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Small first zeros of L-functions

BERNARD Damien

Abstract

From a family of L-functions with unitary symmetry, Hughes and Rudnick obtained
results on the height of its lowest zero. We extend their results to other families of L-
functions according to the type of symmetry coming from statistics for low-lying zeros.

Contents

1 Introduction 2
1.1 Previewofresults . . . . . . . . . . . . e 2
1.2 Notations . . . . . . . . . e 7
1.3 Statistics for low-lying zeros . . . . . . . . ... Lo 8
1.4 What is the smallest zero of a L-function ? . . . . ... ... ... .. ...... 9

2 Proportion of L-functions with a small smallest zero 11

3 The smallest zero 14
3.1 Density and topological arguments . . . . . . . . .. ... 15
3.2 Fourier analysis . . . . . . . . L 19
3.3 A Volterra equation with temporal shifts . . . . . . ... .. ... ... ... ... 22
3.4 Optimal test Function . . . . . . .. .. .. . 25
3.5 Exact value of the minimum . . . . . . ... .. ... ... ... ... .. ..... 37

D. BERNARD, Université Blaise Pascal, Laboratoire de Mathématiques, Campus des Cézeaux, BP 80026,
63171 Aubiere cedex, France
E-mail address: damien.bernard@math.univ-bpclermont.fr

Mathematics Subject Classification : 11M41, 11M50, 11F67 .

Key words :
temporal shifts.

L-function, density theorem, random matrix theory, smallest zero, differential equation with



1 Introduction

1.1 Preview of results

The existence of a deep link between non-trivial zeros of natural families of L-functions and
eigenvalues of random matrices has been speculated since Montgomery’s work ([Mon73]) in the
seventies. So, we are able to assign a classical compact group of matrices to many classical
families of L-functions. We can refer to [ILS00], [F103], [HRO3], [RR11] or [Mil04]. Using the
one-level density, Hughes and Rudnick obtained informations about the lowest zero of Dirichlet
L-functions ([HRO03], section 8). Our aim is to generalise these results.

Extreme low-lying zeros of a natural family of L-functions Let F(Q) be a finite set
of L-functions with analytic conductor (). We build the associate family F = UQ21 F(Q). We
assume Riemann hypothesis for any function in F. We also assume the density theorem for F
with test functions ® satisfying supp ® C [—v;v] with v < vmayx(F). We write W*[F] for the
one-level density for non-trivial low-lying zeros of functions in F. It turns out that the one-level
densities that have been identified up to now have always been of the shape W[G] whose Fourier
transform is given by

WIGI(w) = dow) + n(v) + ¢ (1)

where &g is the Dirac function, n is defined on R by

1 if |yl <1
ny) =14 3 if Jy=1
0 if |yl>1

and § and e are given in table 1.

GlUJ O [Sp[SOT SO~
0] 0 | -1 1 | -1
|0 [1/2] 0] 0 1

(e

Table 1: Value of (6,¢).

Finally, for G = Sp, SOT or SO~, let n > 1 be the only integer such that n — 1 < vyax(F) < n
and consider the equation in A given by

) i ) ™\ [dar(k) 2 7
X cos By — kZ:OUk()\) sin (9>\ - k(5§) [RT -1+ EBR(k):| + ~ kZ:O Ui () cos (9>\ - k(5§) =0. (1.2)

In this equation, let Uy be the k-th Chebyshev polynomial of the second kind, (d,¢) is given in
the table 1 and parameters 6y, ar and Sr are defined in lemma 20 (page 35) and proposition 4
(page 38). We prove the following theorem on the smallest non negative imaginary part 51 of
a non-trivial normalised zero of L(f,.) in F.



Theorem 1 We have

1
lim su min @ A < ——X

Q%of LDEF@) T 2 (F)

1 if W*F] =W[U]

(14 Vmafm) if W*F] = W[O]

W (14 (5+26) 525 ) i WF] = WISP, WISO*] or W[SO™] and ves(F) < 1
vmax(F) i Ag if W*[F] = W[Sp], W[SO*] or W[SO~] and vmax(F) > 1

T Rovmax(F)/2-

where Ar is the smallest positive root of equation (1.2) which is not a root of U,Up—1 (with
n—1 < Umax(F) < n) and where V' is defined by

V:{ 0,53 oal — I;&(2 )
€ — 2mx

with a1 :inf{x > 0, tan(mo) _ 1} ~0,71.

2rx

Remark 1 We plot the upper bound in theorem 1, denoted My« (7| (Vmax(F)), for each W*[F].
From top to bottom, we have W*[F] = W|[Sp], W*[F] = W[U], W*[F] = W[SOT|, W*[F] =
WI[O] and W*[F] = W[SO™].
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0,1
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0,6 0,8 1,0 1,2 1,4 1,6 1,8 2,0

Representative curves of viax(F) = My« 7 (Vmax(F))

Remark 2 In the orthogonal case, when vy, (F) goes to infinity, we have
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Representative curve of V=1

Remark 3 In the case 1 < vpax(F) < 2, we can simplify equation (1.2) as follows

Y
(0 + 26)1 A (sin A(1 — R) — 25Acos AR)

—[(6+2e)(1 = R) — 1 +4e][cos A(1 — R) — 26Asin AR — 2A tan O g(sin A(1 — R) — 20 A cos AR)] =0

1 1 T 1)

Moreover, this relation always vanishes in A = 1/2 which is a root of Us.

where

In order to give several instances, let H;(q) be the set of primitive holomorphic cusp forms
of prime level ¢ end even weight k& > 2. Let r be a positive integer. We define

He(q) = {L(Sym"f,s), f € Hi(q)}
and if r is odd,
M. (q) = {L(Sym" f,5), [ € Hi(q) and e(Sym” f) = £1}.
Then, we have several families of symmetric power L-functions
He= | Helg) and HE= ) HE(0)
q prime q prime

These families have been studied in [ILS00] (theorem 1.1, for the case » = 1) and [RR11]
(theorem B). We may sum up some properties of these natural families of L-functions in the
following table where

1 2 . . 7
Vl,ma$(17k790) =2 and VLmax(T,k,@o) = <1 - m) 7«_2 if r > 2 with 90 = 6—4,
and for € = 41,

l/imam(l, k,0y) = 2 and Vimam(r, k,0y) = inf {Vlmax(r, k,0o), ﬁ} if r > 2.



F H, (r even) H, (r odd) H (rodd) | H, (rodd)
Vmax(F) | V1,max(75 K, 00) | V1,max(7,K,00) | V1 max (755, 60) | V1 max (7, K, 00)
pun(F) | * 29 =

WI[F] W[Sp] W|[O] WI[SO™*] WI[SO™]
W[ F] W(Sp| w(o] WISOT] W [Sp]

Table 2: Several natural families of L-functions

Thus, thanks to theorem 1, we have

limsup min qr1 < V=2) < 0,19
Nostoo FEHL(N) @
limsup min 577 < 0,22
N—+oo fEH (N)

limsup min 577 < 0,39

N—+oo fEH, (N)

and

limsup min Fgymrs1 <
ym” f,1 >
q—+oo fEH(q)

q prime

2 -1 _qyrHl
v <1+< )

2
Vl,ma:v(ra k,HO Vl,mam(rak590)>

and if r is odd, € = £1, we have

li i o < 2 vai1+ 2
im sup min VSymr f1 < ———————— e—— | .
q—+00 feH(q) o Vima:v (T’ k, 90) Vima:v (T’ k, 90)
q prime
e(Sym” f)=e
Actually, since H™ (N (0 for large N, we get (see lemma 1 page 9) lim min ~¢; = 0.
y (N) # g get ( page 9) NI i i

Proportion of L-functions which have a small first zero Combining Bienaymé-Chebyshev
inequality and statistics for low-lying zeros of symmetric power L-functions, we can obtain a
positive proportion of L-functions in our family which have a small first zero. Hughes and
Rudnick exposed this phenomenon in the case of Dirichlet L-functions which have a unitary
symmetry. Symmetric power L-functions allows us to deal with all currently known symmetry
group. Hj(q) denotes the set of primitive holomorphic cusp forms of prime level ¢ and even
weight k& > 2 and let wy(f) be the harmonic weight associated to f in H}(q). Let also e(Sym” f)
denotes the sign of the functional equation associated to the L-function L(Sym' f,s).



Theorem 2 Let r be a fixed positive integer. Assuming the Riemann hypothesis for all sym-
metric power L-functions of order r.

3> 7rd 6374 — 24(—1)"7r2 4+ 91 — 73 + 2v/64/—7d + 6mird 4 T2 + 12 — 24(—1)" 7202
- 4 6m4rd +48(—1)"t17r2r2 + 96 — 372 — 7t

then

7 16(n” + 3)6* + 8r4(9 — 7)5 + (3 + 7*)r®
liminf >1- = '
im in Z wq(f) > 6 [r672 — 4827272 4+ 1662 (—1)")?
g prime feH;;(Q)
;/Symrf,lgﬂ

Moreover, if r is odd and o = £1. Ifﬁ >

w[2472r2(r + 2)2 + 480r(r+2) + 9 — 72| + 2\/6\/—7r4 + 24742 (r 4+ 2)2 + 772 + 12 4+ 480m2r(r + 2)
24742 (r + 2)2 + 960m2r(r + 2) + 96 — 372 — 74

then

72 (72 +3)B8% + 2r2(r + 2)2(9 — 72) B2 + (72 + 3)rt(r +2)4
24 [206% + w2 5%r(r 4+ 2) — w2r3(r + 2)3]? '

liminf2 Y wy(f) > 1-

q—+oo
q prime fEH; (q)
e(Sym" f)=oc
Ysymr £,1<8
In order to give some examples for small values of r, we plot the graph of the function with
parameter 8 which is associated to the lower bound in the first part of theorem 2. On these
representative curves, the critical value of 8 corresponds to the minimal value of 8 which appears

in theorem 2.

1 1 1 1

084 08 08 084

Similarly, for a fixed small odd value of r, we plot the lower bounds of theorem 2 in different
cases: when there is no restriction on the sign e(Sym” f) of the functional equation, when
e(Sym” f) = +1 and, finally, when e(Sym” f) = —1.



