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AUTOMORPHISMS OF OPEN SURFACES WITH IRREDUCIBLE BOUNDARY

ADRIEN DUBOULOZ AND STÉPHANE LAMY

ABSTRACT. Let (S,BS) be the log pair associated with a projective completion of a smooth quasi-

projective surface V . Under the assumption that the boundary BS is irreducible, we obtain an algorithm to

factorize any automorphism of V into a sequence of simple links. This factorization lies in the framework

of the log Mori theory, with the property that all the blow-ups and contractions involved in the process

occur on the boundary. When the completion S is smooth, we obtain a description of the automorphisms

of V which is reminiscent of a presentation by generators and relations except that the “generators” are no

longer automorphisms. They are instead isomorphisms between different models of V preserving certain

rational fibrations. This description enables one to define normal forms of automorphisms and leads in

particular to a natural generalization of the usual notions of affine and Jonquières automorphisms of the

affine plane. When V is affine, we show however that except for a finite family of surfaces including the

affine plane, the group generated by these affine and Jonquières automorphisms, which we call the tame

group of V , is a proper subgroup of Aut(V ).

INTRODUCTION

Smooth affine surfaces with a rich group of algebraic automorphisms have been intensively studied

after the pioneering work of M.H. Gizatullin and V.I. Danilov in the seventies. Affine surfaces whose

automorphism group acts with a dense orbit with finite complement were first characterized by M.H.

Gizatullin [12] in terms of the structure of their boundary divisors in smooth minimal projective com-

pletions. Namely, except for finitely many exceptional cases, these surfaces are precisely those which

admit completions by chains of proper nonsingular rational curves. Their automorphism groups have

been studied by V.I. Danilov and M.H. Gizatullin in a series of papers [13, 14]. They established in

particular that their automorphism groups can be described as fundamental groups of graphs of groups

attached to well-chosen families of projective completions. The vertices of these graphs correspond

to classes up to isomorphism of suitable projective models of the affine surfaces under consideration

while the arrows are determined by certain birational relations between these. It is however difficult to

extract from them more concrete geometric properties of automorphisms or the existence of interesting

subgroups due to the fact that they have in general uncountably many vertices and uncountably many

edges between any pairs of vertices.

Affine surfaces V as above have the nice geometric property that they come equipped with fami-

lies of A1-fibrations π : V → A1, that is, surjective morphisms with general fibers isomorphic to the

affine line. The original approach of M.H. Gizatullin and V.I. Danilov has been recently reworked by

J. Blanc and the first author [5] with a particular focus on the interactions between automorphisms and

these fibrations. This led to introduce simpler graphs encoding equivalence classes of rational fibra-

tions from which it is possible to decide for instance if the automorphism group of V is generated by
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automorphisms preserving these fibrations. However the methods used in loc. cit. remain close to the

ones introduced by M.H. Gizatullin and V.I. Danilov, depending in particular on properties of birational

maps that are a priori specific to the 2-dimensional case.

As a step towards a hypothetical theory to study automorphisms of higher dimensional affine vari-

eties by methods of birational geometry, it is natural to try to reformulate these existing results in the

framework of log Mori theory. Since every smooth affine surface admitting a completion by a chain

of smooth rational curves admits in fact such a completion by a particular chain C0,C1, . . . ,Cr, r ≥ 1,

whose self-intersections are respectively 0,a1, . . . ,ar, where a1 ≤−1 and ai ≤−2 for all i= 2, . . . ,r, we

see that after contracting the curves C1, . . . ,Cr, we obtain a completion by a possibly singular projective

surface S with an irreducible boundary BS = C0. So given a smooth quasi-projective surface V , we

would like more generally to describe the automorphism group of V say when there exists a completion

S ⊃V where S is a possibly singular projective surface with SrV equal to an irreducible curve. More

precisely, we look for a factorization in the framework of the log Mori theory for automorphisms of V

that do not extend as biregular automorphisms on S.

When V admits a completion into a (log) Mori fiber space S, and f : S 99K S is the birational self-

map associated to an automorphism of V , the (log) Sarkisov program gives a factorization of f into

so-called elementary links between intermediate (log) Mori fiber spaces. As already expressed in [6],

the hope is that a refinement of such an algorithm could allow to understand the structure of polynomial

automorphisms of the affine 3-space A3. Here we have in mind to complete A3 by the projective space

P3, and to apply the algorithm to the birational map from P3 to P3 induced by an automorphism of A3.

It seems natural to expect an algorithm which is proper, that is where all the blow-ups and contractions

occur on the boundary divisor.

A natural first step is to check if at least in the 2-dimensional case, the log Sarkisov program sat-

isfies this property, and so could be used to give a good description of the automorphism groups of

quasi-projective surfaces V admitting completions into log Mori fiber spaces. But maybe surprisingly it

turns out that applying the log Sarkisov program to such a completion S does not provide a satisfactory

description: In general the links occurring in a factorization of a birational transformation of S induced

by an automorphism of V do not preserve the inner quasi-projective surface V (see Proposition 1). This

is not the case for A2, but it is worth noting that the phenomenon occurs for the 3-dimensional affine

space: There exist some automorphisms of A3 for which the usual Sarkisov factorization is not proper

(see [22, §1.2.3]).

This motivated the search for an alternative algorithm for which all the blow-ups and contractions

would occur on the boundary divisor. It is such an algorithm, together with applications and examples,

that we propose in this paper, the main point being a shift in focus from the existence of completions

with a log Mori fiber space structure to the existence of completions by one irreducible divisor. This

last property might turn out to be the right one for studying automorphisms of A3.

Before stating our main result, let us introduce the class of dlt completions of a smooth quasi-

projective surface V : These are divisorially log terminal pairs (S,BS) consisting of a projective com-

pletion S of V and a reduced boundary divisor BS = ∑Ei, such that the support of BS is exactly SrV .

Also, by a strictly birational map of dlt completions we mean a birational map f : (S,BS) 99K (S
′,BS′)

which induces an isomorphism SrBS→ S′rBS′ and which is not a biregular isomorphism. With these

definitions, our factorization result reads as follows.

Theorem 1. Let f : V
∼
→V ′ be an isomorphism of smooth quasi-projective surfaces, and let S,S′ be dlt

completions of V and V ′ with irreducible boundary divisors BS,BS′ . Then if the induced map f : S 99K S′
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is strictly birational, we can factorize f into a finite sequence of n links of the following form

Zi

}}⑤⑤
⑤⑤
⑤⑤
⑤⑤

��
❃❃

❃❃
❃❃

❃

Si−1 Si

where S0 = S,S1, . . . ,Sn = S′ are dlt completions of V with an irreducible boundary, Zi is for all i =
1, . . . ,n a dlt completion of V with two boundary components, and Zi→ Si−1, Zi→ Si are the divisorial

contractions associated with each one of the two K +B extremal rays with support in the boundary of

Zi.

The existence of the above decomposition, which was already considered by the authors in [9] (un-

published), is in fact a particular case of more general factorization results developed later on by Y.M.

