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DISCONTINUOUS-GALERKIN DISCRETIZATION OF A NEW CLASS OF

GREEN-NAGHDI EQUATIONS

A.Duran1, 2 and F.Marche1,2

Abstract. We describe in this work a discontinuous-Galerkin Finite-Element method to approximate

the solutions of a new family of 1d Green-Naghdi models. These new models are shown to be more

computationally efficient, while being asymptotically equivalent to the initial formulation with regard

to the shallowness parameter. Using the free surface instead of the water height as a conservative

variable, the models are recasted under a pre-balanced formulation and discretized using an expansion

basis of arbitrary order. Independently from the polynomial degree in the approximation space, the

preservation of the motionless steady-states is automatically ensured, and the water height positivity is

enforced. A simple numerical procedure devoted to handle broken waves is also described. The validity

of the resulting model is assessed through extensive numerical validations.

.

.

Introduction

Depth-averaged equations are widely used in coastal engineering for the simulation of nonlinear waves propa-
gation and transformations in nearshore areas. The full description of surface water waves in an incompressible,
homogeneous, inviscid fluid, is provided by the free surface Euler (or water waves) equations but this problem
remains mathematically and numerically challenging. As a consequence, the use of depth averaged equations
helps to reduce the three-dimensional problem to a two-dimensional problem, while keeping a good level of
accuracy in many configurations.
Many Boussinesq-like models are used nowadays and a detailed review can be found in [42] and the recent
monograph [41]. Denoting by λ the typical horizontal scale of the flow and h0 the typical depth, the shallow

water regime usually corresponds to the configuration where µ :=
h2
0

λ2 ≪ 1. If approximations of order O(µ2) of
the free surface Euler equations are furnished by the Boussinesq-type (BT equations in the following) equations,
see [52, 54, 57] for instance, an additional smallness amplitude assumption on the typical wave amplitude a is
classically performed: ε := a

h0
= O(µ). This assumption often appears as too restrictive for many applications

in coastal oceanography. Removing the small amplitude assumption while still keeping all the O(µ) terms,
we obtain the so-called Green-Naghdi equations (GN equations in the following) [34], also referred to as Serre
equations [62] or fully non-linear Boussinesq equations [76].
A large number of numerical methods have been developed in the past few years for the BT equations. Let us
mention for instance some Finite-Difference (FDM in the following) approaches [49, 54, 65, 75], Finite-Element
methods (FEM in the following) [46, 59, 66, 73], Finite-Volume discretizations (FVM in the following) for 1d
equations [21], hybrid FDM / FVM [24,25, 55, 64, 69], or even a purely 2d FVM discretization on unstructured
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meshes [37], allowing for mesh refinement and flexibility for large scale simulations.
As far as flexibility is concerned, the use of discontinuous-Galerkin methods (dG methods in the following)
would appear as a natural choice. Indeed, this class of method provides several appealing features, like compact
discretization stencils and hp-adaptivity, flexibility with a natural handling of unstructured meshes, easy parallel
computation and local conservation properties in the approximation of conservation laws. A general review of
dG methods for convection dominated problems is performed in [14]. Concerning the approximation of more
general problems, involving higher-order derivatives, several methods and important developments have been
proposed in recent years, following [4] on Navier-Stokes equations and [15] on convection-diffusion systems. A
recent review is performed in [80] and a unified analysis can be found in [3], and [26,27], respectively for elliptic
problems and both 1st and 2nd order problems in the framework of Friedrichs’ systems.
The application of dG methods to the Saint-Venant equations (also called Nonlinear Shallow Water equations,
NSW in the following) has recently lead to several improvements, see for instance [2, 28, 78, 79] and the recent
review [19]. However, dG methods for BT equations have been under-investigated. In [29], a hp/spectral ele-
ment model is introduced for the 1d enhanced equations of Nwogu [54], while the 2d equations of Peregrine [57]
are studied in [30], in the flat bottom case, relying on a scalar reformulation that allowed some computational
savings. This formulation is further investigated in [31], accounting for variable depth, and in [32] with the
study of the enhanced equations of Madsen and Sorensen [51]. In [22, 23], an arbitrary order nodal dG-FEM
method is developed for the set of highly-dispersive BT equations introduced in [50], respectively in 1d and 2d
on unstructured meshes. These equations have a larger range of validity and can theoretically model fully non-
linear waves transformation, but they are also more complex, introducing a dependence in the vertical velocity,
and consequently additional degrees of freedoms in the discrete approximations. As stated by the authors them-
selves, the bottleneck of their approach lies in the need of reconstruction and resolution of the large associated
linear systems: this process can rapidly become a drawback for large-scale simulations.

Surprisingly, the GN equations have received far less attention. In the 1d framework and formulated in terms
of free-surface elevation above the still water depth ζ and horizontal velocity u, these equations read as follows
(see [1, 7] for the derivation of this particular formulation):

{
∂tζ + ∂x(hu) = 0 ,[
1 + αT[z, h]

](
∂t(hu) + ∂x(hu

2) + α−1
α gh∂xζ

)
+ 1

αgh∂xζ + hQ1(u) = 0 ,
(1)

with the differential operators

Q1(u) = 2h∂xh(∂xu)
2 +

4

3
h2∂xu∂

2
xu + h∂xz(∂xu)

2 + h∂2
xz u∂xu+

(
∂xζ∂

2
xz +

h

2
∂3
xz
)
u2,

and T[z, h] = hT [z, h] 1h , with for any scalar valued function w:

T [z, h]w = −
h2

3
∂2
xw − h∂xh∂xw +

(
∂xζ∂xz +

h

2
∂2
xz
)
w , (2)

with z a parametrization of the bottom variations, h = ζ + h0− z referring to the water height (see Fig. 1) and
α an optimization parameter.
A compact FVM approach is proposed for the 1d case in [11] and a FVM for a particular 2d flat bottom system
in [44]. A pseudo-spectral approach is introduced in [56] and FEM discretization in [53] for the 1d case on flat
bottom. To the authors knowledge, the only dG method for GN equations has been recently proposed in [45],
for the 1d equations with uneven bottom, relying on a centered dG approach and applications with second-order
polynomial approximations. The issue of robustness is however not addressed. In [7, 9, 68], a high-order accu-
rate hybrid FVM-FDM model is introduced, embedded in a splitting approach. A robust treatment of moving
shoreline and well-balancing for motionless steady states are ensured. The 2d extension on cartesian meshes has
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recently been performed in [43]. Let us also mention [10] and more recently [63] for a 2D cartesian numerical
model based on fully non-linear BT equations of [76]. To our knowledge no arbitrary order dG discretization of
the GN equations has been proposed yet, and this is one of the goal of this work.

Another challenging issue is that although the GN equations provide a very good description of waves up to
the breaking point, they are not entirely satisfactory as a nearshore flows simulation model. They are indeed
unable to handle broken waves. To amend this important limitation, several approaches have been proposed.
The most common one is to add an artificial viscous term to the momentum equation, whose role is to account
for the energy dissipation that occurs during wave breaking (see for instance [10,12,39] for a related approach).
This is also the method chosen in [23], embedded in the nodal-dG method. One of the drawbacks of this ap-
proach, as mentioned in [13], is that the computation remains very sensitive to the calibrations of the dissipation
parameters.
An alternative approach to handle broken waves, which is becoming very popular, is to switch from the GN to the
NSW equations in the vicinity of breaking waves. Indeed, NSW equations actually provide a good description
of broken waves [6], which are regarded as shock waves, and can therefore be accurately computed using shock-
capturing methods. This switching strategy can be performed in a very simple fashion, provided the dispersive
BT or GN equations are written in conservative forms. This approach is used for instance in [7,38,55,60,63,71]
where the occurrences of shock waves are accounted for through the use of FVM. Naturally, the method requires
the introduction of some criteria devoted to detect waves which are about to break, and eventually to follow
broken waves to detect if a ”switch-back” to dispersive equations is needed. In [69] a criterium relying on the
wave height to water depth ratio is introduced and subsequently used in [70] and [63] for instance. Another
criterium based on the momentum gradient is successfully used in [60]. In [68], a relevant combination of the
local energy dissipation, front slope and Froude number is proposed. Let us also mention the recent 2d approach
of [38].

