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Abstract

In this paper, we propose a silent self-stabilizing leader election algorithm for bidirectional con-
nected identified networks of arbitrary topology. This algorithm is written in the locally shared
memory model. It assumes the distributed unfair daemon, the most general scheduling hypothesis
of the model. Our algorithm requires no global knowledge on the network (such as an upper bound
on the diameter or the number of processes, for example).

We show that its stabilization time is in ©(n®) steps in the worst case, where n is the number
of processes. Its memory requirement is asymptotically optimal, i.e., ©(logn) bits per processes.
Its round complexity is of the same order of magnitude — i.e., ©(n) rounds — as the best existing
algorithm [8] designed with similar settings (i.e., it does not use global knowledge and is proven
under the unfair daemon).

To the best of our knowledge, this is the first self-stabilizing leader election algorithm for arbitrary
identified networks that is proved to achieve a stabilization time polynomial in steps. By contrast,
we show that the previous best existing algorithm designed with similar settings [8] may stabilize in
a non polynomial number of steps.

Keywords: Distributed algorithms, fault-tolerance, self-stabilization, leader election, unfair daemon.

1 Introduction

In distributed computing, the leader election problem consists in distinguishing one process, so-called the
leader, among the others. We consider here identified networks. So, as it is usually done, we augment
the problem by requiring all processes to eventually know the identifier of the leader. The leader election
is fundamental as it is a basic component to solve many other important problems, e.g., consensus,
spanning tree constructions, implementing broadcasting and convergecasting methods, etc.
Self-stabilization [9, 10] is a versatile technique to withstand any transient fault in a distributed
system: a self-stabilizing algorithm is able to recover, i.e., reach a legitimate configuration, in finite
time, regardless the arbitrary initial configuration of the system, and therefore also after the occurrence
of transient faults. Thus, self-stabilization makes no hypotheses on the nature or extent of transient
faults that could hit the system, and recovers from the effects of those faults in a unified manner. Such
versatility comes at a price. After transient faults, there is a finite period of time, called the stabilization
phase, before the system returns to a legitimate configuration. The stabilization time is then the worst
case duration of the stabilization phase, i.e., the maximum time to reach a legitimate configuration
starting from an arbitrary one. Notice that efficiency of self-stabilizing algorithms is mainly evaluated
according to their stabilization time and memory requirement.

We consider the (deterministic)! asynchronous silent self-stabilizing leader election problem in bidi-
rectional, connected, and identified networks of arbitrary topology. We investigate solutions to this
problem which are written in the locally shared memory model introduced by Dijkstra [9]. In this model,

*This work has been partially supported by the LabEx PERSYVAL-Lab (ANR-11-LABX-0025-01) funded by the French
program Investissement d’avenir.
We only consider here deterministic algorithms.



the (distributed) unfair daemon is known as the weakest scheduling assumption. Now, proving the self-
stabilization of a given algorithm under such an assumption implies that the stabilization time is finite
in terms of (atomic) steps. However, despite some solutions assuming all these settings (in particular
the unfairness assumption) are available in the literature [6, 7, 8], none of them is proven to achieve a
polynomial upper bound in steps on its stabilization time. Rather, the time complexities of all these
solutions are analyzed in terms of rounds only.

Related Work. In [11], Dolev et al showed that the silent self-stabilizing leader election requires
Q(logn) bits per process, where n is the number of processes. Self-stabilizing leader election algorithms
for arbitrary connected identified networks have been proposed in the message-passing model [1, 3, 4].
First, the algorithm of Afek and Bremler [1] stabilizes in O(n) rounds using ©(logn) bits per process.
But, it assumes that the link-capacity is bounded by a value B, known by all processes. Two solutions
that stabilize in O(D) rounds, where D is the diameter of the network, have been proposed in |3, 4].
However, both solutions assume that processes know some upper bound D on the diameter D; and have
a memory requirement in O(log D logn) bits.

Several solutions are also given in the shared memory model [12, 2, 6, 7, 8, 13]. The algorithm
proposed by Dolev and Herman [12] is not silent, works under a fair daemon, and assume that all
processes know a bound N on the number of processes. This solution stabilizes in O(D) rounds using
O(N log N) bits per process. The algorithm of Arora and Gouda [2] works under a weakly fair daemon
and assume the knowledge of some bound N on the number of processes. This solution stabilizes in
O(N) rounds using ©(log N) bits per process.

Datta et al [6] propose the first self-stabilizing leader election algorithm (for arbitrary connected
identified networks) proven under the (distributed) unfair daemon. This algorithm stabilizes in O(n)
rounds. However, the space complexity of this algorithm is unbounded. (More precisely, the algorithm
requires each process to maintain an unbounded integer in its local memory.)

Solutions in [7, 8, 13] have a memory requirement which is asymptotically optimal (i.e. in ©(logn)).
The algorithm proposed by Kravchik and Kutten [13] assumes a synchronous daemon and the stabiliza-
tion time of this latter is in O(D) rounds. The two solutions proposed by Datta et al in [7, 8] assume
a distributed unfair daemon and have a stabilization time in O(n) rounds. However, despite these two
algorithms stabilize within a finite number of step (indeed, they are proved assuming an unfair daemon),
no step complexity analysis is proposed. Finally, note that the algorithm proposed in [7] assumes that
each process has a bit of memory which cannot be arbitrarily corrupted.

Contribution. We propose a silent self-stabilizing leader election algorithm for arbitrary connected and
identified networks. Our solution is written in the locally shared memory model assuming a distributed
unfair daemon, the weakest scheduling assumption. Our algorithm assumes no knowledge of any global
parameter (e.g., an upper bound on D or n) of network. Like previous solutions of the literature [7, 8],
it is asymptotically optimal in space (i.e., it works using ©(logn) bits per process), and it stabilizes
in ©(n) rounds in the worst case. Yet, contrary to those solutions, we show that our algorithm has a
stabilization time in ©(n?) steps in the worst case.