Polyakova: see [24] where she reformulates the problem in terms of relations induced by certain classes

of birational maps in suitable categories of 2-dimensional log-terminal pairs. This approach certainly

provides a nice theoretical framework for studying automorphisms of quasi-projective surfaces in gen-

eral: for instance, one can recover from it the description of M.H Gizatullin and V.I. Danilov in terms of

fundamental groups of graphs of groups. However, it remains too abstract to give precise handle on the

properties of these automorphism groups and their subgroups. In our view, such a factorization result

is only a preliminary step for the understanding of these groups, and a second crucial step consists in

extracting from it some particular classes of birational maps which are relevant for the study of precise

properties of these groups. For instance, in [5] the question was to decide whether the automorphism

group of an affine surface admitting a completion by a chain of smooth rational curves is generated

by automorphisms preserving A1-fibrations. The problem was solved by introducing two classes of

birational maps called fibered modifications and reversions, roughly characterized by the respective

properties that they preserve an A1-fibration or exchange it to another one, and then by using an appro-

priate factorization result to deduce that any automorphism can be decomposed in a finite sequence of

such maps.

Here, as an application of our factorization result, we follow a similar strategy to describe the struc-

ture of the automorphism group of a quasi-projective surface V admitting a smooth completion (S,BS)
with irreducible boundary BS≃ P1, a case which is essentially complementary to the situations in which

the combinatorial methods developed in [5] give a satisfactory description. Affine surfaces of this type

have been first studied by Gizatullin and Danilov [14]: They established in particular that their iso-

morphy types as abstract affine surfaces depend only on the self-intersection B2
S of the boundary BS in

a smooth completion (S,BS) and not on the choice of a particular smooth completion S or boundary

divisor BS (except in the case B2
S = 4 where there are two models). They described their automorphism

groups in terms of the action of certain groups on a “space of tails” which essentially encodes the iso-

morphy types of smooth completions (S,BS) of a fixed affine surface V . Here we follow a different

approach based on a natural generalizations of the classical notions of Affine and Jonquières automor-

phisms for the affine plane. Roughly, for a given affine surface V , affine automorphisms in our sense

are characterized by the property that they come as restrictions of biregular automorphisms of various

smooth completions (S,BS) while Jonquières automorphisms are automorphisms which preserve cer-

tain A1-fibration on V . With these notions, we obtain a kind of presentation by generators and relations

closely related to the one considered by Gizatullin and Danilov in loc. cit. and reminiscent of the usual

description given by Jung’s Theorem for automorphisms of the affine plane.
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It is classical that Aut(V ) is generated by these two classes of automorphisms when V is A2 or a

smooth affine quadric surface and we are able to prove that this holds more generally for every affine

surface V admitting a smooth completion (S,BS) with rational irreducible boundary of self-intersection

B2
S ≤ 4. On the other hand, we show that this property fails for those admitting smooth completions

(S,BS) with B2
S ≥ 5. We also derive from our description that if B2

S ≥ 5 then Aut(V ) is “much bigger”

than the automorphism group of A2, in the sense that the proper normal subgroup generated by affine

and Jonquières automorphisms of V cannot be generated by a countable family of algebraic subgroups

(see Proposition 22).

The article is organized as follows. In Section 1, we briefly review the log Sarkisov program and we

illustrate the reason why it does not provide a satisfactory algorithm to obtain informations about auto-

morphism groups of quasi-projective surfaces. In Section 2, we review the geometry of dlt completions,

establish our factorization Theorem 1 and discuss some of its properties. Then in Section 3 we apply

our algorithm to the case of quasi-projective surfaces V admitting smooth completions with irreducible

boundaries. We observe that our algorithm yields a kind of presentation by generators and relations for

the automorphisms of V (Proposition 16) and enables to define a notion of normal forms for automor-

phisms. We then consider the situation where V is affine and discuss the structure of the automorphism

group (Proposition 22). Finally, section 4 is devoted to the explicit study of various examples of affine

surfaces V admitting smooth completions with irreducible boundaries which illustrate the increasing

complexity of the groups Aut(V ) in terms of the self-intersection of their boundary divisors.

1. QUASI-PROJECTIVE SURFACES WITH LOG MORI FIBER SPACE COMPLETIONS AND THE LOG

SARKISOV PROGRAM

Many interesting quasi-projective surfaces with a rich automorphism group admit completions into

dlt pairs (S,BS) which are log Mori fiber spaces g : (S,BS)→ Y , i.e., g has connected fibers, Y is a

normal curve or a point, and all the curves contracted by g are numerically proportional and of negative

intersection with the divisor KS +BS. Examples of such situations include the affine plane A2 or quasi-

projective surfaces obtained as complements of either a section or a fiber in a P1-bundle over a smooth

projective curve. In this context, the log Sarkisov program established by Bruno and Matsuki [6] gives

an effective algorithm to factorize a birational map f : S 99K S′ between log Mori fiber spaces into a

sequence of elementary links for which we control the complexity of the intermediate varieties in the

sense that at any step they differ from a log Mori fiber space by at most one divisorial contraction. As

it was established by Takahashi [23, p.401] for the case of A2, it seems natural to expect in general that

given a quasi-projective surface V and a log Mori fiber space S completing V , applying this algorithm

to birational maps f : S 99K S corresponding to automorphisms of V would lead to a good description

of the automorphism group of V . Unfortunately, this is not the case as it turns out in general that the

birational transformations involved in the algorithm do not preserve the inner quasi-projective surface

V . In this section we briefly review the mechanism of the log Sarkisov program of Bruno and Matsuki

and illustrate this phenomenon.

1.1. Overview of the log Sarkisov program for projective surfaces. Let f : S 99K S′ be a birational

map between 2-dimensional log Mori fiber spaces (S,BS) and (S′,BS′). We assume further that the

latter are log MMP related, i.e. that they can be both obtained from a same pair (X ,BX) consisting of a

smooth surface X and a simple normal crossing divisor BX by running the log Minimal Model Program.

We denote by π : X → S the corresponding morphism and by Ci ⊂ X the irreducible components of its

exceptional locus.
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The algorithm depends on two main discrete invariants of the birational map f which are defined as

follows. First, we choose an ample divisor H ′ on S′. We denote by HS ⊂ S (resp. HX ⊂ X , etc...) the

strict transform of a general member of the linear system |H ′|. The degree µ of f is then defined as

the positive rational number HS.C
−(KS+BS).C

where C is any curve contained in a fiber of the log Mori fiber

structure on S. For the second invariant, the fact that π is obtained by running the log MMP implies that

in the ramification formulas

KX +BX = π∗(KS +BS)+∑aiCi, HX = π∗HS−∑miCi

we have ai > 0 for every i, which enables to define the maximal multiplicity λ of f as the maximum of

the positive rational numbers λi =
mi

ai
.

If λ > µ, then the algorithm predicts the existence of a maximal extraction, that is, an extremal

divisorial contraction Z→ S whose exceptional divisor realizes the maximal multiplicity λ. Then either

Z is itself a log Mori fiber space, or there exists another extremal divisorial contraction from Z that

brings us back to a log Mori fiber space. These operations done, one shows that we have simplified f

in the sense that: either µ went down; or µ remained constant but λ went down; or µ and λ remained

constant but the number of exceptional divisors in X realizing the maximal multiplicity λ went down.

Otherwise, if λ≤ µ, the algorithm predicts that either S is equipped with a second structure of log Mori

fiber space for which the associated degree µ is strictly smaller, or there exists an extremal divisorial

contraction from S to another log Mori fiber space for which µ is again strictly smaller.

The four types of elementary links occurring in the factorization procedure can be summarized by

the following diagrams:

type (I) S

S′

pt P1
�� ��
oo

ww♥♥♥
♥♥♥

♥♥♥
♥♥

type (II) S S′

Z

Y
  
❆❆

❆❆
❆

~~⑥⑥
⑥⑥
⑥

~~⑥⑥
⑥⑥
⑥

  
❆❆

❆❆
❆

type (III)

S

S′

P1 pt
�� ��

//

''PP
PPP

PPP
PPP

type (IV)

S S′

P1 P1

pt

�� ��

≃ //

  
❆❆

❆❆

~~⑥⑥
⑥⑥

FIGURE 1. The four types of links of the log Sarkisov program.