First, if r = 1:

e(Sym”f) = +1 e(Sym”f) = +1 e(Sym”f) = -1

Second, if r = 3:

1.2

0 2 4 6 8 10 12 14 16 2 4 6 & 10 12 14 16 2 4 6 & 10 12 14 16

e(Sym”f) = +1 e(Sym”f) = +1 e(Sym”f) = -1

Notations

The following notations will be used throughout this paper.

|z] denotes the floor of the real number x.
> <o means the sum is running over odd non-negative integers.
C2°(R) denotes the set of infinitely differentiable functions which are compactly supported.

For 1 < p < 400, LP(R) refers to the set of functions f : R — R such that [, |f(z)|Pdz <
+00. In this case, we put || f]|, = (Jz |f(ac)|pdx)1/p. If f and g are in L2(R), let (f,g)p2 =

Jr f(@)g(x)dx

If & is in L'(R) A = [z ®( e~ 2T dy is called the Fourier transform of ®. When it

is allowed, we can apply the inverse transform formula ®(z f]R )e2imrt dy,
If f and g are in L2(R), f*g(u = Jp f(t)g(u—t)dt is the convolution product of f and g.

S, (R) denotes the set of even Schwartz functions whose Fourier transforms are compactly
supported in [-R, R] with 0 < R < v.

Acknowledgements 1 would like to thank Frederic Bayart for his availability and all their
advices on Sobolev spaces.



1.3 Statistics for low-lying zeros

Let F be a natural family of L-functions' all of whose satisfies the Riemann hypothesis. Con-
sider a L-function L(f,s) in F with analytic conductor ¢;. Let F(Q) = {L(f,s) € F, ¢y = Q}.
Each zero py of L(f,s) which is on the critical line R(s) = 1/2 can be written p; = 3 +ivy, and

we denote py = % + iy with 5, = yfh;% the normalized zero.

In order to study the distribution of low-lying zeros of L(f,s), for any test function ® in
S, (R), we define the low-zeros sum

D[®|(f) =Y _ ()
Vf

where the sum is running over the imaginary parts of normalised zeros counted with multiplicity.
F(Q) can be seen as a measurable space where measurable sets are all its subsets and which
is equipped with the counting probability measure pz(q). DI[®] is a measurable function on
F(Q). However, we are unable to determine the asymptotic behaviour of D[®](f) for a single
L-function. As a consequence, we must take into account a family of L-functions in order to
obtain a significant result. That is why, we define the one-level density as the expectation of

D[®]: X
Erq)(D[@]) = —=— > D[®|(f)

F@QN 5@
We also define the variance of the one-level density:
2
1 1
Vr(@)(D[®]) = E([D[®]-Exq)(D[P])]*) = DI®](f) - DI®](f)
F(Q) L(ﬁS)ZE]:(Q) F(Q) L(ﬁS)ZE]:(Q)

Our purpose is to find the asymptotic behaviour of Ez(q)(D[®]) and V zg)(D[®]) when Q goes
to infinity. The density conjecture predicts

. 1 -
Jim L(mzem D) = [ ewiA@

where W[F] is a density function characterised by F. In order to estimate the one-level density,
we convert sums over zeros to sums over primes. Unfortunately, we are able to evaluate these
sums over primes only if the support of the test function is small. That’s why, density theorems
are proved only for test functions in S, . (7)(R) with vpax(F) fixed. Currently, the maximal
value for vpax(F) is 2 whereas the density conjecture does not predict any restriction on the
support of test functions.

Sometimes, we will prefer using the harmonic measure for technical conveniences, rather than
the Dirac one. For instance, in the case of symmetric power L-functions. Precisely, if A is a
subset of H,(q), let

h
H1y,.(q) (4) = Z wy(f)

L(Sym~ f,s)€EA

LOur definition of L-function is the one of [TK04] chapter 5.



and

h = w m” f) where w = M
E’Hr(q) (D[q)]) - fEHZ:(q) q(f)D[q)](Sy f) h q(f) (47T)k_1<f, f>q
and Vi, (D) = 3w () [Dlal(Sym’ )~ Ely (D))

feH; (q)

Then, if r is odd and if A is a subset of HF(q), let
eg@=2 Y w(p
L(Sym f,s)€A

and
Eio@@)=2 > w(HD@)(Sym)
feHi(a)
e(Sym" f)=+1
and Vi (D) =2 Y w() [DISSyn f) - B, (D))

feHg(q)
e(Sym” f)==%1

Actually, harmonic measures are asymptotic probability measures since we only have

lim Z we(f)=1and lim Z we(f) = % (1.3)

qg—r+00 qg——+00
q prime fEHZ (q) q prime fEHZ (q)

e(Sym” f)==+1

The first relation comes from Petersson trace formula ([RR11], proposition 2.2) and the second
one is subject to an assumption (Hypothesis Nice(r, f) of [RR11]) we are assuming in order to
get density theorems for these families.

1.4 What is the smallest zero of a L-function 7

If L(f,s) is a self-dual L-function, the sign of the functional equation is equal to £1. Moreover,
due to the following observation, we need to define 7 ; which appears in theorems 1 and 2 and
to explain the consequences on density theorems.

Lemma 1 ([IK04], proposition 5.1) Let L(f,s) be a self-dual L-function with (f) = —1.
ThenL(f,%) =0.

If F is a natural family, all of whose L-functions L(f,s) are self-duals and satisfy e(f) = —1.
Due to the previous lemma, we can denote non-trivial zeros of L(f,s) by

{proy Udlpyrii € Z7}

where pro=1/2 and py; =1 — py_; if i # 0. Moreover, we have:

In the other cases, we use the same notations without py .



We are going to expose its consequences on statistics of low-lying zeros. Let F a natural
family of L-functions, we define

D*®)(f) = D ®(is.).
i€z

The density function W*[F] is defined to satisfy

i Er)(D'[#) = /R &)W [F] () dt. (1.4)

If all L-functions L(f,s) in F are self-duals and satisfy ¢(f) = —1, we have
Er@)(D[®]) = ©(0) + Ex)(D*[®]) and Vg (D[P]) = Vrq)(D[2)). (1.5)
This phenomenon occurs for the family H~. It has been shown in [ILS00] (equation (1.18)) that

the symmetry group associated to H~ is SO~. In other words, we have

Jim By (D]a]) = /R BHW[SO|(B)dt ie W[H] = W[SO].

N squarefree

As a result, we deduce

(B o (D18 = [ @@WISsnar e W] = Wishl, (1.6)

N squarefree

Similarly, the family H,~ (r odd) has also SO~ as symmetry group ([RR11], theorem A). Nev-
ertheless, for the harmonic measure, relation (1.5) becomes

E} - () (DI®]) = 20(0)p3y, (o) (Hy (0)) +E

Hr (@) 2 (o7 12])

and
Vo (DIB]) = Vi (D) +2(0) [#(0)uly ) (s (@) + Ly (D" 18] [1 - 20l () (5 (0))]
Thanks to relation (1.3), we have

: h _ : h % : h o h *
S By (Pl2) = 2(0) + lm By - (D7[@]) and - lim Vs -, (D[®]) = lim Vs, (D7[@]).

g prime g prime g prime g prime

As a result, with theorems A and D of [RR11], we get

qETmEgmq)(D*[@]):/Rcb(t)vv[sp](t)dt and QEIEOOVZ[:((J)(D*[@]):2/R|u|</l;(u)2du. (1.7)

q prime q prime

10



2 Proportion of L-functions with a small smallest zero

In this part, we prove theorem 2. The starting point is the following proposition. We do not give
a proof of this result since it is essentially the same than the proof theorem 8.3 from [HRO3].
Proposition 1 Let g be in Sp(R) and ®(x) = (22 — 5%)g?(x). Let

Jp 7 g W+ [F(x)dz
Jg 92 (@)W*[F|(x)dz

B(g) =

We assume

Jlim B, (D*[9]) = / OWFI(Odt and  lim V) (D[®]) = Vr(2).
q prime q prime

Then, if 8 > B(g), we have

imin . A B (cI)) . Borne ,
1q p”mfu; y({L(f.5) € F Apa < 8}) > 1 TR : Borner(8%).  (2.1)

Remark 4 The same result holds for all natural family of L-functions with the counting prob-
ability measure instead of the harmonic measure.

This proposition gives a result only if the right member term is positive. We denote Smin(g)
the smallest value of 8 > B(g) such that this property is satisfied. Thanks to Bmin(g) > B(g),
we may detect a zero. We have:

liminf min  A¢1 < B
q—+oo L(f,5)EF(q) V1= Brin(9)

q prime

Actually, we prove a better upper bound in theorem 1.

Ricotta and Royer proved in [RR11] (theorems A, B and D), that if ® isin S, (7)(R), then

lim EL . (D[®]) = [ @ 1 y=2 [ |uld(u
b Fq)(D12)) /R OWIFI(t)dt and  Tm Vi, (D /\uy du
q prime q prime

where pmax(F) and W[F] are given in table 2. Since pmax(F) < 1, we have

/ ()W [F)(0)dt = $(0) + Zb(0)
R

with:

F | Hy (reven) | H, (rodd) |HS (rodd) | H, (rodd)

or | (=) Tt=—-1| (-1 =1 1 -1

In order to obtain explicit lower bound in the previous proposition, we specialise relation (2.1)
in a fixed test function.

11



Lemma 2 If0 < R <1/2, o(u) = cos (55) Li_g,r)(u) and ®(z) = (z* — 5?)g5(x), then

2 2 p2 2 2 R4 4 32(9 — 2 R2 2 2 3 1
Borner(8) = 1— T R* 256(3 + 7°)R*B* 4+ 32(9 — )R + 7° + and Blgo) =
3 (1280 7R332 + 1672 k232 — 72)°

AR\/1+ o738
Proof: We have

Blu) = |25 (i — 5) cos (34) — £ (s + 8°R) sin (T )| Looram (w)

2R
®(0) = g — B°R and ®(0) = —%ZRQ.