For fair comparison, we have also studied the step complexity of the algorithm, noted here DLV,
given in [8]. This latter is the closest to ours in terms of performance. We show that its stabilization
time is not polynomial, 4.e., there is no constant « such that the stabilization time of DLV is in O(n®)
steps. More precisely, we show that fixing o to any constant greater than or equal to 3, for every § > 2,
there exists a network of n = 2273 x 8 x 8 processes in which there exists a possible execution that
stabilizes in Q(n*1) steps.

Roadmap. The next section is dedicated to computational model and basic definitions. In Section 3,
we propose our self-stabilizing leader election algorithm. We prove its correctness in Section 4. In the
same section, we also study its stabilization time in both steps and rounds. We show that the stabilization
time of the self-stabilizing leader election algorithm given in [8] is not polynomial in steps in Section 5.
We conclude in Section 6.



2 Computational model

2.1 Distributed systems

We consider distributed systems made of n processes. Each process can communicate with a subset of
other processes, called its neighbors. We denote by N, the set of neighbors of process p. Communications
are assumed to be bidirectional, i.e. ¢ € N, if and only if p € N,. Hence, the topology of the system
can be represented as a simple undirected connected graph G = (V| E), where V is the set of processes
and E is a set of edges representing (direct) communication relations. We assume that each process
has a unique ID, a natural integer. IDs are stored using a constant number of bits, b. As commonly
done in the literature, we assume that b = ©(logn). Moreover, by an abuse of notation, we identify a
process with its ID, whenever convenient. We will also denote by ¢ the process of minimum ID. (So, the
minimum ID will be also noted £.)

2.2 Locally shared memory model

We consider the locally shared memory model, in which the processes communicate using a finite number
of locally shared registers, called wvariables. Each process can read its own variables and those of its
neighbors, but can write only to its own variables. The state of a process is the vector of the values
of all its variables. A configuration ~ of the system is the vector of the states of all processes. We
denote by v(p) the state of the process p in the configuration y. We denote by C the set of all possible
configurations.

A distributed algorithm consists of one program per process. The program of a process p is a finite
set of actions of the following form:

(label) :: (guard) — (statement)

The labels are used to identify actions. The guard of an action in the program of process p is a Boolean
expression involving the variables of p and its neighbors. If the guard of some action evaluates to true,
then the action is said to be enabled at p. By extension, if at least one action is enabled at p, p is said
to be enabled. We denote by Enabled(vy) the set of processes enabled in configuration v. The statement
of an action is a sequence of assignments on the variables of p. An action can be executed only when it
is enabled. In this case, the execution of the action consists in executing its statement.

The asynchronism of the system is materialized by an adversary, called the daemon. In a configuration
7, if Enabled(y) # 0, then the daemon selects a non empty subset S of Enabled(y) to perform an atomic
step: Vp € S, p atomically executes one of its actions enabled in ~, leading the system to a new
configuration 7. We denote by > the relation between configurations such that v — ~' if and only if 7/
can be reached from v in one atomic step. An execution is then a mazimal sequence of configurations
Y071, - - - such that ;1 +— v;, Vi > 0. The term “maximal” means that the execution is either infinite,
or ends at a terminal configuration v in which Enabled(7) is empty.

As we saw previously, each step from a configuration to another is driven by a daemon. In this paper,
the daemon is supposed to be distributed and unfair. “Distributed” means that while the configuration is
not terminal, the daemon should select at least one enabled process, maybe more. “Unfair” means that
there is no fairness constraint, i.e., the daemon might never permit an enabled process to execute, unless
it is the only enabled process.

2.3 Rounds

To measure the time complexity of an algorithm, we also use the notion of round. This latter allows to
highlight the execution time according to the speed of the slowest process. If a process p is enabled in a
configuration ~; but not enabled in the next configuration ;11 and does not execute any action between
~v; and v;4+1, we said that p is neutralized during the step v; — 7;4+1. Neutralization of p is caused by
the following situation: at least one neighbor of p changes its state between ; and v;11, and this change
makes the guards of all actions of p false. The first round of an execution e, noted €', is the minimal
prefix of e in which every process that is enabled in the initial configuration either executes an action
or becomes neutralized. Let ¢” be the suffix of e starting from the last configuration of ¢’. The second
round of e is the first round of ¢”, and so forth.



2.4 Self-Stabilization

Let A be a distributed algorithm. Let £ be the set of all possible executions of A. A specification SP is
a predicate over €.

A is self-stabilizing for SP if and only if there exists a non-empty subset of configurations £ C C,
called legitimate configurations, such that:

e Closure: Ve € £, for each step v; — vi+1 €€, 7 € L = v;41 € L.
e Convergence: Ve € £,3y € e such that v € L.
e Correction: Ve € £ such that e starts in a legitimate configuration v € L, e satisfies SP.

The stabilization time is the maximum time (in steps or rounds) to reach a legitimate configuration
starting from any configuration.

2.5 Self-Stabilizing Leader Election

We define SPrg(e) the specification of the leader election problem. Let Leader : V — IN be a function
defined on the state of any process p € V in the current configuration that returns the ID of the leader
appointed by p. SPpg(e) is true if and only if:

1. For all configuration v € e, Vp,q € V, Leader(p) = Leader(q) and Leader(p) is the ID of some
process in V.

2. For all step v; — vi+1 € e, Vp € V, Leader(p) has the same value in ~; and ;4.

A is silent if and only if every execution is finite [11]. Let 7 be a terminal configuration. The set
of all possible executions starting from -~ is the singleton {v}. So, if A is self-stabilizing and silent, ~
must be legitimate. Thus, to prove that a leader election algorithm is both self-stabilizing and silent, it
is necessary and sufficient to show that:

e In every terminal configuration v, Vp,q € V, Leader(p) = Leader(q) and Leader(p) is the ID of
some process.

e Every execution is finite.