The above program works for 2-dimensional dlt pairs (S,BS). Bruno and Matsuki [6] also established

the existence of the analogue program in dimension 3 for Kawamata log terminal (klt) pairs (Y,BY )
generalizing the original 3-dimensional version previously written down by Corti [7]. For klt pairs in

any dimension, Hacon and McKernan [15] recently gave a proof of the existence of a factorization

of birational maps between log Mori fiber spaces into sequences of links of types (I), . . . , (IV) (the

definition of these links is slightly more complicated in higher dimension because of the presence of

isomorphisms in codimension 1). However, their description, based on the results in [4], is much less

effective and does not take the form of an explicit algorithm. In any case, we shall see in the next
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subsection that anyone of these factorization results is in general inadequate to study the automorphism

group of an open surface V .

1.2. Inadequacy of the log Sarkisov program. The following criterion shows that for a large class

of quasi-projective surfaces V admitting completions into log Mori fiber spaces (S,BS), any procedure

which factors a birational map S 99K S into sequences of links of types (I), . . . , (IV) between log Mori

fiber spaces will affect in a nontrivial way the inner surface V .

Proposition 1. Let V be a quasi-projective surface admitting a completion into a log Mori fiber space

ρ : S→ C over a smooth projective curve C. Suppose further that each irreducible component of the

boundary SrV has nonnegative self-intersection, and is not contained in a fiber of any log Mori fiber

space structure on S. Then a strictly birational map φ : S 99K S, cannot admit a factorization into a

sequence of Sarkisov links of type (I), . . . , (IV), each restricting to an isomorphism on V .

Proof. Since ρ : S→ C is a log Mori fiber space over a curve, an elementary link starting from S is

necessarily of type (II), (III) or (IV). Links of type (IV) only change the considered log Mori fiber

space structure on S to another structure of the same type. Since φ is strictly birational, it cannot be

factored into a sequence of links of type (IV). Therefore, after a sequence of links of type (IV), one

has necessarily to perform a link of type (II) or (III) with respect to the log Mori fiber space structure

ρ′ : S→C at this step. Since by assumption the components of the boundary have non-negative self-

intersection hence cannot be contracted, we see that a link of type (III) never restricts to an isomorphism

on V . Consider now the possibility of a link of type (II). After performing the extraction Z → S with

center at a point q ∈ S, the morphism Z → S′ is the contraction of the strict transform of the unique

fiber F of the log Mori fiber space ρ′ : S→C passing though q. Our hypothesis implies that F is not an

irreducible component of the boundary SrV , and so, the link does not restrict to an isomorphism on

V . �

1.3. Example. As an illustration of Proposition 1, let us consider the case of the smooth affine surface

V defined as the complement of the diagonal D in P1×P1. The birational map

f : (x,y) ∈A2
99K

(

x+
1

x− y
,y+

1

x− y

)

∈ A2

preserves the levels x−y= constant, and extends via the embedding (x,y)∈A2 →֒ ([x : 1], [y : 1])∈P1×
P1 to a birational map from S = P1×P1 to S′ = P1×P1 inducing an isomorphism on V = P1×P1rD,

where D is the closure of the diagonal x− y = 0 in A2. The unique proper1 base point of f is the point

p = ([1 : 0], [1 : 0]), and the unique contracted curve is the diagonal D. Straightforward calculations in

local charts show that we can resolve f by performing 4 blow-ups that give rise to divisors C1, . . . ,C4

arranged as on Figure 2. We denote by C0 the strict transform of the diagonal D. Note that C4 is the

strict transform of the diagonal in S′.

Choosing H ′ = D as an ample divisor on S′, the coefficients ai in the ramification formulas

KX +BX = π∗(KS +BS)+∑aiCi, and HX = π∗HS−∑miCi,

are easy to compute. For the mi, one exploits for instance the fact that the strict transform HS of a

general member of |D| is a rational curve of bidegree (3,3) with a double point at p and at each of the

infinitely near base points of f . The results are tabulated in Figure 2.

1 By proper we mean a base point which is not an infinitely near point.
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C0

−1

❣❣❣❣❣❣❣❣❣❣❣❣❣❣
C3

−2 ❲❲❲❲❲
❲❲❲❲❲

❲❲❲❲ C4

−1

❣❣❣❣❣❣❣❣❣❣❣❣❣❣

C2 −2

✔✔✔✔✔✔✔✔✔✔✔

C1
−2

✯✯✯✯✯✯✯✯✯✯✯

ai mi λi

C1 1 2 2

C2 1 4 4

C3 1 6 6

C4 2 8 4

FIGURE 2. Resolution of f and coefficients in the ramification formulas.

The maximal multiplicity is thus realized by the divisor C3 and a maximal extraction Z → S is

obtained by first blowing-up three times to produce C1,C2 and C3 and then contracting C1 and C2

creating a cyclic quotient singularity. The boundary Z rV consists of two irreducible curves C0 and

C3, the latter supporting the unique singular point on the surface. Furthermore, there exist 4 irreducible

curves on Z that correspond to K +B extremal rays:

• C3, which is the exceptional divisor associated with the maximal multiplicity;

• C0, which is the strict transform of the diagonal on S;

• The strict transforms of the 2 rules D+ and D− of P1×P1 crossing at p.

Now the log Sarkisov program imposes to contract one of the two curves D+ or D− above (precisely:

the one that was a fiber for the chosen structure of log Mori fiber space on P1×P1) to reach a new

log Mori fiber space. But this birational contraction does not restrict to an isomorphism on the affine

surface V .

However, the above computation shows that we are left with a third option which consists in contract-

ing the strict transform C0 of D. This is precisely the curve that our alternative algorithm will impose to

contract to get a new projective surface S1 supporting a cyclic quotient singularity along the new bound-

ary BS1
=C3. By construction, the corresponding birational map S 99K S1 induces an isomorphism on

the inner affine surface V but it turns out that S1 is no longer a log Mori fiber space. Indeed, its divisor

class group is isomorphic to Z2, generated by the strict transforms of D+ and D−. On the other hand,

one checks that these curves generate the only K +B extremal rays on S1, each of these giving rise to a

divisorial contraction S1→ P2. Note in particular that even though it consists of a maximal extraction

Z→ S followed by a divisorial contraction Z→ S1, the birational map S 99K S1 just constructed is not

a Sarkisov link of type (II).

Summing up, Proposition 1 and the above example show that for quasi-projective surfaces V admit-

ting completions into log Mori fiber spaces, there does not exist any factorization process for which

each elementary step is simultaneously a link of type (I), . . . , (IV) between log Mori fiber spaces and

a birational map restricting to an isomorphism on V . So we cannot escape the dilemma that inevitably

we have to abandon one of these properties.

