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Abstract

In this paper, we propose a silent self-stabilizing leader election algorithm for bidirectional con-
nected identi�ed networks of arbitrary topology. This algorithm is written in the locally shared
memory model. It assumes the distributed unfair daemon, the most general scheduling hypothesis
of the model. Our algorithm requires no global knowledge on the network (such as an upper bound
on the diameter or the number of processes, for example).

We show that its stabilization time is in Θ(n3) steps in the worst case, where n is the number
of processes. Its memory requirement is asymptotically optimal, i.e., Θ(logn) bits per processes.
Its round complexity is of the same order of magnitude � i.e., Θ(n) rounds � as the best existing
algorithm [8] designed with similar settings (i.e., it does not use global knowledge and is proven
under the unfair daemon).

To the best of our knowledge, this is the �rst self-stabilizing leader election algorithm for arbitrary
identi�ed networks that is proved to achieve a stabilization time polynomial in steps. By contrast,
we show that the previous best existing algorithm designed with similar settings [8] may stabilize in
a non polynomial number of steps.

Keywords: Distributed algorithms, fault-tolerance, self-stabilization, leader election, unfair daemon.

1 Introduction

In distributed computing, the leader election problem consists in distinguishing one process, so-called the
leader, among the others. We consider here identi�ed networks. So, as it is usually done, we augment
the problem by requiring all processes to eventually know the identi�er of the leader. The leader election
is fundamental as it is a basic component to solve many other important problems, e.g., consensus,
spanning tree constructions, implementing broadcasting and convergecasting methods, etc.

Self-stabilization [9, 10] is a versatile technique to withstand any transient fault in a distributed
system: a self-stabilizing algorithm is able to recover, i.e., reach a legitimate con�guration, in �nite
time, regardless the arbitrary initial con�guration of the system, and therefore also after the occurrence
of transient faults. Thus, self-stabilization makes no hypotheses on the nature or extent of transient
faults that could hit the system, and recovers from the e�ects of those faults in a uni�ed manner. Such
versatility comes at a price. After transient faults, there is a �nite period of time, called the stabilization
phase, before the system returns to a legitimate con�guration. The stabilization time is then the worst
case duration of the stabilization phase, i.e., the maximum time to reach a legitimate con�guration
starting from an arbitrary one. Notice that e�ciency of self-stabilizing algorithms is mainly evaluated
according to their stabilization time and memory requirement.

We consider the (deterministic)1 asynchronous silent self-stabilizing leader election problem in bidi-
rectional, connected, and identi�ed networks of arbitrary topology. We investigate solutions to this
problem which are written in the locally shared memory model introduced by Dijkstra [9]. In this model,

∗This work has been partially supported by the LabEx PERSYVAL-Lab (ANR-11-LABX-0025-01) funded by the French
program Investissement d'avenir.

1We only consider here deterministic algorithms.
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the (distributed) unfair daemon is known as the weakest scheduling assumption. Now, proving the self-
stabilization of a given algorithm under such an assumption implies that the stabilization time is �nite
in terms of (atomic) steps. However, despite some solutions assuming all these settings (in particular
the unfairness assumption) are available in the literature [6, 7, 8], none of them is proven to achieve a
polynomial upper bound in steps on its stabilization time. Rather, the time complexities of all these
solutions are analyzed in terms of rounds only.

Related Work. In [11], Dolev et al showed that the silent self-stabilizing leader election requires
Ω(log n) bits per process, where n is the number of processes. Self-stabilizing leader election algorithms
for arbitrary connected identi�ed networks have been proposed in the message-passing model [1, 3, 4].
First, the algorithm of Afek and Bremler [1] stabilizes in O(n) rounds using Θ(log n) bits per process.
But, it assumes that the link-capacity is bounded by a value B, known by all processes. Two solutions
that stabilize in O(D) rounds, where D is the diameter of the network, have been proposed in [3, 4].
However, both solutions assume that processes know some upper bound D on the diameter D; and have
a memory requirement in Θ(logD log n) bits.

Several solutions are also given in the shared memory model [12, 2, 6, 7, 8, 13]. The algorithm
proposed by Dolev and Herman [12] is not silent, works under a fair daemon, and assume that all
processes know a bound N on the number of processes. This solution stabilizes in O(D) rounds using
Θ(N logN) bits per process. The algorithm of Arora and Gouda [2] works under a weakly fair daemon
and assume the knowledge of some bound N on the number of processes. This solution stabilizes in
O(N) rounds using Θ(logN) bits per process.

Datta et al [6] propose the �rst self-stabilizing leader election algorithm (for arbitrary connected
identi�ed networks) proven under the (distributed) unfair daemon. This algorithm stabilizes in O(n)
rounds. However, the space complexity of this algorithm is unbounded. (More precisely, the algorithm
requires each process to maintain an unbounded integer in its local memory.)

Solutions in [7, 8, 13] have a memory requirement which is asymptotically optimal (i.e. in Θ(log n)).
The algorithm proposed by Kravchik and Kutten [13] assumes a synchronous daemon and the stabiliza-
tion time of this latter is in O(D) rounds. The two solutions proposed by Datta et al in [7, 8] assume
a distributed unfair daemon and have a stabilization time in O(n) rounds. However, despite these two
algorithms stabilize within a �nite number of step (indeed, they are proved assuming an unfair daemon),
no step complexity analysis is proposed. Finally, note that the algorithm proposed in [7] assumes that
each process has a bit of memory which cannot be arbitrarily corrupted.

Contribution. We propose a silent self-stabilizing leader election algorithm for arbitrary connected and
identi�ed networks. Our solution is written in the locally shared memory model assuming a distributed
unfair daemon, the weakest scheduling assumption. Our algorithm assumes no knowledge of any global
parameter (e.g., an upper bound on D or n) of network. Like previous solutions of the literature [7, 8],
it is asymptotically optimal in space (i.e., it works using Θ(log n) bits per process), and it stabilizes
in Θ(n) rounds in the worst case. Yet, contrary to those solutions, we show that our algorithm has a
stabilization time in Θ(n3) steps in the worst case.

For fair comparison, we have also studied the step complexity of the algorithm, noted here DLV,
given in [8]. This latter is the closest to ours in terms of performance. We show that its stabilization
time is not polynomial, i.e., there is no constant α such that the stabilization time of DLV is in O(nα)
steps. More precisely, we show that �xing α to any constant greater than or equal to 3, for every β ≥ 2,
there exists a network of n = 2α−3 × 8 × β processes in which there exists a possible execution that
stabilizes in Ω(nα+1) steps.

Roadmap. The next section is dedicated to computational model and basic de�nitions. In Section 3,
we propose our self-stabilizing leader election algorithm. We prove its correctness in Section 4. In the
same section, we also study its stabilization time in both steps and rounds. We show that the stabilization
time of the self-stabilizing leader election algorithm given in [8] is not polynomial in steps in Section 5.
We conclude in Section 6.
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2 Computational model

2.1 Distributed systems

We consider distributed systems made of n processes. Each process can communicate with a subset of
other processes, called its neighbors. We denote by Np the set of neighbors of process p. Communications
are assumed to be bidirectional, i.e. q ∈ Np if and only if p ∈ Nq. Hence, the topology of the system
can be represented as a simple undirected connected graph G = (V,E), where V is the set of processes
and E is a set of edges representing (direct) communication relations. We assume that each process
has a unique ID, a natural integer. IDs are stored using a constant number of bits, b. As commonly
done in the literature, we assume that b = Θ(log n). Moreover, by an abuse of notation, we identify a
process with its ID, whenever convenient. We will also denote by ` the process of minimum ID. (So, the
minimum ID will be also noted `.)

2.2 Locally shared memory model

We consider the locally shared memory model, in which the processes communicate using a �nite number
of locally shared registers, called variables. Each process can read its own variables and those of its
neighbors, but can write only to its own variables. The state of a process is the vector of the values
of all its variables. A con�guration γ of the system is the vector of the states of all processes. We
denote by γ(p) the state of the process p in the con�guration γ. We denote by C the set of all possible
con�gurations.

A distributed algorithm consists of one program per process. The program of a process p is a �nite
set of actions of the following form:

〈label〉 :: 〈guard〉 → 〈statement〉

The labels are used to identify actions. The guard of an action in the program of process p is a Boolean
expression involving the variables of p and its neighbors. If the guard of some action evaluates to true,
then the action is said to be enabled at p. By extension, if at least one action is enabled at p, p is said
to be enabled. We denote by Enabled(γ) the set of processes enabled in con�guration γ. The statement
of an action is a sequence of assignments on the variables of p. An action can be executed only when it
is enabled. In this case, the execution of the action consists in executing its statement.

The asynchronism of the system is materialized by an adversary, called the daemon. In a con�guration
γ, if Enabled(γ) 6= ∅, then the daemon selects a non empty subset S of Enabled(γ) to perform an atomic
step: ∀p ∈ S, p atomically executes one of its actions enabled in γ, leading the system to a new
con�guration γ′. We denote by 7→ the relation between con�gurations such that γ 7→ γ′ if and only if γ′

can be reached from γ in one atomic step. An execution is then a maximal sequence of con�gurations
γ0, γ1, . . . such that γi−1 7→ γi,∀i > 0. The term �maximal� means that the execution is either in�nite,
or ends at a terminal con�guration γ in which Enabled(γ) is empty.

As we saw previously, each step from a con�guration to another is driven by a daemon. In this paper,
the daemon is supposed to be distributed and unfair. �Distributed� means that while the con�guration is
not terminal, the daemon should select at least one enabled process, maybe more. �Unfair� means that
there is no fairness constraint, i.e., the daemon might never permit an enabled process to execute, unless
it is the only enabled process.

2.3 Rounds

To measure the time complexity of an algorithm, we also use the notion of round. This latter allows to
highlight the execution time according to the speed of the slowest process. If a process p is enabled in a
con�guration γi but not enabled in the next con�guration γi+1 and does not execute any action between
γi and γi+1, we said that p is neutralized during the step γi 7→ γi+1. Neutralization of p is caused by
the following situation: at least one neighbor of p changes its state between γi and γi+1, and this change
makes the guards of all actions of p false. The �rst round of an execution e, noted e′, is the minimal
pre�x of e in which every process that is enabled in the initial con�guration either executes an action
or becomes neutralized. Let e′′ be the su�x of e starting from the last con�guration of e′. The second
round of e is the �rst round of e′′, and so forth.
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2.4 Self-Stabilization

Let A be a distributed algorithm. Let E be the set of all possible executions of A. A speci�cation SP is
a predicate over E .
A is self-stabilizing for SP if and only if there exists a non-empty subset of con�gurations L ⊆ C,

called legitimate con�gurations, such that:

• Closure: ∀e ∈ E , for each step γi 7→ γi+1 ∈ e, γi ∈ L ⇒ γi+1 ∈ L.

• Convergence: ∀e ∈ E ,∃γ ∈ e such that γ ∈ L.

• Correction: ∀e ∈ E such that e starts in a legitimate con�guration γ ∈ L, e satis�es SP .

The stabilization time is the maximum time (in steps or rounds) to reach a legitimate con�guration
starting from any con�guration.

2.5 Self-Stabilizing Leader Election

We de�ne SPLE(e) the speci�cation of the leader election problem. Let Leader : V 7→ N be a function
de�ned on the state of any process p ∈ V in the current con�guration that returns the ID of the leader
appointed by p. SPLE(e) is true if and only if:

1. For all con�guration γ ∈ e, ∀p, q ∈ V,Leader(p) = Leader(q) and Leader(p) is the ID of some
process in V .

2. For all step γi 7→ γi+1 ∈ e, ∀p ∈ V , Leader(p) has the same value in γi and γi+1.

A is silent if and only if every execution is �nite [11]. Let γ be a terminal con�guration. The set
of all possible executions starting from γ is the singleton {γ}. So, if A is self-stabilizing and silent, γ
must be legitimate. Thus, to prove that a leader election algorithm is both self-stabilizing and silent, it
is necessary and su�cient to show that:

• In every terminal con�guration γ, ∀p, q ∈ V , Leader(p) = Leader(q) and Leader(p) is the ID of
some process.

• Every execution is �nite.

3 Algorithm LE
In this section, we present a silent and self-stabilizing leader election algorithm, called LE . Its formal
code is given in Algorithm 1. Starting from an arbitrary con�guration, LE converges to a terminal con-
�guration, where the process of minimum ID, `, is elected. More precisely, in the terminal con�guration,
every process p knows the identi�er of ` thanks to its local variable p.idR; moreover a spanning tree
rooted at ` is de�ned using two variables per process: par and level. First, `.par = ` and `.level = 0.
Then, for every process p 6= `, p.par points to the parent of p in the tree and p.level is the height of p in
the tree.

We present a simple algorithm for the leader election problem in Subsection 3.1. We show why this
algorithm is not self-stabilizing in Subsection 3.2. Then, we explain in Subsection 3.3 how to modify this
simple algorithm to make it self-stabilizing.

3.1 Non Self-Stabilizing Leader Election

We �rst consider a simpli�ed version of LE . Starting from a prede�ned initial con�guration, it elects `
in all idR variables and builds a spanning tree rooted at `.