In the present work, we describe a strategy to compute discontinuous-Galerkin approximations of the so-
lutions of some one-dimensional GN equations, including an efficient wave-breaking method. Indeed, the use
of such fully nonlinear equations appear as a reasonable compromise between the weakly non-linear equations
studied in [30, 31] and the highly-dispersive (and computationally costly) three-variables equations investigated
in [22, 23]. Additionally, it is easily possible to extend the range of validity of the GN equations to moderately
deep water by the introduction of some optimization parameters, as shown in [9, 43].
A closer look to equations (1) highlights that, if this formulation has real advantages (i.e. it does not involve
any third order derivatives, and the presence of the second-order operator I + αT[z, h] makes the model very
stable with respect to high frequency perturbations, see [7]), its main drawback is the time-dependency of this
operator, through the water height h. Indeed, from a computational point of view, the dG discretization of
I + αT[z, h] with a Local Discontinuous Galerkin approach [15] for higher order derivatives, and the associated
linear system resolution, implies a global assembly process, for gathering the local discrete operators into the
global one. And this should be done at each time step, or even sub step if high order time marching algorithms
are used, together with the corresponding algebraic system resolution.
To overcome this, the strategy recently proposed in [43], and also applied in this work, consists in deriving a
new class of GN equations, asymptotically equivalent to the formulation (1) but for which the time dependency
of the operator I +αT[z, h] is removed. The resulting model shares the same level of accuracy with the original
GN equations, with respect to the approximation of the full water waves equations, but allows to build the
global discrete operator in a pre-processing step. This operator is then used throughout all the computation,
leading to dramatic computational savings.
As a consequence, the computational effort can be oriented towards a high order of accuracy in space and
time, and the enforcement of some essential robustness properties. An arbitrary order of accuracy in space
is obtained through the use of the Legendre polynomials hierarchical basis, and low storage strong-stability
preserving Runge-Kutta methods (SSP-RK in the following) are used for the time discretization. The whole
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model is shown to exactly preserve the motionless steady states, thanks to the pre-balanced reformulation of the
surface gradient term and suitable interface fluxes [20], and a robust treatment is implemented for the moving
shoreline, based on the enforcement of an element-wise water height positivity preservation property, borrowing
the recent accuracy-preserving method introduced for the dGM in [79, 81].
We lastly introduce an efficient way of handling broken waves, relying on the GN-NSW switching method.
The strong super-convergence criteria introduced in [40] is successfully used to detect steep wave fronts and
locally suppress the dispersive effects, which can be done in a natural fashion, as the dispersive part of the
GN equations is regarded as an additional source term in the NSW equations. The corresponding shock waves
are subsequently computed using the natural shock-capturing abilities of the dG approach, combined with an
efficient local limiting process.

To summarize, the main features of the 1d dG-based GN numerical model described in this work are:

• an improved computational efficiency when compared to the original equations (1), due to the time-
independency of the involved regularizing second order dispersive operator,

• an arbitrary order of spatial accuracy,
• a well-balanced property for the motionless steady states,
• a robust treatment of the shoreline motions,
• an efficient and simple way of handling broken waves, based on a GN/NSW equations switching strategy.

This paper is organized as follows: in a first part we detail the 1d derivation of a new family of GN model,
following the strategy detailed above. The second part is devoted to the description of a robust arbitrary order
of accuracy dG approach for this family of model, ensuring the preservation of motionless steady states. The
emphasize is put on the discretization of the higher order derivatives. Finally, the accuracy and robustness
of the resulting numerical model are assessed through extensive 1d numerical validations. Two-dimensional
validations are left for future works.

1. Derivation of the model

1.1. A new class of GN equations

In this section, we detail the simplified 1d derivation of a new family of GN equations for which the time
dependency of the second-order differential operator I + αT[z, h] is amended. Choosing h0 a reference water
depth, we recall that ζ(x, t) stands for the free surface elevation, z(x) the variation of the bottom with respect
to the rest state, u the horizontal velocity, and h(x, t) = ζ(x, t) + h0 − z(x) the water height (see Fig. 1).

h0

ζ(x, t)

η(x, t)

z(x)

h(x, t) = ζ(x, t) + h0 − z(x)

0

Figure 1. 1D configuration

Defining ε = a/h0 the nonlinearity parameter, µ = h2
0/λ

2 the shallowness parameter, β = ab/h0 the bottom
variations parameter, with ab the typical bottom deformation amplitude, and choosing α = 1 for the sake of
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simplicity, the 1d GN equations (1) can be written in their non-dimensionalized formulation :

{
∂tζ + ε∂x(hu) = 0 ,[
1 + µT̃[z, h]

](
∂t(hu) + ε∂x(hu

2)
)
+ h∂xζ + µεhQ̃1(u) = 0 ,

(3)

where the non-dimensionalized water depth is h(x, t) = 1+ εζ(x, t)− βz(x) and the non-dimensionalized differ-
ential operators are written as follows:

Q̃1(u) = 2h∂xh(∂xu)
2 +

4

3
h2∂xu∂

2
xu+

β

(
h∂xz(∂xu)

2 + h∂2
xz u∂xu+

(
ε∂xζ∂

2
xz +

h

2
∂3
xz
)
u2

)
,

T̃[z, h] = hT̃ [z, h]
1

h
,

with for any scalar valued function w:

T̃ [z, h]w = −
h2

3
∂2
xw − h∂xh∂xw + β

(
ε∂xζ∂xz +

h

2
∂2
xz
)
w . (4)

Using the fact that

∂t(hu) + ε∂x(hu
2) = −h∂xζ +O(µ) , (5)

we can easily remove the z dependency of T̃[z, h]. The second equation of (3) is written as follows:

[1 + µT[h]]
(
∂t(hu) + ε∂x(hu

2)
)
+ h∂xζ + εµhQ̃1(u) + µhQ̃2(ζ) = O(µ2) , (6)

with

T[h]w = −
h3

3
∂2
x

(w
h

)
− h2∂xh∂x

(w
h

)
, (7a)

Q̃2(ζ) = −β
(
ε∂xζ∂xz +

h

2
∂2
xz
)
∂xζ. (7b)

The last step is to remove the h dependency of the operator T[h]. This could be achieved following the same
substitution (5), and we would obtain a model without any operator to invert, but at the price of loosing the
stabilizing effects associated to this inverse operator. To avoid this, let us introduce:

hb = max(h− εζ, ǫb) , (8)

where ǫb is a positive threshold value to be specified later. Observing that we have, for an arbitrary scalar
valued function w:

T[h]w = T[hb]w − Q̃3[h
2 − h2

b ]w ,

with

Q̃3[h
2 − h2

b ]w =
1

6
∂x(h

2 − h2
b)∂xw +

h2 − h2
b

3
∂2
xw −

1

6
∂2
x(h

2 − h2
b)w , (9)

equation (6) can be reformulated as:

[1 + µT[hb]]
(
∂t(hu) + ε∂x(hu

2)
)
− µQ̃3[h

2 − h2
b ]
(
∂t(hu) + ε∂x(hu

2)
)

+ h∂xζ + εµhQ̃1(u) + µhQ̃2(ζ) = O(µ2) .
(10)
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Denoting that

∂t(hu) + ε∂x(hu
2) = − [1 + µT[hb]]

−1
(h∂xζ) +O(µ), (11)

we obtain the following non-dimensionalized model:





∂tζ + ε∂x(hu) = 0 ,[
1 + µT[hb]

](
∂thu+ ∂x(hu

2)
)
+ h∂xζ + εµhQ̃1(u)

+ µhQ̃2(ζ) + µQ̃3[h
2 − h2

b ]
([

1 + µT̃[hb]
]−1

(h∂xζ)
)
= O(µ2) .