2. THE FACTORIZATION ALGORITHM

Here we first review basic facts on 2-dimensional dlt pairs and discuss the geometry of the boundaries

of dlt completions involved in our main statement. Then we prove Main Theorem 1 and discuss some

additional properties of the factorization.
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2.1. Singularities and geometry of boundaries. The fact that an automorphism of a normal quasi-

projective surface V extends to an automorphism of its minimal desingularisation enables to restrict

without loss of generality to the case of a smooth quasi-projective surface. On the other hand since

an extremal contraction starting from a smooth log surface may yield a singular one, it is necessary to

allow some kind of singularities on the projective completions S of V . Following recent work of Fujino

[11], the widest framework where the log Mori Program is established in dimension 2 is the one of

pairs (S,BS) with log canonical singularities. However, it is enough for our purpose to work with the

subclass of dlt pairs (S,BS).

2.1.1. Hirzebruch-Jung singularities. Before giving the characterization of these pairs that will be used

in the sequel, let us first recall that an isolated singular point p of a surface S is called a Hirzebruch-

Jung cyclic quotient singularity of type An,q, n≥ 2, 1≤ q≤ n−1, gcd(n,q) = 1 if it is analytic locally

isomorphic to the quotient of A2 by the action of the group µn ≃ Z/nZ of complex n-th roots of unity

defined by (x,y) 7→ (εx,εqy). As it is well-known (see e.g. [2, page 99]), the exceptional locus of the

minimal resolution π : S→ S of p consists of a chain of rational curves E1, . . . ,Es with self-intersections

E2
i =−ai ≤−2 determined by the expression

n

q
= a1−

1

a2−
1

a3−...

as a continued fraction. Recall that cyclic quotient singularities are log terminal, i.e., in the ramification

formula KS = π∗KS +∑ciEi one has −1 < ci for every i. For such singularities, one has in fact −1 <
ci ≤ 0. Indeed, otherwise, we can write KS = π∗KS +A−B where A and B are effective Q-divisors

supported on the exceptional locus of π and without common components. Since A2 < 0, it follows that

KS ·A = (A−B) ·A < 0 and hence, there would exist an index i such that KS ·Ei < 0. But then Ei would

be a (−1)-curve which is absurd.

2.1.2. Dlt pairs. For a definition of such pairs in general, we refer the reader to [18, Definition 2.8]. In

our situation, [19, Proposition 2.42] combined with the local description of log terminal singularities of

surfaces which can be found in [17, see in particular page 57, case (3)] leads to the following equivalent

definition:

Definition 2. A pair (S,BS) consisting of a projective surface S and a nonempty reduced divisor BS =

∑Bi such that SrBS is smooth is called divisorially log terminal (dlt) if the following conditions are

satisfied:

• The Bi are smooth irreducible curves with normal crossings, that is each common point of two

components is a normal crossing at a smooth point of S;

• A singular point p of S is a Hirzebruch-Jung singularity An,q and the strict transform of BS in

the minimal resolution π : S̄→ S of p meets the exceptional chain of rational curves E1, . . . ,Es

transversally at a unique point of the initial or final curve E1 or Es.

In particular, a dlt pair (S,BS) with irreducible boundary divisor BS is a purely log terminal (plt) pair.

Note that the above conditions guarantee in particular that the total transform of BS in the minimal

resolution π : S̃→ S of the singularities of S is a simple normal crossing divisor.

2.1.3. Geometry of the boundary. Let us first introduce notations and terminology that will be used in

the sequel. Given a strictly birational map of dlt completions f : (S,BS) 99K (S′,BS′) with irreducible

boundaries, we denote by π : S̃ → S and π′ : S̃′ → S′ the minimal resolutions of the singularities of

S and S′ respectively. We denote by S̃
σ
← X

σ′
→ S̃′ the minimal resolution of the base points of the
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birational map f̃ : S̃ 99K S̃′ induced by f . Recall [1, Theorem 1.3.7] that X and the birational morphisms

σ, σ′ are uniquely determined up to isomorphism by the following universal property: given another

resolution S̃←X ′→ S̃′, there exists a unique birational morphism X ′→X such that the obvious diagram

commutes. In particular, X does not contain (−1)-curves that are exceptional for both π◦σ : X→ S and

π′ ◦σ′ : X → S′. This implies that if the sequence of blow-ups σ′ : X → S̃′ is not empty, the (−1)-curve

produced as the last exceptional divisor of the sequence is the strict transform of BS. Note also that

by construction the boundary of S̃ and X are simple normal crossing divisors, with each irreducible

component a smooth rational curve.

The following result shows that the existence of strictly birational maps of dlt completions f : (S,BS) 99K
(S′,BS′) imposes strong constraints on the boundaries:

Proposition 3. Let f : (S,BS) 99K (S′,BS′) be a strictly birational map of dlt completions with irre-

ducible boundaries. Then the following holds:

(1) The boundaries BS and BS′ are both isomorphic to P1;

(2) S admits at most two singularities;

(3) f admits a unique proper base point B( f ), and if S has exactly two singularities then B( f )
coincides with one of these singularities.

Proof. Recall (see e.g. [16, Theorem 5.2 page 410]) that if h : M 99K M′ is a birational map between

normal surfaces, and p ∈ M is a proper base point of h, then there exists a curve C ⊂ M′ such that

h−1(C) = p. In our situation, since BS′ is the only curve that can be transformed to a point by f−1, it

follows that f has a unique proper base point B( f ) = f−1(BS′) ∈ BS. This implies in turn that f (BS)
cannot be equal to BS′ and so must be equal to a point p′ =B( f−1)∈BS′ . In particular, with the notation

above, the strict transforms on the minimal resolution X of BS and BS′ are smooth rational curves (they

come either from the resolution of a An,q singularity, or from the blow-up of a smooth point), and they

are not equal. This gives (1).

Now suppose that the union of the singularities of S and of B( f ) consists of at least three distinct

points supported on BS. Then on X , the strict transform of BS is a boundary component with at least

three neighbors. If σ′ 6= id then the first contraction must be the one of the strict transform of BS, which

is impossible since the boundary divisor is simply normal crossing for all surfaces between X and S̃′.

Hence σ′ = id, but again this gives a contradiction, since on S̃′ all divisors except maybe the strict

transform of BS′ which is distinct from that of BS must have at most two neighbors. This proves (2) and

(3). �

2.2. Proof of the factorization Theorem 1. The proof relies on the following lemma which charac-

terizes the possible extremal rays supported on the boundaries of dlt completions (S,BS).

Lemma 4. Let (S,BS) be a dlt completion of a smooth quasi-projective surface V .

(1) A (smooth) rational curve C ⊂ BS with at least two neighboring components in BS is not a

KS +BS extremal ray.

(2) If C⊂BS is a smooth rational curve with only one neighboring component in BS and supporting

at most one singularity of S, then (KS +BS).C < 0.