3 Algorithm LE

In this section, we present a silent and self-stabilizing leader election algorithm, called £E. Its formal
code is given in Algorithm 1. Starting from an arbitrary configuration, £E converges to a terminal con-
figuration, where the process of minimum ID, £, is elected. More precisely, in the terminal configuration,
every process p knows the identifier of ¢ thanks to its local variable p.idR; moreover a spanning tree
rooted at £ is defined using two variables per process: par and level. First, £.par = ¢ and f.level = 0.
Then, for every process p # ¢, p.par points to the parent of p in the tree and p.level is the height of p in
the tree.

We present a simple algorithm for the leader election problem in Subsection 3.1. We show why this
algorithm is not self-stabilizing in Subsection 3.2. Then, we explain in Subsection 3.3 how to modify this
simple algorithm to make it self-stabilizing.

3.1 Non Self-Stabilizing Leader Election

We first consider a simplified version of £E. Starting from a predefined initial configuration, it elects ¢
in all ¢dR variables and builds a spanning tree rooted at /.

Initially, every process p declares itself as leader: p.idR = p, p.par = p, and p.level = 0. So, p satisfies
the two following predicates:

Sel f Root(p) = (p.par = p) and Sel f RootOk'(p) = (p.level = 0) A (p.idR = p)

Note that, in the sequel, we say that p is a self root when Sel f Root(p) holds.



Algorithm 1 Algorithm L£E for every process p

Variables
pidR e N
p.par € N, U {p}
p.level € N

p.status € {C,EB, EF}

Macros
Children,, = {q¢eN,|q.par =p}
RealChildren, = {q € Children, | KinshipOk(q,p)}
p=q = (p.idR < q.idR) A [(p.idR = q.idR) = (p < q)]
Min,, = min< {q € N, | ¢.status = C'}
Predicates
Sel f Root(p) p.par = p
Sel f RootOk(p)

GoodIdR(s, f)
GoodLevel(s, f)
GoodStatus(s, f)

KinshipOk(s, )

(p.level = 0) A (p.idR = p) A (p.status = C)
(s.idR > f.idR) A (s.idR < s)
(s.idR = f.idR) = (s.level = f.level + 1)
[(s.status = EB) = (f.status = EB)]
V(s.status = EF) = (f.status # C)]
V[(s.status = C) = (f.status # EF)]
GoodIdR(s, f) N GoodLevel(s, ) A GoodStatus(s, f)

AbRoot(p) [SelfRoot(p) A —Sel f RootOk(p)]
V[=Sel f Root(p) A ~KinshipOk(p, p.par)]
Allowed(p) = Vg € Children,, (~KinshipOk(q,p) = q.status # C)
Guards
EBroadcast(p) = (p.status = C) A [AbRoot(p) V (p.par.status = EB)]
EFeedback(p) = (p.status = EB) A (Vg € RealChildren,,q.status = EF)
Reset(p) = (p.status = EF') A AbRoot(p) A Allowed(p)
Join(p) = (p.status = C) A [3q € N,, (¢.idR < p.idR) A (g.status = C')] A Allowed(p)
Actions
EB-action :: EBroadcast(p) — p.status = EB;
EF-action :: EFeedback(p) —  p.status = EF;
R-action . Reset(p) —  p.status = C;
p.par = p;
p.idR = p;
p.level = 0;
J-action 0 Join(p) A mEBroadcast(p) — p.par = Miny;

p.idR = p.par.idR;
p.level = p.par.level + 1;




From such an initial configuration, our non self-stabilizing algorithm consists in the following single
action:
J-Action’ :: 3q € N, (¢idR < p.idR) — p.par = min<{q € N, };
p.idR = p.par.idR;
p.level = p.par.level 4+ 1;
where Vz,y € V,z Xy < (2.idR < y.idR) A [(z.idR = y.idR) = (z < y)]

Informally, when p discovers that p.idR is not equal to the minimum identifier, it updates its variables
accordingly: let g be the neighbor of p having idR minimal. Then, p selects ¢ as new parent (p.par = ¢
and p.level = p.par.level + 1) and sets p.idR to the value of g.idR. If there are several neighbors having
idR minimal, we break ties using the identifiers of those neighbors.

Hence, the identifier of ¢ is propagated, from neighbors to neighbors, into the idR variables and the
system reaches a terminal configuration in O(D) rounds. Figure 1 shows an example of such an execution.
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(1,0) (7 0 (4,0) (1,0) «—%@@,1)
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(5, 0) (2 0) (1,1) (2,0)
(a) Imitial configuration.  SelfRoot(p) A (b) 4, 5, 6, and 7 have executed J-Action'.
Sel f RootOK' (p) holds for every process p. Note that J-Action’ was not enabled at 2 be-
cause it is a local minimum.
(1,1) (3,1) (1,1) (1,2)

—®
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SN ST
<170> *—®<171>/<172> <170>®4—®<171>/<172>

@ @

(1,1) (1,2) (1,1) (1,2)
(c) 2, 3, and 4 have executed J-Action'. 3 (d) 6 has executed J-Action'. The configura-
joins the tree rooted at 1. However, the new tion is now terminal, { = 1 is elected, and a
value of 3.idR is not yet propagated to its tree rooted at ¢ is available.

child 6.

Figure 1: Example of execution of the non self-stabilizing algorithm. Process identifiers are given inside
the nodes. (z,y) means idR = z and level = y. Arrows represent par pointers. The absence of arrow
means that the process is a self root.

Notice first that for every process p, p.idR is always less than or equal to its own identifier. Indeed,
p.tdR is initialized to p and decreases each time p executes J-Action’. Hence, p.idR = p while p is a self
root and after p executes J-Action’ for the first time, p.idR is smaller than its ID forever.