Initially, every process p declares itself as leader: p.idR = p, p.par = p, and p.level = 0. So, p satis�es
the two following predicates:

SelfRoot(p) ≡ (p.par = p) and SelfRootOk′(p) ≡ (p.level = 0) ∧ (p.idR = p)

Note that, in the sequel, we say that p is a self root when SelfRoot(p) holds.
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Algorithm 1 Algorithm LE for every process p

Variables

p.idR ∈ N
p.par ∈ Np ∪ {p}
p.level ∈ N
p.status ∈ {C,EB,EF}

Macros
Childrenp ≡ {q ∈ Np | q.par = p}
RealChildrenp ≡ {q ∈ Childrenp | KinshipOk(q, p)}
p � q ≡ (p.idR ≤ q.idR) ∧ [(p.idR = q.idR)⇒ (p ≤ q)]
Minp ≡ min� {q ∈ Np | q.status = C}

Predicates
SelfRoot(p) ≡ p.par = p
SelfRootOk(p) ≡ (p.level = 0) ∧ (p.idR = p) ∧ (p.status = C)
GoodIdR(s, f) ≡ (s.idR ≥ f.idR) ∧ (s.idR < s)
GoodLevel(s, f) ≡ (s.idR = f.idR)⇒ (s.level = f.level + 1)
GoodStatus(s, f) ≡ [(s.status = EB)⇒ (f.status = EB)]

∨[(s.status = EF )⇒ (f.status 6= C)]
∨[(s.status = C)⇒ (f.status 6= EF )]

KinshipOk(s, f) ≡ GoodIdR(s, f) ∧GoodLevel(s, f) ∧GoodStatus(s, f)
AbRoot(p) ≡ [SelfRoot(p) ∧ ¬SelfRootOk(p)]

∨[¬SelfRoot(p) ∧ ¬KinshipOk(p, p.par)]
Allowed(p) ≡ ∀q ∈ Childrenp, (¬KinshipOk(q, p)⇒ q.status 6= C)

Guards
EBroadcast(p) ≡ (p.status = C) ∧ [AbRoot(p) ∨ (p.par.status = EB)]
EFeedback(p) ≡ (p.status = EB) ∧ (∀q ∈ RealChildrenp, q.status = EF )
Reset(p) ≡ (p.status = EF ) ∧AbRoot(p) ∧Allowed(p)
Join(p) ≡ (p.status = C) ∧ [∃q ∈ Np, (q.idR < p.idR) ∧ (q.status = C)] ∧Allowed(p)

Actions
EB-action :: EBroadcast(p) → p.status = EB;
EF -action :: EFeedback(p) → p.status = EF ;
R-action :: Reset(p) → p.status = C;

p.par = p;
p.idR = p;
p.level = 0;

J-action :: Join(p) ∧ ¬EBroadcast(p) → p.par = Minp;
p.idR = p.par.idR;
p.level = p.par.level + 1;
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From such an initial con�guration, our non self-stabilizing algorithm consists in the following single
action:

J-Action′ :: ∃q ∈ Np, (q.idR < p.idR) → p.par = min�{q ∈ Np};
p.idR = p.par.idR;
p.level = p.par.level + 1;

where ∀x, y ∈ V, x � y ⇔ (x.idR ≤ y.idR) ∧ [(x.idR = y.idR)⇒ (x < y)]

Informally, when p discovers that p.idR is not equal to the minimum identi�er, it updates its variables
accordingly: let q be the neighbor of p having idR minimal. Then, p selects q as new parent (p.par = q
and p.level = p.par.level+ 1) and sets p.idR to the value of q.idR. If there are several neighbors having
idR minimal, we break ties using the identi�ers of those neighbors.

Hence, the identi�er of ` is propagated, from neighbors to neighbors, into the idR variables and the
system reaches a terminal con�guration in O(D) rounds. Figure 1 shows an example of such an execution.

1

3

5

7

6

2

4〈1, 0〉

〈3, 0〉

〈5, 0〉

〈7, 0〉

〈6, 0〉

〈2, 0〉

〈4, 0〉

(a) Initial con�guration. SelfRoot(p) ∧
SelfRootOk′(p) holds for every process p.

1

3

5

7

6

2

4〈1, 0〉

〈3, 0〉

〈1, 1〉

〈1, 1〉

〈3, 1〉

〈2, 0〉

〈2, 1〉

(b) 4, 5, 6, and 7 have executed J-Action′.
Note that J-Action′ was not enabled at 2 be-
cause it is a local minimum.

1

3

5

7

6

2

4〈1, 0〉

〈1, 1〉

〈1, 1〉

〈1, 1〉

〈3, 1〉

〈1, 2〉

〈1, 2〉

(c) 2, 3, and 4 have executed J-Action′. 3
joins the tree rooted at 1. However, the new
value of 3.idR is not yet propagated to its
child 6.

1

3

5

7

6

2

4〈1, 0〉

〈1, 1〉

〈1, 1〉

〈1, 1〉

〈1, 2〉

〈1, 2〉

〈1, 2〉

(d) 6 has executed J-Action′. The con�gura-
tion is now terminal, ` = 1 is elected, and a
tree rooted at ` is available.

Figure 1: Example of execution of the non self-stabilizing algorithm. Process identi�ers are given inside
the nodes. 〈x, y〉 means idR = x and level = y. Arrows represent par pointers. The absence of arrow
means that the process is a self root.

Notice �rst that for every process p, p.idR is always less than or equal to its own identi�er. Indeed,
p.idR is initialized to p and decreases each time p executes J-Action′. Hence, p.idR = p while p is a self
root and after p executes J-Action′ for the �rst time, p.idR is smaller than its ID forever.

Second, even in this simpli�ed context, for each two neighbors p and q such that q is the parent of
p, it may happens that p.idR is greater than q.idR�an example is shown in Figure 1c, where p = 6
and q = 3. This is due to the fact that p joins the tree of q but meanwhile q joins another tree and
this change is not yet propagated to p. Similarly, when p.idR 6= q.idR, p.level may be di�erent from
q.level + 1. According to those remarks, we can deduce that when p.par = q with q 6= p, we have the
following relation between p and q:

GoodIdR(p, q) ≡ (p.idR ≥ q.idR) ∧ (p.idR < p)
GoodLevel(p, q) ≡ (p.idR = q.idR)⇒ (p.level = q.level + 1)
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3.2 Fake IDs

This previous algorithm is not self-stabilizing. Indeed, in a self-stabilization context, the execution may
start in an arbitrary con�guration. In particular, idR variables can be initialized to arbitrary natural
integer values, even values that are actually not IDs of (existing) processes. We call such values fake IDs.

The existence of fake IDs may lead the system to an illegitimate terminal con�guration. Refer to the
example of execution given in Figure 2: starting from Con�guration 2a, if processes 3 and 4 move, the
system reaches the terminal con�guration given in 2b, where there are two trees and the idR variables
elect the fake ID 1.

2 3 4 5

〈1, 0〉 〈3, 0〉 〈4, 0〉 〈1, 0〉

(a) Illegitimate initial con�guration, where 2
and 5 have fake idR.

2 3 4 5

〈1, 0〉 〈1, 1〉 〈1, 1〉 〈1, 0〉

(b) 3 and 4 executed J-Action′. The con�g-
uration is now terminal.

Figure 2: Example of execution that does not converge to a legitimate con�guration.

In this example, 2 and 5 can detect the problem. Indeed, predicate SelfRootOk′ is violated by both
2 and 5. One may believe that it is su�cient to reset the local state of 2 and 5 using the following action:

R-Action′ :: SelfRoot(p) ∧ ¬SelfRootOk′(p) → p.par = p; p.idR = p; p.level = 0;

Unfortunately, this may lead to an execution that never converges, as shown in Figure 3. Indeed,
if a process resets, it becomes a self root but this does not erase the fake ID in the rest of its subtree.
Then, another process can join the tree and adopt the fake ID which will be further propagated, and so
on. In the example, a process resets while another joins its tree at lower level, and this leads to endless
erroneous behavior, since we do not want to assume any maximal value for level (such an assumption
would otherwise imply the knowledge of some upper bound on n). Therefore, the whole tree must be
reset, instead of its root only. To that goal, we �rst froze the �abnormal� tree in order to forbid any
process to join it, then the tree is reset top-down. The cleaning mechanism is detailed in the next
subsection.

3

5

2 6

4

〈1, 2〉

〈5, 0〉

〈2, 0〉 〈1, 4〉

〈1, 3〉

(a) Illegitimate initial con�gura-
tion.

3

5

2 6

4

〈3, 0〉

〈5, 0〉

〈1, 5〉 〈1, 4〉

〈1, 3〉

(b) 2 joins the tree. 3 leaves it.

3

5

2 6

4

〈3, 0〉

〈1, 6〉

〈1, 5〉 〈1, 4〉

〈4, 0〉

(c) 5 joins the tree. 4 leaves it.

3

5

2 6

4

〈1, 7〉

〈1, 6〉

〈1, 5〉 〈6, 0〉

〈4, 0〉

(d) Both 3 and 6 move.

3

5

2 6

4

〈1, 7〉

〈1, 6〉

〈2, 0〉 〈6, 0〉

〈1, 8〉

(e) 4 joins, 2 leaves.

3

5

2 6

4

〈1, 7〉

〈5, 0〉

〈2, 0〉 〈1, 9〉

〈1, 8〉

(f) Con�guration similar to 3a

Figure 3: The �rst process of the chain of bold arrows violates the predicate SelfRootOk′ and resets
by executing R-Action′, while another process joins its tree. This cycle of resets and joins might never
terminate.
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3.3 Cleaning Abnormal Trees

To detect possible errors (on idR, par, or level), we de�ne what is a �good relation� between a parent
and its children. Namely, the predicate KinshipOk′(p, q) models that a process p is a real child of its
parent q = p.par. This predicate holds if and only if GoodLevel(p, q) and GoodIdR(p, q) are true. This
relation de�nes a spanning forest: a tree is a maximal set of processes connected by par pointers and
satisfying KinshipOk′ relation. A process p is a root of such a tree whenever SelfRoot(p) holds or
KinshipOk′(p, p.par) is false. When SelfRoot(p) ∧ SelfRootOk′(p) is true, p is a normal root just as
in the non self-stabilizing case (see 3.1). In other cases, there is an error and p is said to be an abnormal
root:

AbRoot′(p) ≡
(
SelfRoot(p) ∧ ¬SelfRootOk′(p)

)
∨
(
¬SelfRoot(p) ∧ ¬KinshipOk′(p, p.par)

)
A tree is called an abnormal tree when its root is abnormal.

We now detail the di�erent predicates and actions of Algorithm 1.

Variable status. Abnormal trees need to be frozen before to be cleaned in order to prevent them from
growing endlessly (see 3.2). This mechanism is achieved using an additional variable, status, that is
used as follows. If a process is clean (i.e., not involved into any freezing operation), then its status is C.
Otherwise, it has status EB or EF and no neighbor can select it as its parent. These two latter states are
actually used to perform a �Propagation of Information with Feedback� [5, 14] into the abnormal trees.
Therefore, status EB means �Error Broadcast� and EF means �Error Feedback�. From an abnormal
root, the status EB is broadcast down in the tree. Then, once the EB wave reaches a leaf, the leaf
initiates a convergecast EF -wave. Once the EF -wave reaches the abnormal root, the tree is considered
to be dead, meaning that there is no process of status C in the tree and no other process can join it. So,
the tree can be safely reset from the abnormal root toward the leaves.

Notice that the new variable status may also get arbitrary initialization. Thus, we enforce previously
introduced predicates as follows.

A self root must have status C, otherwise it is an abnormal root:

SelfRootOk(p) ≡ SelfRootOk′(p) ∧ (p.status = C)

To be a real child of q, p should have a status coherent with the one of q. This is expressed with the
predicate GoodStatus(p, q), which is used to enforce the KinshipOk(p, q) relation:

GoodStatus(p, q) ≡ [(p.status = EB)⇒ (q.status = EB)] ∨ [(p.status = EF )⇒ (q.status 6= C)] ∨
[(p.status = C)⇒ (q.status 6= EF )]

KinshipOk(p, q) ≡ KinshipOk′(p, q) ∧GoodStatus(p, q)

Precisely, when p has status C, its parent must have status C or EB (if the EB-wave is not propagated
yet to p). If p has status EB, its parent must be of status EB because p gets status EB from its parent
and its parent will change its status to EF only after p gets status EF . Finally, if p has status EF , its
parent can have status EB (if the EF -wave is not propagated yet to its parent) or EF .

Normal Execution. Remark that, after all abnormal trees have been removed, all processes have
status C and the algorithm works as in the initial version. Notice that the guard of J-action has been
enforced so that only processes with status C and which are not abnormal root can execute it, and
when executing J-action, a process can only choose a neighbor of status C as parent. Moreover, remark
that the cleaning of all abnormal trees does not ensure that all fake IDs have been removed. Rather, it
guarantees the removal of all fake IDs smaller than `. This implies that (at least) ` is a self root at the
end of the cleaning and all other processes will elect ` within the next D rounds.

Cleaning Abnormal Trees. Figure 4 shows how an abnormal tree is cleaned. In the �rst phase (see
Figure 4a), the root broadcasts status EB down to its (abnormal) tree: all the processes in this tree
execute EB-action, switch to status EB and are consequently informed that they are in an abnormal
tree. The second phase starts when the EB-wave reaches a leaf. Then, a convergecast wave of status
EF is initiated thanks to action EF -action (see Figure 4b). The system is asynchronous, hence all
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the processes along some branch can have status EF before the broadcast of the EB-wave is done into
another branch. In this case, the parent of these two branches waits that all its children in the tree
(processes in the set RealChildren) get status EF before executing EF -action (Figure 4c). When the
root gets status EF , all processes have status EF : the tree is dead. Then (third phase), the root can
reset (safely) to become a self root by executing R-action (Figure 4e). Its former real children (of status
EF ) become themselves abnormal roots of dead trees (Figure 4f) and reset, etc.

Finally, we used the predicate Allowed(p) to temporarily lock the parent of p in two particular
situations � illustrated in Figure 5 � where p is enabled to switch its status from C to EB. These locks
impact neither the correctness nor the complexity of LE . Rather, they allow us to simplify the proofs
by ensuring that, once enabled, EB-action remains continuously enabled until executed.

4 Correctness and Complexity Analysis

In this section, we �rst de�ne some concepts which will be used in the proofs (Subsection 4.1). Then, we
show in Subsection 4.2 that Algorithm LE is self-stabilizing and silent for the leader election, assuming a
distributed unfair daemon. Along the proof, we also establish a bound on its stabilization time in steps,
namely O(n3). Finally, we study more precisely the complexity of LE in Subsection 4.3 (in particular,
we give its complexity in rounds).

4.1 Some de�nitions

First, we instantiate the function Leader(p) used in the speci�cation of the leader election (Section 2.5).

De�nition 1 (Leader). For each process p, for every con�guration γ, the value Leader(p) in γ is p.idR.

Note that the value of Leader(p) depends on the current con�guration γ. Nevertheless, when it is
clear from the context, we omit the mention to γ. This will be also the case for every predicates and
notations used in the sequel.

We now recall some de�nitions and notations from graph theory. A path P, from pk to p0 is a sequence
of processes pk, pk−1, . . . , p0 such that pi−1 ∈ Npi , for all i in {1, ..., k}. Nodes pk and p0 are respectively
called the initial and terminal extremity of P. The length of P, denoted by |P|, is equal to k. We call
cycle any path pk, pk−1, . . . , p0 such that p0 = pk. The distance between two processes p and q, denoted
‖p, q‖, is equal to the length of the shortest path between p and q. The diameter of the network, denoted
D, is the maximum distance between any two processes.

The rest of the paragraph is dedicated to introducing and justifying the notion of trees induced by
the KinshipOk relation. We �rst show that the predicate KinshipOk is an acyclic relation. To that
goal, we de�ne the graph induced by the KinshipOk relation.

De�nition 2 (Kinship Relation Graph). For some con�guration γ, let Gkr = (V,KR) be a directed
graph such that (p, q) ∈ KR⇔ ({p, q} ∈ E)∧ (p.par = q)∧KinshipOk(p, q). Gkr is called the graph of
kinship relations in γ.