(3) Let C ⊂ BS be a curve supporting exactly one singularity p of S, and denote by C the strict

transform of C in the minimal resolution of p. If C
2
< 0 then C2 < 0.
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Proof. Let n be the number of neighbors of C in BS and let p1, . . . , pr the singular points of S supported

along C. By the adjunction formula (see e.g. 2.2.4 in [25]), we have

(KS +BS) ·C = (KS +C) ·C+n = deg(KC +DiffC(0))+n =−2+
r

∑
i=1

(1−
1

mi

)+n,

where mi ≥ 2 is the index of the singular point pi, i = 1, . . . ,r. This implies (1) and (2). For (3),

let π : S → S be a minimal resolution of p and let E = E1 be the unique π-exceptional curve that

intersects the strict transform C of C. We write C = π∗C−bE−R, KS = π∗(KS)+ cE +R′ where b > 0,

0≥ c >−1 (see §2.1.1) and where R,R′ are π-exceptional divisors whose supports do not meet C. The

fact that (S,BS) is a dlt pair implies that c− b > −1 whence that 1 > b. The assertion follows since

C2 = π∗C ·C = (C+bE +R) ·C =C
2
+b <C

2
+1. �

Proof of Theorem 1. Recall that we have a strictly birational map f : (S,BS) 99K (S
′,BS′) restricting to

an isomorphism V = SrBS ≃V ′ = S′rBS′ . As in subsection 2.1.3, we let π : S̃→ S and π′ : S̃′→ S′

be the minimal resolutions of singularities and we let S̃
σ
← X

σ′
→ S̃′ be the minimal resolution of the base

points of the induced birational map f̃ . By Proposition 3(1) and the description of Hirzebruch-Jung

singularities given in §2.1.1, the divisor BX is then a tree of rational curves. The irreducible components

of BX are exceptional for at least one of the two morphisms π◦σ or π′ ◦σ′, thus they all have a strictly

negative self-intersection. Since BX is a tree, there exists a unique sub-chain E0,E1, . . . ,En = E0
′ of

BX joining the strict transforms E0 and E0
′ of BS and BS′ respectively. We proceed by induction on the

number n+1 of components in this chain. The integer n≥ 1 will also be the number of links needed to

factorize f . We use the same notation for the curves Ei, i = 0, . . . ,n and their images or strict transforms

in the different surfaces that will come into play.

To construct the first link S = S0 99K S1, we consider the minimal partial resolution S̃←Y 99K S̃′ of

f̃ dominated by X and containing the divisor E1 defined as follows:

- If f̃ : S̃ 99K S̃′ is either a morphism or has a proper base point supported outside from E0, then E1

is one of the exceptional divisor of π, and the boundary BS̃ is a chain of rational curves with E0,E1

intersecting in one point. In this case we put Y = S̃.

- Otherwise, if f̃ : S̃ 99K S̃′ has a proper base point on E0 then by definition of the resolution X ,

the divisor E1 is produced by blowing-up successively the base points of f̃ as long as they lie on E0,

E1 being the last divisor produced by this process. We let Y → S̃ be the intermediate surface thus

obtained. By construction, the image of the curves contracted by the induced birational morphism

X → Y are all located outside E0 and the self-intersections of E0 in X and Y are equal. The divisor BY

is a chain that looks as in Figure 3. The wavy curves labeled “Sing” correspond to the (possible) chains

Y

E0

❣❣❣❣❣❣❣❣❣❣❣❣❣❣ E1
❲❲❲❲❲

❲❲❲❲❲
❲❲❲❲

Sing

T�
T�
T�
T�
T�
T�
T�

Aux

J

J

J

J

J

J

J


Sing

T�
T�
T�
T�
T�
T�
T�

FIGURE 3. The boundary divisor of Y .

of rational curves obtained by desingularisation of S, and the wavy curve labeled “Aux” corresponds to
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the (possible) chain of auxiliary rational curves, each with self-intersection −2, obtained by resolving

the base points of f̃ before getting E1.

In both cases, we have E2
0 < 0 on Y , since this self-intersection is the same as the one on X . So all

irreducible components of BY have a strictly negative self-intersection. By running the K +B MMP

on Y we can successively contract all the components of the boundary BY except E0 and E1. Indeed

at each step Y is a minimal resolution of the intermediate surface, and each extremity component C

of the boundary chain supports at most one singularity: Lemma 4 ensures that C is K +B negative

and has negative self-intersection whence generates a K +B extremal ray giving rise to a divisorial

extremal contraction. We note (Z,E0 +E1) the dlt pair obtained from the pair (Y,BY ) by this sequence

of contractions.
X

Y

Z

S S′

S̃ S̃′

σ

}}⑤⑤
⑤⑤
⑤⑤
⑤⑤
⑤⑤
⑤⑤

σ′

!!❇
❇❇

❇❇
❇❇

❇❇
❇❇

❇

��

tt✐✐✐✐
✐✐✐✐

✐✐

��

tt✐✐✐✐
✐✐✐✐

✐✐
π

��

π′

��

f
//❴❴❴❴❴❴❴❴❴❴❴

By construction, Z dominates S via the divisorial contraction of the K +B extremal curve E1. Again by

Lemma 4, E0 generates a K +B extremal ray in Z, and E2
0 < 0 on Z. So there exists a K +B divisorial

extremal contraction Z→ S1 contracting E0 and yielding a new dlt pair (S1,BS1
) with reduced boundary

BS1
consisting of the strict transform of E1. We obtain the first expected link and the map f : S 99K S′

factorizes via a birational map f1 : S1 99K S′.

Z = Z1

zztt
tt
tt
tt
t

""❋
❋❋

❋❋
❋❋

❋❋

S = S0

f

33❨ ❩ ❬ ❭ ❪ ❫ ❴ ❵ ❛ ❜ ❝ ❞ ❡ ❢//❴❴❴❴❴❴❴❴❴ S1

f1
//❴❴❴❴❴❴ S′

Furthermore, the minimal resolution X1 of the induced birational map f̃1 : S̃1 99K S̃′ between the

minimal desingularisations of S̃1 and S̃′ induced by f1 is dominated by X . More precisely, since E0

is the only possible (−1)-curve on X which is exceptional for both induced morphism X → S̃1 and

X → S̃′, X1 is either equal to X if E2
0 ≤ −2 or is obtained from X by first contracting E0 and then all

successive (−1)-curves occurring in the minimal resolution of a singular point of S supported on BS

and distinct from the proper base point of f (see Figure 3 above). It follows that the chain associated to

f1 : S1 99K S′ as defined at the beginning of the proof consists of the curves E1, . . . ,En = E0
′ hence has

length n. We conclude by induction that we can factorize f into exactly n links. �

Remark 5. A by-product of the proof above is the following property of the intermediate surfaces Zi

with two boundary components that appear in the Theorem: each one of the boundary component

supports at most one singularity. Note also that neither Lemma 4 nor the above proof tell something

about the possible KZi
+BZi

extremal curves on these intermediate surfaces that do not belong to the

boundary: in the example given in §1.2 above, we have four K +B extremal rays but only two of them

were supported on the boundary.

We introduce a concept that will prove useful in the next section.
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Definition 6. If f : (S,BS) 99K (S
′′,BS′′) and g : (S′′,BS′′) 99K (S

′,BS′) are strictly birational maps of dlt

completions, we will say that f and g are in special position if B( f−1) = B(g) and in general position

otherwise.

It follows in particular from the construction of the factorization f = fn . . . f1 : (S,BS) 99K (S′,BS′)
given in the proof above that for every i = 1, . . . ,n− 1, fi and fi+1 are in general position. In general,

see Remark 8 below, the factorization into elementary links of a composition of two strictly birational

maps of dlt completions with irreducible boundaries does not coincide with the concatenation of the

factorizations of these maps. The following corollary provides however a sufficient condition for this

property to hold. In particular the condition is satisfied when all the surfaces into play are smooth.

Corollary 7. Let f : (S,BS) 99K (S
′′,BS′′) and g : (S′′,BS′′) 99K (S

′,BS′) be birational maps of dlt com-

pletions with irreducible boundaries. If f and g are in general position and at least one of the two

points B(g) or B( f−1) is a smooth point of S′′ then the factorization of g◦ f into elementary links given

by Theorem 1 is equal to the concatenation of the factorizations of f and g. Furthermore, one has then

B(g◦ f ) = B( f ) and B((g◦ f )−1) = B(g−1).