Second, even in this simplified context, for each two neighbors p and ¢ such that ¢ is the parent of
p, it may happens that p.tdR is greater than ¢.:dR—an example is shown in Figure lc, where p = 6
and ¢ = 3. This is due to the fact that p joins the tree of ¢ but meanwhile ¢ joins another tree and
this change is not yet propagated to p. Similarly, when p.idR # q.idR, p.level may be different from
g.level + 1. According to those remarks, we can deduce that when p.par = ¢ with ¢ # p, we have the
following relation between p and ¢:

GoodIdR(p,q)
GoodLevel(p, q)

(pidR > q.idR) A (p.idR < p)
(p.idR = q.idR) = (p.level = q.level + 1)



3.2 Fake IDs

This previous algorithm is not self-stabilizing. Indeed, in a self-stabilization context, the execution may
start in an arbitrary configuration. In particular, idR variables can be initialized to arbitrary natural
integer values, even values that are actually not IDs of (existing) processes. We call such values fake IDs.

The existence of fake IDs may lead the system to an illegitimate terminal configuration. Refer to the
example of execution given in Figure 2: starting from Configuration 2a, if processes 3 and 4 move, the
system reaches the terminal configuration given in 2b, where there are two trees and the idR variables
elect the fake ID 1.

(L,O) (3,00 (4,0) (1,0) (L,O) (L,1) (1L,1) (1,0)
@6 0 6 O——0B ©O—6
(a) Illegitimate initial configuration, where 2 (b) 3 and 4 executed J-Action’. The config-
and 5 have fake idR. uration is now terminal.

Figure 2: Example of execution that does not converge to a legitimate configuration.

In this example, 2 and 5 can detect the problem. Indeed, predicate Self RootOk’ is violated by both
2 and 5. One may believe that it is sufficient to reset the local state of 2 and 5 using the following action:

R-Action’ :: SelfRoot(p) A —Self RootOk'(p) — p.par = p;p.idR = p;p.level = 0;

Unfortunately, this may lead to an execution that never converges, as shown in Figure 3. Indeed,
if a process resets, it becomes a self root but this does not erase the fake ID in the rest of its subtree.
Then, another process can join the tree and adopt the fake ID which will be further propagated, and so
on. In the example, a process resets while another joins its tree at lower level, and this leads to endless
erroneous behavior, since we do not want to assume any maximal value for level (such an assumption
would otherwise imply the knowledge of some upper bound on n). Therefore, the whole tree must be
reset, instead of its root only. To that goal, we first froze the “abnormal” tree in order to forbid any
process to join it, then the tree is reset top-down. The cleaning mechanism is detailed in the next
subsection.

(1,2) (3,0) (3,0)

(5,0) \@u, 3) (5,0) @)1, 3) (1,6)3) @4, 0)

(2,0)  (1,4) (1,5)  (1,4) (1,5)  (1,4)
(a) Illegitimate initial configura- (b) 2 joins the tree. 3 leaves it. (c) 5 joins the tree. 4 leaves it.
tion.
(1,7) (1, 7) (1,7)
(1.6) \/@<4, 0) (1,6) (1,8) (5,0) () @(1,8)
(1,5)  (6,0) (2,0)  (6,0) (2,0)  (1,9)
(d) Both 3 and 6 move. (e) 4 joins, 2 leaves. (f) Configuration similar to 3a

Figure 3: The first process of the chain of bold arrows violates the predicate SelfRootOk’ and resets
by executing R-Action’, while another process joins its tree. This cycle of resets and joins might never
terminate.



3.3 Cleaning Abnormal Trees

To detect possible errors (on idR, par, or level), we define what is a “good relation” between a parent
and its children. Namely, the predicate KinshipOk'(p,q) models that a process p is a real child of its
parent ¢ = p.par. This predicate holds if and only if GoodLevel(p, q) and GoodIdR(p,q) are true. This
relation defines a spanning forest: a tree is a maximal set of processes connected by par pointers and
satisfying KinshipOE' relation. A process p is a root of such a tree whenever SelfRoot(p) holds or
KinshipOk'(p, p.par) is false. When Sel f Root(p) A Sel f RootOFk'(p) is true, p is a normal root just as
in the non self-stabilizing case (see 3.1). In other cases, there is an error and p is said to be an abnormal
T001:

AbRoot' (p) = (Sel f Root(p) A =Sel f RootOK' (p)) V (—=Sel f Root(p) A ~KinshipOk'(p, p.par))

A tree is called an abnormal tree when its root is abnormal.
We now detail the different predicates and actions of Algorithm 1.

Variable status. Abnormal trees need to be frozen before to be cleaned in order to prevent them from
growing endlessly (see 3.2). This mechanism is achieved using an additional variable, status, that is
used as follows. If a process is clean (i.e., not involved into any freezing operation), then its status is C.
Otherwise, it has status EB or EF and no neighbor can select it as its parent. These two latter states are
actually used to perform a “Propagation of Information with Feedback” [5, 14] into the abnormal trees.
Therefore, status EB means “Error Broadcast” and FF means “Error Feedback”. From an abnormal
root, the status EB is broadcast down in the tree. Then, once the EB wave reaches a leaf, the leaf
initiates a convergecast E'F-wave. Once the EF-wave reaches the abnormal root, the tree is considered
to be dead, meaning that there is no process of status C in the tree and no other process can join it. So,
the tree can be safely reset from the abnormal root toward the leaves.

Notice that the new variable status may also get arbitrary initialization. Thus, we enforce previously
introduced predicates as follows.