Thanks to several integration by parts, we obtain

S~ T68R1B + 3 + 28832 R% + 7% — 3282 R*w? + 256 R B n?
|u|®(uw)“du = 682 .
R T

O

Lemma 3 Let Bornex(3?) = max {0; Borner(3%)}. The following table sums up variations
of B+ BorneX(8%) where

Buin(0) = 1 [72(372 + 2407 R — 2(72 — 9)R?) + 4w R\/97* + T20 s R — 6(7* — Tn2 — 12) R?
minl0) = YR 3% + 480 7R + (192 — 672 — 27 R2

B B(gO) ﬁmin(go) “+00

1_ 272 R? w243

3 (724+8Ro7)2
Bornek(8?) /

0O — 0

Proof: First, we study the sign of Bornez(X). It is the same as the quadratic polynomial’s

Y(X) =3n* —67°R* — 27" R* + X (—96R’7* — 7680 77" R® — 576 R*n” + 64R*7")
+X7? (768R 1" + 122880 7 R°1* 4 49152R° — 1536 RO7* — 512R°7?) .

Let L(R) be its leading coefficient and A(R) its discriminant. We get
A(R)

—98304(7* — 7n* —12)7? R%(R — Ry)(R — Ry)
<0

with

ot —Tr2 —12) 2(nt — 772 — 12)

Ry = min {77‘2 1207 +/6(r* —3)(n* — 4) 51207 — V6(m2 —3)(m2 — 4) }
Ry, = max {77‘2 1207+ /6(n* —3)(x* — 4) 21207 — V6(72 = 3)(72 — 4)} .

2(mt — T2 — 12) 7 2(mt — T2 — 12)

Numerical values If o = —1, then Ry = —8,330 and Rs =~ 1,074.
If or =1, then Ry = —1,074 and Ro =~ 8,330.

12



In addition,

L(R) = 256(192 — 67% — 27*) R*(R — R3)(R — Ry)
<0
with
) —240r 4+ \/6m2(n2 4+ 3) o, —240F — \/672(72 +3)
_ 2 F 2 F
Rz = min {77 192672 — 274 " 192672 — 274

R 5 —240F 4+ \/6m2(n2 4+ 3) o —240F — \/672(72 + 3)
= a. ™ .
LT T —em —2nt 192 — 672 — 271

Numerical values If or = —1, then R =~ —8,210 and R4 =~ 0,573.
If or =1, then Rg =~ —0,573 and R4 ~ 8,210.

Therefore, we always have

1
R1<R3<0<§<R4<R2.
Let W(R) be degree 1 monomial coefficient in Y, then
W(R) = 327°R*(-37% —2407R+2(7* — 9)R?).

Since 0 < R < 1/2, we have A(R) > 0 and L(R) > 0. The polynomial Y has two real roots,

_ —WI(R) - VA(R) _ —W(R) + VA(R)

Now, we want compare to X1 (R), Xa2(R) and B(go)?. Since L(R) is positive , X;(R) < Xa(R).
Moreover,

[B(90)* = X1(R)][B(g0)* — X2(R)]
2(. 4 2 _ 2R2 1L 9AR2 4 25 rr2 4
_ w2 (m* 4 372 — 96) (872 R* 4+ 24R* + 240 rm* R + 37%) (R — Rs)(R— Ra).
8R?|n? + 8Ror]?|—37* — 480 Rmw? + 2(7* + 372 — 96) R?)?

>0

As a result, we have X1(R) < B(go)? < X2(R) and Buin(g0)? = Xa(R).
Then, we prove that Bornez(X) is increasing on [Xa(R); +o00[. We compute

dBorner 256 R*B(go0)°

X (X) = “ 33X — Blgo)?)? [16R*(2Ro7(n* — 9) — 37%)X — 2Rox(n” + 3) — 377 .

If 0 < R < 1/2, then 2Ro7(7? — 9) — 372 < 0. As a consequence:

dBorner 1 2Rox(n?+3)+ 3n?
—(X)>20 = X>
dX (X) ~ 16R?2Rox(n? —9) — 372

Since the right member of this inequality is always negative (when 0 < R < 1/2), then Borne}

is an increasing function.

O

13



Proof of theorem 2 We specialise the inequality in proposition 1 in the test function gg with
0 < R < pmax(F). Using lemma 2, if 5 > B(gp), we have

e h A +072
lim inf ) ({L(f,5) € 75 Gp1 < B}) = Bornez(57).

g prime

Thanks to lemma 3, if 5 > Bnin(g0), we get

s h L~ 2
lim inf iz ) ({L(f, 8) € 7 Ap1 < B}) 2 Borner(57).

q prime

To obtain theorem 2 , we evaluate the right member in R = ppax(F)/2.

3 The smallest zero

In this part, we prove theorem 1. Our starting point is the following proposition. We do not
write the proof that is essentially given in [HR03] (theorem 8.1).

Proposition 2 The infimum being taken over functions g in S, . (F)/2 (R), we have

Jp2?9* (@)W F|(z)dz
Je @)W F(z)dz |

limsup min 4¢q <inf
Qs b0 LUR)EF@)

We give a sketch of the proof of theorem 1.

Sketch of the proof We have to determine an explicit expression of the right member term
in (3.1). Let

LW
m:= in
g€S, (R\{0} ng2(x)W[G](x)dx
with v = vmax(F)/2 and WG] = W*[F].
e In subsection 3.1 (lemma 5), we prove the existence of a function B and a set H>® such
that m = infgc oo\ [0y B(9). Precisely, we define B by
B 1 Jo B (w)?du — § f_ll h' o« 1 (u)du
Am? [ h(u)2du+ 3 [ b h(u)du + e (i h(u)du)®

(3.2)

where (9, ¢) is given in table 1.
e In subsection 3.1 (lemma 6), by a density argument, if
Hp = {h:R — R even, continuous, C! on ] — R, R[, with supp h C [-R, R]}
and

hp = inf B(h
g = jof (h),

we prove m = limg_,,- mp.

14



e In subsection 3.1 (lefnma 7), by topological arguments, there exists hr in the Sobolev
space H} such that B(hg) = mpg.

e In subsection 3.3 (lemma 10), thanks to Fourier theory, hp satisfies a Volterra equation
with temporal shifts

5 R
o) = p(w)+5 [ ba(t+1) = ba(t— D (33)
where ¢ is an explicit function which is defined with the unknown parameter mg. Then,
hR is in HR.

e Then, we solve the previous Volterra equation in subsection 3.4. As a result, we obtain an
explicit expression of hr which also depends on the unknown parameter mpg.

e We determine /mp in subsection 3.5 by solving the equation mp = B(f)R)

e To conclude, we use /m = limg_,,- vVmpg.

3.1 Density and topological arguments

This section is devoted to the proof of the following lemma which sums up the three first steps
of the preceding sketch of the proof. Let H} be the Sobolev space defined by

Hj = {u € L*(] - R, R[) with u(—R) = u(R) = 0,
Jv € L*(R) such that V¢ € C=°(] — R, R]), /]Ruqbl = —/quﬁ} :

If u is in H{ then v is called the weak derivative of u and is denoted by u’. The space H} is
equipped with the inner product

R
(u,v) g1 = (U, V") 2 :/ u'v'.
0
-R
H{ is a reflexive separable Hilbert space ([Brell], paragraphe VIIL3).

Lemma 4 We have

m= lim ﬁlR.
R—v—

In addition, for each R > 0, there exists hg in H} such that mp = B(hR).

Before proving this result, we need to prove some technical lemmas.

A new expression

Lemma 5 Let H® = {h € C*(R), even and with supp h C [—R, R] such that 0 < R < v}.
Then,

m= inf B(h).
heHge\{0}

15



Proof: Thanks to Plancherel theorem, inversion formula, Parseval formula and relation (1.1),
we have:

~

/R P@W(C) (e = / 2)WC(y)dy = 32(0) + 2 / Py / P (y)dy

—

Similarly, since zg(x) = 59, we prove

In addition, since the set of Schwartz functions is invariant by Fourier transformation, we have:
geSR) e gey?
Therefore,

m= inf B(@3).
geH\{0} @)

A density argument

Lemma 6 We have B
inf B(h) = lim mg.
heHgo\{0} R—v—
Proof: We define mollifiers (p,,) by

1

R—R w2-1 if 1
: where p(z) =< © if |z] <
Pn { T — pr’zt)dtp(nx) p(x) { 0 if o > 1

The function p, is non-negative, smooth with supp p, C [~1/n;1/n] and such that [; p,(u)du =
1. We recall two properties (see e.g. [Brell], Theorem 4.22 and Theorem 4.15).

P1 Let 1 <p < oo, if g € LP(R) then p, * g tends to g in LP(R).
P2 Let 1 <p<oo,if f € LY(R) and g € LP(R) then f x g € LP(R) and ||f * g|l, < ||f]l1]19]lp-

Let 0 < R <vandn>0. .
There exists h in Hg such that mr < B(h) < mg +n. Let h, = p, * h. For large n, h,, is in
HE°. We also have h], = p, * h/. Thanks to property P1, we have

Ii " 2: 2 li / 2: /012 li " :/ )
i a3 =103, T (3= and i [ (e = [ hod

n—-+o00o R

16



Thanks to property P2, we may write

'/ hop % hp(u) — h* h(u)du g/]hn*hn(u)—h*h(u)]du
< |l(hn = ) * hnlly + [[A# (ho = R)[[1 < ([[An]l1 + [[RI[O[[A = hal]r-

Therefore,

1 1 1
lim B xhy, (u)du :/ h+h(u)du and similarly lim h' P xhl (u)du :/ B x b/ (u)du.

n—-+o0o 1 1 n—-+o0o 1 1

Then, lim,_, o B(h,) = B(h). There exists h, in H® such that |IB(h) — B(hn)| < 1. As a
result, for all n > 0, there exists hy, in Hp° such that |mpg — B(hy)| < 2n. Then, for all R < v,
we have inf,c g\ f0) B(h) < mpg. As a consequence, we have

inf  B(h) < i
neiid o B < im_ M.