Proof. Up to replacing f and g by their inverses, we may assume that B(g) is a smooth point of S′′. As

before we denote by S̃ the minimal desingularisation of S (same with S′, S′′) and by f̃ , g̃ the induced

birational maps. The hypothesis implies that all the base points of f̃−1 and g̃ including infinitely near

ones are distinct so that a resolution S̃
σ
← X

σ′
→ S̃′ of the birational map S̃ 99K S̃′ induced by g ◦ f is

obtained from S̃′′ by simultaneously resolving the base points of f̃−1 and g̃ :

X

S̃′′

S′′S S′

S̃ S̃′

σ

}}⑤⑤
⑤⑤
⑤⑤
⑤⑤
⑤⑤
⑤⑤

σ′

!!❇
❇❇

❇❇
❇❇

❇❇
❇❇

❇

��

��

π

��

π′

��

f
//❴❴❴❴❴

g
//❴❴❴❴❴

f̃

//❴❴❴❴❴
g̃

//❴❴❴❴❴

The surface X dominates the minimal resolution X f of f̃ and Xg of g̃. We denote by E0, E ′0, E ′′0 the

strict transforms of BS, B′S and B′′S in X (or in X f , Xg). By construction the chain joining E0 to E ′0 in X

is the union of the strict transform of the chain joining E0 to E ′′0 in X f with the strict transform of the

chain joining E ′′0 to E ′0 in Xg. Since BS′′ is contracted by f−1, its strict transform E ′′0 in X f has negative

self-intersection. Furthermore since B(g) is a smooth point of S′′, the lift of g to X f has a proper base

point on E ′′0 and so the strict transform of E ′′0 in X has self-intersection ≤ −2. Since E ′′0 is the only

curve that could have been a (−1)-curve simultaneously exceptional for σ and σ′, we conclude that X

is a minimal resolution of g◦ f .

Now the first part of the assertion follows directly from the construction of the factorization. The

second part follows from the fact that since the image B(g) ∈ BS′′ of BS′ by g−1 is distinct from B( f−1),
the image B(g◦ f ) of BS′ by (g◦ f )−1 coincides with the image B( f ) ∈ BS of BS′′ by f−1. For the same

reason, B((g◦ f )−1) = B(g−1). �

Remark 8. The assumption that B( f−1) or B(g) is a smooth point of S′′ implies in particular that BS′′

supports at most a singular point of S′′ (Proposition 3, assertion (3)). So the only situation in which the

conclusion of the Corollary above could fail is when BS′′ supports exactly two singular points which are



AUTOMORPHISMS OF OPEN SURFACES WITH IRREDUCIBLE BOUNDARY 13

the proper base points of B( f−1) and B(g) respectively. The following example, which was pointed

out to us by the referee, shows that this phenomenon can indeed occur.

Consider S = P2, with boundary BS equal to a line. We construct a surface X by blowing-up three

points: first a point on S producing an exceptional divisor E; then the intersection point E ∩E0 (where

E0 is the strict transform of BS) producing the exceptional divisor E ′0; and finally blowing-up E0 ∩E ′0
producing E ′′0 .

We construct a surface S′′ from X by contracting the curves E,E0 and E ′0; similarly we construct S′

by contracting E,E0 and E ′′0 . These surfaces are singular, we have S̃′′ = X , and S̃′ is the surface obtained

from X by contracting E0 and E ′′0 . Denote by f ,g the birational maps S 99K S′′ and S′′ 99K S′ (see Figure

4). Then the factorization of g ◦ f is not the concatenation of the factorizations of f and g. What’s

going wrong here is that X is not a minimal resolution of g◦ f , indeed E ′′0 is a (−1)-curve on X which

is exceptional for both σ and σ′.

S = P2

E0

+1

S′

E ′0

⋆

S′′

E ′′0

⋆ ⋆

X = S̃′′

E0

−2

❣❣❣❣❣❣❣
E ′′0

−1
❲❲❲❲❲

❲❲ E ′0

−2

❣❣❣❣❣❣❣
E

−2
❲❲❲❲❲

❲❲

S̃′ E ′0

0

❣❣❣❣❣❣❣
E

−2
❲❲❲❲❲

❲❲

��

σ

⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧ ��

''
σ′❖❖❖❖

��

f
//❴❴❴❴❴❴

g
//❴❴❴❴❴❴❴

FIGURE 4. The counter-example in Remark 8 (⋆ denotes a singularity, numbers are

self-intersections)

2.3. Additional properties of the factorization. Noting that the definition of the maximal multiplicity

λ (see §1.1) makes sense even when S is not a Mori fiber space, we observe that our algorithm retains

one aspect of the log Sarkisov program of Bruno and Matsuki [6], namely the fact that the first divisorial

contraction involved in each link is a maximal extraction:

Proposition 9. The birational morphism Z→ S with exceptional divisor E1 constructed in the proof of

the theorem is a maximal extraction.

Proof. A maximal extraction (see [23, prop. 13-1-8] and [6, p. 485] for the logarithmic case) is obtained

from a smooth surface which dominates S and S′ by a process of the K +B-MMP. So we may use the

surface X from the proof of the theorem. The precise procedure consists in two steps (we use the

notations λ and H that have been defined in §1.1): Running first a K +B+ 1
λH-MMP over S until we

reach a log minimal model, then running a K +B-MMP over S; the last contraction gives a maximal

extraction. The crucial observation is that each extremal divisorial contraction of the log MMP in the

first step is also a contraction for the genuine K+B-MMP. The fact that we are running a log MMP over
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S guarantees that the only curves affected by the procedure are contained in the boundary. By Lemma

4, as long as E1 admits two neighboring components (E0 and another one), it cannot correspond to a

K +B negative extremal ray. Remark also that if BS supports a singularity q which is not a proper base

point for f , then all exceptional divisors of the resolution of q have multiplicities λi = 0 and thus are

contracted in the first step. It follows that the maximal extraction we constructed, which is the last

divisorial contraction Z→ S, must have E1 as exceptional divisor. �

Remark 10. In contrast with the log Sarkisov algorithm of Bruno and Matsuki, we did not assume from

the beginning that the pairs (S,BS) and (S′,BS′) were log-MMP related. In our situation, this property

is automatic: this is probably a well-known fact, but we can also obtain it as a by-product of the proof

of Theorem 1. Indeed, letting again E0, . . . ,En be the subchain of rational curves in the boundary BX of

X defined in the proof, Lemma 4 guarantees that all the irreducible components of BX except the ones

contained in that chain can be successively contracted by a process of the K +B MMP. The surface W

obtained by this procedure has boundary BW = ∑n
i=0 Ei and dominates both S and S′ by a sequence of

K +B divisorial contractions.

On the other hand, the elementary example of the identity map of A2 viewed as a rational map from

P1×P1
99K P2 with a unique proper base point p located at the intersection of the two rules at infinity

and for which the blow-up of p is not a K+B extremal contraction shows that arbitrary dlt completions

of a given quasi-projective surface need not be log-MMP related in general. So if one wants to extend

our factorization result to pairs with reducible boundaries, it becomes necessary to at least require from

the very beginning that the pairs under consideration are log-MMP related.

3. QUASI-PROJECTIVE SURFACES WITH SMOOTH COMPLETIONS

In this section we derive from our factorization theorem a general description of the automorphism

group of V when V admits a smooth completion (S,BS) with irreducible boundary BS ≃ P1. In what fol-

lows, such pairs (S,BS) are simply referred to as smooth completions, the inner smooth quasi-projective

surface V = SrBS being implicit.

