(∫
R
hR(u)du

)2 (3.16)

Furthermore, the relation (3.5) may be written:

w

λ
cos λR+

δ

2

∫ R

R−1
hR(x)dx+ ε

∫ R

−R
hR(x)dx = 0 (3.17)

As a result, λ is satisfying two equations.

Lemma 22 Relation (3.17) implies relation (3.16).

Proof: The differential equation with temporal shifts give

∫

R

h′R(u)
2du − δ

2

∫ 1

−1

h′R ∗ h′R(u)du =

∫

R

h′R(u)

[
h′R(u) +

δ

2

∫ u+1

u−1

h′R(t)dt

]
du =

∫

R

h′R(u)ϕ
′(u)du.

Thanks to the Volterra equation we have

∫

R

hR(u)
2du+

δ

2

∫ 1

−1

hR ∗ hR(u)du =

∫

R

hR(u)ϕ(u)du +
δ

2

(∫

R

hR(u)du

)(∫ R

R−1

hR(u)du

)
.

Finally, using an integration by parts, we get
∫

R

h′R(u)ϕ
′(u)du− λ2

∫

R

hR(u)ϕ(u)du = −wλ cosλR
∫

R

hR(u).

Therefore, we may write equation (3.16) as

−λ2
(
w

λ
cosλR +

δ

2

∫ R

R−1

hR(x)dx + ε

∫ R

−R

hR(x)dx

)∫

R

hR(u) = 0.

�

As a result, we use relation (3.17) in order to determine λ.

End of the proof of theorem 1 In this subsection, we finish proving theorem 1. Precisely,

Proposition 4 If G = SO+, SO− or Sp with n ≥ 2, then λR := λ is the smallest positive root
of

δ

λ
cos θλ −

n−1∑

k=0

Uk(λ) sin
(
θλ − kδ

π

2

) [δαR(k)

2
− 1 + εβR(k)

]
+

2ε

λ

n−1∑

k=0

Uk(λ) cos
(
θλ − kδ

π

2

)
= 0 (3.18)
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which is not a root of UnUn−1 and where αR(k) and βR(k) are defined by:

αR(k) = 2

⌊n
2 ⌋∑

j=1

sin
[(
R − n

2

)
θn−1(j)

]
sin
[
π
2

(
j + δ n−2

2

)]

θn−1(j)
∆k+1,j

+2

⌊n+1
2 ⌋∑

j=1

sin
[(
R− n−1

2

)
θn(j)

]
sin
[
π
2

(
j + δ n−1

2

)]

θn(j)
∆k+1,j+⌊ n

2 ⌋

and

βR(k) = 2

⌊n
2 ⌋∑

j=1

sin
[(
R− n

2

)
θn−1(j)

]

θn−1(j)
∆k+1,j

n−2∑

l=0

Ul(θn−1(j) sin

[
π

2

(
j + δ

n− 2l− 2

2

)]

+2

⌊n+1
2 ⌋∑

j=1

sin
[(
R− n−1

2

)
θn(j)

]

θn(j)
∆k+1,j+⌊ n

2 ⌋

n−1∑

l=0

Ul(θn(j)) sin

[
π

2

(
j + δ

n− 2l − 1

2

)]
.

Before proving this result, we need to prove some technical lemmas. We may write hR as a sum
of two non-continuous even functions. Let ϕλ and ψ which are defined on R\{a−n, ..., an} by:

• If 0 ≤ k ≤ n− 1, let

ϕλ|In−(2k+1)
(u) = rλn(k) sin

(
λ

[
u− n− 2k − 1

2

]
+ θλn(k)

)
.

• If 0 ≤ k ≤ n− 2, let

ϕλ|In−2(k+1)
(u) = rλn−1(k) sin

(
λ

[
u− n− 2k − 2

2

]
+ θλn−1(k)

)
.

• supp ϕλ ⊂ [−R,R].

• If u ∈ R\{a−n, ..., an}, let
ψ(u) = hR(u)− ϕλ(u).

Even though ϕλ and ψ are not continuous functions, they are smooths on each Ik. Furthermore,
they satisfy

hR(u) = ψ(u) + ϕλ(u) and ϕ′′
λ = −λ2ϕλ.

Lemma 23 We have

∫ R

R−1
ψ(u)du = rλ

n−1∑

k=0

Uk(λ) sin
(
θλ − kδ

π

2

)
αR(k)

and

∫ R

−R
ψ(u)du = rλ

n−1∑

k=0

Uk(λ) sin
(
θλ − kδ

π

2

)
βR(k).
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Proof: We may write:
∫ R

R−1

ψ(u)du =

∫

In−1

ψ|In−1(u)du+

∫

In−2

ψ|In−2(u)du

= 2

⌊n
2 ⌋∑

j=1

rj(In−2)
sin
[(
R− n

2

)
θn−1(j)

]

θn−1(j)
sin

[
π

2

(
j + δ

n− 2

2

)]

−2

⌊n+1
2 ⌋∑

j=1

rj(In−1)
sin
[(
R − n−1

2

)
θn(j)

]

θn(j)
sin

[
π

2

(
j + δ

n− 1

2

)]

The result comes easily from relations (3.14) and (3.15) of corollary 6. Similarly, since

∫ R

−R

ψ(u)du =

n−1∑

k=0

∫

In−1

ψ|In−2k−1
(u− k)du+

n−2∑

k=0

∫

In−2

ψ|In−2k−2
(u− k)du

we obtain the second part of this lemma.