On the other side, let h be in HS°. There exists Ry < v such that supp h C [—Rg; Ro]. Since h
is in Hg, and R — mp is decreasing, we get

lim g < Mg, < B(h).
R—v—

Therefore,

lim mes < inf B(h).
am me s, b B(h)

Some compact operators Relation (3.2) allows us to extend B to H{\{0}.
Lemma 7 If R > 0, there exists hr in H{\{0} such that mr = B(bg).
Proof: Let K be the operator of L?(] — R, R[) defined by

) u+1
KIh|(u) = —/ h(t)dt +6/ h(t)dt.
2 u—1 R
We may write B on the shape
B . <hl,hl>L2 + <Khl,hl>L2

) = T (R Ry

Since K is a Hilbert-Schmidt operator, it is a compact operator of L?(] — R, R[). Denote by I
the identity function of L?(] — R, R[), the transformations that have been done in lemma 5 show
that, for all h in L?(] — R, R[), ((I + K)[h], )2 > 0 with equality if and only if h = 0.

Since smooth function compactly supported in | — R, R[ are dense in Hé, the infimum of B
over H& is also equal to mg.

17



Let (gn) be a sequence of non zero functions in Hg such that lim, - B(gn) = mp. We
consider hy, = gn/(gp,9y)r2- Since for all real number ¢ # 0 and all h in Hg, B satisfies
B(t.h) = B(h), we have

i Blh) =g and [lze = [l = 1.

Sequences (h,,) and (h!,) are bounded in the Hilbert space L?(] — R, R[). Since the unit ball
of L?(] — R, R|) is compact for the weak topology, up to consider sub-sequences, there exists
h and k in L?(] — R, R|) such that (h,,) (respectively (h.)) tends to h (respectively k) weakly.
Moreover, for all function ¢ in C°(] — R, R[), we may write

[o# = tim_ [ = 1im_[ o=~ 1o
Then g belongs to H', ¢ = k and g, tends to g weakly in H'. In addition, there exists
a compact embedding of H! into the set of continuous function on [~R, R] equipped with
the norm of uniform convergence ([Brell], theorem 8.2 et 8.8), we may conclude ([Brell],
6.1 remark 2) h, converges uniformly to h (precisely to its continuous representative which
will be always identified with h). As a result, h is an even functions belonging to H& and
limp, oo 1hnll 2 = (1] 2.

Since (h,,) and (hl,) are weakly convergent in L?(] — R, R[) and since K is a compact operator,
the sequence (Kh,,) and (Kh/,) converge respectively to Kh and Kk’ strongly in L?(] — R, R]).
Then, we get ([Brell], proposition 3.5 (iv))

lim (Khy,hy)r2 = (Kh,h)r2 and nlim (Khl h V2 = (KK h)pe.

)
n—-+00 —+00 nren

To sum up, we have

m (1 4+ Bl ) g2 = 14 (KR W) g, Tim (T4 K)o, )z = (1 + KB, B 2

and, since (k) tends weakly to h’ in L%, we may deduce ||h'||;2 < liminf ||h] |2 = 1.
Furthermore, 1 4+ (Kh',h') 2 is non zero. Indeed, if it was zero, we would have

0=1+ (KW, K2 > ||W]| g2 + (KK, 1) e = (I + KW, 1Y > 0.

So, ||W||r2 =1 and ((I + K)h/,h') 12 = 0, thus |||z = 1 and A’ should be zero !
As aresult ((I + K)h,h)r2 # 0 because mp is finite and 1+ (Kh', h') 2 is non zero.
Then

. 1+ (Kh/, h/>L2

|W |2 + (KW B )2 = s . =
= B(h) > = lim B(h,) = ,
(I + K)h,h)» (h) Z 1R oo (hn) (I + K)h,h)»

and [[h'||2 > 1. Since we already have |[h/[|2 < 1, it comes ||h'[|;2 = 1. To conclude, the
function h is non zero and satisfies B(h) = mpg.

O
Remark 5 B is not continuous when BH'HHI(O’ 1) — R is equipped with the weak topology.

Indeed, since the unit ball is weakly compact, B should be bounded. However, by considering
hp(u) = cos (%) 1(—pg,R)(u), we remark that B cannot be bounded.

18



The proof of lemma 4 comes from lemmas 5, 6 and 7.
3.2 Fourier analysis
For technical conveniences, let B(h) = 16R>B(h) and mp = infaep, B(h). Then

mp = B(f]R) = 16R26‘lR.
Let
N ™mTY . . -7yl
Qr =< (¢n) € RY, such that ¢, =0 and x — Z Cp, COS <ﬁ) is continuous and inH,
n>0

In this section, we prove some technical lemmas.

Lemma 8 Let

H¢ N {continuous,even} — Qg
: 1-(—-1)"» R ™
h — ( (2R ) Jo h(t) cos (TH) dt) o

Then, ¥ is a bijective function.

Proof: For each A in H&, we associate an even 4R-periodic function h which is defined by:
for all z € [0, R], h(x) = h(z) and h(R + z) = —h(R — ).

We also have h = h - L _rR-

-2R 2R

representative curve of h representative curve of h

As a result, the mean value of h is equal to zero. Actually, if ¢, denotes the n-th Fourier
coefficient of h, we have

1 2R imnt 1— (=1~ [E mnt
w=— | h)e FEdt=——" | ) a.
c . (t)e™ 2k R /0 (t) cos <2R>
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Since the Fourier series of a function in H{ is normally convergent, we get
~ TN
h(u) = h(u) -1 =2 (%) 1 .
(u) = h(u) - L _pg,g)(u) ngo cn 008 (5 —r,R) ()

Then ¥ is well defined and the last relation gives us an explicit expression of U1,
O

As a consequence, since B is defined on the set of continuous and even functions in H}, we may
define B on Qg by B(c) := B(¥~(c)).

Lemma 9 Let ¢ = (¢,) be in Qr. If R < 1/2 then
2220 n’c,

n—1 2
S0 + (8 +2¢) 88 (z;zzo S )

B(e) =

and, if R > 1/2, we have

Z:Lzo n’c, — %% > Zm,nZO MM, nCmCn

n—1 2
* 2 1 16Re * (=) 2z ¢
2 n>0Cn T 3R 22 D2amn>0 AmnCmCn + <3 <ano .

B(e) =

where, for n and m odd numbers:

8RZmn(~1)"%" 8R2(—1)"3"
shifmn{—=1) 2 711 an _ 1 ™m - .
Amn = w2 (m2—n?2) [nQ COS 3R — mz CO8 ZR] mnm? stm 7 n
’ 2R(2R—1) . T 8R2 . nw 8R2 i .
= sindp — 55 oS5 + oo g sim=mn
m4+n
8R?(-1) 2 ™m ™ .
and = w2 (m2—n2) [COS or — COS ﬁ] sTm 7& n
Hm.n
’ 2R(2R-1) . 7n —
————=S1 55 St =m"n
nmw 2R

Proof: We are giving an explicit expression of B on Q. Let h be an even and continuous
function in H} such that ¢ = (¢,) = ¥(h). Thanks to Parseval formula, we have:

1 1 20
— [ h(u)?du = — h(u)?du = clP=2) &
°% /. (u) R, ( 7%; | ;
1 1 2R w2 2
R h/ 2d - h/ 2d — 2 n2: 2 9
2R/]R (u)*du R, (u)*du —4R272n len] —2R2nz>0n c

In addition, we may write

A 4R (-1)" _8R (—1)"
/Rh(u)du = / h(u)du = — ,% WC%H = Z mcan-

-R n>0
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Remember B(h) = 16R2B(h) where B(h) is given in (3.2). We obtain an explicit expression of

B(c) using
/dh*h@mx— (Jx h(@)dz)’ if R <
-1 - 4 ZWZO ZnZO Cmcn)‘m,n if R >

DO [0 [ =

and

/JM W (x)d {0 ifR<g
* r)ar = 2 i
1 T2 om0 2on0 MNCmCnflm,n  if R > !

Hughes and Rudnick proved that m = 16% if G = U. We extend their result.

Corollary 1 IfG =0 or if G = SO* and 0 < R < 1/2 then

If G = SO* with R > 1/2, thenmpr < 1. If G = Sp and 0 < R < 1/2, then

l<mp< 2.

— =<
1- &R

Proof: Thanks to the Cauchy-Schwarz inequality, if G = O or if G = SO* with 0 < R < 1/2,
we have

* 2.2 * 2.2
anon Cn anon Cn 1

> >
not N2 T (14R)>.,c2 T 1+R
2220 2+ (6 +2¢)28 (ijo %C") ( ) Lz

B(c) =

and one of both inequalities is strict. In order to obtain an upper bound for mp, we specialise
B in e = (ey,) which is defined by e,, = 0 for all n except e; = 1. The upper bound comes easily
if G=0,if G=S0% orif G=Spand 0 < R <1/2. If G = SO* and R > 1/2, we have

5 6(2R-1) .
Ble)= — L —3mM1__ _ R <1
1+ %Al,l + —1(;1;6 1+ 7‘5(2}:_1) sin 5 + 4:;5 (1 — cos %) + 1?5’5

Finally, if G = Sp and R < 1/2, for all ¢ in Qg, we have

* 2.2 * 2.2
anon Cn anon Cn

_ 2 = * 2

1

= Zn>0 Ch
Cn =

B(c) =
2220 i = fr_g (Z:po (_l)n -

and one of both inequalities is strict. Therefore, thanks to lemma 7, we have mp > 1.
O

Corollary 1 implies, except if G = Sp and R > 1/2, that mp is not the square of an integer. We
make the following hypothesis which will be justified page 43.

21



“Sp hypothesis”: If G = Sp and R > 1/2 then mp is not the square of an integer.

Remark 6 In the symplectic case with R > 1/2, by evaluating B in e, we get:

_ 2R—1
mp < Ble) = 1 — sin 55 _ 12R
- 1—2B=Llgy . 4R (1 _ oq I T
x Sllop — 7o ( Cos 2R)

Therefore, since mr = 16 R?>mp, corollary 1 and proposition 2 show:

: 7] =Wl
—1 if W*[F] =WI[SOT]
lim su min Ve < lim VMg K Vmax(F) *
Qﬁﬂlj L(f,5)EF(Q) = R—vmax (F)/2 R Vmax(l}—)g/z if W*[F] = W[O]
e WP = WISOT]

As a result, density conjecture agrees with random matrix prediction.

3.3 A Volterra equation with temporal shifts

Since the unitary case has been solved, we assume G is one of the following compact groups O,
SO~, SO* or Sp. In this section, we prove the following lemma.