Smooth completions (S,BS) for which B2
S < 0 can be quite arbitrary since for instance any blow-up

σ : S→ S′ of a point on a smooth projective surface S′ with exceptional divisor BS gives rise to such a

pair (S,BS). In contrast, the possible structures of pairs (S,BS) with B2
S ≥ 0 are much more constrained,

as summarized by the following Proposition:

Proposition 11. If (S,BS) is a smooth completion with B2
S ≥ 0, then after the contraction of finitely

many (−1)-curves contained in V , we reach a pair of the following type:

(1) (P2,B) where B is either a line or a smooth conic,

(2) (F,B) where p : F→ D is a ruled surface over a smooth projective curve D and where B is

either a fiber or a section. Furthermore, if B2 6= 0 then F is a Hirzebruch surface Fn, for some

n≥ 0, and B is a section.

Proof. Up to replacing (S,BS) by a pair obtained by successively contracting all possible (−1)-curves

in SrBS and having the strict transform of BS for its boundary, we may assume from the very beginning

that SrBS does not contain a (−1)-curve. Since (KS +BS) ·BS =−2 by adjunction formula, it follows

that KS +BS is not nef and so there exists a KS +BS-negative extremal rational curve C on S. Since

B2
S ≥ 0, the conditions (KS +BS) ·C = (KS +C) ·C +BS ·C−C2 = −2+BS ·C−C2 < 0 and C2 < 0

would imply that C is a (−1)-curve disjoint from BS, which is impossible. Thus (S,BS) is a log Mori

fiber space g : S→ D. If D is a point then S is smooth log del Pezzo surface of rank 1, whence is

isomorphic to P2 and BS ≃ P1 is either a line or a smooth conic. Otherwise, since S is smooth g : S→D
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is a P1-bundle and the condition (KS +BS) ·F = (KS +F) ·F +BS ·F = −2+BS ·F < 0 for a fiber

F ≃ P1 of g implies that BS ·F = 0 or 1. Thus BS is either a fiber if BS ·F = 0 or a section otherwise.

This immediately implies the remaining assertions. �

3.1. Triangular birational maps between smooth completions. Let us first observe that if (S,BS)
is a smooth completion with B2

S < 0 then every birational map of smooth completions f : (S,BS) 99K
(S′,BS′) is in fact an isomorphism. Indeed, otherwise it would have a proper base point on BS, and since

B2
S < 0 it would follow that the total transform of BS in the minimal resolution of f contains no (−1)-

curve except the strict transform of BS′ , in contradiction with the fact that S′ is smooth. It follows in

particular that if a smooth quasi-projective surface V admits a smooth completion (S,BS) with B2
S < 0

then the automorphism group of V coincides with the subgroup Aut(S,BS) of Aut(S) consisting of

automorphisms preserving the boundary BS. In contrast, if (S,BS) and (S′,BS′) are smooth completions

with B2
S ≥ 0 or B2

S′ ≥ 0, then strictly birational maps of smooth completions (S,BS) 99K (S′,BS′) may

exist in general.

3.1.1. Structure of intermediate pairs. Given such a strictly birational map, we prove in the next lemma

that the dlt pairs (Si,BSi
) which appear in the factorization of f as in Theorem 1 have at most one

singularity. So the following definition makes sense: If Si is singular, then we say that it has index k if

in the minimal resolution of its singularities the exceptional curve which intersects the strict transform

of BSi
has self-intersection −k. Otherwise, if Si is smooth then we say that Si has index 1. We note

ind(Si) the index of Si.

Lemma 12. Let f : (S,BS) 99K (S′,BS′) be a strictly birational map of smooth completions and let

S = S0 99K S1 99K · · · 99K Sn = S′ be its factorization into elementary links given by Theorem 1. Then

the following holds :

1) If B2
S = 0 then each Si is smooth with B2

Si
= B2

S = 0,

2) If B2
S > 0 then each Si has at most one singularity. Furthermore:

a) If Si is smooth then B2
Si
= B2

S whereas if Si is singular, the boundary of a minimal resolution of

Si is a chain of B2
S +1 rational curves with self-intersections (0,−ki,−2, . . . ,−2) where ki = ind(Si);

b) For all i = 0, . . . ,n− 1 the indexes of Si and Si+1 differ exactly by 1 and if ind(Si) ≥ 2 and

ind(Si) = ind(Si−1)−1 then ind(Si+1) = ind(Si)−1.

Proof. Let (S j,B j) be one of the intermediate dlt completions, and let f j : (S j,B j) 99K (S′,BS′) be

the induced birational map. Suppose S j is smooth, with B2
S j

= B2
S = d ≥ 0 and consider as in the

proof of Theorem 1 the surface Y containing the strict transforms E j and E j+1 of the boundaries of

S j and S j+1. Since S′ is smooth, the strict transform of B j in the minimal resolution X j of f j is a

(−1)-curve. It follows that the boundary of Y is equal to a chain of d +2 curves with self-intersections

(−1,−1,−2, . . . ,−2). If d = 0 then S j+1 is again smooth with B2
S j+1

= 0 and so, 1) follows by induction.

Otherwise, if d > 0 then S j+1 has a unique singularity and the boundary of the minimal resolution of

S j+1 is a chain of d + 1 curves with self-intersections (0,−2, . . . ,−2). In particular, S j+1 has index

2 (see Figure 5, (a), with k = 2). Now we proceed by induction, assuming that Si has exactly one

singularity, and that the boundary of the minimal resolution S̃i of Si is a chain of d + 1 rational curves

with self-intersections (0,−(k−1),−2, . . . ,−2), where k−1 = ind(Si)≥ 2. We denote by C the second

irreducible component of this chain which has thus self-intersection −(k−1). Let S̃i← Xi→ S′ be the

minimal resolution of the induced birational map S̃i 99K S′. Since the strict transform Ei of BSi
is a

0-curve on S̃i and a (−1)-curve on Xi as S′ is smooth, we see that there is exactly one blow-up on Ei,

which by definition produces the divisor Ei+1. Then there are two cases :
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a) If the proper base point on Ei coincides with the intersection point of Ei and C, then the boundary

of Y is a chain of curves with self-intersections (−1,−1,−k,−2, . . . ,−2), where the first three are Ei

and Ei+1 and C. Thus in this case Si+1 has again exactly one singularity and has index k (the picture is

again Figure 5, (a)).

b) Otherwise, if the proper base point on Ei is any other point, then the boundary of Y is a chain of

curves with self-intersections (−2, . . . ,−2,−(k− 1),−1,−1), where the last three are C, Ei and Ei+1.

In this case Si+1 has again at most one singularity and has index k−2 (see Figure 5, (b)). It is smooth if

and only if k−1 = 2 and in this case its boundary BSi+1
, which is the strict transform of Ei+1 has again

self-intersection B2
Si+1

= d.

(a)

Ei

−1 ❣❣❣❣❣❣❣❣❣❣❣❣❣❣ Ei+1

−1

❲❲❲❲❲
❲❲❲❲❲

❲❲❲❲
Sing

−k,−2,··· ,−2

J

J

J

J

J

J

J


(b)

Ei

−1 ❣❣❣❣❣❣❣❣❣❣❣❣❣❣ Ei+1

−1

❲❲❲❲❲
❲❲❲❲❲

❲❲❲❲
Sing

−2,··· ,−2,−(k−1)
T�
T�
T�
T�
T�
T�
T�

FIGURE 5. Boundary of Y in the proof of Lemma 12.