�

Lemma 24 For 0 ≤ k ≤ n− 2, we have

lim
u→sup In−2k−2

ϕ′
λ|In−2k−2

(u)− lim
u→inf In−2k−1

ϕ′
λ|In−2k−1

(u) = λUk(λ)Re
(
(iδ)−kzλ

)

and for 1 ≤ k ≤ n− 1,

lim
u→sup In−2k−1

ϕ′
λ|In−2k−1

(u)− lim
u→inf In−2k

ϕ′
λ|In−2k

(u) = λUn−k−1(λ)Re
(
(iδ)−(n−k−1)zλ

)

where the complex number zλ is defined in lemma 20.

Proof: Since hR satisfies the differential equation with temporal shifts (3.8), we may conclude
h′R is continuous on ]−R,R[. Therefore, for 0 ≤ k ≤ n− 2, we get

lim
u→sup In−2k−2

ϕ′
λ|In−2k−2

(u)− lim
u→inf In−2k−1

ϕ′
λ|In−2k−1

(u)

= λRe
[
eiλ(an−1−n−2

2 )zλn−1(k)− eiλ(an−1−n−1
2 )zλn(k)

]

and, for 1 ≤ k ≤ n− 1,

lim
u→sup In−2k−1

ϕ′
λ|In−2k−1

(u)− lim
u→inf In−2k

ϕ′
λ|In−2k

(u) = λRe
[
eiλ(an−n−1

2 )zλn(k)− eiλ(an−n
2 )zλn−1(k − 1)

]
.

The result comes easily from relations (3.11) and (3.12).

�

Lemma 25 We have
∫

R

ϕλ(u)du = −2rλ
λ

n−1∑

k=0

Uk(λ) cos
(
θλ − kδ

π

2

)

and

∫ R

R−1
ϕλ(u)du = −2w

δλ
cos λR− 2

λ
rλ cos θλ + 2δRe

[
izλ

n−1∑

k=0

(−iδ)kUk(λ)

]
.
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Proof: We may write:

∫

R

ϕλ(u)du = − 1

λ2

∫

R

ϕ′′
λ(u)du = − 1

λ2

n−1∑

k=−(n−1)

[ϕ′
λ|Ik ]sup Ik

inf Ik

= − 1

λ2


2 lim

u→sup In−1

ϕ′
λ|In−1(u) +

n−2∑

k=−(n−1)

lim
u→sup Ik

ϕ′
λ|Ik(u)− lim

u→inf Ik+1

ϕ′
λ|Ik+1

(u)




Since zλn(0) = (iδ)−(n−1)e−iλ(an−n−1
2 )Un−1(λ)zλ, we get

lim
u→sup In−1

ϕ′
λ|In−1(u) = −λRe

(
zλ(iδ)

−(n−1)Un−1(λ)
)

and the previous lemma gives

∫

R

ϕλ(u)du =
−2

λ

n−1∑

k=0

Uk(λ)Re
(
(iδ)−kzλ

)
.

Similarly, we have:

∫ R

R−1

ϕλ(u)du

=
−1

λ2

[
lim

u→sup In−1

ϕ′|In−1(u) + lim
u→sup In−2

ϕ′|In−2(u)− lim
u→inf In−1

ϕ′|In−1(u)− lim
u→inf In−2

ϕ′|In−2(u)

]

The previous lemma gives

lim
u→sup In−2

ϕ′|In−2(u)− lim
u→inf In−1

ϕ′|In−1(u) = λRe (zλ).

In addition, since zλn−1(0) = iδ Un(λ)
Un−1(λ)

eiλ/2zλn(0)− 2wδλRe (eiλR), we get

lim
u→inf In−2

ϕ′
λ|In−2(u) = −2wδλ cos(λR)− λRe

[
Un(λ)zλ(iδ)

−n
]
.

Therefore, we may write

∫ R

R−1

ϕλ(u)du = −2w

δλ
cosλR − 2

λ
rλ cos θλ +

1

λ
Re

[
zλ(1− (iδ)−nUn(λ) + (iδ)−(n+1)Un−1(λ))

]
.

The result comes easily from relation (3.10).

�

To conclude, since hR = ψ+ϕλ, we may easily transform equation (3.17) thanks to both lemmas
23 and 25. Proposition 4 follows immediately due to the fact that rλ 6= 0 (otherwise hR = 0).
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Particular case In this subsection, we are assuming n = 2 and we give a simpler expression
of equation (3.18) than in proposition 4.

Corollary 7 If G = SO+, SO− or Sp and 1
2 < R < 1 then λR is the smallest positive root of

(δ + 2ε)
1− 4λ2

λ
(sinλ(1−R)− 2δλ cosλR)

− [(δ + 2ε)(1−R)− 1 + 4ε] [cosλ(1 −R)− 2δλ sinλR− 2λ tanΘR(sinλ(1 −R)− 2δλ cosλR)] = 0

which is not a root of U1U2 and where

ΘR =
1

2

(
R− 1

2

)
+
π

2

(
1 +

δ

2

)
.