Lemma 10 The optimal test function hgr satisfies, for all 0 < u < R,

R
bilu) = pla) + 5 [ Bilt+1) = balt - Dy (34

where (0,€) is given in the table 1 and with

() ks e [ MERTU mRﬂ] 1 ()
o(u) = cos — cos g g (u
2mp cos YHET 2R 2 A
where
omp [6 (B R
e = 20R [— | bataas+2 [ hR<x>d:c] . (35)
m 2/ ~R

Remark 7 We identify hgr to its continuous representative. As a result, equation (3.4) proves
that b is of class C! on | — R, R[. In other words, the function hg belongs to Hg.

Before proving this result, we need to prove some technical lemmas. However, we may
immediately deduce the following corollary.

Corollary 2 If G = O or if G = SO* or Sp with R < 1/2, then
1., 1

where V' has been defined in section “Preview of results”.
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Proof: If G = O, then § = 0 and lemma 10 gives us immediately hg = ¢. Similarly, if G = SO,
SO~ or Sp, R<1/2andif 0 <t < Rthent+1¢ [—R,R] and t — 1 ¢ [—R, R|. Therefore, in
this case, we also have hr = . We may sum up these remarks by

§+2¢) [F d
br(u) = o(u) = ( QCZ)SI(_”}?/ZER(;) ! [cos r;gru — Co8 \/t?ﬂ] 11 g Ry (u).
T2

As a result, we have

/_}; br(u)du - {1 —(6+29)R <7T\/2m_R tan <7T\/2m_R> _ 1)} -0

Since f hr(u)du # 0 (otherwise hr = 0), we may conclude

2 v/
tan VIR :1+—6+2€.
T\/MR 2 R

The result comes easily from lemmas 5 and 6.

O

Remark 8 We will use this phenomenon in the next section in order to determine hp in full
generality.

Let
™t

Sp(t) = sin <ﬁ> 1 pm(t) and  Cu(t) = cos <ﬁ> 1 g ().

Lemma 11 n denotes an odd positive integer. Let h be in Hr with ¢ = (¢,) = V(h), then:

Z [mn#m,n + mR)\m,n] Cm

m>0

2R SR%(— mm
=~ (n? —mp)(Sy x h)(1) + mRW;) [1 — cos ﬁ} Cm

Proof: We have:

Z [mnﬂm,n + mR)\m,n] Cm

m>0
2R(2R—-1) . /7mn 8R m(—1)"" ™m
2
e (Tsm (G en+ o i 2 e (o) o
8R’mp 8R2(—1)"z" 8R2 n(-1)"=" ™m
- n2r2 (_) - mz>:0 py— + 2 n m(m? — n?) (m” = mp) cos (ﬁ) cm
Since

n 1 m 1
m(m2 —n2) n\m2-n2 m)’



we may conclude

Z [mn:u/m,n + mR)\m,n] Cm
m>0

nm

= (0~ mp) (L@R“sm (28 e+ S5 U oo (77— cos (T

In addition, we have

(Spxh)(1) = /1RR h(u) sin (%(1 - u)) du

Z * /R . [m(m—n)u L . (m(m+n)u N d
= Cm sin| —————+ — ] —sin| ————"— - — | du
I-R 2R 2R 2R 2R

m>0

= @R 1)sin (22) 6, + 22 ;* (ml)fm [eos (22) = cos (22)] .

Lemma 12 Let ¢ = (¢,) = Y(hr). Then, for all odd positive integer n, we have

_ (_1)%71]{:6,5 ) N (—1)%71145575 2R) ,
o n[n? —mp] E(Sn *br)(1) = n[n? — mg| * n2m? (Cr#bR)(1)-

Proof: We define a norm on Q2 by

+o00 00 1/2
ell = 3 nfen] + (z)
0 n=0

n=

and we consider five differentiable functions H, T', S, A and G on (Qg, || - ||) defined by:

-1

H(e) =) n’c, T(c)=Y e, S(c) = Z* (_17)1 -

n>0 n>0 n>0
Ae) = E E MMl 1 CmCr, and G(e) = g E A CmC-
m>0n>0 m>0n>0

With lemma 9, we may write

H-3A 1 H
B = s — ifR> - or B= E
T+ 535G+ =5552 2 T+ (5 +2¢) 38 52

it R<

N | —

Since B(c) = mg, ¢ is a critical point. Therefore, if R > 1/2, we have dB|, = 0 hence:

6 16RS(c)mp (—1)"=
=57 [mnfim n + MeAp n] 6 + € — p

m>0

Vn oodd, (n?—mg)c,

24



Thanks to lemma 11, “Sp hypothesis” and corollary 1, we may conclude

_ DT ke 0 _ (-1)*T ks | 2RS ,
“ = 2 —mp]  nr (Snxbr)(1) = i —mp] * nie? (Cp % B)(1) (3.6)
where
ké,a = ) |:6Z T (1 — COS ﬁ) Cm + 452 Tcm
o=t m>1

2 5 (e R
_ 2mp l_/ hR(z)dz+s/ [)R(x)dx] : (3.7)

T |2 Jr_1 R

Similarly, ¢ satisfies (3.6) and (3.7) in the case R < 1/2 due to the fact that, if R < 1/2, we
have (S, xbhg)(1) =0 and f}f_l hr(x)dr = f_RR hr(x)dx.

O

Proof of lemma 10 Assume 0 < u < R. Since hr(u) =23, 5 ¢ncos (i), lemma 12 gives

«(~1)"7 cos (Zm) AR~ (G b)) (wnU) _

2 _
n(n? —mg) w2 = n? 2R

br(u) = 2ksey

First, using relation 1.444.6 of [GRO7], we have

«(Cp * HR)(1) Tu\ T R wlu+t]  wu—t]\
Znif‘m(ﬁ) - §/ (” °9R 2R )bR(lt)dt

n>0 —R

2 (R
= @/ br(t+1) = br(t —1)dt.

Then, using relation 1.445.6 of [GRO7], we compute

«(—1)" N
2]%52 (=1)"= cos (Gx ) _ ks e cos VMETU
1 n(n? —mpg) 2mp cos YT 2R

cos @} o(u).

n>0

3.4 Optimal test Function

In this section, we solve the Volterra equation with temporal shifts which appears in lemma 10.
Precisely, we prove that, except for a countable or finite number of value of R, the previous
Volterra equation admits one and only one solution in Hr. We are giving an explicit expression

of hR-

An appropriate partition

For technical convenience, since R will tend to v (thanks to lemma 6), we may assume that 2R
is not an integer. Similarly, since n > 1 is the only integer such that n — 1 < 2v < n, we may
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assume 251 < R < 2, then n = [2R] + 1.
Let D be the derivative operator and T, T~ the shift operators defined by:

Dlfl=f, Tifl(w)=flu+1) and T7'[f](u) = f(u-1).

We build a partition of [~ R, R] which is invariant by T'[id], T~![id] and by symmetry. We define

Qn_2i =R —i if 0<i<oit
an-si—1=[2R] —R—i if 0<i<22
and Iy =| — a1, a1, Iy =|ag, ar+1], Ik =] — ags1, —ax[ for 1 <k <n—1. We have
[2R]
-R,RI= |J I
k=—|2R|

Moreover, if [k| < n—2 then T*!(I}) = I}4 and, if k € {n—2,n—1} then T'(I})N supp hr = 0.

A differential equation with temporal shifts

By derivation and integration, we remark that hgr satisfies the previous Volterra equation is
equivalent to hg satisfies the following differential equation with temporal shifts:

for all w in | — R, R},

5
hr(w) = & (w) = 5 [br(u +1) = br(u—1)]. (3.8)
Let ”
MpmT —TRse
A=Y d = S
2R 7 4R JiR cos 07

We consider polynomial sequences (73,) and (U,,) which are defined by induction:

Ty=1 Uy =1
Th=X Uy =2X
Tn+1 = QXTn —Th Un+1 = QXUn —Un-1

Polynomials T,, (resp. U,) are called Chebychev polynomials of first kind (resp. second kind).
They satisfy, for all real number 6 and all non-negative integer n,
i 1)6
T, (cosf) = cosnf and Up(cosf) = w
sin

As a result, we have

T,(X) = nﬁ [X ~ cos (% + k—”ﬂ U(X) = []IX — 0 ()] where 6,(k) = cos ( i > .

n piet n+1
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In this subsection, we prove the following proposition:

Proposition 3 Even functions h which are compactly supported on [—R, R], C' on each I}, and
which satisfy the differential equation (3.8) on Ul are those that satisfy:

o [fO<k<n-—1, then:

Bl ( Z Lo ))Us (60 ))smqu %’H} 0u(i) — 5 [ﬂa%’“])
+ (k) sin ()\ [u - %’H] + 92(’6))

o [fO<k<n-—2, then:

Plr s ( Zr] n=2)Uk (n-1(j ))Sln<[u %} Hn_1(j)—g {j+6#b
9)\

)

where 1j(I,—1) with 1 < j < | 22| and rj(I,—2) with 1 < j < | 2| are arbitrary real numbers
and where r)(k) and 0)\(k) refer respectively to the modulus and the argument of the complex
number

L) (k) sin ()\ {u _ %’”]

(& 2 2 2

iw. Ur (A) —i(AR) B () R Un—k-1(}) (M) B | i e
A+dsin A [ Uy (M) Un (M)

Before proving this result, we need to prove some technical lemmas.

Transformation in a linear differential equation With corollary 2, we may assume § # 0
(hence 62 = 1) and n > 2. Moreover, throughout this section h refers to an even function which
is compactly supported on [~R, R], C! on each I, and which satisfies the differential equation
(3.8) on UI}.

Let Qp the operator which has the following recursive definition:

Q=1
Q=D+ 3T '-T)
Qi1 = DQi+1Qi 1 + (B)" (TF + (—1)FT*)

Lemma 13 h satisfies the following linear differential equations:

e Onl, 1, if1 <k <mn, h satisfies:

<§)kUk (1D> [h] = Qul] + (g)%km

27



e Onl, o, if 1 <k<n-—1, h satisfies:

(1) v (30 =1+ (3) 77m

e Only, if 1<k< L"THJ, h satisfies:

2 <5>ka (30) 1 = uie + (g)’“ (740 + (<1 T4n)

Proof: We prove the first relation by induction for & = 1,...,n. If k = 1,the differential equation
(3.8) gives:

o
ifuel, 1, h(u)=¢'(u)+ §h(u —1). (3.9
The result comes easily from the definition of @; and U;. If k = 2, we derive relation (3.9) and
we apply the differential equation (3.8).