We �rst show that Gkr is a DAG (Directed Acyclic Graph). We recall, path and cycle naturally
extend to directed graph, i.e., a (directed) path P in Gkr is a sequence of processes pk, pk−1, . . . , p0 such
that (pi+1, pi) ∈ KR, for all i in {0, ..., k − 1}.

Lemma 1. Let γ be a con�guration. The graph of kinship relations in γ contains no cycle.

Proof. By de�nition, for all pairs of processes p, q such that KinshipOk(p, q) holds, we have: p.idR ≥
q.idR and p.idR = q.idR⇒ p.level = q.level+1. Hence, the processes along any path in Gkr are ordered
w.r.t. the strict lexical order on the pair (idR, level). The result directly follows.

HenceGkr is a DAG (Directed Acyclic Graph) and even a spanning forest since the condition p.par = q
implies at most one successor per process in KR. Below, we de�ne the roots and trees of this spanning
forest.

De�nition 3 (Root). For some con�guration γ, a process p satis�es Root(p) (and is called a root in γ)
if and only if SelfRoot(p)∨AbRoot(p), or equivalently SelfRoot(p)∨¬KinshipOk(p, p.par) holds in γ.
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EB-action

C

6

2 8

〈1, 0〉

〈1, 1〉 〈1, 1〉

(a) When an abnormal root detects an error, it exe-
cutes EB-action. The EB-wave is broadcast to the
leaves. Here, 6 is an abnormal root because it is a
self root and its idR is di�erent from its ID (1 6= 6).

EF -action

C

EB

(b) When the EB-wave reaches a leaf, it executes
EF -action. The EF -wave is propagated up to the
root.

C EF

EB

5

4

7

9

〈1, 4〉

〈1, 5〉

〈1, 5〉

〈1, 5〉

(c) It may happen that the EF -wave reaches a node,
here process 5, even though the EB-wave is still
broadcasting into some of its proper subtrees: 5
must wait that the status of 4 and 7 become EF
before executing EF -action.

EF -action

EF

EB

(d) EB-wave has been propagated in the other
branch. An EF -wave is initiated by the leaves.

R-action

EF

(e) EF -wave reaches the root. The root can safely
reset (R-action) because its tree is dead. The clean-
ing wave is propagated down to the leaves.

R-action

EF EF

6

2 8

〈6, 0〉

〈1, 1〉 〈1, 1〉

(f) Its children become themselves abnormal roots
of dead trees and can execute R-action: 2 and 8 can
clean because their status is EF and their parent
has status C.

Figure 4: Schematic example of the cleaning mechanism. Trees are �lled according to the status of their
processes: white for C, dashed for EB, gray for EF .

10



4

9

〈3, 0〉

〈4, 1〉

(a) 4 and 9 are abnormal roots. If 4 executes
R-action before 9 executes EB-action, the kinship
relation between 4 and 9 becomes correct and 9 is
no more an abnormal root. Then, EB-action is no
more enabled at 9.

6 3

4

9

〈2, 3〉 〈3, 0〉

〈3, 1〉

〈2, 5〉

(b) 9 is an abnormal root and Min4 is 6. If
4 executes J-action before 9 executes EB-action,
the kinship relation between 4 and 9 becomes cor-
rect and 9 is no more an abnormal root. Then,
EB-action is no more enabled at 9.

Figure 5: Example of situations where the parent of a process is locked.

Next, we de�ne the paths, called KPaths, that follow the tree structures in Gkr, i.e., the paths
linking each process to the root of its own tree.

De�nition 4 (KPath). For every process p, KPath(p) is the unique path p0, p1, . . . , pk such that pk = p
and satisfying the following conditions:

• ∀i, 1 ≤ i ≤ k, (pi.par = pi−1) ∧KinshipOk(pi, pi−1)

• Root(p0)

Using De�nitions 3 and 4, we formally de�ne trees as follows.

De�nition 5 (Tree). For some con�guration γ, for every process p such that Root(p), we de�ne Tree(p),
the tree rooted at p, as follows:

Tree(p) = {q ∈ V | p is the initial extremity of KPath(q)}

This means, in particular, that we identify each tree with the ID of its root.

We give in Observation 1 an invariant on KPaths when looking at the status of the processes. This
property is based on the notion of S-Trace de�ned below.

De�nition 6 (S-Trace). For some con�guration γ, for a sequence of processes p0, p1, . . . , pk, we de�ne
S-Trace(p0, p1, . . . , pk) ∈ {C,EB,EF}∗ as the sequence (p0.status).(p1.status) . . . (pk.status) in γ.

Observation 1. For any con�guration, we have: ∀p ∈ V, S-Trace(KPath(p)) ∈ EB∗C∗ ∪ EB∗EF ∗.

Proof. Let p be a process. If |KPath(p)| = 1, Observation 1 trivially holds. For |KPath(p)| ≥ 2, assume
by contradiction that S-Trace(KPath(p)) /∈ EB∗C∗ ∪ EB∗EF ∗. Then ∃s, f ∈ KPath(p) such that
s.par = f and S-Trace(f, s) ∈ {C.EB,C.EF,EF.EB,EF.C}. In all cases, ¬GoodStatus(s, f) holds,
which in turns implies that ¬KinshipOk(s, f). This contradicts De�nition 4.

4.2 Correctness

To prove the self-stabilization of Algorithm LE under an unfair daemon, we �rst show that any execution
is �nite (Theorem 1) and then we show that in any terminal con�guration, there is a unique leader: for
every two processes, p and q, we have Leader(p) = Leader(q) and Leader(p) is the ID of some process
(Theorem 2).
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4.2.1 Termination of LE

The goal, here, is to show that any execution contains a �nite number of steps. We �rst partition a given
execution into a �nite number of segments (Lemma 4), see Fig. 6. Then, we prove that each segment
contains a �nite number of J-actions (Lemma 10). This latter result implies that every execution contains
a �nite number of J-actions (Corollary 2). Then, we show, in Lemma 11 and Corollary 3, that every
execution contains a �nite number of other actions. This allows us to conclude in Theorem 1 that every
execution contains a �nite number of steps.

Abnormal Trees. First, we introduce some notions that re�ne the concept of trees.

De�nition 7 (Normal/Abnormal Tree). For every con�guration γ and every process p, any tree rooted
at p such that ¬AbRoot(p) in γ is called a normal tree. In this case, SelfRoot(p)∧SelfRootOk(p) holds
in γ, by De�nition 3. Any tree that is not normal is simply said to be abnormal.

De�nition 8 (Alive/Dead). Let γ be a con�guration. A process p is called alive in γ if and only if
γ(p).status = C. Otherwise, p is said to be dead. A tree rooted at some process r, Tree(r), in γ is called
an alive tree in γ if and only if ∃p ∈ Tree(r) such that p is alive in γ. Otherwise, it is called a dead tree.

De�nition 9 (Leave/Join a Tree). Let γ 7→ γ′ be a step. If a process p is in a tree T in γ, but in a
di�erent tree T ′ in γ′ (namely, the roots of T and T ′ are di�erent), we say that p leaves T and joins T ′

in γ 7→ γ′.

Remark 1. No process can join a dead tree.

Lemma 2. No alive abnormal root can be created.

Proof. Let p be a process which is not an alive abnormal root in some con�guration γ. This means
that p is dead, or p is a normal root (SelfRoot(p) ∧ SelfRootOk(p) holds in γ), or p is not a root
(KinshipOk(p, p.par) holds in γ).

Let γ 7→ γ′ be a step. If p executes EB-action (respectively EF -action) during the step γ 7→ γ′ then
γ′(p).status = EB (respectively γ′(p).status = EF ) and, consequently, p is dead in γ′.

If p executes R-action, SelfRoot(p) ∧ SelfRootOk(p) holds in γ′. So, p is a normal root in γ′.
If p executes J-action, let q = Minp in γ. By de�nition of J-action, γ(q).status = C, γ(p).status =

γ′(p).status = C and γ(p).idR ≤ p (since p is not an abnormal root at γ). Also, ¬SelfRoot(p) holds in
γ′.

• If q does not move in γ 7→ γ′, then γ′(p).par = q, γ′(q).status = C = γ′(p).status, γ′(p).level =
γ(q).level + 1 = γ′(q).level + 1, γ′(p).idR = γ(q).idR = γ′(q).idR < γ(p).idR ≤ p. Hence,
KinshipOk(p, p.par) is true in γ′. Now, we already know that ¬SelfRoot(p) holds in γ′. Thus,
¬SelfRoot(p) ∧KinshipOk(p, q) holds in γ′: p is not a root in γ′, by De�nition 3.

• Assume now that q moves in γ 7→ γ′. As γ(q).status = C, q can only execute EB-action or
J-action in the step. Consequently, γ′(q).idR ≤ γ(q).idR.

Then, γ′(p).idR = γ(q).idR ≥ γ′(q).idR and γ′(p).idR = γ(q).idR < γ(p).idR ≤ p. So, GoodIdR(p, q)
holds in γ′.

If q executes J-action, γ′(p).idR 6= γ′(q).idR. Otherwise, γ′(p).idR = γ′(q).idR and γ′(p).level =
γ(q).level + 1 = γ′(q).level + 1. So GoodLevel(p, q) holds in γ′.

Finally, γ′(p).status = γ(p).status = C and γ′(q).status ∈ {C,EB}, so GoodStatus(p, q) holds in
γ′.

Thus, ¬SelfRoot(p) ∧KinshipOk(p, q) holds in γ′ and, so, p is not a root in γ′, by De�nition 3.

Assume now that p executes no action in the step γ 7→ γ′. The only way for p to become an alive
abnormal root is that γ(p).par moves during the step, since the property �alive abnormal root� only
depends on p and p.par. Furthermore, as p is not an alive abnormal root, when p is a normal root in γ,
it stays so, in γ′.

Therefore, let us consider the case when p is not a root in γ and γ(p).par moves. As p changes
none of its variables, the only way for it to become an alive abnormal root is to have status C in γ
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and thus in γ′. As GoodStatus(p, p.par) holds in γ, this implies that the status of γ(p).par is either
EB or C. Looking at case EB, p is a real child of p.par in γ with status C; hence EF -action is
disabled for p.par in γ. Looking at case C, p.par can execute EB-action and can change only its status
to EB in γ 7→ γ′: GoodStatus(p, p.par) holds in γ′ and consequently KinshipOk(p, p.par) holds in
γ′. p.par can also execute J-action in γ 7→ γ′. This means that in γ and γ′, p.par has status C,
hence GoodStatus(p, p.par) holds in γ′. Furthermore, p.par has a smaller value of idR in γ′, hence
GoodIdR(p, p.par) and GoodLevel(p, p.par) are satis�ed in γ′, and consequently KinshipOk(p, p.par)
holds in γ′.

Lemma 3. No alive abnormal tree can be created.

Proof. Let γ 7→ γ′ a step. Let p ∈ V . Assume there is no alive abnormal tree rooted at p in γ. In
particular, p is not an alive abnormal root in γ. Then, assume, by contradiction, that Tree(p) exists and
is an alive abnormal tree in γ′.

• If γ′(p).status = EF , then every process in the tree has status EF (Observation 1) and the tree is
dead, a contradiction.

• If γ′(p).status = C, then p is an alive abnormal root in γ′. But no alive abnormal root is created
(Lemma 2), a contradiction.

• If γ′(p).status = EB. Then, according to the algorithm, there are two possible cases:

γ(p).status = EB:

� If AbRoot(p) holds in γ, then Tree(p) is dead in γ (otherwise, Tree(p) is an abnormal
alive tree in γ, a contradiction). By the de�nition of J-action, no process can join Tree(p)
in γ 7→ γ′. Moreover, as γ(p).status = EB, no process q in Tree(p) satis�es Reset(q) in
γ, by Observation 1. Consequently, no process can leave Tree(p) in γ 7→ γ′. So, every
process in Tree(p) still have status EF or EB in γ′, i.e. Tree(p) is still dead in γ′, a
contradiction.

� If ¬AbRoot(p) holds in γ, then p does not satisfy SelfRoot(p), otherwise SelfRootOk(p)
implies that γ(p).status = C, a contradiction. So, let q = γ(p).par ∈ Np. ¬AbRoot(p)
in γ implies that q.status = EB and KinshipOk(p, q) in γ. This latter also implies that
p ∈ RealChildrenq in γ. Now, p ∈ RealChildrenq and p.status = EB in γ implies that
q is disabled in γ. Moreover, as γ′(p).status = EB, p does not execute any action in
γ 7→ γ′. So, ¬AbRoot(p) still holds in γ′, a contradiction.

γ(p).status = C: Then, ¬AbRoot(p) holds in γ (otherwise p is an abnormal alive root in γ). Then,
p executes EB-action in γ 7→ γ′ to get status EB. So, EBroadcast(p) ∧ ¬AbRoot(p) implies
that p.par 6= p and p.par.status = EB in γ. So, let q = γ(p).par ∈ Np. Now p.par 6= p ∧
¬AbRoot(p) implies that KinshipOk(p, q) in γ. So, p ∈ RealChildrenq and, as p.status = C
and q.status = EB in γ, q is disabled in γ. Moreover, as γ′(p).status = EB, p necessarily
executes EB-action in γ 7→ γ′, which only changes its status to EB. So, ¬AbRoot(p) still
holds in γ′, a contradiction.

Finite Number of J-actions. To show that every process p executes only a �nite number of J-actions,
we prove below that p can only execute a �nite number of J-actions in each segment of execution � a
segment being separated from its follower by the death or the disappearance of some tree.

De�nition 10 (Disappear/Die). Let γ 7→ γ′ be some step and let p be a process such that Root(p) in
γ.

Tree(p) disappears during the step γ 7→ γ′ if and only if Tree(p) is no more de�ned in γ′ � namely
Root(p) does not hold in γ′.

Tree(p) dies during the step γ 7→ γ′ if and only if Tree(p) is alive in γ, yet Tree(p) exists � namely
Root(p) holds � and is dead in γ′.
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γ0 γ1

a segment another segment

a tree dies or disappears

Figure 6: Segments of execution

De�nition 11 (Segment of execution). Let e = γ0γ1 . . . be any execution. e′ = γi . . . γj is a segment
of execution e (segment, for short) if and only if e′ is a maximal factor of e, where no tree dies nor
disappears.

Figure 6 illustrates De�nition 11. We now show that the number of segments is �nite.

Lemma 4. There are at most n+ 1 segments in any execution.

Proof. In the initial con�guration, there are at most n abnormal roots (every process) and, consequently,
at most n abnormal trees. As no alive abnormal tree can be created (Lemma 3), if an abnormal tree is
alive, then it is alive since the initial con�guration. So, there is at most n trees that die or disappear
and, consequently, there are at most n+ 1 segments in the execution.

We now count the number of J-actions processes can execute in a given segment. For that purpose,
we �rst need to prove intermediate lemmas that identify properties on computation steps.