Switching back to dimensionalized quantities, introducing the optimization parameter α again, and dropping
the O(µ2), we obtain the following family of 1d Green-Naghdi equations with a time-independent operator:





∂tζ + ∂x(hu) = 0 ,
[
1 + αT[hb]

](
∂thu+ ∂x(hu

2) +
α− 1

α
gh∂xζ

)
+

1

α
gh∂xζ

+ h
(
Q1(u) + gQ2(ζ)

)
+ gQ3

([
1 + αT[hb]

]−1
(gh∂xζ)

)
= 0 ,

(12)

where hb, Q1, Q2 and Q3 are obtained from (8), (1.1), (7b) and (9) replacing ε, β and µ by 1 and dropping the

[h2 − h2
b ] in Q̃3[h

2 − h2
b ].

Remark 1.1. We refer the reader to [43] for a generalized 2d derivation and further optimizations, with a
detailed study of the dispersion relation of the corresponding linearized model. Also, a discussion on the stability
issues, and in particular on the reason why we substitute relation (11) in (10) instead of (5), is provided.

Remark 1.2. The use of ǫb in (8) is only to ensure that the new quantity hb remains positive in dry areas and
preserve the regularization properties of 1 +αT[hb]. It obviously does not modify the consistency of the model,
and our numerical investigations did not show any dependency of the results with respect to the (reasonable)
value of ǫb. In the validations of §3 we use ǫb = 0.1.

1.2. Pre-balanced formulation

Before describing in details the dG discretization of (12), let us reformulate the model under the pre-balanced
formulation, in order to adapt the FVM well-balanced discretization introduced in [20,48]. The main ideas are,
firstly, to use the free surface elevation instead of h as a flow variable, and secondly to introduce an alternative
splitting and redistributing of the free surface gradient term gh∂xζ, exploiting the deviations from the system’s
unforced equilibrium. This method was first introduced in [61] for the NSW equations in the framework of FV
methods and then extended to handle the occurrence of dry areas in [47, 48], where the following splitting is
introduced, relying on the use of the total free surface elevation η = h+ z (see Fig. 1):

gh∂xη =
1

2
g∂x(η

2 − 2ηz) + gη∂xz, (13)

leading to the following formulation of the NSW system:

∂tw + ∂xF(w, z) = B(w, z) , (14)

with w = t(η, q), q = hu and

F(w, z) =

(
Fη(w)
Fq(w, z)

)
=

(
q

q2

η−z + p(η, z)

)
, B(w, z) =

(
Bη(w)
Bq(w, z)

)
=

(
0

−gη∂xz

)
, (15)
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and the hydrostatic pressure term now expressed as:

p(η, z) =
1

2
gη(η − 2z) .

Simple and robust well-balanced schemes for the NSW equations relying on this pre-balanced formulation are
proposed for instance in [20, 74]. Using dG approximations for NSW equations, we show in the next section
that this formulation also provides a natural balance between fluxes and topography source term, provided that
the corresponding integral terms are computed exactly. To benefit from this property for the GN equations, we
notice that using (13), the second equation of (12) can be equivalently written as follows:

∂tq + ∂x
( q2

η − z
+ p
)
+Dc(η, u) = −gη∂xz , (16)

with

Dc(η, u) =
[
1 + αT[hb]

]−1
( 1
α
gh∂xη + h

(
Q1(u) + gQ2(η)

)

+ gQ3

([
1 + αT[hb]

]−1
(gh∂xη)

))
−

1

α
gh∂xη ,

(17)

where u = q
η−z is kept in the writing of Dc(η, u) for the sake of simplicity.

Remark 1.3. The original system (1) can of course also be written as follows:

∂tq + ∂x(
q2

η − z
+ p
)
+Do(η, u) = −gη∂xz , (18)

with

Do(η, u) =
[
1 + αT[z, h]

]−1( 1
α
gh∂xη + hQ1(u)

)
−

1

α
gh∂xη . (19)

From this, equations (1) and (12) are nothing but the pre-balanced NSW equations (14) supplemented by a
dispersive source term:

∂tw + ∂xF(w, z) = B(w, z) +D(w) , (20)

with

model (1) : D(w) =

(
0

−Do(η, u)

)
, (21a)

model (12) : D(w) =

(
0

−Dc(η, u)

)
. (21b)

2. Discontinuous Galerkin discretization

To implement a discontinuous Galerkin scheme, let Ph be a partition of the computational domain Ω = [L,R]

into Ne non-overlapping elements, denoted Ej , 1 ≤ j ≤ Ne. The element Ej = [xj
l , x

j
r] has a length |Ej |, a

boundary ∂Ej (reduced to the 2 boundary nodes xj
l and xj

r) and a unit outward normal n̂j (reduced to +1 and
−1 respectively at the right and the left boundary). Let x be the coordinate in Ω and we denote h = max

1≤j≤Ne

|Ej |.

We aim at computing an approximated solution, denoted wh = (ηh, qh), on this partition. Let us define

Vh := {v ∈ L2(Ω) | ∀ E ∈ Ph , v|E ∈ P
N (E)} , (22)
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where P
N (E) denotes the space of polynomials in E of degree at most N . We consider only the new model

(12) but the subsequent weak formulation and discretization can of course be straightforwardly applied to the
original model (1).

2.1. Weak formulation

Due to the number of terms and derivatives (up to 3rd order) involved in the dispersive source term
Dpb

c [hb](η, u), trying to write equation (16) as a first-order system, with the use of several auxiliary variables,
would only bring up some unnecessary complexity in the formulation. Instead, we reformulate (16) as follows:

∂tη + ∂xq = 0 , (23a)

∂tq + ∂x
( q2

η − z
+ p
)
+H = −gη∂xz , (23b)

with H is an auxiliary scalar valued variable, obtained as the solution of the following auxiliary problem:

[
1 + αT[hb]

]
(H+

1

α
gh∂xη) = K , (24a)

K =
1

α
gh∂xη + h

(
Q1(u) + gQ2(η)

)
+ gQ3(L) , (24b)

[
1 + αT[hb]

]
L = gh∂xη . (24c)

From this, a weak formulation of the problem (23) is obtained by multiplying by test functions (φh, πh) ∈ (Vh)
2

and integrating over a given element Ej ; the flux term is integrated by parts. We obtain: find wh = (ηh, qh) ∈
(Vh)

2 such that, ∀(φh, πh) ∈ (Vh)
2, and ∀ Ej ∈ Ph we have:

∫

Ej

∂tηhφhdx−

∫

Ej

qhφ
′
hdx+

[
qhφh

]xj
r

xj

l

= 0, (25)

∫

Ej

∂tqhπhdx−

∫

Ej

Fq(wh, zh)π
′
hdx+

[
Fq(wh, zh)πh

]xj
r

xj

l

=

∫

Ej

Bq(wh, zh)πhdx−

∫

Ej

Hhπhdx. (26)

2.2. Semi-discrete formulation

On each element Ej , we write ∀x ∈ Ej , ∀t ∈ [0, tmax]:

ηh|Ej (x, t) =

Nd∑

i=1

η̃ji (t)θ
j
i (x) , and qh|Ej (x, t) =

Nd∑

i=1

q̃ji (t)θ
j
i (x) , (27)

where Nd = N + 1 is the number of freedom degrees per element, {θji }i=1...Nd
is a polynomial expansion basis

for PN (Ej), and

η̃j = t(η̃j1(t), . . . , η̃
j
Nd

(t)), q̃j = t(q̃j1(t), . . . , q̃
j
Nd

(t)),

are the local expansion coefficients vectors. In the following, {θji }i=1,...,Nd
refers to the local Lagrange interpo-

lating polynomial basis on the element Ej , defined on the Legendre-Gauss-Lobatto (LGL) set of Nd nodes (a
nodal-element basis). We consider the local polynomial expansion for the topography parameterization

zh|Ej(x) =

Nd∑

i=1

z̃ji θ
j
i (x),
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and we assume that a local expansion is available for Hh, given by:

H̃j = t(H̃j
1(t), . . . , H̃

j
Nd

(t)).