We assume the result holds for £ and k — 1 with 2 < k < n — 1. Then, with recursive relation
on Uy, we get:

&) "t (2) =23 () () e ()
o) (to)) 2 2) e ()

— DQU T Qi)+ <§>k T4 + @)Hl -]

2
since k < n — 1 we may apply differential equation (3.8).
1 S\ * 5\ FH
= DQk[‘P’] + ZQk—l[(p/] + (5) T_k[(p/] + (5) T—(k+1)[h]

Since we apply this relation with u in I,,_1, we have T**'[h](u) = 0. Therefore, we have

! 1 PR
(5) Upt1 (;D) [h] = Qre1[¢’] + (5) T=¢+Y[R] on I, ;.
We prove the other relations of this lemma in the same way.

O

Lemma 14 Let f be a function which is C* on | — R, R| and with supp f C [-R, R]. Then, for
alll <k <n we have

Qrlflr,_.] = <%>k1 ka <§>J Uk—j-1 (%D> T f|1,.]-

=0
Similarly, for all 1 <k <n—1 we have

Qrlf1r, 0] = (%)k_l kif (?)j Uk—j—1 (%D> T (f|1.s)-

=0
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Proof: By induction on k = 1,...,n. The result comes easily from the definition of Q if k =1
or k = 2. We assume the result holds for k¥ and k — 1 with 2 < k < n — 1. Since T*[f|;,_,] =0,
we have

4 2

() (S0 2o (o) S (Y e () 7)o (2) 7
VB [P () v ()] () () 1)

1 S\* .
Qk+1DQk+—Qk1+<—> T

Nk K j
i ) 1 iy
() 5 (5) v (i)
7=0
Similarly, we prove the other relation of this lemma.

O

Using lemmas 13 and 14, we prove that h|; _, and h|j,_, satisfy linear non-homogeneous differ-
ential equations with constant coefficients. Precisely,

Corollary 3 We have

1 ‘
i"U, <—.D> [hlr, ] =Im [iw&"e”‘(“”

7

)1 — (i&ei)‘)"Un()\) + (i&ei)‘)"+1Un,1()\)
A+ dsin A

and

1 ) 1 — (i§eM\n—1y et
in_lUn—l <2D> [h‘ln72] =Im [iwén—lez)\(u—n-l-l) (256 ) Un 1()\) il (256 ) - 2()\):| .

A+ dsin A
Proof: We have T-"[h|;,_,] = 0 and T~ V[h|;,_,] = 0. Thus, with lemma 13, we get
.n 1 n / n—1 1 n—1 /
U (D) s, ] =2Qulellr, ) and 0 (D) ] = 2 Qe )

Let ex(u) = we*. We have ¢'(u) = Im [e)(u)]. Since D?(ey) = (iA)%ey, thanks to lemma 14,

we write
Z. n—1n—1 5 J .
el =(3) X (3) Tl )

—0

<

and
i n—2n—2 5 7 )
Qe )= (5) 2 (3) Ursa T el ),
=0

<.



Due to the fact that

1= 2"Up(X) + 2" U, (X)

]Zo Uj(X)# 7 o : (3.10)
we have
Ouler) = 5n_12i€_ix 1-— (iéeik)nUng\z):sgi(gju)n+1Un_1(A) ex(u—n-+1)
and 572~ 1 — (i6e)" LU, _1 (A) + (166" Up—_a(N\)
Qulelr, o) = —5= ol 2w —n+2).

2n—1 Ad +sin A
We may conclude since Q,(¢") = Im(Qy(en))-

Lemma 15 R — mpg is a strictly decreasing function.

Proof: We are assuming that there exist R; < Ry such that mp, = mp,. Since R — mp is a
decreasing function, we may assume there exists an integer ng such that

nofl ()
<R Ry < —.
2 LS fizs g

Let A = Ar, = Ag, = 2m\/Mmg,. There exists hr, in Hp, such that B(hg,) = mp, = Mg,
Thanks to the Volterra equation (3.4), hp, | Ing1(Rs) 18 smooth. Using corollary 3, we have:

(16e)0 Upy (N) + (i) 041U, 1 (N)
A+ dsin A

n 1 . no A (u—n 1-
" Uy, (ZD) [le|[n071(R2)](u) =Im |iwg,0™e A(u—no)

Since supp bgr, C [—R1, R1], we have th‘InO—l(RQ)\InO—I(Rl) = 0. Thus, for all u in I,,—1(R2),

we have ) .
1= (i0e)o U, (N) + (i6e) oty 1 (N)

A+ dsin A

Then, on In,-1(R2), bR, |1, (r,) satisfies Un, (D) [0r: 1., 1(Ry)](w) = 0 and bg,(u) = 0 on
Ing—1(R2)\Ing—1(£1) # 0. Using Picard-LindelSf theorem, we may conclude bg, |1, ,(r,) = 0.
Thus, supp th - [—ano_l(Rg), ano_l(Rg)] and ﬁlan071(32) = ﬁlRQ with ano_l(Rg) = DRQJ — Rs.
As a result, for all R such that an,—1(R2) < R < Ry, we have mpr = mpg,. By induction,
there exists 1, (with 71 = a,—1(R2)) in ]"O_Tk_l, "OT_I“[ such that for all R in [rg, Ra[, we have
mpr = Mmp,. As a result, R — mpg is a constant function on ]ry,_1,1/2[ which contradicts

corollary 2.

=0.

Im [inz §reiAu—no

]
Corollary 4 FEzcept for at most n — 1 values of R in ]%, 5[, we have Up(N\)U,—1(\) # 0.

Proof: U, (A)U,—1(A\) = 0if X is one of the n—1 positive roots of U, U,,—1. Since R +— \ = 2m\/mp
is a strictly decreasing function, U, (A)U,—1(\) # 0 excepted for at most n — 1 values of R in
]nfl n[

2 02
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Since R will tends to v, we may assume Uy, (A\)U,—1(X) # 0.

Lemma 16 There exists 2n—1 complex numbers zy(In_1), ..., zn(In—1) and z1(In—2), ..., zn—1(In—2)such
that

hlr, ,(u) =Im Z 2j(In_1)e™on ) 4 2 (O)eiA(“*%)
]:1
_n 1 ' A .
and  hlj, ,(u) =Im ZZJ‘(I”,Q)BZ”G”_I(]) + 22,1(0)60‘(“_7)
=

where

iw _iamgt 1 — (1)U, (N) + (16U, _1(N)

MO — A () 0i02(0) _
2 (0) =ra(0)e (16)"U, ()\)6 A+ 0sin A

n

Proof: We solve differential equations of corollary 3. The general solution of the homogeneous
equation is any functions which may be written

u+— Im |:Z zj(ln_l)eiuen(j)] .

j=1

Finally, with corollary 4, it is easy to check that u —— Im [zf;(O)ei)‘(”_nT_l)] is a particular

solution of our differential equation. Similarly, we success in obtaining an explicit expression of

h’1n72
U

Extension of the optimal test function In lemma 16, we have an explicit expression of A
only on I,,_o U I,,_1. Thanks to the differential equation with temporal shifts (3.8), we extend
this explicit expression to [—R, R].

Lemma 17 WithU_1 =0, if k=0,....,n — 1 then:

ALES 2L /i\! 1 Iy
h|ln7(2k+l) = 5 T"Uy ;D [Alr,-) — SZ 5 Uj—1 ;D T7(¢']
=0

Similarly, if k=0,....,n — 2, then:
Nk N B
i 1 2 1 -
h|1n72(k+1) = <S> TkUk < ) h|[n 5] — g Z < > Uj,1 (;D) TI [90/]
=0
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Proof: We prove the first relation by induction on k = 0,..,n — 1. If K = 0, there is nothing to
prove. If k = 1, the result comes easily from relation (3.8). Assume the result holds for k£ — 1
and k with 1 < k < n — 2. Using relation (3.8), we get

)
h’/|1n—(2k+1) (u + 1) = 90/(“ + 1) + 5 (h|ln,—(2k+3) (u) - h|In,—(2k—1) (u + 2)) .
Therefore, we have
2
h’|1n—(2k+3) = T2[h|ln,—(2k—1)] + g (TD[h|In,—(2k+1)] - T[Sal]) .

The result follows easily from the induction hypothesis.

O
Lemma 18 If0 <k <n—1, then
y & . i(u ] i U_L’H
Bl1, gy () = T [ (i0)° 3 2 (L 1)Uk (0, ()€ 0% 0) 4 22 (e (0= *257)
j=1
and if 0 < k <mn-—2, then
n-! . . . —2k—2
Bty ey () = I [ (1053 25(In2)Ug (B ()0 00n10) 22 (k)05 7)
j=1
where
Dk) = r)(k)en®) (3.11)

iw ken ekt Ug(A) in=2k=1 ot Up—p—1(N)
_ 5 k—n  —i\ o iA 5 k+1 i)
A+ OsinA [(Z ey T 7 e =

Proof: With lemmas 16 and 17, we may write

n .\ k .\ Kk
hlfn—(2k+1)(u) = Im I:sz(ln—l) (é) Uk(en(j))ei(u+k)9n(j) +Z7/>(0) (é) Uk()‘)ei)\(u_n722k71)
j=1
k .\ J—1
2w (@)J (1 ) Auts
——Z = Uj_l —,D 6Z uty) .
0 = 0 i

Thanks to relation (3.10), we get

20 k i j—1 1 ) ) ) k—1 i J o
5 (5) Uj_1 <;D> eMutd) = 9ygetutl) Z (5) Uj(A)GZ/\J
=0 i=0

a1 — (18e™)EUL(N) + (i6e)F UL 1 (N)
A+ dsin A\ '

= we
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Thus we have:

A i\* iA(u— 2=t 2w - (1) 1 iA(ut4)
Zn(O) 5 Uk(>\)€ 2 772 5 Uj,1 ;D e

__w in(u—2=2=1) (ovben—inzgt UbQ) | cep inegt Uk Un—1(A) - jynmzems
N osmAC ((’5) ¢ O, T GNEN ¢

_(ié)k-i-lei)\"T“Uk_l()\))

We may conclude since, if n > 2 and 1 < j <n — 1, then
UnflUj — Untfl = Unflfj. (3.12)

O

Even conditions 5 is assumed to be even. We are exploiting this fact in order to obtain some
restrictions on complex numbers z;.