Observation 2. Let γ be a con�guration and let p a process such that Reset(p) is true in γ. Then
Tree(p) exists and is dead in γ.

Proof. Let γ be a con�guration and let p be a process such that Reset(p) is true in γ. By de�nition,
AbRoot(p) holds in γ, hence Tree(p) is de�ned in γ. Furthermore, γ(p).status = EF : by Observation 1,
every process in Tree(p) has status EF in γ, and we are done.

Lemma 5. Let γ 7→ γ′ be a step and let p be a process such that p.status ∈ {EB,EF} in γ. We note
r the root of the tree which contains p in γ. Tree(r) is an abnormal tree in γ. And if Tree(r) does not
disappear during the step γ 7→ γ′, p is still in Tree(r) in γ′ unless Tree(r) was dead in γ.

Proof. Let γ 7→ γ′ be a step and let p be a process such that p.status ∈ {EB,EF} in γ. We note r the
root of the tree containing p in γ. As S-Trace(KPath(p)) ∈ EB∗EF ∗, by Observation 1, the status of
r in γ is either EF or EB. Hence AbRoot(r) holds in γ: Tree(r) is an abnormal tree in γ.

Assume now that Root(r) holds in γ′ (the tree does not disappear during the step). If r executes
R-action in γ 7→ γ′, Observation 2 applies in γ and proves that Tree(r) is dead in γ.

If r does not (or cannot) execute R-action, its only possible action is EF -action. As Root(r) holds
in γ′, r is still abnormal root in γ′. Let then q ∈ KPath(p) in γ with q 6= r. By Observation 1,
γ(q).status ∈ {EB,EF} also. If γ(q).status = EB, q can only execute EF -action and if γ(q).status =
EF , q is disabled, as q 6= r. Executing EF -action preserves GoodStatus and hence KinshipOk relations.
Therefore, the KPath from p to r is the same in γ and γ′ and then p ∈ Tree(r) in γ′.

Lemma 6. Let p be a process and let γ 7→ γ′ be step. If p is an abnormal root of status C in γ, then it
is still an abnormal root in γ′.

Proof. Let γ 7→ γ′ be step and let p be a process such that AbRoot(p) ∧ p.status = C in γ: p can only
execute EB-action. Therefore, γ′(p).status ∈ {C,EB} and every other variable of p has identical value
in γ and γ′.

So, if SelfRoot(p) holds in γ, then ¬SelfRootOk(p) in γ, and SelfRoot(p) ∧ ¬SelfRootOk(p) still
holds in γ′.

Otherwise, ¬SelfRoot(p) holds in γ, i.e., p.par 6= p. Then, ¬SelfRoot(p) still holds in γ′. Let
q = γ(p).par and consider the following cases:

γ(q).status = EF : Then, ¬GoodStatus(p, q) holds in γ, which implies ¬KinshipOk(p, q) holds in γ.
However, p ∈ Childrenq in γ. So, ¬Allowed(q) holds in γ, and q is disabled. So, γ′(p).status ∈
{C,EB} and γ′(q).status = EF , which implies ¬GoodStatus(p, q) in γ′. Thus, ¬KinshipOk(p, q)
holds in γ′.
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γ(q).status = EB: Then, GoodStatus(p, q) holds in γ. So, AbRoot(p) in γ implies that ¬GoodIdR(p, q)∨
¬GoodLevel(p, q) holds in γ. Now, q can only executes EF -action in γ 7→ γ′. So, neither p
nor q modify their variables par, idR, or level in γ 7→ γ′, and, consequently, ¬GoodIdR(p, q) ∨
¬GoodLevel(p, q) still holds in γ′. So, ¬KinshipOk(p, q) holds in γ′.

γ(q).status = C: AbRoot(p) in γ implies that ¬KinshipOk(p, q) holds in γ. Thus, ¬Allowed(q) holds
in γ because p ∈ Childrenq and p.status = C in γ. So, q cannot execute J-action in γ 7→ γ′.

Then, as γ(q).status = C ∧ γ(p).status = C, GoodStatus(p, q) holds in γ. So, AbRoot(p) in γ
implies that ¬GoodIdR(p, q) ∨ ¬GoodLevel(p, q) holds in γ. As p and q can only modify their
status in γ 7→ γ′ (q can only execute EB-action in γ 7→ γ′), ¬GoodIdR(p, q) ∨ ¬GoodLevel(p, q)
still holds in γ′. So, ¬KinshipOk(p, q) holds in γ′.

In any cases, ¬KinshipOk(p, q) holds in γ′. As ¬SelfRoot(p) holds in γ′, AbRoot(p) holds in γ′.

Lemma 7. Let γ be a con�guration and let p be a process such that p.status ∈ {EB,EF} in γ. We
note r the root of the tree which contains p in γ. Let γR be the �rst con�guration, if any, after γ, such
that p executes an R-action γR 7→ γR+1.

Assume γR exists, then Tree(r) is dead in γR or has disappeared (at least once) between γ and γR.

Proof. Let γ be a con�guration and let p be a process such that p.status ∈ {EB,EF} in γ. We note r
the root of the tree which contains p in γ. Let γ = γ0γ1... be an execution starting at γ. Let γR be the
�rst con�guration, if any, in this execution such that p executes an R-action during the step γR 7→ γR+1.

For every con�guration γx, x ∈ {0, ..., R− 1}, the status of p is EB or EF . Hence, Lemma 5 applies
iteratively in γx: either Tree(r) disappears during the step γx 7→ γx+1, or, if not, p ∈ Tree(r) in γx+1.
Hence, in γR, either Tree(r) has disappeared or, if not, p ∈ Tree(r).

When p ∈ Tree(r) in γR, by assumption, p executes an R-action between γR and γR+1. Hence,
AbRoot(p) holds in γR and thus p = r. Furthermore, Observation 2 applies and proves that Tree(r) is
dead in γR.

Lemma 8. Let p be a process and let γ 7→ γ′ be a step. We note r the root of the tree which contains p
in γ. If EBroadcast(p) holds in γ, then Tree(r) is an abnormal alive tree in γ and if Tree(r) has not
disappeared in γ′, p still belongs to Tree(r) in γ′.

Proof. Let γ 7→ γ′ be a step. Let p ∈ V such that EBroadcast(p) holds in γ.
If AbRoot(p) holds in γ, then p = r is the root of an alive abnormal tree, since γ(p).status = C.

Furthermore, if Tree(p) exists in γ′, p ∈ Tree(p) in γ′, trivially.
Otherwise, ¬AbRoot(p), p.par.status = EB, andKinshipOk(p, p.par) holds in γ. Applying Lemma 5

to γ(p).par, we have that γ(p).par belongs to an abnormal alive tree in γ and so does p: Tree(r) is an
alive abnormal tree.

Furthermore, �rst note that γ(p).par = γ′(p).par (p can only change its status to EB in γ 7→ γ′:
either p do not move or executes EB-action). So, still by Lemma 5, in γ′, if Tree(r) exists in γ′, γ′(p).par
belongs to Tree(r) in γ′, since Tree(r) is not dead in γ (γ(p).status = C). As KinshipOk(p, p.par)
holds in γ, we have that p ∈ RealChildrenq in γ. Since γ(p).status = C, q is disabled in γ (because of
p) and, as p can only modify its status to EB in γ 7→ γ′ , we still have p ∈ RealChildrenq in γ′, i.e., p
and q belong to the same abnormal tree, Tree(r), in γ′.

Corollary 1. Let γ be a con�guration and let p be a process such that EBroadcast(p) holds in γ. We
note r the root of the tree which contains p in γ. Let γR be the �rst con�guration, if any, since γ, such
that p executes an R-action γR 7→ γR+1.

Assume γR exists, then Tree(r) is an alive abnormal tree in γ but it is dead in γR or has disappeared
(at least once) between γ and γR.

Proof. Let γ be a con�guration and let p be a process such that EBroadcast(p) holds in γ. We note r
the root of the tree which contains p in γ. Lemma 8 applies in γ: Tree(r) is an alive abnormal tree in γ.

Let γ = γ0γ1... be an execution starting at γ. Let γR be the �rst con�guration, if any, in this execution
such that p executes an R-action during the step γR 7→ γR+1. We assume that γR exists. Then at some
step, γi 7→ γi+1, p executes a EB-action, with i < R.

Lemma 8 applies iteratively from γ0 and to γi: either Tree(r) has disappeared in γ1 (and so between
γ0 and γi+1), or p stays in Tree(r) in γ1 (and so between γ0 and γi+1), and so on.
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If Tree(r) has not yet disappeared in γi+1, p ∈ Tree(r) in γi+1 with γi+1(p).status = EB. Here,
Lemma 7 applies and proves that Tree(r) has disappeared in γR or p is in Tree(r) in γR.

Lemma 9. Let p be a process. Let s be a segment of execution. Between any two executions of J-action
by p in s, p can only execute J-actions.

Proof. Let s = γ0γ1 . . . be a segment of execution and p ∈ V . Consider two executions of J-action by
p during s: one in γi 7→ γi+1 and the other in γj 7→ γj+1, with i < j. Assume by contradiction that p
executes an action di�erent from J-action between γi+1 and γj . Let γk 7→ γk+1 be the �rst step between
γi+1 and γj during which p executes some other action: this is a EB-action. Let γl 7→ γl+1 be the last
step between γi+1 and γj during which p executes some other action: this is a R-action (hence k < l).

Now, Lemma 1 applies since in γk, EBroadcast(p) holds, and in some step later γl 7→ γl+1, p executes
a R-action. This proves that in γk, some abnormal tree is alive and that in γl, this tree is dead or has
disappeared. Hence γk and γl are not in the same segment, a contradiction.

Lemma 10. In a segment of execution, there are at most (n− 1)(n− 2)/2 executions of J-action.

Proof. Let p ∈ V . First, p only executes J-actions between two J-actions in the same segment
(Lemma 9). So, using the guard of J-action, it follows that the value of the p.idR always decreases
during any sequence of J-actions, which means that p cannot set p.idR two times to the same value
during the segment.

Let A be the set of processes q such that q.status = C at the beginning of the segment. Let B the
set of processes q such that q executes an R-action in the segment. A ∩ B = ∅. Indeed, pick a process
q ∈ A ∩ B. q switches from status C at the beginning to status EB, and then to status EF since
some step later, it executes R-action. Hence, there exists a con�guration γb in the segment such that
EBroadcast(q) is true and another γr, later on such that R-action occurs: hence Corollary 1 applies
and proves that the tree of q in γb is abnormal alive and that it dies or disappears some step before γr.
This contradicts the de�nition of segment. Hence, |A|+ |B| ≤ n.

Now, p.idR can only get values from the idR of processes in A or from the ID of processes in B. Let
f : V 7→ N such that ∀p ∈ A ∪ B, if p ∈ A, f(p) = x, where x is the value of p.idR at the beginning
of the segment; otherwise, f(p) = p. Let p0, . . . pk−1 (with k ≤ n) be the set of processes in A ∪ B in
ascending order of f . pi changes at most i times of idR. Hence, in a given segment, the number of
executed J-actions, noted ]J-action, satis�es the following inequality:

]J-action ≤
k−1∑
i=0

i ≤
n−1∑
i=0

i =
(n− 1)(n− 2)

2

By Lemmas 4 and 10, in any execution, there are at most n + 1 segments, where processes execute
at most (n− 1)(n− 2)/2 J-actions. Moreover, by de�nition, there are at most n steps outside segments
(more precisely, the steps where at least one abnormal tree dies or disappears). Hence, follows:

Corollary 2. In any execution, there are at most n3

2 − n
2 + n

2 + 1 steps containing J-actions.

Other Actions. Below, we show an upper bound on the number of executions of other actions.

Lemma 11. In any execution, each process can execute at most n R-actions.

Proof. First, by de�nition, there are at most n abnormal alive trees in the initial con�guration. Let
]AbT be that number. Moreover, ]AbT can only decrease, by Lemma 3.

Let p be a process. We �rst show that when p executes R-action for the �rst time, ]AbT ≤ n − 1.
Then, we show that after every subsequent execution of R-action by p, ]AbT necessarily decreases.
Hence, we will conclude that p cannot execute R-action more than n, because ]AbT cannot be negative.

Consider the �rst step γi 7→ γi+1 where p executes R-action. Using Observation 2, Tree(p) exists
and is dead in γi. Hence, there are at most n− 1 abnormal alive trees in γi.

Consider the j − th execution of R-action by p, with j > 1. After the (j − 1)− th R-action of p, the
status of p is C. So, between the (j− 1)− th and the j− th R-action, the status of p thus switches from
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C to EB and from C to EF , so that p can switch its status from EF to C when executing its j − th
R-action. Hence, meanwhile there exists a con�guration γb such that EBroadcast(q) is true and another
γr, later on such that p executes its j − th R-action in γr 7→ γr+1: Corollary 1 applies and proves that
the tree that p belongs to in γb is abnormal alive and that tree dies or disappears some step before γr,
and we are done.

Let p be a process. p necessarily executes R-action between two executions of EF -action (resp.
EB-action). Hence, we have the following corollary.

Corollary 3. In any execution, a process can execute EB-action and EF -action at most n times, each.

By Corollaries 2, 3, and Lemma 11:

Theorem 1 (Convergence). Every execution contains at most n3

2 + 2n2 + n
2 + 1 steps.

4.2.2 Terminal Con�gurations

We now show that in a terminal con�guration, there is one and only one leader process, known by all
processes, i.e., for every two processes, p and q, we have Leader(p) = Leader(q) and Leader(p) is the
ID of some process.

Lemma 12. In a terminal con�guration, every process has status C.

Proof. By contradiction, consider a terminal con�guration γ where some process p satis�es p.status 6= C.
Then two cases are possible:

1. p.status = EB. By Observation 1, ∃q ∈ V such that q.status = EB∧(∀q′ ∈ RealChildrenq, q′.status 6=
EB) ∧ p ∈ KPath(q). If RealChildrenq = ∅, then q can executes EF -action. Otherwise, there
are two cases. Either ∀q′ ∈ RealChildrenq, q

′.status = EF and q can execute EF -action, or
∃q′ ∈ RealChildrenq, q′.status = C then q′ can execute EB-action. Hence, in both cases, γ is not
terminal, a contradiction.

2. p.status = EF . By Observation 1, ∃q ∈ V such that q.status = EF∧(Root(q)∨ (KinshipOk(q, q.par)∧
q.par.status 6= EF ) ∧ q ∈ KPath(p).

If Root(q), then AbRoot(q)∨SelfRoot(q). Now, q.status = EF implies that AbRoot(q) holds. So,
in all cases, q.status = EF ∧ AbRoot(q) holds. If Allowed(q) holds, then R-action is enabled at
q, a contradiction. Otherwise, ∃r ∈ Childrenq,¬KinshipOk(r, q) ∧ r.status = C. In this case,
EB-action is enabled at r, a contradiction.