Injecting these expansions into the weak formulation (25)-(26), replacing the test functions (φh, πh) by the local

basis functions and classically substituting numerical flux functions q̂ and F̂ to the discontinuous intercell flux
functions arising in the interface terms, we obtain the semi-discrete formulation of our dG approximation:

Nd∑

i=1

d

dt
η̃ji (t)M

j
ik −

Nd∑

i=1

q̃ji (t)S
j
ik +

[
q̂θjk
]xj

r

xj

l

= 0, 1 ≤ k ≤ Np, (28)

Nd∑

i=1

d

dt
q̃ji (t)M

j
ik −

∫

Ej

Fq(wh, zh)
d

dx
θjkdx+

[
F̂θjk

]xj
r

xj

l

=

∫

Ej

Bq(wh, zh)θ
j
kdx −

Nd∑

i=1

H̃j
i (t)M

j
ik, 1 ≤ k ≤ Np, (29)

where

Mj
ik =

∫ xj
r

xj

l

θji (x)θ
j
k(x)dx , and Sj

ik =

∫ xj
r

xj

l

θji (x)
d

dx
θjk(x)dx ,

are respectively the local mass and stiffness matrix coefficients on Ej .

Remark 2.1. As {θji }i=1...Nd
refers to the Lagrange interpolating polynomials, the expansion coefficients rep-

resent the values of the considered approximated quantity at the Gauss-Legendre-Lobatto set of nodes. The
local expansion for the topography parameterization z̃j = t(z̃j1, . . . , z̃

j
Nd

) is therefore obtained just by ”reading”
the values of z at the LGL nodes.

Remark 2.2. In (29), the integrals
∫
Ej Fq(wh, zh)

d
dxθ

j
kdx and

∫
Ej Bq(wh, zh)θ

j
kdx have to be computed exactly

when motionless steady states are reached, with a suitable quadrature formula, in order to obtain a well-balanced
scheme, as shown in §2.5. On the other hand, the computation of H̃j , which involves higher order derivatives,
is done directly, in a collocation way. This is temporarily postponed to §2.3.

Remark 2.3. At a given interface, the computation of the exchanging flux term q̂ and F̂ is classically performed
with numerical flux functions F η and F q, which are Lipschitz continuous, monotone increasing with respect to
their first argument, monotone decreasing with respect to their second argument and consistent with the exact
flux F(w, z) = t(Fη(w),Fq(w, z)). To ensure the positivity of the water height, we also need to use a water
height positivity preserving flux (see §2.7). We use the global Lax-Friedrichs flux in the numerical validations of
§3. These interface fluxes computations, carefully chosen to ensure the preservation of motionless steady-states,
are detailed in §2.5.

2.3. High-order derivatives and dispersive terms computation

We are now left with the resolution of systems (24a)-(24c), to compute the expansion H̃. Although the semi-

discrete formulation (28)-(29) could appear purely local, the computation of the dispersive term expansions H̃
requires a global assembly process, for gathering the local discrete operators into a global one, in the computation
of the inverse of the operator 1 +αT[hb]. Additionally, this computation involves the discrete approximation of
space derivatives up to 3rd order. We use the Local Discontinuous Galerkin (LDG) approach [15] to compute
these derivatives.
To illustrate this procedure, let consider the following 2nd order equation, for an arbitrary scalar valued function
w:

ℓ− ∂2
xw = 0 , (30)

reformulated as a set of two coupled 1st order equation using an auxiliary variable v:

v + ∂xw = 0 , ℓ+ ∂xv = 0 . (31)
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Then, multiplying by a test function φh ∈ Vh and integrating over an element Cj, we have the associated weak
formulation:

∫ xj
r

xj

l

vφh −

∫ xj
r

xj

l

wφ′
h + ŵrφh(x

j
r)− ŵlφh(x

j
l ) = 0 ,

∫ xj
r

xj

l

ℓφh −

∫ xj
r

xj

l

vφ′
h + v̂rφh(x

j
r)− v̂lφh(x

j
l ) = 0 .

(32)

To define the exchanging fluxes ŵ and v̂ at a given interface, we use the following fluxes [14]:

ŵ = {w} − ξ[[w]] ,

v̂ = {v}+ ν[[v]] +
λ

h
[[w]] ,

(33)

with the interface average {w} = (w+ + w−)/2 and jump [[w]] = (w+ − w−)/2, w− and w± respectively the
right and left interface values of w (and similar notations for v). Taking ξ = ν = λ = 0 gives the centered Bassi
and Rebay (BR) fluxes [4] which usually provide sub-optimal convergence rates for odd values of N , while the
choice ξ = ν = 1, corresponding to the Cockburn and Shu alternate upwind discretization (refers to as LDG
flux in the following), may allow to recover the optimal convergence order.

Remark 2.4. Note that λ
h
[[w]] is a penalization term, with a O(h−1) scaling. Taking for instance ξ = ν = 0

and λ 6= 0 gives the stabilized centered fluxes (sBR), sometimes helping to recover optimal convergence rates. In
the numerical validation of §3, we only investigate and compare the BR and LDG choices. Note that extensive
comparisons of fluxes including their stabilized versions and the impact of the coefficient λ are performed in [31]
for weakly non-linear BT equations.

Let us now come back to (32). At the discrete level, starting from the Ne expansion coefficients vectors

{w̃j}i=1..Ne
, which are gathered in a Nd × Ne vector W̃ = t(w̃1, . . . , w̃Ne), we aim at computing the Nd ×Ne

vector L̃ = t(ℓ̃1, . . . , ℓ̃Ne) of expansion coefficients for the 2nd order derivative ∂2
xw.

This is done globally, using (33) to build the differentiation matrices, that also account for exchanging interface

fluxes. Injecting w̃j into (32) and replacing φh by the local basis functions {θji }
Nd

i=1, for all elements {Ej}i=1..Ne
,

we obtain the global discrete formulation:

MṼ = SW̃ − (E− ξF) W̃ ,

ML̃ = SṼ − (E+ νF) Ṽ −
λ

h
FW̃ ,

(34)

where the square Nd ×Ne global mass and stiffness matrices M and S have a block-diagonal structure

M =




M1

. . .

MNe


 , S =




S1

. . .

SNe


 , (35)

and the matrices E and F accounting for the inter-element exchanging fluxes have the following structure:
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E =




Nd

1

1

1/2 1/2

−1/2 −1/2

1/2 1/2

−1/2 −1/2

. . .

(0)

(0)




, F =




Nd

1

1

−1/2 1/2

1/2 −1/2

−1/2 1/2

1/2 −1/2

. . .