Lemma 19 h is given lemma 18. Then h is an even function if and only if we have:
For1<j< |,

Zj (Infl) - ZnJrlfj(Infl) + (ié)n_lUnfl(an(j))ei(n_l)gn(j) <Zj(In71) - ZnJrl*j(In*l)) =0,
and, for 1 <j < |%],
2i(In—2) — 2n—j(In_2) + (i0)" " 2Up_2(0n_1(j))e' "= Dn-10) (Zj(fn—z) — Zn—j(In—Q)) =0.

Proof: First, using relation (3.8), we prove that h is even if and only if h(u) = h(—u) for all
u € I,_oUI, 1. Then, due to the fact that z)(n — 1) = —2)(0), if u € I,_1, we have:

h|1n71 (u) = hI*(ﬂ,fl) (_U)

NE

—Im { zj(Inl)eiue"(j):| =Im {(z’é)"1sz(ln1)Un1(9n(j))ei(”1)9"(j)ei“9”(j)]
Jj=1

j=1

Since O,(n+ 1 — k) = —0,(k), we get

n L2
Im {Z Zi(lnl)eiue"(j)] =Im [ Z (Zj(fnfl) - ZnJrl*j(Infl) e“‘e"(”]

j=1 =1

and

Im [(1'5)"_1 > Zj(In—l)Un—1(9n(j))€“”_1)9”(j)e_“‘e"(j)]

Jj=1

j=1

L2
— _Im (—ié)n_l Z (Zj(ln—l) o Zn-l—l—j(In—l)) Un_l(9n(j))e—i(n—l)Bn(j)eiuén(j)] .
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Therefore, for all 1 < j < L"T‘HJ, we get

2i(In—1) = Zni1—j(In_1) + (i0)" " Up_1 (8 (j))e' 10 (0) (Zj(fn—l) - Zn+1—j(1n71)) =0.
O

Corollary 5 Foralll < j < |2 |, there exists a real number 7j(I,—1) (which may be negative)
such that . s
- NP
2 Ta1) = 2nir (1) = (L a)ell2 (nOE) 5],

For all 1 < j < | %], there exists a real number r;(I,_2) (which may be negative) such that
23(Tn2) = 2nj(In-2) = 1j(In2)e'l"5" (O G+5) 5],

Proof: We have

Un1(00(j)) = Uns (cos( Jm )) = (—1)t,

n+1

Therefore, if z;(In—1) — zn41—j(In—1) = rjewi, the previous lemma gives
r; <ez‘9j n (i(s)n—l(_1)j—1ei(n—1)9je—i9j) —0.

Then r; =0 or et = +¢il "7 (On)+3)+ 5]

Proof of proposition 3 From lemma 18, we have for 0 < k <n —1:

n—zzk—l )
Jj=1

Ln«;lj
Mty (0 >Im[“” S° (50n1) = Zuri s 1)) UslBa (e 900 4 2 ()

Then, corollary 5 gives:

L3
. n—2k—1 N m (i sn—2k—1
h|]n (2k+1) [Z TJ n— 1 Uk ( ))éKu* 2 )Gn(])fg(ngJ 2 )]

j=1

A O D)

We obtain hly, _ (2kp2) DD the same way. To conclude, one can easily check that such a function
satisfies the differential equation with temporal shifts (3.8).

O
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Continuity conditions

Since hp satisfies the differential equation (3.8), we have an explicit expression of hr thanks
to proposition 3. However, due to the fact that hr is a continuous function, there are some

restrictions on coefficients 7; which are associated to the explicit expression of hr. In this

subsection, we prove that, except for at most a finite number of R in |252, 2|, there is one and

only one continuous function which satisfies the differential equation (3.8) and we give the exact
values of the corresponding coefficients r;.

Lemma 20 hg is a continuous function if and only if coefficients r;(I,—1) and 1;(I,—2) are
satisfyz’ng the following linear system: for 0 < k <n-—1,

Zw w20 Onca()sin (fanen = "53] 00 - § [+ 67252 ))
"3+

- 3 0 ())sm([anlngl]"”(j)ﬂj”%klb

= 1) (k) sin ()\ [an_l - "; 1] - Hﬁ(k)) —rp_1(k)sin (A [an—l -2 5 ] + 0, 1(k))
= Uy (A) sin (9A - kég)

where ry and 0y refer to the modulus and the argument of the complex number:

= —2iwe~Aan-1 1 — (iéei)‘)”qn(?\) + (iéei.)‘)”leUn_l()\) _ —22we iAan—1 ni 186N TL (A
Un(N)Up—1(N) —2i5e'M (X + dsin \) Un(\
Proof: We use the fact that hgr is a continuous function on infI; for j = —(n — 1)..n — 1.

Precisely, hg is continuous on a,,_(gx41) > 0 (ie a1, a,_3...) then

n—2 . .
for 0 <k < { 5 J ) 1}111 [)R|In—2(k+1)(u) = 1+1H1 [)R|In—(2k+1) (u).
U=A,  (ak41) U=Apy  (ak41)

Moreover, hp is continuous on a,_s(;+1) < 0 (ie a_,,a_(,—9),...) then

n . .
for \‘§J <k<n-1, llm hR|In72(k+1) (u) = 1+1m bR|In7(2k+1) (u)
U=A o(kt1) U= o(k+1)

Therefore, for 0 < k <n — 1, we have

B
2
n—2

3l Brmsl i (ans = 752 buati) - 5 i+ 6752

g (1)U 00 s foms = 5] 0,000 = 5 i+ 025 )

= r2sin (Aancs = S+ 020) -2 s sin (A fons - 2]+ 1),

Reciprocally, if hr is continuous on inf I}, since hr is even and —inf I; = supI_;, then hg is a
continuous function.
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O

We consider the real matrix Mg which is associated to this linear system and det Mg refers to
the determinant of Mp. Precisely, let Mr = (my ;) x=o,..n-1 defined by:

Therefore, the linear system of lemma 20 is

7’1(1772) Uy ()\) sin (9>\)

73] (In-2)

Mg —r1(Ln-1)

=T Uk ()\) sin (.9,\ —k’(sg)

*TLn_HJ. (L,-1y) Un-1 () sin (9>\ —(n— 1)5%)

Lemma 21 FExcept for a finite number of values of R in ]"7_17 5[, the matriz Mg is invertible.

Proof: We may decompose Chebychev polynomials as

k k

U2k Z a2k jX U2k+1 ) = Za2k+17jX2j+1 with A2k k = 22k and A2k+1,k = 22k+1. (313)
j=0 j=0

We consider Ng the real matrix which is defined by Ng = (ny ;) such that, for 0 <k <n —1:

ngj = On—1(5)F Sln([an 1= 252] 0,1 () — Z [+ 0=2=2]) if1<j<
nijeiz) = On(9) sin ([any = 252 0,0) = 5 [ +025=]) 1<) <

We consider rows of Mpr and Ng. Precisely, let

Ly Lo
Mp = and Ng= :
L’ﬂfl Z/n—l

Thanks to relation (3.13), for 0 < k < |271], we have

i F n—2 —i7F
L2k = ZGQkﬁj(fl)k L2j, and fOI‘ 0 S k S LTJ, L2k+1 = ZanJrl,j(*l)k L2j+1.

As a result, we have

n—1
det Mp = HQk det Np =
7=0
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In addition, we may write Ng = (ny ;) with:

Ngj = l ([H;Hn 1()]k i(ROp—1(5)+P;) _ [—zé@n 1( )]k —i(ROn—1(j)+P; )) if1<j< L J
Mhgitg) = 3 ([100n ()R RO — [—igh, (j)|Fem R TE)) i1 < < [

Due to the multilinearity of determinant, we have

7 e RO, _ oy e’ RO, d
det Ny — (5) Z Ve (1@ (B O S ) 6-8)]

(€' ,€)

where the sum is running over functions € : {1,..,n} — {—1,+1} which may split in e = (¢, €")
where €(j) = €'(j) if 1 < j < |2] and €(j + [2]) = €"(j) if 1 < j < |2 ]. In addition, o(e) =
{1 < j <mn;e(j) = —1}|. Finally, V[¢, €’] refers to the determinant of the Vandermonde matrix
associated to real numbers (€ (1)0,—1(1), .., €' (| 2)0n—1([Z]), €"(1)0n(1), .., " (| ZEL )0, (|22 ).
Since V[€,€’] # 0 for all €, we may conclude R — det N vanishes at most a ﬁnite number of

times on ]"T_l, 5[. The same result holds for R — det Mg since det Mp =

O

Corollary 6 For all R in |% 217 5[ such that det Mg # 0, there exists one and only one contin-

uous function satisfying the differential equation with temporal shifts (3.8). Moreover:

o If1<j<|5],
ri(Inms) =2 > Up(A) sin (aA - kag) N (3.14)

o[f1<j<L

\+

B | _
)= - Y Up(M)sin (GA _ /<:5§> Appigr(a) (3.15)

_1\k
with Ay ; = (dei)Mﬂ M. ; where My, ; denotes the minor of Mp obtained by removing from Mpg

its k-th row and j- th column.

3.5 Exact value of the minimum

In this section, we finish proving theorem 1. Remember that some cases have been solved in
corollary 2.

Thanks to the previous section, we have an explicit expression of the optimal test function
hr. Nevertheless, this explicit expression depends on the unknown parameter \ which is related
to mp by the following relation:

A = dn’mp
In order to conclude, we solve the equation fip = B (hr) where mp is the only unknown param-
eter.
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Two equations, one unknown parameter It is technically easier to express A instead of
mp. Thanks to relation (3.2), the relation mp = B(hr) may be written:

2 Je W) du = § [, B+ B (u)du

(3.16)
S br(w?du+3 1) br * hr(w)du + (fi hr(u)du)’
Furthermore, the relation (3.5) may be written:
w 5 R R
XCOS)\R—F 5/}2 1E)R(:U)d:v—|—e/RhR(x)dx =0 (3.17)

As a result, A is satisfying two equations.