If ¬Root(q), then there are two cases. Either q.par.status = C, AbRoot(q) holds and we obtain
a contradiction as in the case where Root(q) holds. Or,q.par.status = EB and using the same
argument as in case 1, we can deduce that some process is enabled, a contradiction.

Hence, all cases, γ is not terminal, a contradiction.

Theorem 2 (Correctness). In a terminal con�guration, ∀p, q ∈ V,Leader(p) = Leader(q) and Leader(p)
is the ID of some process.

Proof. Let γ a terminal con�guration. Assume �rst, by contradiction, that there are at least two leaders.
Then, G being connected, ∃p, q ∈ V such that Leader(γ(p)) 6= Leader(γ(q)) and q ∈ Np. Assume
without loss of generality that Leader(γ(p)) = γ(p).idR < γ(q).idR = Leader(γ(q)). By Lemma 12,
p.status = q.status = C. Then, either EBroadcast(q) is true and q can execute EB-action or q can
execute J-action. Hence γ is not terminal, a contradiction.

Assume now that the leader is not one of the processes, i.e., is a fake ID. Let p ∈ V such that its
level is minimum. Notice that γ(p).status = C by Lemma 12. If SelfRoot(p) holds in γ, γ(p).idR 6= p.
So, AbRoot(p) holds and p can execute EB-action. Otherwise, there is q ∈ Np such that γ(p).par = q.
The level of p being minimum, we have γ(p).level ≤ γ(q).level. So, AbRoot(p) holds and p can execute
EB-action. Hence, γ is not terminal, a contradiction.
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Using Theorem 2, there is exactly one root in a terminal con�guration (the leader elected). So the
graph of kinship relations in a terminal con�guration contains exactly one tree. Hence, we can conclude:

Remark 2. In a terminal con�guration, Gkr is a spanning tree rooted at the leader.

Theorems 1 and 2 establish the self-stabilization, silence, and step complexity of Algorithm LE .
Moreover, note that idR and level can be stored in Θ(log n) bits. Hence, we can conclude:

Theorem 3. Algorithm LE is a self-stabilizing and silent leader election algorithm working under a

distributed unfair daemon. Its step complexity is at most n
3

2 +2n2+ n
2 +1 steps. Its memory requirement

is Θ(log n) bits per process.

4.3 Complexity Analysis

In this section, we study the complexity of Algorithm LE in rounds.

4.3.1 Stabilization Time in Rounds

Clean Con�gurations. First, we study the �good� cases, i.e., when the system is in a clean con�g-
uration (de�ned below). From such con�gurations, the execution consists in building a tree rooted at
` using J-action only. Once, the tree is built, the system is in a terminal con�guration, where every
process has elected `.

De�nition 12 (Clean con�guration). A con�guration γ is called a clean con�guration if and only if for
every process p, ¬EBroadcast(p) ∧ p.status = C holds in γ. A con�guration that is not clean is said to
be dirty.

Remark 3. By de�nition, in a clean con�guration, every process p has status C and either p is a normal
root, i.e., SelfRoot(p) ∧ SelfRootOk(p), or (exclusively) KinshipOk(p, p.par) holds.

Remark 4. Notice that in a clean con�guration, the only action a process p can execute is J-action,
provided that Join(p) holds. Note also that Allowed(p) always holds due to Remark 3. Verifying
Join(p) then reduces to: ∃q ∈ Np, (q.idR < p.idR). In this case, the value of p.idR can only decrease.

Lemmas 13 to 16 proves that, starting from a clean con�guration, the system reaches in O(D) rounds
a terminal con�guration (see Theorem 4). We �rst show the set of clean con�gurations is closed.

Lemma 13. The set of clean con�gurations is closed.

Proof. Let γ 7→ γ′ be a step such that γ is a clean con�guration. By de�nition, all processes have status C
in γ. So, processes can only execute J-action (Remark 4) in γ 7→ γ′, and consequently all processes have
status C in γ′. Now, ∀p ∈ V,¬EBroadcast(p)∧p.status = C in γ implies that there is no alive abnormal
root in γ. By Lemma 2, there is no alive abnormal root in γ′ too. Now, the fact that all processes have
status C and there is no alive abnormal root in γ′ implies that ∀p ∈ V,¬EBroadcast(p) ∧ p.status = C
in γ′, i.e., γ′ is clean.

Using Lemma 13, we show below that if a process is enabled in a clean con�guration � for the only
action it can execute, i.e., J-action � it remains enabled until it executes it.

Lemma 14. In a clean con�guration, if J-action is enabled at p, it remains enabled until it is executed
by p.

Proof. Let γ 7→ γ′ be a step such that γ is a clean con�guration. Assume by contradiction that J-action
is enabled at p in γ and not in γ′, but p did not execute J-action between γ and γ′. By Lemma 13, γ′

is also a clean con�guration. So, ¬EBroadcast(p) ∧ p.status = C holds in γ′.
But Join(p) must be false in γ′. Using Remark 4, this means that there necessarily exists a neighbor

of p, say q, such that γ(q).idR < γ(p).idR but γ′(q).idR ≥ γ′(p).idR = γ(p).idR. This contradicts
Remark 4.

Lemma 15. There is no (fake) idR smaller than ` in a clean con�guration.
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Proof. Let γ be a clean con�guration. Assume there exists a process of idR smaller than `. Let p be
such a process such that p.idR is minimum among all the processes and p.level is minimum among all
the processes having idR minimum.

Note that p.idR 6= p and consequently SelfRootOk(p) is false in γ. Hence (Remark 3),KinshipOk(p, p.par)
holds in γ. Since we take p of minimum idR, p.idR ≤ p.par.idR in γ. As GoodIdR(p, p.par) implies that
p.idR ≥ p.par.idR, p.idR = p.par.idR. Now, GoodLevel(p, p.par) implies that p.level = p.par.level + 1,
which contradicts the minimality of p.level.

For any process p, p can only set p.idR to its own ID or copy the value of q.idR, where q is one of its
neighbors. So, we have the following remark:

Remark 5. No fake ID is created during any step.

Lemma 16. In a clean con�guration, if the idR of a process p is `, p is disable forever.

Proof. Let γ be a clean con�guration. Let p be a process with γ(p).idR = `. By Remark 4, only J-action
can be enabled in γ and its guard reduces to ∃q ∈ Np, (q.idR < p.idR). But Lemma 15 ensures that this
cannot be true, hence p is disabled in γ. Then, by Lemma 13 and Remark 5, this will be true forever.

Corollary 4. A clean con�guration where ∀p ∈ V, p.idR = `, is terminal.

Theorem 4. In a clean con�guration, the system reaches a terminal con�guration where ∀p ∈ V, p.idR =
` in at most D rounds.

Proof. Consider any execution e that starts from a clean con�guration. In the following, we denote by
ρi the �rst con�guration of the ith round in e. We show by induction on the distance d ≥ 0 between the
processes and ` that ∀p ∈ V such that ‖p, `‖ ≤ d, ρd(p).idR = `.

Base case: If ‖p, `‖ = 0, p = `. Note thatKinshipOk(p, p.par) cannot hold in ρ0 sinceGoodIdR(p, p.par)
would implies that p.idR < p which is false by Lemma 15. Hence, from Remark 3, SelfRoot(p) ∧
SelfRootOk(p) holds in ρ0 and ρ0(p).idR = p = `.

Induction step: Assume the property holds at some d ≥ 0. If ‖p, `‖ = d + 1, ∃q ∈ Np such that
‖q, `‖ = d. By induction hypothesis and by Lemma 16, q.idR = ` and q is disabled forever since
ρd. If p.idR = ` in ρd, it remains so forever (Lemma 16). If p.idR 6= ` in ρd then q.idR <
p.idR (Lemma 15). Then, J-action is enabled at p in ρd and remains enabled until p executes
it (Lemma 14). As there is no fake ID smaller than ` (Lemma 15), p.idR = ` after p executes
J-action, i.e., after at most one round. Hence, p.idR = ` in ρd+1.

As D ≥ max {‖p, `‖, p ∈ V }, in at most D rounds, the system reaches a con�guration where ∀p ∈
V, p.idR = `. By Corollary 4, this con�guration is terminal.

Dirty Con�gurations. In the previous section, we showed that, if the initial con�guration is clean,
the system reaches a terminal con�guration in at most D rounds. But what happens if the initial
con�guration is dirty, i.e., if there is a process p such that EBroadcast(p) holds or p.status 6= C. In this
section, we prove that starting from a dirty con�guration, the system reaches a clean con�guration in
at most 3n rounds. More precisely, we show that a dirty con�guration contains abnormal trees that are
�cleaned� in at most 3n rounds. The system will be in a clean con�guration afterwards.

Lemma 17. In an dirty con�guration, there exists at least one abnormal root.

Proof. Let γ be a dirty con�guration. Then ∃p ∈ V such that p.status 6= C ∨EBroadcast(p). We search
for an abnormal root.

1. If p.status ∈ {EB,EF}, using Observation 1, there is q ∈ KPath(p) such that q.status ∈
{EB,EF} ∧Root(q). Then, AbRoot(q) ∨ SelfRoot(q). Now, SelfRoot(q) ∧ q.status ∈ {EB,EF}
implies AbRoot(q). Hence, in all cases, AbRoot(q) holds.

2. If EBroadcast(p) holds, Lemma 8 applies and we are done.
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We have just shown that there are abnormal roots (and so abnormal trees) in dirty con�gurations.
Below, we prove that these abnormal trees will disappear after three waves of �cleaning�. After the �rst
wave, an abnormal tree becomes dead (Theorem 5), after the second wave any abnormal root gets the
status EF (Theorem 6) and �nally after the third wave there is no more abnormal trees (Theorem 7),
hence the system is in a clean con�guration.

The following technical lemma is used in the proof of Theorem 5.

Lemma 18. When EB-action is enabled at a process p, it remains enabled until p executes EB-action.

Proof. Assume that EB-action is enabled at a process p in a con�guration γ, but p did not execute
EB-action during the step γ 7→ γ′. Notice that p does not execute any action during this step, as guards
are mutually exclusive. As EB-action is enabled in γ, γ(p).status = C and then, γ′(p).status = C.

First, assume AbRoot(p) holds in γ. If SelfRoot(p) ∧ ¬SelfRootOk(p) holds in γ and, as these
predicates only depends on the local state of p and as p does not execute any action during the step,
it also holds in γ′: the action is still enabled in γ′. Otherwise, ¬SelfRoot(p) ∧ ¬KinshipOk(p, p.par)
holds in γ. These predicates only depends on the local state of p and its parent. Now, Allowed(p.par)
does not hold in γ because of p, so p.par cannot execute R-action nor J-action during γ 7→ γ′. Then,
either p.par executes EF -action, changes its status to EF and GoodStatus(p, p.par) is false in γ′, or it
executes EB-action and changes its status to EB. In these two cases, EBroadcast(p) holds in γ′.

Now, assume p.par.status = EB, p.par can only execute EF -action and change its status to EF .
Then, GoodStatus(p, p.par) is false in γ′, which implies that EBroadcast(p) holds in γ′.

Theorem 5. In at most n rounds, the system reaches a con�guration where every abnormal tree (if
any) is dead.

Proof. Consider any execution e = γ0, . . .. We denote by γR0
the initial con�guration of e. Then, ∀i > 0,

γRi
both the last con�guration of the ith round and the �rst con�guration of the i+ 1th round of e. We

show by induction on the length of the KPaths that, ∀i ≥ Rd (d ≥ 1), ∀p ∈ V , if p is in an abnormal
tree and |KPath(p)| ≤ d in γi, then p is dead in γi.

Base Case: If p is in an abnormal tree and |KPath(p)| = 1, p is an abnormal root. As no alive
abnormal root is created (Lemma 2), if p is alive, it is an alive abnormal root since γR0

and if
predicate (p.status = C ∧ AbRoot(p)) becomes false in some con�guration, then it remains false
forever. Hence, it is su�cient to show that any alive abnormal root is no more an alive abnormal
root after one round (that is, from γR1).

By de�nition, EB-action is enabled at p in γR0
and p executes EB-action during the �rst round

(Lemma 18). Hence, p is dead at the end of the �rst round, and we are done.

Induction Hypothesis: Let d ≥ 1. Assume that ∀i ≥ Rd, ∀p ∈ V , if p is in an abnormal tree and
|KPath(p)| ≤ d in γi, then p is dead in γi.

Induction Step: We �rst show that for every p ∈ V , for every i ≥ Rd, if (p.status = C ∧ |KPath(p)| ≤
d+ 1) is false in con�guration γi, then for every j ≥ i, (p.status = C ∧ |KPath(p)| ≤ d+ 1) is false
in con�guration γj .

Assume by contradiction that the predicate �p.status = C ∧ |KPath(p)| ≤ d + 1� is false in γj ,
but true in γj+1 (j ≥ i). By induction hypothesis, |KPath(p)| = d + 1 > 1 in γj+1 (indeed, p
is alive in γj+1). So, γj+1(p).par 6= p. So, let q ∈ Np such that γj+1(p).par = q. By de�nition,
|KPath(q)| = d in γj+1. By induction hypothesis, γj+1(q).status ∈ {EB,EF}. Now, p.status = C
and |KPath(p)| > 1 in γj+1, so p is not an abnormal root in γj+1. Hence, γj+1(q).status = EB
(by Observation 1) and, consequently, γj(q).status ∈ {C,EB}.

• If γj(q).status = EB, then p does not execute any action in the step γj 7→ γj+1 (otherwise,
γj+1(p).status 6= C or γj+1(p).par 6= q). Hence, γj(p).status = γj+1(p).status = C. By
hypothesis, �p.status = C ∧ |KPath(p)| ≤ d+ 1� is false in γj , so we have |KPath(p)| > d+ 1
in γj . Now, γj(p).status = C and γj(q).status = EB, so S-Trace(KPath(p)) = EB+C
in γj (Observation 1) and p is the only process in its KPath that can execute an action in
γj 7→ γj+1. Hence, for every q such that q ∈ KPath(p) in γj , we have q ∈ KPath(p) in γj+1,
and consequently |KPath(p)| > d+ 1 in γj+1. So p.status = C ∧ |KPath(p)| ≤ d+ 1 is false
in γj+1, a contradiction.
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• If γj(q).status = C, then q is in an alive abnormal tree in γj (indeed, q executes EB-action
in γj 7→ γj+1, and so Lemma 8 applies). As q is alive in γj , we have |KPath(q)| > d in γj by
induction hypothesis. Moreover, q is not an abnormal root (there is no more alive abnormal
root after the �rst round, see the base case). Hence, the status of its parent in γj is EB.
Now, |KPath(q)| > d and S-Trace(KPath(q)) = EB+C in γj (Observation 1). So, q is the
only one in its KPath that executes an action in γj 7→ γj+1 and this action is EB-action,
which maintains the KinshipOk relation. Hence, |KPath(q)| > d in γj+1 and consequently,
|KPath(p)| > d+ 1 in γj+1, a contradiction.