A self root must have status C, otherwise it is an abnormal root:

Sel f RootOk(p) = Sel f RootOK' (p) A (p.status = C')

To be a real child of ¢, p should have a status coherent with the one of ¢q. This is expressed with the
predicate GoodStatus(p, q), which is used to enforce the KinshipOk(p, q) relation:

GoodStatus(p,q) = [(p.status = EB) = (q.status = EB)]V [(p.status = EF) = (q.status # C)] V
[(p.status = C) = (g.status # EF)]
KinshipOk(p,q) = KinshipOK (p,q) A GoodStatus(p,q)

Precisely, when p has status C, its parent must have status C or EB (if the EB-wave is not propagated
yet to p). If p has status E'B, its parent must be of status EB because p gets status EB from its parent
and its parent will change its status to EF only after p gets status EF. Finally, if p has status E'F, its
parent can have status EB (if the EF-wave is not propagated yet to its parent) or E'F.

Normal Execution. Remark that, after all abnormal trees have been removed, all processes have
status C and the algorithm works as in the initial version. Notice that the guard of J-action has been
enforced so that only processes with status C' and which are not abnormal root can execute it, and
when executing J-action, a process can only choose a neighbor of status C' as parent. Moreover, remark
that the cleaning of all abnormal trees does not ensure that all fake IDs have been removed. Rather, it
guarantees the removal of all fake IDs smaller than ¢. This implies that (at least) £ is a self root at the
end of the cleaning and all other processes will elect ¢ within the next D rounds.

Cleaning Abnormal Trees. Figure 4 shows how an abnormal tree is cleaned. In the first phase (see
Figure 4a), the root broadcasts status EB down to its (abnormal) tree: all the processes in this tree
execute F B-action, switch to status EB and are consequently informed that they are in an abnormal
tree. The second phase starts when the E B-wave reaches a leaf. Then, a convergecast wave of status
EF is initiated thanks to action EF-action (see Figure 4b). The system is asynchronous, hence all



the processes along some branch can have status FF before the broadcast of the EB-wave is done into
another branch. In this case, the parent of these two branches waits that all its children in the tree
(processes in the set RealChildren) get status EF before executing EF-action (Figure 4c). When the
root gets status E'F, all processes have status EF: the tree is dead. Then (third phase), the root can
reset (safely) to become a self root by executing R-action (Figure 4e). Its former real children (of status
EF) become themselves abnormal roots of dead trees (Figure 4f) and reset, etc.

Finally, we used the predicate Allowed(p) to temporarily lock the parent of p in two particular
situations — illustrated in Figure 5 — where p is enabled to switch its status from C' to EB. These locks
impact neither the correctness nor the complexity of £LE. Rather, they allow us to simplify the proofs
by ensuring that, once enabled, E B-action remains continuously enabled until executed.

4 Correctness and Complexity Analysis

In this section, we first define some concepts which will be used in the proofs (Subsection 4.1). Then, we
show in Subsection 4.2 that Algorithm L& is self-stabilizing and silent for the leader election, assuming a
distributed unfair daemon. Along the proof, we also establish a bound on its stabilization time in steps,
namely O(n?). Finally, we study more precisely the complexity of £& in Subsection 4.3 (in particular,
we give its complexity in rounds).

4.1 Some definitions
First, we instantiate the function Leader(p) used in the specification of the leader election (Section 2.5).
Definition 1 (Leader). For each process p, for every configuration -, the value Leader(p) in « is p.idR.

Note that the value of Leader(p) depends on the current configuration . Nevertheless, when it is
clear from the context, we omit the mention to . This will be also the case for every predicates and
notations used in the sequel.

We now recall some definitions and notations from graph theory. A path P, from py, to pg is a sequence
of processes py, pk—1,- - -, po such that p,_1 € N, for all i in {1, ...,k}. Nodes p; and py are respectively
called the initial and terminal extremity of P. The length of P, denoted by |P|, is equal to k. We call
cycle any path pg,pr_1,...,po such that pg = pi. The distance between two processes p and ¢, denoted
lp, ql|, is equal to the length of the shortest path between p and ¢q. The diameter of the network, denoted
D, is the maximum distance between any two processes.

The rest of the paragraph is dedicated to introducing and justifying the notion of trees induced by
the KinshipOk relation. We first show that the predicate KinshipOFk is an acyclic relation. To that
goal, we define the graph induced by the KinshipOk relation.

Definition 2 (Kinship Relation Graph). For some configuration ~, let G, = (V, KR) be a directed
graph such that (p,q) € KR < ({p,q} € E) A (p.par = q) N KinshipOk(p, q). Gy, is called the graph of
kinship relations in ~.

We first show that G, is a DAG (Directed Acyclic Graph). We recall, path and cycle naturally
extend to directed graph, i.e., a (directed) path P in Gy, is a sequence of processes py, px—1, - - -, Po such
that (pi+1,pi) € KR, for all 7 in {0, vy kb — 1}.

Lemma 1. Let v be a configuration. The graph of kinship relations in v contains no cycle.

Proof. By definition, for all pairs of processes p, ¢ such that KinshipOk(p,q) holds, we have: p.idR >
q-idR and p.idR = q.idR = p.level = q.level + 1. Hence, the processes along any path in Gy, are ordered
w.r.t. the strict lexical order on the pair (idR,level). The result directly follows. O

Hence G, is a DAG (Directed Acyclic Graph) and even a spanning forest since the condition p.par = ¢
implies at most one successor per process in K R. Below, we define the roots and trees of this spanning
forest.

Definition 3 (Root). For some configuration v, a process p satisfies Root(p) (and is called a root in )
if and only if Sel f Root(p) V AbRoot(p), or equivalently Sel f Root(p) V - KinshipOk(p, p.par) holds in +.



(a) When an abnorfnal root detects an error, it exe-
cutes EB-action. The EB-wave is broadcast to the
leaves. Here, 6 is an abnormal root because it is a
self root and its idR is different from its,ID (1 # 6).

(c¢) It may happen that the EF-wave reaches a node,
here process 5, even though the EFB-wave is still
broadcasting into some of its proper subtrees: 5
must wait that the status of 4 and 7 become EF
before executing E F-action.