Lemma 22 Relation (3.17) implies relation (3.16).

Proof: The differential equation with temporal shifts give

Jotran=3 [ wipeiytu= [ oo [t + 3 [ o] du= [ w0

Thanks to the Volterra equation we have

/bR )2du + = /bR*bR du—/hR w)du + = (/bR du)(/}ilhﬁg(u)du>.

Finally, using an integration by parts, we get

/hR dquQ/hR :—wAcosAR/R[)R(u)

Therefore, we may write equation (3.16) as

w o (" :
—\? (X cos)\R+§/Rl [)R(:C)dx+€/R hR(iE)dx> /}RhR(U):

As a result, we use relation (3.17) in order to determine .

End of the proof of theorem 1 In this subsection, we finish proving theorem 1. Precisely,

Proposition 4 If G = SO*, SO~ or Sp with n > 2, then \r := X is the smallest positive root
of

n—1
gcos%\ =" Ui(V)sin (62 — k67 [(SO‘RT() 1+ <fa( ] += Z Ur(N) cos (6x = kd ) = 0 (3.18)
k=0
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which is not a root of U,U,—1 and where ar(k) and Br(k) are defined by:

sin [(R — §) 0n1(j)] sin [5 (7 + 6252) ]
0n—1(7)

AVER W

sin — 22136, (j S " —
v2 3 B2 00 S 0,G))sin [5 (H‘S#)}
= =0

Before proving this result, we need to prove some technical lemmas. We may write hr as a sum
of two non-continuous even functions. Let ¢, and 1) which are defined on R\{a_y, ..., a,} by:

e If0<k<n-—1,let
oAl an (1) = PA(R) sin <)\ [u _
e fO0<k<n-—2 let

. n—2k—2
OAlL_sgees) () = 171 () sin <>\ [u - 7} + 93@)) ,

e supp ¢y C [-R, R].

o IfueR\{apn,...,a,}, let
Y(u) = hr(u) — ealu).

Even though ¢, and v are not continuous functions, they are smooths on each [. Furthermore,
they satisfy

br(u) = ¥(u) + r(u) and  @f = -\
Lemma 23 We have
R n—1 . T
- Y(u)du = 1y kzzo Uk(\) sin (HA - k5§) ar(k)
R n—1 .
and /Rq/)(u)du = kZOUk()\) sin (9A - kéi) Br(k).
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Proof: We may write:

R
d u)d
[ v / lwm Lt [l

I, -

— 2ZTJ 2) Sm[(R%l)Hn 1(5)] “in E <j+5n2)]

On-1(4) 2
_QEJU ) sm[(R 5) 0 ()] [g (j+5n1)]

on(]) 2

The result comes easily from relations (3.14) and (3.15) of corollary 6. Similarly, since

R n—1 n—2
[ wtwau = > / RS SUELIEDY / Ul s Ry

we obtain the second part of this lemma.

Lemma 24 For 0 < k <n— 2, we have

m Q)= dim @, (0) = AUR(VRe ((10)7F2)

u%sup[n,2k72 u—)lnf]n_gk_l

and for 1 <k <n-1,

lim Gl () = lim G (W) = A (VR ()77 z,)

u%sup[n,gk,l u—)inf[n_gk
where the complex number zy is defined in lemma 20.

Proof: Since hp satisfies the differential equation with temporal shifts (3.8), we may conclude
bz is continuous on | — R, R[. Therefore, for 0 < k < n — 2, we get

lim 80&|In,—2k—2 (U) - . lim w&|1n—2k—1(u)
u—rsup In_2k—2 u—inf I, _op_1

n—2 n—1

= aRe [P k) - e =)
and, for 1 <k <n-1,
lim (P/)\|In72k71(u) - lim (p/)\|1n72k (U) = ARe [eik(a”’_%)z)\(k) - €i/\(an’_%)2r2—1(k - 1):| :
u—sup I, —ok—1 u—inf I,, _op

The result comes easily from relations (3.11) and (3.12).

Lemma 25 We have

/chx(u)du = 2” ZUk ) cos (65\ — ké%)

R 9 9 n—1
and / ox(u)du = 2V cosAR — ~rycosfy + 20Re |iz) Z(—ié)kUk()\)
R—1 P A —
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Proof: We may write:

n—1

1 su .
[ = 5 [Gwdu=-55 Y ke
R R
k=—(n—1)
1 n—2
_ o . / . / _ : /
% |2, Al 2l Al el )
. n—1
Since 22(0) = (i8)~ Ve~ M@ =217, (M2, we gt
lim  h|r,_, (1) = —ARe (z,\(ié)_("_l)Un_l()\))
u—sup I, _1
and the previous lemma gives
92 n—1
/ o (u)du = 5y Z Ue(MRe ((i0)Fzy) .
R k=0
Similarly, we have:
R
/ ox(u)du
R—1
_ - : / : ’ o . ’ . : ’
abY [Jm Plrslw)t, Jm @)= i Pl )= i el ()
The previous lemma gives
lim 'y, ,(u) = lim @[, (u) = ARe (z)).

u—sup I _2

Un(N)

u—inf I, 1

In addition, since 2\ ;(0) = iémeM/zz;)(O) — 2wdARe (eM), we get

n
n—1

lim
u—inf I, _o

Therefore, we may write
/ R 2w
R—1

— cos AR —

ox(u)du = — )

A

2 1
—rycosfy + XRG

O\ 1, () = —2wSA cos(AR) — ARe [U,(A)za(i6) "] .

{z,\(l — (i) Un (N + (i(s)—<n+1>Un_1(A))} .

The result comes easily from relation (3.10).

To conclude, since hr = 1+ @), we may

O

easily transform equation (3.17) thanks to both lemmas

23 and 25. Proposition 4 follows immediately due to the fact that r\ # 0 (otherwise hr = 0).
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Particular case In this subsection, we are assuming n = 2 and we give a simpler expression
of equation (3.18) than in proposition 4.

Corollary 7 If G = SO™, SO~ or Sp and % < R <1 then AR is the smallest positive root of

1—4)?
(0 + 2e¢) A (sin A(1 — R) — 25\ cos AR)

—[(6+2e)(1 = R) —1+4e][cos A(1 — R) — 26Asin AR — 2A tan O g (sin A(1 — R) — 20 A cos AR)] =0

which is not a root of UyUs and where

1 1 T 0
@R—§<R—§>+§<1—|—§>.

Proof: The matrix Mz which appears in corollary 6 can be written
-1 sin[l (l—R) —£(1+§)] >
Mp — g \s 2 2 )
" ( 0 sinf3(;-R)—3(1-3)]
Therefore,
det Mp = —dcosOp # 0.

We get Aj1=—-1,A12=0,A2; =—-0tanOp and Ay = . In addition, if k € {1,2}, we

cos@
have:
ar(k) = 2(R—1)Apt11 —2(cosOr+0sinOr) Apy12
Br(k) = ar(k)+2(cosOr~+dsinOp) A1
Therefore:

n(0) = 4n(0) =20 1)
ar(l) =26(1 — R) — 2(6 + tan OR)
Br(1) =26(1 — R) — 4(6 + tan Or)

As a result, since de = —e, we get

n—1
%cos@,\ - kZ:OUk()\)sin ((9A fkég) {MRT() 1+ eBr( ] ZUk cos ((9A fkég)

= 5j:\2€c089,\<5a%(0) +€ﬂR(0)1+4E) 81n9)\+2)\5<5 2( )Jr eBr(1) — )cos@A
1—4)2 .
= (04 2¢) cosfy — [(0 +2¢e)(1 — R) — 1+ 4e] [sinfy — 2Atan(Or) cos B,] .

In addition, we have

—2jweA1—F) ;
2y = ——————— (146U (N)e?
A U (MU ( 1(Ve)
—2w
= ————(sinA(1 = R) —26Acos AR +i[cos A\(1 — R) — 26\sin \R)]) .
o (A ) cos A(1 - B )

The result comes easily from these relations.
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Comments on the “Sp hypothesis” In the symplectic case with R > 1/2, our proof of
theorem 1 is submitted to the “Sp hypothesis”. However, we prove that this theorem is still
true even though m% is an odd positive integer. Therefore, throughout this paragraph, we are
assuming G = Sp, R > 1/2 and mpr = N? where N is an odd integer.

Lemma 26 hr satisfies flf—l hr(u)du =0 and, for all 0 < u < R,

R
bilu) = pla) + 5 [ Dilt+1) = balt Dy

with
—4 [RT, ) . (7Nt
olu) = ﬂ/o hr(t) — 3 (br(t+1) —hr(t—1))| sin >R dt | (cos (Au) — cos(AR)) - Lj_g,g)(u).
Proof: In lemma 12, we prove that for all odd positive integer n,
1) ks 5
0 —mpen = I 2 O, ).

First, with n = N, we may deduce ks, = flil br(u)du = 0. Second, for all n # N, we get

en = (S, bR)(L).

o
Since hr(u) =23, 5, ¢y cos (&) - 1_g,g)(u), for all u in [0, R], we write

br(u) =2 {cN + N—ﬂ_SN * hR(l)} cos (ﬁ) - ?7;) TR cos (ﬁ) :

The sum in the right member of this equality has been computed in the proof of lemma 10 and
we have

5S 1) = =2 " "t
CN+N_7T N*[)R()*N_FO [bR()

TNt

~ 3 thnte+ 1)~ bate — 1) sin (1) .

2R

Therefore, changing w with

werr [" 3000 = (onte-+ 1)~ e~ )] i (550 )

this Volterra equation with temporal shift has been solved in section 3.4. Thus, we get an
explicit expression of hr. Now, several cases may occur. First, this explicit expression of hr
doesn’t satisfy the compatibility equation f}il hr(u)du = 0, then the “Sp hypothesis” is true.
Second, if hg satisfies the compatibility equation, then on account of the fact that the argument
of the complex number z) is independent of w, A is a root of equation (3.18). Since mp is the
smallest critical value of B, A is still the smallest root of equation (3.18).
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