Proof: The matrix MR which appears in corollary 6 can be written

MR =

(
−1 sin

[
1
2

(
1
2 −R

)
− π

2

(
1 + δ

2

)]

0 sin
[
1
2

(
1
2 −R

)
− π

2

(
1− δ

2

)]
)
.

Therefore,
detMR = −δ cosΘR 6= 0.

We get ∆1,1 = −1, ∆1,2 = 0, ∆2,1 = −δ tanΘR and ∆2,2 =
δ

cosΘR
. In addition, if k ∈ {1, 2}, we

have:

αR(k) = 2(R − 1)∆k+1,1 − 2 (cosΘR + δ sinΘR)∆k+1,2

βR(k) = αR(k) + 2 (cosΘR + δ sinΘR)∆k+1,2

Therefore: 



αR(0) = βR(0) = 2(1−R)
αR(1) = 2δ(1 −R)− 2(δ + tanΘR)
βR(1) = 2δ(1 −R)− 4(δ + tanΘR)

As a result, since δε = −ε, we get

δ

λ
cos θλ −

n−1∑

k=0

Uk(λ) sin
(
θλ − kδ

π

2

)[δαR(k)

2
− 1 + εβR(k)

]
+

2ε

λ

n−1∑

k=0

Uk(λ) cos
(
θλ − kδ

π

2

)

=
δ + 2ε

λ
cos θλ −

(
δαR(0)

2
+ εβR(0)− 1 + 4ε

)
sin θλ + 2λδ

(
δαR(1)

2
+ εβR(1)− 1

)
cos θλ

= (δ + 2ε)
1− 4λ2

λ
cos θλ − [(δ + 2ε)(1−R)− 1 + 4ε] [sin θλ − 2λ tan(ΘR) cos θλ] .

In addition, we have

zλ =
−2iwe−iλ(1−R)

U1(λ)U2(λ)

(
1 + iδU1(λ)e

iλ
)

=
−2w

U1(λ)U2(λ)
(sinλ(1−R)− 2δλ cosλR+ i [cosλ(1−R)− 2δλ sinλR]) .

The result comes easily from these relations.

�
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Comments on the “Sp hypothesis” In the symplectic case with R > 1/2, our proof of
theorem 1 is submitted to the “Sp hypothesis”. However, we prove that this theorem is still
true even though m2

R is an odd positive integer. Therefore, throughout this paragraph, we are
assuming G = Sp, R > 1/2 and mR = N2 where N is an odd integer.

Lemma 26 hR satisfies
∫ R
R−1 hR(u)du = 0 and, for all 0 ≤ u ≤ R,

hR(u) = ϕ(u) +
δ

2

∫ R

u
hR(t+ 1)− hR(t− 1)dt

with

ϕ(u) =

(
−4

Nπ

∫ R

0

[
h′R(t)−

δ

2
(hR(t+ 1)− hR(t− 1))

]
sin

(
πNt

2R

)
dt

)
(cos (λu)− cos(λR)) · 1[−R,R](u).

Proof: In lemma 12, we prove that for all odd positive integer n,

(n2 −mR)cn =
(−1)

n−1
2 kδ,ε
n

− (n2 −mR)
δ

nπ
(Sn ∗ hR)(1).

First, with n = N , we may deduce kδ,ε =
∫ R
R−1 hR(u)du = 0. Second, for all n 6= N , we get

cn = − δ

nπ
(Sn ∗ hR)(1).

Since hR(u) = 2
∑

n≥0 cn cos
(
πnu
2R

)
· 1[−R,R](u), for all u in [0, R], we write

hR(u) = 2

[
cN +

δ

Nπ
SN ∗ hR(1)

]
cos

(
πNu

2R

)
− 2δ

π

∑

n≥0

∗Sn ∗ hR(1)
n

cos
(πnu
2R

)
.

The sum in the right member of this equality has been computed in the proof of lemma 10 and
we have

cN +
δ

Nπ
SN ∗ hR(1) =

−2

Nπ

∫ R

0

[
h′R(t)−

δ

2
(hR(t+ 1)− hR(t− 1))

]
sin

(
πNt

2R

)
dt.

�

Therefore, changing w with

w =
4λ

Nπ

∫ R

0

[
h′R(t)−

δ

2
(hR(t+ 1)− hR(t− 1))

]
sin

(
πNt

2R

)
dt,

this Volterra equation with temporal shift has been solved in section 3.4. Thus, we get an
explicit expression of hR. Now, several cases may occur. First, this explicit expression of hR
doesn’t satisfy the compatibility equation

∫ R
R−1 hR(u)du = 0, then the “Sp hypothesis” is true.

Second, if hR satisfies the compatibility equation, then on account of the fact that the argument
of the complex number zλ is independent of w, λ is a root of equation (3.18). Since mR is the
smallest critical value of B, λ is still the smallest root of equation (3.18).
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