(0)

(0)




(36)

Note that the issue of boundary conditions is postponed to §2.8. We obtain a global discrete formulation of the
first and second order derivative operators, based on the LDG approach (33) :

Ṽ = DxW̃ , L̃ = D
2
xW̃ , (37)

with

Dx = M
−1 (S− E+ ξF) , (38)

D
2
x = M

−1
(
(S− E− νF)Dx −

λ

h
F

)
. (39)

A similar construction can be performed for the 3rd order derivatives. Using these global differentiation matrices,
we are now able to approximate all the derivatives occurring in (24a)-(24c). The nonlinear products are treated
directly, in a collocation manner, inspired from [22].
We can also build the global squareNd×Ne matrix of the discrete version of 1+αT[hb]. For instance, considering
the simplified flat bottom case (hb = h0), we approximate the corresponding operator as follows:

1 + αT[h0] = 1− α
h2
0

3
∂2
x ⇒ I − α

h2
0

3
D

2
x ,

where I is the Nd ×Ne identity matrix. The locality of the LDG approach results in a sparse block-structure
matrix (the BR flux leads to a 10 elements stencil for a 3rd order derivative, while a 6 elements stencil is
obtained with the LDG flux), which is stored in a sparse format and LU-factorized at the beginning of the
computation, in a pre-processing step. For the validations of §(3), the factorization and the resolution of the
resulting triangular linear systems are performed using the unsymmetric multi-frontal method [17].

Remark 2.5. The same approach can of course also be used for the original model (1), the only difference
being that the 1 + αT[z, h] matrix has to be build and factorized at each time step (or substep).

Remark 2.6. The use of direct interpolation/collocationmethods for the computation of the nonlinear products
in the dispersive source terms reduces the computational cost but can generate some aliasing which deteriorates
the solution quality and can lead to instabilities. To amend this, we use the stabilization filtering method (mild
nodal filter), as suggested in [22].
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2.4. Time discretization

We use the method of lines, based on Strong Stability Preserving Runge-Kutta (RK-SSP) schemes [33], as
time marching algorithms. Up to N = 3, RK-SSP schemes of order N +1 are considered, to ensure equal orders
of convergence in space and time. A 4th order SSP-RK scheme is used for N ≥ 3. At the fully discrete level,
we denote ∆n

t the time step used to advance from discrete time value tn to tn+1, and the local polynomial
expansions at the discrete time tn as follows:

ηnh|Ej (x) =

Nd∑

i=1

η̃j,ni θji (x), and qnh|Ej (x) =

Nd∑

i=1

q̃j,ni θji (x) , (40)

with the corresponding expansion vectors :

η̃j,n = t(η̃j,n1 , . . . , η̃j,nNd
), q̃j,n = t(q̃j,n1 , . . . , q̃j,nNd

) .

2.5. Preservation of motionless steady states

In this section, we detail the computation of the interface fluxes
[
F̂θjk

]xj
r

xj

l

appearing in the semi-discrete local

discretization (29). To ensure the preservation of motionless steady states, we adapt to the dG framework
the method introduced in [20, 47] for the FVM discretization of the pre-balanced SW equations. The following
scheme can also be regarded as the adaptation to the pre-balanced formulation of the ideas introduced in [77].
Let us introduce the simplified notations:

w−
r = wh(x

j
r), z−r = zh(x

j
r), w+

r = wh(x
j+1
l ), z+r = zh(x

j+1
l ), (41)

w−
l = wh(x

j
l ), z−l = zh(x

j
l ), w+

l = wh(x
j−1
r ), z+l = zh(x

j−1
r ), (42)

(at the left and right boundaries of Ej , the superscripts − and + stand respectively for the interior and exterior
values). Dropping the subscripts, we define at each boundaries :

z∗ = max(z−, z+), z̆ = z∗ −max(0, z∗ − η−), (43)

h̆± = max(0, η± − z∗), η̆± = h̆± + z̆, (44)

leading to new interior and exterior values:

w̆− = (η̆−,
h̆−

h−
q−), and w̆+ = (η̆+,

h̆+

h+
q+), (45)

with h± = η± − z±. Then, the interface fluxes in (28)-(29) are computed as follows:

q̂ = Fη(w̆
−, w̆+), (46)

F̂ = Fq(w̆
−, w̆+, z̆, z̆)− gη̆−(z− − z̆), (47)

where F = t(Fη, Fq) is the Lax-Friedrich flux, defined as follows for two arbitrary interface states wl,wr:

Fη(wl,wr) =
1

2

(
(ql + qr)− α0(ηr − ηl)n̂

)
, (48)

Fq(wl,wr, zl, zr) =
1

2

((
Fq(wl, zl) + Fq(wr, zr)

)
− α0(qr − ql)n̂

)
, (49)
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with α0 = max
1≤j≤Ne

(
max
∂Ej

(|u| +
√
g(η − z))

)
and n̂ the outward normal of the element. We point out that the

modified fluxes (46)-(47) induce perturbations of order N +1 when compared to the traditional interface fluxes
Fη(w

−,w+) and Fq(w
−,w+, z−, z+) and do not modify the consistency and convergence.

Remark 2.7. F can be of course replaced by any monotone and positive preserving numerical flux function,
like the HLL flux [72] or the VFRoe-relaxation flux [5].

Remark 2.8. In (45), we implicitly assumed that we have h± > 0. The case h± = 0 (or numerically h± < ǫ)
is classically handled by setting the corresponding values of u± and q± to 0.

Proposition 2.9. The dG scheme (28)-(29), with the interface fluxes defined in (46)-(47), preserves the mo-
tionless steady states.

Proof. We adapt the ideas of [77] to the pre-balanced formulation (20). We want to show that

d

dt
η̃j(t) = 0 and

d

dt
q̃j(t) = 0, for 1 ≤ j ≤ Ne.

If a motionless steady state is reached, that is

wh = t(η0, 0) , (50)

we have q̃j(t) = 0 on each element and using (28), d
dt η̃

j(t) = 0 obviously holds. For the second equation (29),
we need the residue

R = −

∫

Ej

Fq(wh, zh)
d

dx
θjkdx+

[
F̂θjk

]xj
r

xj

l

+ g

∫

Ej

ηh
d

dx
zhθ

j
kdx+

Nd∑

i=1

H̃j
i (t)M

j
ik

to vanish when a motionless steady state is reached, for 1 ≤ k ≤ Nd and 1 ≤ j ≤ Ne. We first notice that
the definition of the differential operators {Qi}1≤i≤3, combined with (50), directly leads to H(wh) = 0 at the
discrete level, as a solution of (24a)-(24b)-(24c).
When (50) holds, (43)-(44)-(45) leads to η̆− = η̆+ = η0 for both interfaces, and using (47), the interface flux

F̂(xj
r) reduces to

F̂(xj
r) =

g

2
(η20 − 2η0z̆r)− gη0(z

−
r − z̆r) =

g

2
(η20 − 2η0z

−
r ) = Fq(w

−
r , z

−
r ).

We show in a similar way that, at the left boundary, F̂(xj
l ) = Fq(w

−
l , z

−
l ). Consequently we have,

R =

∫

Ej

∂x(Fq(wh, zh))θ
j
kdx+ g

∫

Ej

ηh
d

dx
zhθ

j
kdx = 0

as wh is a steady state solution, leading to ∂x(Fq(wh, zh)) = −gηh
d
dxzh, and the integral terms are computed

exactly. �

2.6. Handling broken waves and limiting strategy

We now broach the issue of broken waves detection and give further details on the switching strategy adopted
in this work. As stated in the introductory lines, we can find several methods in the literature, since the last few
years, that allow to handle broken waves in BT equations. They all rely on an accurate detection of potential
instability regions, near the breaking point, in which the limit of validity of the BT equations is reached. We
propose in this work to use a purely numerical criteria to detect such area, using the ideas of the popular
discontinuity detector of [40]. This criteria is based on a strong superconvergence property of the dG method
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2r

Ij > 1

Figure 2. Example of breaking area

at the outflow boundary of each element in smooth regions of the flow. More precisely, for a given element Ej ,
we recover the values h̃j = η̃j − z̃j, and compute the following quantity:

Ij =
∆−|h̃j

1 − h̃j−1
Nd
|+∆+|h̃j

Nd
− h̃j+1

1 |

|Ej|
N+1

2 ‖h̃j‖∞
, (51)

where

∆− =

{
1 if q̃j1 ≥ 0,
0 otherwise.