Hence, for every process p, if (p.status = C ∧ |KPath(p)| ≤ d+ 1) is false in some con�guration γi
with i ≥ Rd, then (p.status = C ∧ |KPath(p)| ≤ d+ 1) remains false forever.

Now, EB-action is continuously enabled ∀p such that p is alive |KPath(p)| = d + 1 in γRd
(by

induction hypothesis and Lemma 18). So, p becomes dead during the round and, ∀j ≥ Rd+1, γj
contains no alive process p such that |KPath(p)| ≤ d+ 1.

n ≥ max {|KPath(p)|,∀p ∈ V }. Hence, any process in an abnormal tree becomes dead in at most n
rounds, and we are done.

Lemma 19. If EF -action is enabled at a process p, it remains enabled until p executes EF -action.

Proof. Assume by contradiction EF -action is enabled at a process p in con�guration γ and is not enabled
in the next con�guration γ′, but p did not execute EF -action during the step γ 7→ γ′. Notice that p does
not execute any action during this step, as guards are mutually exclusive. As EFeedback(p) holds in
γ, γ(p).status = γ′(p).status = EB. As EFeedback(p) does not hold in γ′ and no process can execute
J-action and choose a process of status EB as parent, ∃q ∈ RealChildrenp such that γ(q).status = EF
and γ′(q).status 6= EF . Now, because γ(q).status = EF , q can only execute R-action. However, as
q ∈ RealChildrenp, KinshipOk(q, p) holds in γ and then q is not a root. So, q cannot execute any
action and change its status during γ 7→ γ′, a contradiction.

Theorem 6. Let γ be a con�guration containing abnormal trees and where all abnormal trees are dead.
In at most n rounds from γ, the system reaches a con�guration where the status of all abnormal roots
is EF .

Proof. Consider any execution e = γ0, . . . starting from a con�guration that contains abnormal trees and
where all abnormal trees are dead. ∀i > 0, we denote by γRi

the last con�guration of the ith round and
so the �rst con�guration of the i+ 1th round. Moreover, let γR0

be the initial con�guration.

Claim 1: ∀p ∈ V , ∀i ≥ R0, if γi(p).status 6= EB, then ∀j ≥ i, γj(p).status 6= EB.

Assume by contradiction that γj(p).status 6= EB and γj+1(p).status = EB, with γj 7→ γj+1.
Then, p.status = C in γj and EB-action is enabled at p in γj . So, p is in an alive abnormal tree
in γj (Lemma 8), a contradiction to Lemma 3.

In any con�guration γ, we denote by MaxLengthKPath(p) = max{|KPath(q)|, q ∈ V ∧ p ∈
KPath(q)}. Again in γ, we de�ne L(p) = MaxLengthKPath(p) − |KPath(p)| and EBL(p, k) ≡
p.status = EB ∧ L(p) = k.

Claim 2: ∀i ≥ R0, if EBL(p, ki) holds in γi, then ∀j ≥ i, ∀kj < ki,¬EBL(p, kj) holds in γj .

If j = i, EBL(p, kj) is false for kj < ki because L(p) cannot have two di�erent values in a same
con�guration. Assume now j > i. The case ki = 0 is direct. Assume ki > 0. Assume by
contradiction that EBL(p, ki) holds in γi and EBL(p, kj) holds in γj with j > i and kj < ki. So,
γi(p).status = γj(p).status = EB and there are two cases:

• p.status = EB in all the con�gurations between γi and γj . Consider the step γi 7→ γi+1.
Let q be any process such that p ∈ KPath(q) in γi. So, KPath(q) = q0 . . . qi = p . . . qk = q
and S-Trace(KPath(q)) = EB+EF ∗ in γi. There is a unique process in KPath(q) that can
execute an action in γi 7→ γi+1 (the only one of status EB with children of status EF ). If
it executes an action, it is EF -action which maintains KinshipOk relation. Hence, ∀q′ ∈
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KPath(q) in γi, q
′ ∈ KPath(q) in γi+1. We can apply this latter property to every process

r such that p ∈ KPath(r) and |KPath(r)| = MaxLengthKPath(p) in γi: p ∈ KPath(r) in
γi+1 and the value of |KPath(r)| in γi+1 is greater than or equal to the value of |KPath(r)| in
γi. So, EBL(p, ki+1) holds with ki+1 ≥ ki. Applying the same argument on step γi+1 7→ γi+2,
etc., until step γj−1 7→ γj , we obtain that EBL(p, kj) is true in γj with kj ≥ ki, a contradiction.
• There is a con�guration between γi and γj where p.status 6= EB. So, ∃x such that i < x < j,
γx(p).status 6= EB and γx+1(p).status = EB. This contradicts Claim 1.

We show by induction that ∀i ≥ Rd with d ≥ 1, ∀p ∈ V , ∀k ≤ d− 1, EBL(p, k) is false in γi.

Base case: There are three cases:

1. If L(p) = 0 in γR0
and γR0

(p).status = EB, then EF -action is enabled at p in γR0
, p executes

EF -action during the �rst round, by Lemma 19 and p gets status EF . By Claim 1, p.status
remains di�erent from EB forever and EBL(p, 0) is false in γi, ∀i ≥ R1.

2. If γR0(p).status 6= EB, p.status 6= EB forever (Claim 1) and then EBL(p, 0) is false forever.

3. If EBL(p, k) holds in γR0 with k > 0, EBL(p, 0) is false forever (Claim 2).

Induction hypothesis: ∀i ≥ Rd with d ≥ 1, ∀p ∈ V , ∀k ≤ d− 1, EBL(p, k) is false in γi.

Induction step: There are four cases:

1. If L(p) = d and γRd
(p).status = EB, ∀q ∈ RealChildrenp in γRd

, L(q) < d by de�nition and
γRd(q).status 6= EB by induction hypothesis. Now, the trees are dead, so γRd

(q).status = EF .
Hence, EF -action is enabled at p in γRd

, p executes EF -action during the round (Lemma 19)
and gets status EF . By Claim 1, p.status 6= EB forever so EBL(p, d) is false at the end of
the d+ 1th round and remains false forever.

2. If L(p) = d and γRd
(p).status 6= EB, then p.status 6= EB forever (Claim 1). So, EBL(p, d)

is false forever.

3. If L(p) < d, by induction hypothesis γRd
(p).status 6= EB and we conclude as in case 2.

4. If EBL(p, k) holds in γRd
with k > d, EBL(p, i) is false forever ∀i ≤ d (Claim 2).

With d = n, we have ∀i ≥ Rn, ∀p ∈ V , ∀k ≤ n − 1, EBL(p, k) is false in γi: hence, in at most n
rounds, there is no more process of status EB in abnormal trees, those ones being dead. So, all processes
(and in particular the abnormal roots) in abnormal trees have status EF .

Lemma 20. If all abnormal trees are dead and R-action is enabled at a process p, then R-action remains
enabled at p until p executes it.

Proof. Let γ be a con�guration, where all abnormal trees are dead. Assume, by contradiction, that
R-action is enabled at a process p in a con�guration γ and is not enabled in the next con�guration γ′,
but p did not execute R-action during the step γ 7→ γ′. Notice that p does not execute any action during
this step, as guards are mutually exclusive.

As R-action is enabled in γ and p does not execute an action during the step, γ(p).status =
γ′(p).status = EF .

If SelfRoot(p)∧¬SelfRootOk(p) holds in γ, it also holds in γ′ because p does not execute an action
between γ and γ′ and these predicates only depends on the local state of p.

Otherwise ¬SelfRoot(p)∧¬KinshipOk(p, p.par) holds in γ. Let q = p.par. If q does not execute an
action between γ and γ′, p is still an abnormal root. Otherwise, three cases are possible:

• ¬GoodIdR(p, q) holds in γ. First, if γ(p).idR < γ(q).idR. If q executes EB-action or EF -action
during the step, the idR of q does not change, so γ′(p).idR < γ′(q).idR, and AbRoot(p) holds in
γ′. Otherwise q executes R-action or J-action. Then γ′(q).status = C, so ¬GoodStatus(p, q) and
AbRoot(p) holds in γ′. If γ(p).idR ≥ p, the idR is not modi�ed during the step, so γ′(p).idR =
γ(p).idR ≥ p and AbRoot(p) holds in γ′.
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• ¬GoodLevel(p, q) holds in γ. Then γ(p).idR = γ(q).idR but γ(p).level 6= γ(q).level + 1. If q
executes EB-action or EF -action, its idR and its level do not change, so γ′(p).idR = γ′(q).idR
and γ′(p).level 6= γ′(q).level + 1, so AbRoot(p) holds in γ′. Otherwise, q executes R-action or
J-action. Then γ′(q).status = C, so ¬GoodStatus(p, q) and AbRoot(p) holds in γ′.

• ¬GoodStatus(p, q) holds in γ. Then γ(q).status = C, and q can only execute EB-action or J-action
between γ and γ′. If q executes EB-action then EBroadcast(q) holds in γ, so q is in an abnormal
tree (Lemma 8). But, by hypothesis, all abnormal trees are dead in γ, so γ(q).status 6= C, a
contradiction. If q executes J-action then γ′(q).status = C, so ¬GoodStatus(p, q) and AbRoot(p)
holds in γ′.

Thus, γ′(p).status = EF and AbRoot(p) holds in γ′ and, consequently, Allowed(p) is false in γ′. So
∃q ∈ Np such that q ∈ Childrenp ∧ ¬KinshipOk(q, p) holds in γ′ but γ′(q).status = C. Two cases are
possible:

• If q /∈ Childrenp in γ, then q executes J-action during the step γ 7→ γ′ and Minq = p. But
γ(p).status = EF , a contradiction.

• Otherwise q ∈ Childrenp in γ and γ(q).status 6= C. q executes either EF -action and γ′(q).status =
EF , or R-action and γ′(q).par 6= p, so q /∈ Childrenp in γ′, a contradiction.

De�nition 13 (Abnormal process). A process p is called abnormal process if and only if p belongs to
an abnormal tree. p is said to be normal, otherwise.

As no process can join a dead abnormal tree (Remark 1) and no alive abnormal tree can be created
(Lemma 3), we have the following remark:

Remark 6. In a con�guration where every abnormal tree is dead, the number of abnormal processes can
only decrease.

Theorem 7. Starting from a con�guration where every abnormal tree is dead and the status of their
roots is EF , there is no more abnormal processes in at most n rounds.

Proof. Let γ0 be a con�guration where all abnormal trees are dead and the status of their roots is EF .
By Observation 1, all abnormal processes have status EF in γ0. So, from γ0, no process can be ever an
abnormal process with a status di�erent of EF (such a process can only execute R-action, then it is a
normal process forever, by Lemma 3). Then, by de�nition, the number of abnormal processes in γ0 is at
most n. Moreover, by Remark 6, it is su�cient to show that in any con�guration γk reachable from γ0,
if the number of abnormal processes is not null, then at least one of them becomes normal within the
next round.

So, let assume that some process p is abnormal in γk. Then, γk(p).status = EF . By Observation 1
and Lemma 20, the initial extremity r of KPath(p) is an abnormal process (of status EF ) and executes
R-action within the next round. After executing R-action, r is normal (actually, r becomes a self root),
and we are done.

By de�nition, the root of a normal tree has the status C. So, by Observation 1, we have:

Remark 7. Every process has the status C in a con�guration containing no abnormal processes. Moreover,
this con�guration is clean.

Using Lemma 17 and Theorems 5 to 7, we can conclude:

Theorem 8. In at most 3n rounds, the system reaches a clean con�guration.

Then, using Theorems 4 and 8 we get:

Theorem 9 (Round Complexity). In at most 3n+D rounds, the system reaches a terminal con�guration.
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Figure 7: An example in 3n+D rounds
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4.3.2 Worst Case Analysis of the Stabilization Time

Lower Bound on the Worst Case Stabilization Time in Rounds. We now show that the bound
proposed in Theorem 9 cannot be improved. To see this, we exhibit a construction that gives, ∀n ≥ 4,
∀D, 2 ≤ D ≤ n − 2, a network of n processes whose diameter is D, from which there is a possible
synchronous execution that lasts exactly 3n + D rounds. (Recall that every synchronous execution is
possible under the distributed unfair daemon.)

We consider a network G = (V,E) composed of n processes V = {p1, . . . , pn} such that pi has ID i,
∀i ∈ [1..n]. Figure 7a shows the system in its initial con�guration. In details, processes p1, pn, . . . ,p2
form a chain, i.e., {p1, pn} ∈ E and {pi, pi−1} ∈ E ∀i = 3 . . . n.

We add k � legs�, with 2 ≤ k ≤ n− 2, as follows:

If k = n− 2, then {p2, p1} ∈ E and ∀i ∈ [4..n], {p2, pi} ∈ E,

Otherwise ∀i ∈ [4..k + 3], {p2, pi} ∈ E.

Notice that the diameter of the network is n− k and can be adjusted by adding or removing some legs.
We assume the following initial con�guration:

• pi.idR = 0 ∀i ∈ [1..n],

• p1.level = n− 1 and p1.par = pn,

• p2.par = p2 and p2.level = 0,

• pi.level = i− 2 and pi.par = pi − 1, ∀i ∈ [3..n].

We consider a synchronous daemon, i.e. in a con�guration γ, every process in Enabled(γ) is selected
by the daemon to execute an action. So, in this case, every round lasts exactly one step.

The execution is then as follows:

• p2, p3, p4 . . . pn, p1 sequentially execute EB-action: n rounds. (See Figure 7b.)

• p1, pn, pn−1, . . . , p2 sequentially execute EF -action: n rounds. (See Figure 7c.)

• p2 and p3 sequentially execute R-action: 2 rounds. (See Figure 7d)

• For i = 4 . . . n, simultaneously pi and pi−1 respectively executes R-action and J-action, in partic-
ular, pi−1 joins Tree(p2): n− 3 rounds. (See Figures 7e and 7f.)

• p1 executes R-action and pn executes J-action simultaneously: 1 round.

• For i = n . . . k + 3, i executes J-action to join Tree(1): n− k − 2 rounds. (See Figure 7g.)

• p2 and pk+2 simultaneously execute J-action to join Tree(1): 1 round. (See Figure 7h.)

• p3, . . . , pk+1 simultaneously execute J-action and then the con�guration is terminal: 1 round. (See
Fig. 7i.)

Hence, the execution lasts exactly 3n+ (n− k) = 3n+D rounds.