VAN

A R-action

(e) EF-wave reaches the root. The root can safely
reset (R-action) because its tree is dead. The clean-
ing wave is propagated down to the leaves.

(b) When the EB-wave reaches a leaf, it executes
EF-action. The EF-wave is propagated up to the
root.

(d) EB-wave has been propagated in the other
branch. An EF-wave is initiated by the leaves.

R-action,

(f) Its children become themselves abnormal roots
of dead trees and can execute R-action: 2 and 8 can
clean because their status is FF' and their parent
has status C.

Figure 4: Schematic example of the cleaning mechanism. Trees are filled according to the status of their

processes: white for C, dashed for EB, gray for EF.
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(a) 4 and 9 are abnmormal roots. If 4 executes
R-action before 9 executes E B-action, the kinship
relation between 4 and 9 becomes correct and 9 is

no more an abnormal root. Then, EB-action is no
more enabled at 9.

(b) 9 is an abnormal root and Ming is 6. If
4 executes J-action before 9 executes E B-action,
the kinship relation between 4 and 9 becomes cor-
rect and 9 is no more an abnormal root. Then,
EB-action is no more enabled at 9.

Figure 5: Example of situations where the parent of a process is locked.

Next, we define the paths, called K Paths, that follow the tree structures in Gy, i.e., the paths
linking each process to the root of its own tree.

Definition 4 (KPath). For every process p, K Path(p) is the unique path pg,p1, ..., px such that pp = p
and satisfying the following conditions:

o Vi,1 <i <k, (pi-par = pi—1) A KinshipOk(p;, pi—1)
e Root(pg)
Using Definitions 3 and 4, we formally define trees as follows.

Definition 5 (Tree). For some configuration ~, for every process p such that Root(p), we define Tree(p),
the tree rooted at p, as follows:

Tree(p) = {q € V | p is the initial extremity of K Path(q)}

This means, in particular, that we identify each tree with the ID of its root.

We give in Observation 1 an invariant on KPaths when looking at the status of the processes. This
property is based on the notion of S-Trace defined below.

Definition 6 (S-Trace). For some configuration ~, for a sequence of processes po, p1, ..., Pk, we define
S-Trace(po,p1,---,pk) € {C, EB, EF}* as the sequence (pg.status).(p1.status) ... (pg.status) in .

Observation 1. For any configuration, we have: ¥p € V, S-Trace(K Path(p)) € EB*C* U EB*EF*.

Proof. Let p be a process. If |K Path(p)| = 1, Observation 1 trivially holds. For |K Path(p)| > 2, assume
by contradiction that S-Trace(K Path(p)) ¢ EB*C* U EB*EF*. Then 3s, f € KPath(p) such that
s.par = f and S-Trace(f,s) € {C.EB,C.EF,EF.EB,EF.C}. In all cases, ~GoodStatus(s, f) holds,
which in turns implies that =KinshipOk(s, f). This contradicts Definition 4. O

4.2 Correctness

To prove the self-stabilization of Algorithm £& under an unfair daemon, we first show that any execution
is finite (Theorem 1) and then we show that in any terminal configuration, there is a unique leader: for
every two processes, p and ¢, we have Leader(p) = Leader(q) and Leader(p) is the ID of some process
(Theorem 2).
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4.2.1 Termination of L&

The goal, here, is to show that any execution contains a finite number of steps. We first partition a given
execution into a finite number of segments (Lemma 4), see Fig. 6. Then, we prove that each segment
contains a finite number of J-actions (Lemma 10). This latter result implies that every execution contains
a finite number of J-actions (Corollary 2). Then, we show, in Lemma 11 and Corollary 3, that every
execution contains a finite number of other actions. This allows us to conclude in Theorem 1 that every
execution contains a finite number of steps.

Abnormal Trees. First, we introduce some notions that refine the concept of trees.

Definition 7 (Normal/Abnormal Tree). For every configuration v and every process p, any tree rooted
at p such that —~AbRoot(p) in v is called a normal tree. In this case, Sel f Root(p) A Sel f RootOk(p) holds
in v, by Definition 3. Any tree that is not normal is simply said to be abnormal.

Definition 8 (Alive/Dead). Let v be a configuration. A process p is called alive in + if and only if
~v(p).status = C. Otherwise, p is said to be dead. A tree rooted at some process r, Tree(r), in -y is called
an alive tree in v if and only if Ip € Tree(r) such that p is alive in v. Otherwise, it is called a dead tree.

Definition 9 (Leave/Join a Tree). Let v — ' be a step. If a process p is in a tree T in 7, but in a
different tree 7" in +' (namely, the roots of T" and 7" are different), we say that p leaves T and joins T”
in vy~

Remark 1. No process can join a dead tree.
Lemma 2. No alive abnormal root can be created.

Proof. Let p be a process which is not an alive abnormal root in some configuration . This means
that p is dead, or p is a normal root (SelfRoot(p) A SelfRootOk(p) holds in v), or p is not a root
(KinshipOk(p, p.par) holds in 7).

Let v — 4 be a step. If p executes EB-action (respectively EF-action) during the step v +— v then
v (p).status = EB (respectively ' (p).status = EF) and, consequently, p is dead in +’.

If p executes R-action, Sel f Root(p) A Sel f RootOk(p) holds in 4'. So, p is a normal root in ~'.