, ∆+ =

{
1 if q̃jNd

≤ 0,
0 otherwise.

(52)

Waves about to break are identified in elements such that Ij > 1 (called troubled elements, following [58]) and
we locally suppress the dispersive term in such elements (i.e. we locally switch to the NSW equations). After
breaking, the wave fronts are handled as shocks by the NSW equations and only the hyperbolic part of the
equations is solved for the wave fronts. The breaking wave dissipation is represented by shock local energy
dissipation [6].
Practically, our numerical investigations have shown that, for a given breaking wave, the switching areas need to
be slightly enlarged to prevent the possible occurrence of spurious oscillations. Consequently some neighboring
cells are added to the switching area to include the steepening shore facing side of the wave, and a part of the
offshore facing side. This can be simply done with the help of a mask, defining the switching area as a band of
length 2r centered to the elements verifying Ij > 1 (see Fig. 2).

Additionally, the use of a local limitation procedure wh ← Πwh is classically required in troubled elements.
In this work, we use the improved moment limiting strategy of [8]. The reader is referred to [19] for the detailed
implementation of this limiting strategy in our NSW equations based numerical model.

2.7. Robustness

An additional limitation is performed to ensure the positivity of the water height in the vicinity of dry (or
almost dry) areas during the computation. Let us consider hn

h|Ej(x) obtained at the discrete time tn from

the fully discrete previous dG method (i.e. deduced from ηn
h|Ej (x) and zh|Ej(x)) and let denote h̄n

j its average.

Practically, starting from positive mean values h̄n
j ≥ 0 on all element {Ej}1,..,Ne

, we want to ensure that h̄n+1
j ≥ 0

on all element {Ej}1,..,Ne
, without destroying the order of accuracy.

Such a property is enforced adapting the ideas developed in [79, 81] to the pre-balanced formulation. We first
note that the scheme satisfied by the cell averaged of the free surface in the dG approximation (28) is

ηn+1
j = ηnj −

∆n
t

|Ej |

[
q̂
]xj

r

xj

l

, (53)
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with ηnj = 1
|Ej |

∫
Ej ηh(x, t

n) dx and the interface fluxes q̂ given by (46). In the framework of the pre-balanced

formulation, as we work with η instead of h, we have to ensure that the first order scheme associated with (53)
preserve the positivity of the water height. To this purpose, let us adapt the definitions of the interfaces interior
and exterior values (41)-(42) to the discrete first order case, using piecewise constant data:

w−
r = w−

l = wn
j , z−r = z−l = zj , (54)

w+
r = wn

j+1, z+r = zj+1 and w+
l = wn

j−1, z+l = zj−1. (55)

Proposition 2.10. We consider the following first-order scheme

ηn+1
j = ηnj −

∆n
t

|Ej |

(
Fη(w̆

−
r , w̆

+
r )− Fη(w̆

−
l , w̆

+
l )
)

(56)

with w̆±
r and w̆±

l defined at each interfaces following (43)-(44)-(45) and (54)-(55). If ηnj − zj and ηnj±1 − zj±1

are positive, then ηn+1
j − zj is positive under the condition

∆n
t

|Ej|α0 ≤ 1.

Proof. The scheme (56) can be written, using (48):

ηn+1
j = ηnj −

∆n
t

2|Ej |

(( h̆−
r

hn
j

qnj +
h̆+
r

hn
j+1

qnj+1

)
− α0(η̆

+
r − η̆−r )−

( h̆−
l

hn
j

qnj +
h̆+
l

hn
j−1

qnj−1

)
+ α0(η̆

−
l − η̆+l )

)

where we set hn
j = ηnj − zj for the sake of simplicity. Denoting that η̆+r − η̆−r = h̆+

r − h̆−
r and η̆−l − η̆+l = h̆−

l − h̆+
l ,

and subtracting zj at both sides, we can conclude as in [79], writing (56) as a linear combination of positive
values:

ηn+1
j − zj =

(
1−

∆n
t

2|Ej |
(α0 +

qnj
hn
j

)
h̆−
r

hn
j

−−
∆n

t

2|Ej |
(α0 −

qnj
hn
j

)
h̆−
l

hn
j

)
hn
j

+
( ∆n

t

2|Ej |
(α0 +

qnj−1

hn
j−1

)
h̆+
l

hn
j−1

)
hn
j−1 +

( ∆n
t

2|Ej |
(α0 −

qnj+1

hn
j+1

)
h̆+
r

hn
j+1

)
hn
j+1.

(57)

�

Based on Proposition 2.10, the ideas of [79] can be directly applied. Let us briefly recall the main steps of
the procedure for a 1st order time discretization. For each element Ej , assuming that h̄n

j ≥ 0:

(1) let Sj
i = {rjk}k=1,..,d be the set of d LGL points on the element Ej , and {ω̂k}k=1,..,d the corresponding

quadrature weights. d is chosen such that the associated quadrature rule is exact for polynomials of
degree N (i.e. 2d− 3 ≥ N). We compute mn

j = min
rj
k
∈Sj

i

hn
h|Ej(r

j
k).

(2) we modify hn
h|Ej (x) in order to ensure that it is positive at the previous set of d LGL nodes. This is

done using the following conservative accuracy-preserving linear scaling around the cell average:

ȟn
h|Ej (x) = θnj (h

n
h|Ej (x) − h̄n

j ) + h̄n
j . (58)

where

θnj = min

(
h̄n
j

h̄n
j −mn

j

, 1

)
.

We deduce from (58) a modified N order polynomial η̌n
h|Ej (x), which is injected into (28)-(29) instead

of (27).
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Thus, following [79, 81], the positivity of the mean water height h̄n+1
j is ensured under the condition :

α0
∆n

t

|Ej |
≤ ŵ1.

In practice, we have ŵ1 = 1
6 for N = 2, 3 and 1

12 for N = 4, 5.

2.8. Boundary conditions

The boundary conditions are classically imposed weakly, by enforcing suitable reflecting relations at a virtual
exterior nodes, at each boundaries, through the boundary interface fluxes. Periodic, Neumann and Dirichlet
conditions can be enforced following this simple process. For the approximation of second order derivatives with
the LDG strategy, we classically enforce Neumann boundary conditions for the auxiliary variable. We also use
Neumann boundary conditions for the derivatives involved in the discrete version of the operator 1 + αT[hb].
The first and last rows of (36) should be adapted for Dirichlet conditions. As far as generation and absorption of
waves are concerned, we use relaxation techniques, as in [9,43]. The computational domain is slightly extended to
include the sponge layers, which length has to be calibrated from the incoming waves (generally 2 wavelengths).
We enforce periodic waves generation with the use of a generation/relaxation zone, following [50]. We have
implemented the relaxation functions proposed in [75] and at the inlet boundary, we progressively impose on a
two-wavelength long generation layer the targeted wave train.

3. Numerical examples

In this section, we assess the ability of our dG approach to compute waves propagation and transformations.
The two models/schemes given by (28)-(29) involving (21a) or (21b) will be referred to as GNO (for original)
and GNC (for constant) respectively. Unless stated otherwise, we use Neumann boundary conditions at both
boundaries, the optimized value α = 1.159 (see [7]) is used and we set ǫb = 0.1. We highlight that our numerical
investigations have shown that the value of ǫb does not influence the numerical results. Unless stated otherwise,
and accordingly with the robustness result of the previous section, we do not suppress the dispersive effects in
the vicinity of dry areas.