Lower Bound on the Worst Case Stabilization Time in Steps. We show that the bound given in
Theorem 1 can be asymptotically matched, i.e., we give an example of possible execution that stabilizes
in Ω(n3) steps, for every n ≥ 4.

We consider a network G = (V,E) composed of n processes V = {p1, . . . , pn} such that pi has ID
n+ i, ∀i ∈ [1..n]. Figure 8a shows the network in this initial con�guration. In details, there are 2n− 3
edges: {pi, pi+1} ∀i = 1 . . . n− 2 and {pi, pn} ∀i = 1 . . . n− 1. (Notice that the diameter of this network
is 2.) The initial con�guration is as follows:

• pi.idR = i ∀i ∈ [1..n− 1], and pn.idR = 2n.

• pi.par = pi, pi.level = 0 and pi.status = C ∀i ∈ [1..n].
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(k) In one step, the system reaches a terminal
con�guration where p1 is leader.

Figure 8: An example in Ω(n3) steps
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We consider the following execution:

• For i = n− 1 . . . 1, (i−−), we clean Tree(pi) the following way:

1. For j = n− 2 . . . i, (j −−),2

(a) For k = j + 1 . . . n− 1, (k + +),3

� pk joins Tree(pj).

This part lasts
∑n−1−i
k=1 k steps.

2. pi, pi+1, . . . , pn−1 sequentially execute EB-action: n− i steps.
3. pn−1, pn−2, . . . , pi sequentially execute EF -action: n− i steps.
4. pi, pi+1, . . . , pn−1 sequentially execute R-action: n− i steps.

Figures 8e to 8h show the cleaning of Tree(pn−3).

• After all abnormal trees have been cleaned, processes pn−1 to p2 join Tree(p1) similarly as Case 1:∑n−2
i=1 i steps (Figure 8j).

• pn executes J-action to join Tree(p1): 1 step (Figure 8k).

Hence, the complete execution lasts:(
n−1∑
i=1

(3(n− i) +

i−1∑
k=1

k)

)
+

(
n−2∑
i=1

i

)
+ 1 =

n3

6
+

5

2
n2 − 11

3
n+ 2steps

5 Step Complexity of Algorithm DLV
In this section, we study the step complexity of the algorithm given in [8], called here DLV.4 Below, we
show that its stabilization time is not polynomial in steps.

First, we give the code of algorithm DLV and an informal explanation of its main principles in
Subsection 5.1. Then, in Subsection 5.2 we give an example of a class of network in which there is a
possible execution that stabilizes in Ω(n4) steps. Finally, in Subsection 5.3, we generalize the previous
example to a class of network where there is a possible execution that stabilizes in Ω(nα+1) for any
α ≥ 3.

5.1 Overview of DLV
First, Algorithm DLV uses priorities. Each action is given with priority number. When an enabled
process is selected by the daemon, it only executes its enabled action with the lowest priority number.

Algorithm DLV (refer to Algorithm 2) elects the process of minimum ID, `, and builds a minimum
spanning tree rooted at `. To ensure that every process knows which one is elected, it maintains a
variable leader to save its current leader. Variables parent and level are used to represent the tree. The
key of a process p is the combination of its two variables p.leader and p.level. Notice that the keys are
ordered by a lexical order.

When a process p has a neighbor with a smaller key, p executes action J , gets the successor key of
the smaller such neighbor (BestNbrKey(p)) and chooses this latter as parent. Notice that, contrary to
our algorithm, p can execute action J and change its parent if there is a process with the same leader
but with a level smaller than p.level − 1, in order to build a minimum spanning tree.

As in LE , they de�ne a �good relation� between a process p and its parent: IsTrueChld(p). It ensures
that the key of p is the successor key of its parent and that its leader is smaller than its own ID. Then,
a maximal set of processes linked by parent pointers and satisfying IsTrueChld relation de�nes a tree.
The root of this tree can be a true root (IsTrueRoot(p)), i.e., the key of p is its self key (〈p, 0〉). In this
case, they said that it is a normal tree. Otherwise, the root is a false root (IsFalseRoot(p)), i.e., neither
a true root nor a true child, and they said that it is an abnormal tree.

2Of course, when n− 2 < i, there is no iteration.
3Of course, when j + 1 > n− 1, there is no iteration.
4DLV stands for �Datta, Larmore and Vemula.�
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Algorithm 2 Algorithm DLV [8] for every process p

Variables

p.leader ∈ N
p.level ∈ N
p.key = 〈p.leader, p.level〉
p.parent ∈ Np ∪ {p}
p.color ∈ {1, 2}
p.done ∈ B

Macros
SelfKey(p) ≡ 〈p, 0〉
SuccKey(p) ≡ 〈p.leader, p.level + 1〉
BestNbrKey(p) ≡ min {q.key | (q ∈ Np) ∧ (SuccKey(q) < SelfKey(p)) ∧ (q.color = 2)}
TrueChldrn(p) ≡ {q ∈ Np | (q.parent = p) ∧ (q.key = SuccKey(p))}
FalseChldrn(p) ≡ {q ∈ Np | (q.parent = p) ∧ (q.key 6= SuccKey(p))}
Recruits(p) ≡ {q ∈ Np | q.key > SuccKey(p)}

Predicates
IsTrueRoot(p) ≡ p.key = SelfKey(p)
IsTrueChld(p) ≡ (p.key = SuccKey(p.parent) ∧ (p.leader < p)
IsFalseRoot(p) ≡ ¬IsTrueRoot(p) ∧ ¬IsTrueChld(p)
Done(p) ≡ (Recruits(p) = ∅) ∧ (∀q ∈ TrueChldrn(p), q.done)
ColorFrozen(p) ≡ IsTrueRoot(p) ∧ p.done

Guards
Join(p, q) ≡ (IsFalseRoot(p) ∨ (SuccKey(q) < p.key)) ∧ (q.key = BestNbrKey(p))

∧(FalseChldrn(p) = ∅) ∧ (q.color = 2)
Reset(p) ≡ IsFalseRoot(p)
Color1(p) ≡ (p.color = 2) ∧ (p.parent.color = 2) ∧ (∀q ∈ TrueChldrn(p), q.color = 1)

∧(Recruits(p) = ∅) ∧ ¬ColorFrozen(p)
Color2(p) ≡ (p.color = 1) ∧ (p.parent.color = 1) ∧ (∀q ∈ TrueChldrn(p), q.color = 2)

∧¬ColorFrozen(p)
UpdateDone(p) ≡ p.done 6= Done(p)

Actions
J (priority 1) :: Join(p, q) → p.key = SuccKey(q);

p.parent = q;
p.color = 1;
p.done = false;

R (priority 2) :: Reset(p) → p.key = SelfKey(p);
p.parent = p;
p.color = 2;
p.done = false;

C1 (priority 3) :: Color1(p) → p.color = 1;
p.done = Done(p);

C2 (priority 3) :: Color2(p) → p.color = 2;
p.done = Done(p);

UD (priority 4) :: UpdateDone(p) → p.done = Done(p);
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Color waves. The main di�erence between DLV and LE is the way to deal with these abnormal trees.
Instead of using a status and a three waves cleaning, DLV uses color waves. More precisely, each process
has a variable color, either 1 or 2. A process can only change its parent to a neighbor of color 2 and
after executing action J , the process gets color 1.

A process p of color 2 cannot change its color to 1 when it has possible recruits (Recruits(p) 6= ∅), i.e.
there are some neighbors with a bigger key that may choose p as parent later. Furthermore, a process
can change its color, executing actions C1 or C2, if it has the same color than its parent (it is trivially
satis�ed for every true root) and if all of its true children have the other color.

To add a new level in the tree, the leaves must change their color to 2. A �rst wave of actions C1 is
initiated by the parents of the leaves and absorbed by the root. Then, a second wave of actions C2 is
initiated by the leaves and also absorbed by the root. When the leaves have color 2, their neighbors can
join the tree. Now, the priorities on actions prevent a false root to change its color and, so, to absorb a
color wave. Moreover, every true root can always absorb a color wave.

Therefore, the colors of the processes in an abnormal tree eventually alternate, i.e., the parents and
their real children do not have the same color, and no more process can join the tree: the tree is color
locked. Then, the root eventually resets to a true root executing action R.

Once all abnormal trees have been removed, ` is a true root and regularly absorb color waves allowing
then the leaves of its tree to recruit processes.

Figure 9 shows an example of execution with the cleaning of an abnormal tree.
Finally, in O(n) rounds, ` is elected and a minimum spanning tree rooted at ` is built. Notice that

the color waves might never end. A mechanism ensure the silence of the algorithm using the Boolean
variable done and action UD. When a process p believes that the construction of the �nal tree is �nished
(because it can no more recruits other processes) and all its true children q (if any) have set their variables
q.done to true, p.done is set to true. Moreover, a true root r cannot change its color if r.done holds.
We said that r is color frozen. Thus, after the completion of the �nal tree construction, the value true
is propagated bottom-up in the tree into the done variables, and in O(D) rounds, the system reaches a
terminal con�guration.

5.2 Example in Ω(n4) steps

We consider a network made of n = L × β processes with L = 8 and β ≥ 2: p(1,1), p(1,2), . . . , p(1,β),
p(2,1), p(2,2), . . . , p(2,β), . . . , p(8,1), p(8,2), . . . , p(8,β) such that the ID of p(i,j) is (i−1)β+j,∀i ∈ [1 . . . 8],∀j ∈
[1 . . . β]. Notice that 0 is a fake ID smaller than every ID in the network.

Figure 10 shows the structure of the network and the initial con�guration. In details, the processes
form β columns: ∀i ∈ [2 . . . 8],∀j ∈ [1 . . . β], {p(i−1,j), p(i,j)} ∈ V . Moreover, there are three complete
bipartite subgraphs: ∀j ∈ [1 . . . β],∀j′ ∈ [1 . . . β], j′ 6= j, {p(4,j), p(5,j′)}, {p(6,j), p(7,j′)} and {p(7,j), p(8,j′)}
are in V . These bipartite subgraphs split the network in four layers:

• Layer 1: line 8

• Layer 2: line 7

• Layer 3: lines 5 and 6

• Layer 4: lines 1 to 4

We choose the following initial con�guration.

• For i ∈ [1 . . . 8], j ∈ [1 . . . β], p(i,j).leader = 0, p(i,j).level = i and p(i,j).done = false

• For j ∈ [1 . . . β],

� p(1,j).parent = p(1,j)

� p(5,j).parent = p(4,1)

� p(7,j).parent = p(6,1)

� p(8,j).parent = p(7,1)

� For i ∈ [2 . . . 4] ∪ {6}, p(i,j).parent = p(i−1,j)

29



7

3

5

2

4

8

6〈1, 1〉

〈3, 0〉

〈1, 2〉

〈2, 0〉

〈8, 0〉

〈4, 0〉

〈6, 0〉
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Figure 9: Example of execution of algorithm DLV. The ID is represented inside the node. The label
next to a node shows its key. The arrows represent parent pointers. No arrow exits a node if its parent
is itself. The �lling represents the color: gray for 1 and white for 2.
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Figure 10: Initial con�guration. The leader of a process is 0 if it gets a star or its own ID otherwise.
level is not represented as it is always correct.

• For i ∈ [1 . . . 8], p(i,1).color = (i mod 2) + 1

• For j ∈ [2 . . . β],

� p(8,j).color = 1

� For i ∈ [1 . . . 7], p(i,j).color = 2

We consider an unfair daemon which selects the enabled processes according to function Daemon
(see Algorithm 3). In this algorithm, top(i) (respectively bottom(i)) is the number of the �rst line
(respectively last line) of layer i. More precisely:

top(i) = L− 2i−1 + 1

bottom(i) =

{
top(1) if i = 1

top(i− 1)− 1 if i > 1

In Build(layer, column), all the processes of lines top(layer) to 8 execute line by line action J . Notice
that the processes of line top(layer) choose p(top(layer)−1,column) as parent. In Reset(layer, column),
processes p(top(layer+1),column) to p(bottom(layer+1),column) execute action R (except for layer 1 where all
the processes of line 8 also execute action R). Then, Reset(layer− 1, i) and Build(layer− 1, i+ 1) are
called for each column i = 1 . . . β − 1. Finally, Reset(layer − 1, β) is executed.

The idea is to reset a branch of the tree and then, rebuild symmetrically the tree on the next column:
a process chooses as parent the neighbor of smaller key, i.e., the extreme left neighbor one line above
having 0 as leader. More precisely, a �rst sequence of actions R resets the �rst column and the layer 1
(Figure 11). Then, the layer 1 is rebuilt on the second column (Build(1,2)) and reset again (Figure 12)
etc. until the last column. Then, the tree is rebuilt since the second layer on the second column
(Build(2,2)) and the extreme left branch is reset (Fig 13) and so on.
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(b) Reset of the left column and the layer 1.

Figure 11: First sequence of actions R.

To better understand the algorithm with its numerous recursive calls, a step by step execution of
function Daemon is provided in Appendix A. The reader can follow the execution on an empty �gure
given with the listing.

We count how many times processes p(8,.) executes action R:

• Each process p(8,.) executes once action R on line 15 of Algorithm 3 in Reset(layer, column),
when layer = 1: at least β processes execute action R.

• Reset(3, column) is called β times by Daemon.

• Reset(2, column) is called β times by Reset(3, column).

• Reset(1, column) is called β times by Reset(2, column).

Hence, action R is executed β4 times by the processes of line 8. Now, β = n/8. Hence, the execution
lasts Ω(n4) steps.

5.3 Generalization to an example in Ω(nα+1) steps

Starting from Eα (α ≥ 4), an example in Ω(nα) steps, we can build Eα+1, an example in Ω(nα+1)
steps, based on the same principle as in Subsection 5.2, by adding a layer. If Eα has Lβ processes p(i,j)
(1 ≤ i ≤ L, 1 ≤ j ≤ β), then Eα+1 has L

′ = 2L lines of β processes q(i′,j′) (1 ≤ i′ ≤ L′, 1 ≤ j′ ≤ β). The
construction principle is as follows:

1. We increase the level and the ID of the Lβ processes of Eα as follows: ∀i ∈ [1 . . . L], ∀j ∈ [1 . . . β],
q(i+L,j) = p(i,j). The ID of q(i+L,j) becomes (i+ L− 1)β + j and q(i+L,j).level = i+ L. The value
of variables color and done do not change. If i 6= 1, the parent remains the same. Otherwise, see
step 3.

2. At the top of Eα, we add L lines of β processes. These new processes satisfy:
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Algorithm 3 Algorithm of the daemon.