If p executes J-action, let ¢ = Min, in . By definition of J-action, v(q).status = C, y(p).status =
~'(p).status = C and (p).idR < p (since p is not an abnormal root at 7). Also, ~Sel f Root(p) holds in

.

e If ¢ does not move in v — «/, then ~/'(p).par = q, v'(q).status = C = ~/(p).status, v'(p).level =
v(q).level + 1 = ~/(q).level + 1, v'(p).idR = ~(q).idR = ~'(¢).idR < ~(p).idR < p. Hence,
KinshipOk(p, p.par) is true in 4. Now, we already know that —Sel f Root(p) holds in +'. Thus,
=Sel f Root(p) N KinshipOk(p, q) holds in +': p is not a root in 4', by Definition 3.

e Assume now that ¢ moves in v — ~'. As ~v(q).status = C, ¢ can ounly execute EB-action or
J-action in the step. Consequently, 7'(¢).tdR < ~(q).idR.
Then, v/ (p).idR = v(q).idR > +'(q).idR and 7' (p).idR = y(q).idR < ¥(p).idR < p. So, GoodIdR(p, q)
holds in +'.
If g executes J-action, v/ (p).idR # ' (q).idR. Otherwise, 7'(p).idR = 7'(q).idR and +/(p).level =
v(q).level + 1 = ~'(q).level + 1. So GoodLevel(p, q) holds in ~'.
Finally, v/ (p).status = vy(p).status = C and +/(q).status € {C, EB}, so GoodStatus(p, q) holds in
v
Thus, —Sel f Root(p) N KinshipOk(p, q) holds in v and, so, p is not a root in ', by Definition 3.

Assume now that p executes no action in the step v — +’. The only way for p to become an alive
abnormal root is that v(p).par moves during the step, since the property “alive abnormal root” only
depends on p and p.par. Furthermore, as p is not an alive abnormal root, when p is a normal root in -,
it stays so, in v'.

Therefore, let us consider the case when p is not a root in v and ~y(p).par moves. As p changes
none of its variables, the only way for it to become an alive abnormal root is to have status C in
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and thus in 7. As GoodStatus(p,p.par) holds in +, this implies that the status of vy(p).par is either
EB or C. Looking at case EB, p is a real child of p.par in v with status C; hence EF-action is
disabled for p.par in . Looking at case C, p.par can execute F B-action and can change only its status
to EB in v — +': GoodStatus(p,p.par) holds in 4’ and consequently KinshipOk(p,p.par) holds in
~'. p.par can also execute J-action in v — +'. This means that in v and 4/, p.par has status C,
hence GoodStatus(p,p.par) holds in +/. Furthermore, p.par has a smaller value of idR in +/, hence
GoodIdR(p,p.par) and GoodLevel(p,p.par) are satisfied in 4/, and consequently KinshipOk(p, p.par)
holds in +'. O

Lemma 3. No alive abnormal tree can be created.

Proof. Let v — ~' a step. Let p € V. Assume there is no alive abnormal tree rooted at p in v. In
particular, p is not an alive abnormal root in . Then, assume, by contradiction, that Tree(p) exists and
is an alive abnormal tree in ~'.

e If 7/(p).status = EF, then every process in the tree has status EF (Observation 1) and the tree is
dead, a contradiction.

e If v'(p).status = C, then p is an alive abnormal root in 7/. But no alive abnormal root is created
(Lemma 2), a contradiction.

e If v/(p).status = EB. Then, according to the algorithm, there are two possible cases:

v(p).status = EB:

— If AbRoot(p) holds in v, then Tree(p) is dead in ~ (otherwise, Tree(p) is an abnormal
alive tree in v, a contradiction). By the definition of J-action, no process can join Tree(p)
in v — /. Moreover, as y(p).status = EB, no process ¢ in Tree(p) satisfies Reset(q) in
v, by Observation 1. Consequently, no process can leave Tree(p) in v — ~'. So, every
process in Tree(p) still have status FF or EB in v/, i.e. Tree(p) is still dead in v/, a
contradiction.

— If =AbRoot(p) holds in v, then p does not satisfy Sel f Root(p), otherwise Sel f RootOk(p)
implies that v(p).status = C, a contradiction. So, let ¢ = ~y(p).par € N,. ~AbRoot(p)
in 7 implies that ¢.status = EB and KinshipOk(p,q) in . This latter also implies that
p € RealChildreng in v. Now, p € RealChildren, and p.status = EB in « implies that
q is disabled in . Moreover, as +'(p).status = EB, p does not execute any action in
v = v". So, =AbRoot(p) still holds in v/, a contradiction.

v(p).status = C: Then, ~AbRoot(p) holds in v (otherwise p is an abnormal alive root in ). Then,
p executes FB-action in v — v to get status EB. So, EBroadcast(p) A mAbRoot(p) implies
that p.par # p and p.par.status = EB in v. So, let ¢ = v(p).par € N,. Now p.par # p A
—AbRoot(p) implies that KinshipOk(p,q) in . So, p € RealChildren, and, as p.status = C
and ¢.status = EB in v, q is disabled in . Moreover, as v/(p).status = EB, p necessarily
executes EB-action in v — v/, which only changes its status to EB. So, =AbRoot(p) still
holds in v/, a contradiction.

O

Finite Number of J-actions. To show that every process p executes only a finite number of J-actions,
we prove below that p can only execute a finite number of J-actions in each segment of execution — a
segment being separated from its follower by the death or the disappearance of some tree.

Definition 10 (Disappear/Die). Let v — 4 be some step and let p be a process such that Root(p) in
7.

Tree(p) disappears during the step v — +' if and only if Tree(p) is no more defined in 4/ — namely
Root(p) does not hold in ~'.

Tree(p) dies during the step v — 4/ if and only if Tree(p) is alive in v, yet T'ree(p) exists — namely
Root(p) holds — and is dead in ~'.
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a tree dies or disappears

Figure 6: Segments of execution

Definition 11 (Segment of execution). Let e = vyy1 ... be any execution. €' = ~;...7; is a segment
of execution e (segment, for short) if and only if ¢’ is a maximal factor of e, where no tree dies nor
disappears.

Figure 6 illustrates Definition 11. We now show that the number of segments is finite.
Lemma 4. There are at most n + 1 segments in any execution.