3.1. Motionless steady states preservation

We consider a 100 m channel and start from an initial steady state at rest η = 0 and q = 0, over the following
topography (see Fig. 3):

z(x) = −h0 exp
(
−
(
(x− d)/l

)2)
+ 0.8 . (59)

After 10 s of simulation, the steady state is still preserved up to the machine accuracy, regardless of the poly-
nomials’ order in the expansion basis or the refinement of the mesh. As an example, for N = 3 and Ne = 300,
the computations give an L1-error of 1.56 e−16 for the free surface and 7.13 e−15 for the discharge.

-1.5
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-0.5

 0

 0.5

 0  10  20  30  40  50  60  70  80  90  100

h
(m

)

x(m)

Figure 3. Topography and initial conditions for test cases 3.1 and 3.2.
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3.2. Accuracy and convergence analysis in the presence of non-flat bottom

We now focus on the evolution of a smooth gaussian profile over the previous non flat and smooth topography,
to highlight the convergence properties of our approach. The initial water height is defined as h(x) = az(x),
where a/h0 = 0.2 and z defined in the previous test case (59). No exact solution is available, so a reference
solution is computed at t = 0.15s with N = 7, Ne = 1280. Computations for both models (20)-(21a) and
(20)-(21b) are run on a sequence of regular meshes with increasing refinement and polynomial expansions of
increasing orders, from 1 to 5. For the approximation of high order derivatives, we use successively LDG and
BR fluxes. The numerical L1-errors computed using the reference solution at t = 0.15 s are reported in Tab. 5
for the water height and plotted on Fig. 4 for both water height and discharge, in log-log scale.
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Figure 4. Accuracy analysis in the presence of non-flat bottom: convergence rates for the
water height (left) and the discharge (right) - reference slopes 1.6, 3.2, 4, 5 and 6 are plotted
in dotted lines

As expected, we obtain similar orders of accuracy for both GNO and GNC models. Concerning the impact
of the numerical flux choice on the convergence rates, we can observe on Table (5) that, for both models and
as mentioned in previous studies [15,22,30,31], the use of BR fluxes may lead to sub-optimal convergence rates
for odd values of N , while the LDG fluxes lead to optimal convergence rates. The corresponding convergence
orders are reported on the last column of Table (5).

Let us now investigate the computational improvements obtained with the new GNC model. To this purpose,
an averaged cpu-time per time-step is measured for both models, for increasing values of polynomials’ order and
number of elements. These cpu times are denoted respectively ρo and ρc for the original and constant models.
We focus on the ratio τ := ρo/ρc and the corresponding values are reported in Tab. 6. These values confirm
the computational savings provided by the GNC model, clearly more efficient for all given couple (N,Ne).
We observe that the ratio increases with respect to the polynomial’s order, confirming the benefit of this new
approach for high order simulations. For polynomial expansions of order 6 the speed-up can reach 7.15.
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Ne

Model Fluxes N 20 40 80 160 320 640 order

GNO BR 1 0.4 0.13 5.6e-2 2.2e-2 7.6e-3 2.2e-3 1.5
2 4.4e-2 3.2e-3 2.9e-4 3.2e-5 3.9e-6 4.9e-7 3.3
3 4.1e-3 5.4e-4 6.1e-5 6.7e-6 6.6e-7 5.6e-8 3.2
4 7.7e-4 6.1e-6 2.2e-7 6.9e-9 2.1e-10 6.7e-12 5.3
5 3.6e-5 1.1e-6 3.1e-8 8.7e-10 2.3e-11 / 5.1

LDG 1 0.25 4.3e-2 1.0e-3 2.9e-3 9.7e-4 3.8e-4 1.9
2 7.3e-2 7.3e-3 6.2e-4 6.6e-5 7.9e-6 9.8e-7 3.2
3 4.3e-3 2.9e-4 1.6e-5 9.0e-7 5.5e-8 3.4e-9 4.0
4 6.6e-4 1.5e-5 4.4e-7 1.4e-8 4.2e-10 1.3e-11 5.1
5 5.2e-5 7.0e-7 9.6e-9 1.5e-10 2.8e-12 / 6.0

GNC BR 1 0.4 0.14 5.7e-2 2.3e-2 7.7e-3 2.2e-3 1.5
2 4.7e-2 3.3e-3 2.9e-4 3.2e-5 3.8e-6 4.7e-7 3.3
3 4.2e-3 5.8e-4 6.5e-5 7.2e-6 7.1e-7 6.0e-8 3.2

4 9.3e-4 6.2e-6 2.2e-7 7.0e-9 2.2e-10 6.4e-12 5.4
5 4.1e-5 1.2e-6 3.4e-8 9.6e-10 2.6e-11 / 5.1

LDG 1 0.25 4.2e-2 1.0e-3 2.8e-3 9.6e-4 3.9e-4 1.9
2 7.5e-2 7.5e-3 6.2e-4 6.5e-5 7.7e-6 9.5e-7 3.2
3 4.5e-3 3.0e-4 1.7e-5 9.4e-7 5.7e-8 3.6e-9 4.0
4 7.0e-4 1.6e-5 4.6e-7 1.4e-8 4.4e-10 1.3e-11 5.1
5 6.1e-5 7.6e-7 1.0e-8 1.6e-10 3.1e-12 / 6.1

Figure 5. Accuracy analysis in the presence of non-flat bottom: L1 error for the discharge.

Ne

N 1000 2000 3000 4000 5000 6000

1 3.23 3.21 3.04 2.96 2.94 2.90
2 4.09 4.27 4.14 4.01 3.90 3.84
3 5.32 5.11 5.03 4.97 4.91 4.87
4 6.01 5.77 5.67 5.63 5.51 5.55
5 6.66 6.38 6.32 6.30 6.26 6.16
6 7.15 6.99 7.05 6.97 6.86 6.54

Figure 6. Accuracy analysis in the presence of non-flat bottom: time ratio τ = ρo/ρc for
increasing values of N and Ne.

Based on these investigations, all the following computations are performed with the GNC model.

3.3. Propagation of a solitary wave

In this test, we investigate the propagation of a solitary wave over a flat bottom. We recall that the original
model (1) admits the following class of solitary waves solution:

{
h(x, t) = h0 + a sech2 (κ(x− ct)) ,

u(x, t) = c(1− h0

h(x,t)) ,
(60)

where κ =

√
3a

4h2
0(h0 + a)

, and c =
√
g(h0 + a). We also recall that these solitary waves are only solutions

up to O(µ2) of the new GNC family of models.
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Figure 7. Propagation of a solitary wave : water surface profiles at t=0.4, 0.8, 1.2, 1.6 and 2s.

For this test, the reference water height is fixed at h0 = 1m and we use the new model (12), with α = 1
to compute the propagation of a solitary wave initially centered at x0 = 50m, with a relative amplitude set
to a = 0.2h0. The computational domain is a 200m long channel, regularly meshed with 400 elements. We
investigate several orders of polynomial expansions and follow the flow motion along the channel until t = 2.2s.
We show on (3.3) some free surface profiles at several times obtained with 3rd order expansions and a fourth
order SSP-RK time-marching scheme. We can observe an excellent agreement between numerical solutions
provided by the new model (12) and formula (60), showing the negligible discrepancies introduced by the
O(µ2) approximation in the new family of models. The free surface profile is accurately preserved during the
propagation. However, let us mention that even if we do not report results here, some convergence studies have
been performed for this particular test case, and we obtain sub-optimal N + 1

2 convergence rates, for both BR
and LDG fluxes.The propagation and transformations of solitary waves of increased non-linearity are studied in
the next test.
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Figure 8. Guibourg test case : comparison between computed (solid lines) and experimental
(dots) time series of total free surface at several gauges before the breaking point.
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3.4. Shoaling of solitary waves ( [35])

We now investigate the dispersive properties of the model and study the nonlinear shoaling, using the data
issued from a laboratory study performed at the LEGI (Grenoble, France). In this test, we consider a 36m
channel with constant bed slope and a train of solitary waves generated at the inflow boundary. Measurements
of the free surface are available at several wave gages in the vicinity of the breaking point during the simulation.
We consider 4 series of experiments, involving an increasing relative amplitude, starting from a/h0 = 0.096 and
ending with a/h0 = 0.534.