1: function Daemon
2: for i = 1 . . . β, (i+ +) do
3: Reset(3,i);
4: if i < β then
5: Build(3,i+1);
6: end if

7: end for

8: end function

9: function Reset(layer, column)
10: for i = top(layer + 1) . . . bottom(layer + 1), (i+ +) do
11: p(i,column) executes R;
12: end for

13: if layer = 1 then
14: for j = 1 . . . β, (j + +) do

15: p(L,j) executes R; . Reset of layer 1, L = top(1) = 8

16: end for

17: else

18: for j = 1 . . . β, (j + +) do
19: Reset(layer − 1, j);
20: if j < β then
21: Build(layer − 1, j + 1);
22: end if

23: end for

24: end if

25: end function

26: function Build(layer, column)
27: for i = top(layer) . . . bottom(layer), (i+ +) do
28: for j = 1 . . . β, (j + +) do
29: p(i,j) executes J ;
30: end for

31: for k = i− 1 . . . 2(i− L
2 ), (k −−) do

32: if k ≥ top(layer) then
33: for j = 1 . . . β, (j + +) do
34: p(k,j) executes C1;
35: end for

36: else

37: p(k,column) executes C1;
38: end if

39: end for

40: for k = i . . . 2(i− L
2 ) + 1, (k −−) do

41: if k ≥ top(layer) then
42: for j = 1 . . . β, (j + +) do
43: p(k,j) executes C2;
44: end for

45: else

46: p(k,column) executes C2;
47: end if

48: end for

49: end for

50: if layer > 1 then
51: Build(layer − 1, 1);
52: end if

53: end function
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(b) Reset.

Figure 12: Reconstruction of the layer 1 on the second column and reset.
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Figure 13: Reconstruction of the layer 2 on the second column and reset.
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• ∀i ∈ [1 . . . L],∀j ∈ [1 . . . β], q(i,j).id = (i − 1)β + j, q(i,j).leader = 0, q(i,j).level = i and
q(i,j).done = false.

• ∀i ∈ [2 . . . L],∀j ∈ [1 . . . β], {q(i−1,j), q(i,j)} ∈ V and q(i,j).parent = q(i−1,j).

• ∀j ∈ [1 . . . β], q(1,j).parent = q(1,j).

• ∀j ∈ [2 . . . β],∀i ∈ [1 . . . L], q(i,j).color = 2.

• ∀i ∈ [1 . . . L], q(i,1).color = (i mod 2) + 1.

3. The former �rst line of Eα becomes a new bipartite complete subgraph with the last added line:

• ∀j ∈ [1 . . . β],∀j′ ∈ [1 . . . β], {q(L,j), q(L+1,j′)} ∈ V .
• ∀j ∈ [1 . . . β], q(L+1,j).parent = q(L,1).

Figure 14 shows the structure of the network for E5 and its initial con�guration.
Then, the daemon selects processes according to function Daemon(α + 1) (see Algorithm 4) which

is the generalization of the algorithm presented in section 5.2. In Eα, processes p(L,.) execute β
α times

action R. Now, we added a new level of recursion. Then, processes q(L′,.) execute β
α+1 times action R.

β = n
L′ hence the execution lasts Ω(nα+1) steps.

Algorithm 4 Generalization of the algorithm of the daemon for Eα+1.

1: function Daemon(α+ 1)
2: for i = 1 . . . β, (i+ +) do
3: Reset(α,i); . See Algorithm 3
4: if i < β then
5: Build(α,i+1); . See Algorithm 3
6: end if

7: end for

8: end function

Then, for every α ≥ 3, we can build a network Eα+1 such that there is a execution that lasts Ω(nα+1)
steps. So, the stabilization time of DLV in steps is not polynomial.

6 Conclusion

We proposed a silent self-stabilizing leader election algorithm, called LE , for bidirectional connected
identi�ed networks of arbitrary topology. Starting from any arbitrary con�guration, LE converges to
a terminal con�guration, where all processes know the ID of the leader, this latter being the process
of minimum ID. Moreover, as in most of the solutions from the literature, a distributed spanning tree
rooted at the leader is de�ned in the terminal con�guration.
LE is written in the locally shared memory model. It assumes the distributed unfair daemon, the most

general scheduling hypothesis of the model. Moreover, it requires no global knowledge on the network
(such as an upper bound on the diameter or the number of processes, for example). LE is asymptotically
optimal in space, as it requires Θ(log n) bits per process, where n is the size of the network. We analyzed
its stabilization time both in rounds and steps. We showed that LE stabilizes in at most 3n+D rounds,
where D is the diameter of the network. We also proved that for every n ≥ 4, for every D, 2 ≤ D ≤ n−2,
there is a network of n processes, in which a possible execution exactly lasts this complexity.

Finally, we proved that LE achieves a stabilization time polynomial in steps. More precisely, its

stabilization time is at most n3

2 + 2n2 + n
2 + 1 steps. Then, we showed for every n ≥ 4, there exists a

network of n processes, in which a possible execution exactly lasts n3

6 + 5
2n

2− 11
3 n+ 2 steps, establishing

then that the worst case is in Θ(n3).
Perspectives of this work deal with complexity issues. In [8], Datta et al showed that it is easy to

implement a silent self-stabilizing leader election which works assuming an unfair daemon, uses Θ(log n)
bits per process, and stabilizes in O(D) rounds (where D is an upper bound on D), yet if processes
have knowledge of D. Now, it is worth investigating if it is possible to design an algorithm which works
assuming an unfair daemon, uses Θ(log n) bits per process, and stabilizes in O(D) rounds without using
any global knowledge. We believe this problem remains di�cult, even adding some fairness assumption.
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Figure 14: Initial con�guration of the example in O(n5) steps.
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A E4 step by step

In this section, we detail an execution of DLV in E4 following Daemon (see Algo. 3) for any β (Listing 1)
and for β = 3 (Listing 2). With this latter, we provide an �empty� representation of the network that
can be used by the reader (Fig. 15).

Listing: Step by step execution of DLV in E4 following Daemon

//Reset(3,.) is called β times

Reset(3,1){
//Reset(3,1) calls β times Reset(2,.)
(1,1),(2,1),(3,1),(4,1) execute R

Reset(2,1){
//Reset(2,1) calls β times Reset(1,.)
(5,1),(6,1) execute R

Reset(1,1){
//(8,.) executes β times R in Reset(1,1)
(7,1) executes R

(8,1),(8,2),...,(8,β) execute R

}
Build(1,2){

(8,1),(8,2),...,(8,β) execute J

}

Reset(1,2){
(7,2) executes R

(8,1),(8,2),...,(8,β) execute R

}
(...)
Build(1,β)

Reset(1,β)
}
Build(2,2){

(7,1),(7,2),...,(7,β) execute J

(6,2) executes C1

(7,1),(7,2),...,(7,β) execute C2

Build(1,1){
(8,1),(8,2),...,(8,β) execute J

}
}

Reset(2,2){
(5,2),(6,2) execute R

Reset(1,1){
(7,1) executes R

(8,1),(8,2),...,(8,β) execute R

}
Build(1,2){

(8,1),(8,2),...,(8,β) execute J

}
Reset(1,2){

(7,2) executes R

(8,1),(8,2),...,(8,β) execute R

}
(...)
Build(1,β)
Reset(1,β)

}
(...)
Build(2,β)

Reset(2,β)
}
Build(3,2){

(5,1),(5,2),...,(5,β) execute J

(4,2),(3,2),(2,2) execute C1

(5,1),(5,2),...,(5,β) execute C2

(4,2),(3,2) execute C2

(6,1),(6,2),...,(6,β) execute J

(5,1),(5,2),...,(5,β) execute C1

(4,2) executes C1

(6,1),(6,2),...,(6,β) execute C2

(5,1),(5,2),...,(5,β) execute C2

Build(2,1){
(7,1),(7,2),...,(7,β) execute J

(6,1) executes C1

(7,1),(7,2),...,(7,β) execute C2

Build(1,1){
(8,1),(8,2),...,(8,β) execute J

}
}

}

Reset(3,2){
(1,2),(2,2),(3,2),(4,2) execute R

Reset(2,1){
(5,1),(6,1) execute R

Reset(1,1){
(7,1) executes R

(8,1),(8,2),...,(8,β) execute R

}
Build(1,2){

(8,1),(8,2),...,(8,β) execute J

}
Reset(1,2){

(7,2) executes R

(8,1),(8,2),...,(8,β) execute R

}
(...)
Build(1,β)
Reset(1,β)

}
Build(2,2){

(7,1),(7,2),...,(7,β) execute J

(6,2) executes C1

(7,1),(7,2),...,(7,β) execute C2

Build(1,1){
(8,1),(8,2),...,(8,β) execute J

}
}
Reset(2,2){

(5,2),(6,2) execute R

Reset(1,1){
(7,1) executes R

(8,1),(8,2),...,(8,β) execute R

}
Build(1,2){

(8,1),(8,2),...,(8,β) execute J

}
Reset(1,2){

(7,2) executes R

(8,1),(8,2),...,(8,β) execute R

}
(...)
Build(1,β)
Reset(1,β)

}
(...)
Build(2,β)
Reset(2,β)

}
(...)
Build(3,β)

Reset(3,β)
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Listing: Step by step execution of DLV in E4 with β = 3 following Daemon

(1,1) executes R

(2,1) executes R

(3,1) executes R

(4,1) executes R

(5,1) executes R

(6,1) executes R

(7,1) executes R

(8,1),(8,2),(8,3) execute R

(8,1),(8,2),(8,3) execute J

(7,2) executes R

(8,1),(8,2),(8,3) execute R

(8,1),(8,2),(8,3) execute J

(7,3) executes R

(8,1),(8,2),(8,3) execute R

(7,1),(7,2),(7,3) execute J

(6,2) executes C1

(7,1),(7,2),(7,3) execute C2

(8,1),(8,2),(8,3) execute J

(5,2) executes R

(6,2) executes R

(7,1) executes R

(8,1),(8,2),(8,3) execute R

(8,1),(8,2),(8,3) execute J

(7,2) executes R

(8,1),(8,2),(8,3) execute R

(8,1),(8,2),(8,3) execute J

(7,3) executes R

(8,1),(8,2),(8,3) execute R

(7,1),(7,2),(7,3) execute J

(6,3) executes C1

(7,1),(7,2),(7,3) execute C2

(8,1),(8,2),(8,3) execute J

(5,3) executes R

(6,3) executes R

(7,1) executes R

(8,1),(8,2),(8,3) execute R

(8,1),(8,2),(8,3) execute J

(7,2) executes R

(8,1),(8,2),(8,3) execute R

(8,1),(8,2),(8,3) execute J

(7,3) executes R

(8,1),(8,2),(8,3) execute R

(5,1),(5,2),(5,3) execute J

(4,2) executes C1

(3,2) executes C1

(2,2) executes C1

(5,1),(5,2),(5,3) execute C2

(4,2) executes C2

(3,2) executes C2

(6,1),(6,2),(6,3) execute J

(5,1),(5,2),(5,3) execute C1

(4,2) executes C1

(6,1),(6,2),(6,3) execute C2

(5,1),(5,2),(5,3) execute C2

(7,1),(7,2),(7,3) execute J

(6,1) executes C1

(7,1),(7,2),(7,3) execute C2

(8,1),(8,2),(8,3) execute J

(1,2) executes R

(2,2) executes R

(3,2) executes R

(4,2) executes R

(5,1) executes R

(6,1) executes R

(7,1) executes R

(8,1),(8,2),(8,3) execute R

(8,1),(8,2),(8,3) execute J

(7,2) executes R

(8,1),(8,2),(8,3) execute R

(8,1),(8,2),(8,3) execute J

(7,3) executes R

(8,1),(8,2),(8,3) execute R

(7,1),(7,2),(7,3) execute J

(6,2) executes C1

(7,1),(7,2),(7,3) execute C2

(8,1),(8,2),(8,3) execute J

(5,2) executes R

(6,2) executes R

(7,1) executes R

(8,1),(8,2),(8,3) execute R

(8,1),(8,2),(8,3) execute J

(7,2) executes R

(8,1),(8,2),(8,3) execute R

(8,1),(8,2),(8,3) execute J

(7,3) executes R

(8,1),(8,2),(8,3) execute R

(7,1),(7,2),(7,3) execute J

(6,3) executes C1

(7,1),(7,2),(7,3) execute C2

(8,1),(8,2),(8,3) execute J

(5,3) executes R

(6,3) executes R

(7,1) executes R

(8,1),(8,2),(8,3) execute R

(8,1),(8,2),(8,3) execute J

(7,2) executes R

(8,1),(8,2),(8,3) execute R

(8,1),(8,2),(8,3) execute J

(7,3) executes R

(8,1),(8,2),(8,3) execute R

(5,1),(5,2),(5,3) execute J

(4,3) executes C1

(3,3) executes C1

(2,3) executes C1

(5,1),(5,2),(5,3) execute C2

(4,3) executes C2

(3,3) executes C2

(6,1),(6,2),(6,3) execute J

(5,1),(5,2),(5,3) execute C1

(4,3) executes C1

(6,1),(6,2),(6,3) execute C2

(5,1),(5,2),(5,3) execute C2

(7,1),(7,2),(7,3) execute J

(6,1) executes C1

(7,1),(7,2),(7,3) execute C2

(8,1),(8,2),(8,3) execute J

(1,3) executes R

(2,3) executes R

(3,3) executes R

(4,3) executes R

(5,1) executes R

(6,1) executes R

(7,1) executes R

(8,1),(8,2),(8,3) execute R

(8,1),(8,2),(8,3) execute J

(7,2) executes R

(8,1),(8,2),(8,3) execute R

(8,1),(8,2),(8,3) execute J

(7,3) executes R

(8,1),(8,2),(8,3) execute R

(7,1),(7,2),(7,3) execute J

(6,2) executes C1

(7,1),(7,2),(7,3) execute C2

(8,1),(8,2),(8,3) execute J

(5,2) executes R

(6,2) executes R

(7,1) executes R

(8,1),(8,2),(8,3) execute R

(8,1),(8,2),(8,3) execute J

(7,2) executes R

(8,1),(8,2),(8,3) execute R

(8,1),(8,2),(8,3) execute J

(7,3) executes R

(8,1),(8,2),(8,3) execute R

(7,1),(7,2),(7,3) execute J

(6,3) executes C1

(7,1),(7,2),(7,3) execute C2

(8,1),(8,2),(8,3) execute J

(5,3) executes R

(6,3) executes R

(7,1) executes R

(8,1),(8,2),(8,3) execute R

(8,1),(8,2),(8,3) execute J

(7,2) executes R

(8,1),(8,2),(8,3) execute R

(8,1),(8,2),(8,3) execute J

(7,3) executes R

(8,1),(8,2),(8,3) execute R
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Figure 15: Empty representation of the network for E4 with β = 3. The reader can use it to follow the
step by step execution.
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