Proof. In the initial configuration, there are at most n abnormal roots (every process) and, consequently,
at most n abnormal trees. As no alive abnormal tree can be created (Lemma 3), if an abnormal tree is
alive, then it is alive since the initial configuration. So, there is at most n trees that die or disappear
and, consequently, there are at most n 4 1 segments in the execution. O

We now count the number of J-actions processes can execute in a given segment. For that purpose,
we first need to prove intermediate lemmas that identify properties on computation steps.

Observation 2. Let v be a configuration and let p a process such that Reset(p) is true in . Then
Tree(p) exists and is dead in 7.

Proof. Let v be a configuration and let p be a process such that Reset(p) is true in . By definition,
AbRoot(p) holds in v, hence Tree(p) is defined in . Furthermore, v(p).status = EF: by Observation 1,
every process in Tree(p) has status EF in v, and we are done. O

Lemma 5. Let v+ 7' be a step and let p be a process such that p.status € {EB, EF} in . We note
r the root of the tree which contains p in v. Tree(r) is an abnormal tree in . And if Tree(r) does not
disappear during the step v — ', p is still in Tree(r) in v unless Tree(r) was dead in 7.

Proof. Let v +— ' be a step and let p be a process such that p.status € {EB, EF'} in 7. We note r the
root of the tree containing p in y. As S-Trace(K Path(p)) € EB*EF*, by Observation 1, the status of
r in v is either EF or EB. Hence AbRoot(r) holds in v: Tree(r) is an abnormal tree in .

Assume now that Root(r) holds in 4" (the tree does not disappear during the step). If r executes
R-action in v — +', Observation 2 applies in v and proves that Tree(r) is dead in .

If  does not (or cannot) execute R-action, its only possible action is FF-action. As Root(r) holds
in 4/, r is still abnormal root in 4’. Let then ¢ € KPath(p) in v with ¢ # r. By Observation 1,
~v(q).status € {EB, EF} also. If v(q).status = EB, q can only execute EF-action and if v(q).status =
EF, qis disabled, as ¢ # r. Executing E'F-action preserves GoodStatus and hence KinshipOk relations.
Therefore, the K Path from p to r is the same in v and +" and then p € Tree(r) in 7. O

Lemma 6. Let p be a process and let v — +' be step. If p is an abnormal root of status C in v, then it
is still an abnormal root in +'.

Proof. Let v — +' be step and let p be a process such that AbRoot(p) A p.status = C in ~: p can only
execute FEB-action. Therefore, v/ (p).status € {C, EB} and every other variable of p has identical value
in v and +/'.

So, if Sel f Root(p) holds in v, then —Sel f RootOk(p) in v, and Sel f Root(p) A —Sel f RootOk(p) still
holds in +'.

Otherwise, —SelfRoot(p) holds in ~, i.e., p.par # p. Then, =SelfRoot(p) still holds in +'. Let
g = v(p).par and consider the following cases:

v(q).status = EF: Then, ~GoodStatus(p,q) holds in ~, which implies ~KinshipOk(p,q) holds in ~.
However, p € Childreng in . So, —Allowed(q) holds in +y, and ¢ is disabled. So, ~'(p).status €
{C, EB} and +/(q).status = EF, which implies ~GoodStatus(p,q) in v'. Thus, ~KinshipOk(p, q)
holds in +'.
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v(q).status = EB: Then, GoodStatus(p,q) holds in v. So, AbRoot(p) in v implies that ~GoodIdR(p, q)V
—GoodLevel(p,q) holds in 4. Now, ¢ can only executes EF-action in v — +'. So, neither p
nor ¢ modify their variables par, idR, or level in v — ', and, consequently, ~GoodIdR(p,q) V
—GoodLevel(p, q) still holds in 4'. So, =KinshipOk(p,q) holds in +’.

~v(q).status = C: AbRoot(p) in ~ implies that -~ KinshipOk(p, q) holds in v. Thus, ~Allowed(q) holds
in v because p € Children, and p.status = C in v. So, ¢ cannot execute J-action in vy — +'.

Then, as v(q).status = C A y(p).status = C, GoodStatus(p,q) holds in v. So, AbRoot(p) in ~
implies that ~GoodIdR(p,q) V -GoodLevel(p,q) holds in . As p and ¢ can only modify their
status in v — 4’ (¢ can only execute EB-action in v+ v'), =GoodIdR(p,q) V ~GoodLevel(p, q)
still holds in v'. So, ~KinshipOk(p,q) holds in 7.

In any cases, =KinshipOk(p, q) holds in v'. As —SelfRoot(p) holds in v/, AbRoot(p) holds in +'. O

Lemma 7. Let v be a configuration and let p be a process such that p.status € {EB,EF} in ~v. We
note v the root of the tree which contains p in . Let yg be the first configuration, if any, after v, such
that p executes an R-action yr — Yry1.

Assume R exists, then Tree(r) is dead in yr or has disappeared (at least once) between ~v and vg.

Proof. Let v be a configuration and let p be a process such that p.status € {EB, EF} in 7. We note r
the root of the tree which contains p in . Let v = vg7y;... be an execution starting at . Let v be the
first configuration, if any, in this execution such that p executes an R-action during the step yg — Yry1-

For every configuration v,, z € {0, ..., R — 1}, the status of p is EB or EF. Hence, Lemma 5 applies
iteratively in ~,: either Tree(r) disappears during the step 7, — Vz+1, or, if not, p € Tree(r) in vz11.
Hence, in ~g, either Tree(r) has disappeared or, if not, p € Tree(r).

When p € Tree(r) in g, by assumption, p executes an R-action between vg and vg41. Hence,
AbRoot(p) holds in yr and thus p = r. Furthermore, Observation 2 applies and proves that T'ree(r) is
dead in yg. O

Lemma 8. Let p be a process and let v — ' be a step. We note r the root of the tree which contains p
in v. If EBroadcast(p) holds in vy, then Tree(r) is an abnormal alive tree in v and if T