The displayed numerical results are obtained with (N,Ne) = (3, 400). Numerical results are reported on
Fig. 8, together with the experimental data available from [35]. We can observe a very good behavior of the
numerical model, and even for large wave’s amplitude. These results assess the good accuracy of our model in
the reproduction of the shoaling process.

3.5. Periodic waves over a submerged bar ( [18])

Going ahead in the assessment of the dispersive properties of the GNC model, we investigate now the
propagation of periodic waves over a submerged bar, following the set-up proposed in [18]. The topography
set-up and wave gauges locations are shown in Fig. 9. We choose here to perform test A, in which the amplitude
of the input waves is set to a = 0.01m. The time period T is 2.02 s and the initial depth h0 is 0.4m. When
the incident waves encounters the upward part of the bar, it shoals and steepens, which generates higher-
harmonics as the nonlinearity increases. These higher-harmonics are then freely released on the downward
slope, and become deep-water waves behind the bar. The domain is regularly meshed with Ne = 800 elements,
and computations are run with increasing orders of polynomial expansions. Incident waves do not encounter
breaking during the propagation, so that the switching/limiting process is not activated in this test.
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Figure 9. Periodic waves over a submerged bar : sketch of the basin and gauges location.

We show on Fig. 10 some time series of the free surface elevation at several wave gauges located along the
channel, compared with the experimental data. These results are obtained with 3rd order polynomials. We
obtain a very good agreement at the first gauges. Some discrepancies are noticed at the last gauge, mostly
explained by the high non-linear interactions generated as the waves encounters the upward part of the bar. As
exhibited in Fig. 11, these effects are not correctly reproduced up to N = 3 at the last gauge for this choice
of space step and we tried to locally increase the model accuracy, leading to sensible improvements. However,
in the area of the last three gauges, the dispersion properties of the current model are no more satisfactory
enough to accurately reproduce the complete release of the higher-harmonics, which can be regarded as highly
dispersive waves. These results can be improved with the use of some optimized GN models, as for instance the
3 parameters optimized Green-Naghdi models proposed in [9] and in the 2d case in [43]. The dG approximations
of such enhanced GN equations are left for future works.
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Figure 10. Propagation of highly dispersive waves : free surface evolution at the four first
gauges. Experimental data are denoted by squares.
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Figure 11. Propagation of highly dispersive waves : several profiles for increasing N at the last gauge.

3.6. Solitary wave breaking over a sloping beach ( [67])

Let us now assess the ability of our numerical model to deal with breaking waves and dry areas. In this
test, we study the propagation, shoaling, breaking and run-up processes of a solitary wave over a beach with
constant slope s=1/19.85, following the experiments of [67]. The incident wave is supplied by formula (60),
with a water level at rest h0 = 1m and an amplitude set to a = 0.28m. The couple (N,Ne) is fixed to (2, 800)
for the computation and our numerical results are compared with the experimental data. We observe that the
breaking wave method described in (§2.6) is able to identify the wave steepening, occurring approximatively
around t∗ = 17s. We emphasize the very satisfying agreement between the numerical results and the data, as
shown on Fig. 12.
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Figure 12. Solitary wave breaking over a sloping beach : free surface profiles comparison
between numerical results (solid lines) and experimental data (dots) at several times during the
breaking ; t∗ = t(g/h0)

1/2.

3.7. Cox’s experiment ( [16])

To further investigate the breaking waves / switching strategy, we study in this test the evolution of an
incoming train of regular waves over a beach with constant bed slope 1/35. Waves of relative amplitude
a/h0 = 0.29 and period T = 2.2s are generated at the inflow boundary. We set N = 1 and use two mesh sizes
for this test: |Ej | = 0.0575 for x < 11.5m and |Ej | = 0.028 for x ≥ 11.5m. A sketch of the computational
domain is available in Fig. 13, with the location of the wave gauges.
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Figure 13. Cox’s experiment : sketch of the basin and identification of breaking areas. The
NSW equations are used in red areas to describe the breaking waves.
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In this picture, we also point out the areas where the dispersive effects are turned off (in red) and the
NSW equations are used, following the switching strategy detailed in §2.6. In agreement with experimental
observations, the first wave to break is detected between gauges ♯2 and ♯3. Note that, for this particular test
case, the dispersive terms are switched off in the vicinity of the shoreline because the switching criteria I is
larger than 1 in this area.
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Figure 14. Cox’s experiment : comparison between computed and experimental time series
of total free surface at the gauges.

We can observe on Fig. 14 the time series of the free surface elevation at the six wave gauges along the
domain and the comparison with the data taken from the experiment. We observe a very good matching. A
similar level of agreement can be obtained by reducing the number of elements and increasing the polynomials
order, for instance N = 2 and |Ej | = 0.1. Note also that the limiter [8] is not applied in the whole switching
(red) areas but only on the few troubled elements in the vicinity of the discontinuities.
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3.8. Wave overtopping a seawall ( [36])
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Figure 16. Overtopping over fringing reefs : Free surface profiles at several times during the propagation.

In this last validation, we aim at demonstrating that our numerical model appear as a promising tool for
more complex simulations. The following test is based on the experiments carried on at the Tainan Hydraulics
Laboratory (THL), National Cheng Kung University. It implies a tsunami-like solitary wave collapsing on a
seawall located on a 1:20 sloping beach. A cross-section of the 22m flume is described in Fig. 15, together with
the location of several gauges where measurements of the free surface are available (see [36] for more details).
We consider an initial water depth of 0.2m, and an incoming wave with a relative amplitude a/h0 = 0.35.
For this simulation we set N = 2 and we use two mesh sizes: |Ej | = 0.03 for 9 < x < 12m and |Ej | = 0.09
elsewhere, giving a total number ofNe = 300 elements. In this case, the solitary wave encounters breaking before
reaching the seawall. It follows an overtopping flow supplemented by a train of reflected waves subsequently
generated after the impact on the wall. Time series of the free surface were recorded at several gauges along
the computational domain, and are compared with experimental data (see Fig. 17). We can note a very
good agreement, similar to those exhibited in [36] with a obtained with a Volume Of Fluid (VOF) method for
the Reynolds averaged Navier-Stokes equations and [68] with a hybrid FVM discretization of the original GN
equations. Note that a similar level of agreement can be obtained with a regular mesh of 500 elements.
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Figure 17. Overtopping over fringing reefs : comparison between computed and experimental
data of total free surface at several times during the propagation. Circles denote experimental
data.

Conclusion

In this work, an arbitrary order dG discretization is proposed for a new family of 1d Green-Naghdi equations
for the simulation of fully non-linear and weakly dispersive waves propagation and transformation over uneven
bottom. This approach provides robustness and preservation of motionless steady states. These new models
are shown to be more computationally efficient than the original ones, especially for high order polynomial
expansions. We also propose a simple way to handle broken wave, which gives satisfying results. The proposed
methodology can be straightforwardly extended to the 2d framework, with the use of unstructured meshes.
The 2d models with time-independent operator are already derived in [43] and the extension of the present dG
method is studied in an on-going work. This appears as a promising tool in terms of possible decreasing of the
degrees of freedom and local adaptivity in complex geometries.
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