The last assertion follows from the fact that by construction the center of the blow-up on Ei+1 pro-

ducing the next divisor Ei+2 does not coincide with the intersection point of Ei and Ei+1. �

3.1.2. Triangular birational maps.

Definition 13. A strictly birational map of smooth completions φ : (S,BS) 99K (S′,BS′) is called tri-

angular if all the intermediate surfaces Si that appear in the factorization produced by Theorem 1 are

singular.

Given a smooth pair (S,BS) with B2
S ≥ 0, it follows from Proposition 11 that S dominates birationally

a surface F which is either P2 or a ruled surface.

First we discuss the case where B2
S = 0. Then the strict transform of BS in F still have self-intersection

0, so F is a ruled surface p : F→ D and the strict transform of BS is either a fiber F or a section of p.

Note that in the second case F is isomorphic to P1×P1 in such a way that p coincides with the first

projection while the strict transform of BS is a fiber F of the second projection: up to changing the

projection we can assume that BS is a fiber, as in the first case. Then, it follows from Lemma 12

that the notion of a triangular map coincides with that of a link and that every such link consists of

the blow-up of a point on F followed by the contraction of its strict transform. Assume now that

f : (S,BS) 99K (S′,BS′) is a strictly birational map of smooth completions, where (S,BS) and (S′,BS′)
dominate some ruled surfaces p : F→D and p′ :F′→D′ respectively. Then B2

S′ = 0, we can assume that

the strict transforms of BS and BS′ are fibers of p and p′ respectively, and the birational transformation

F 99K F′ induced by f consists of elementary transformations between ruled surfaces. It follows that

f preserves the P1-fibrations ρ : S→ D and ρ′ : S′ → D′ induced by these rulings hence induces an

isomorphism f : V = SrBS→V ′ = S′rBS′ of P1-fibered quasi-projective surfaces

V = SrBS
∼

f
//

ρ|V
��

V ′ = S′rBS′

ρ′|V ′
��

Drρ(BS)
∼ // D′rρ′(BS′).
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Next we consider the case of a triangular map φ : (S,BS) 99K (S
′,BS′) between smooth completions

with B2
S = B2

S′ = d > 0. Note that since BS and BS′ are smooth rational curves, it follows form Noether’s

Lemma that the surfaces S and S′ are rational. We deduce from the description given in the proof of

Lemma 12 that the total transform of BS in the minimal resolution X of φ is a tree of rational curves

with the dual graph pictured in Figure 6.

d−1•
C

−k
•
−2

k−2•
E0

−1

k−2•
E0
′

−1

H

H ′
D

FIGURE 6. Minimal resolution of a triangular map.

Here E0 and E0
′ = En denote the strict transforms of BS and BS′ respectively, the two boxes on the

left represent chains of k−2 rational curves with self-intersection (−2), and the one on the right a chain

D of d−1 such curves. Note also that the proper base point of φ coincides with the proper base point of

the first elementary link S = S0 99K S1 while the one of its inverse coincides with the proper base point

of the inverse of the last one Sn−1 99K Sn = S′ (see Corollary 7).

Let δ : X → Ŝ and δ′ : X → Ŝ′ be the morphisms given by the smooth contractions of the sub-trees

H ∪H ′∪E0
′ and H ∪H ′∪E0 onto q = E0∩C and q′ = E0

′∩C. Since S and S′ are rational and E2
0 = 0

and E ′0
2 = 0 on Ŝ and Ŝ′, it follows from Riemann-Roch Theorem that the complete linear systems

|E0| and |E0
′| are base point free and define P1-fibrations ρ̂ : Ŝ→ P1 and ρ̂′ : Ŝ′→ P1 both having the

image of C as a section. Note further that the image of D in Ŝ and Ŝ′ is a proper subset of a fiber of ρ̂
and ρ̂′ respectively: indeed, if not empty, the image of D has negative definite self-intersection matrix

and hence cannot be equal to a full fiber of a P1-fibration. By contracting the remaining exceptional

divisors, we see that |E0| (resp. |E0
′|) coincides with the strict transform on Ŝ (resp. Ŝ′) of the rational

subpencil PB(φ) ⊂ |BS| (resp. P ′B(φ−1) ⊂ |BS′ |) consisting of curves having local intersection number

with BS (resp. BS′) at B(φ) (resp. B(φ−1)) equal to d. Equivalently, the fibrations ρ̂ and ρ̂′ coincide

respectively with the minimal resolution of the rational maps ρ : S 99K P1 and ρ′ : S′ 99K P1 defined by

PB(φ) and P ′B(φ−1). These two maps restrict on V = SrBS and V ′ = S′rBS′ to quasi-projective A1-

fibrations ρ |V : V → A1 = P1 rρ(BS) and ρ′ |V ′ : V ′→ A1 = P1 rρ′(BS′), i.e., surjective morphisms

with general fiber isomorphic to the affine line A1.

The birational map φ : S 99K S′ lifts to φ̂ : Ŝ 99K Ŝ′ mapping Ŝ rE0 isomorphically onto Ŝ′rE0
′,

having q as unique proper base point while its inverse has q′ as a unique proper base point. Since the

total transforms of E0 and E ′0 in X coincide, the lifted P1-fibrations ρ̂◦δ and ρ̂′ ◦δ′ on X coincide. This

implies that φ̂ restricts to an isomorphism of A1-fibered quasi-projective surfaces

V = SrBS = Ŝr τ−1(BS)
∼

φ̂

//

ρ̂|V
��

V ′ = S′rBS′ = Ŝ′r τ′−1(BS′)

ρ̂′|V ′
��

A1 ∼ // A1

where τ : Ŝ→ S and τ′ : Ŝ′→ S′ denote the contraction of C and the right chain D of d−1 curves with

self-intersection −2 pictured in Figure 6 above.
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A birational map φ̂ : Ŝ 99K Ŝ′ restricting to an isomorphism of A1-fibered surfaces as above is called

a fibered modification (see also [5, 2.2.1]).

In general, if (S,BS) is a smooth completion with B2
S = d > 0 and p is a point of BS then the base locus

of the linear subsystem Pp ⊂ |BS| consisting of curves having a local intersection number with BS at p

equal to d is solved as follows. We perform d successive blow-ups with centers on the successive strict

transforms of BS, until we reach a surface Ŝ on which the strict transform of Pp is equal to the complete

linear system |E0| generated by the strict transform E0 of BS. Since E0 is a smooth rational curve with

E2
0 = 0, Pp defines a rational pencil ρp : S 99K P1 which restricts on V = SrBS to a quasi-projective

A1-fibration ρp |V : V →A1. This leads to the following alternative characterization of triangular maps:

Lemma 14. For a strictly birational map of smooth completions φ : (S,BS) 99K (S
′,BS′) with B2

S = B2
S′ >

0, the following are equivalent :

a) φ is a triangular map;

b) There exist points p ∈ BS and p′ ∈ BS′ such that φ maps the pencil Pp onto the pencil P ′p′ ; If so, the

points p and p′ are equal to B(φ) and B(φ−1) respectively.

c) φ maps the pencil PB(φ) onto the pencil P ′
B(φ−1)

;

d) φ induces an isomorphism of A1-fibered quasi-projective surfaces (SrBS,ρB(φ))
∼
→ (S′rBS′,ρ

′
B(φ−1)

).

Proof. Properties c) and d) are clearly equivalent. If b) holds and the proper base point of φ is distinct

from p then all infinitely near base points of φ are also distinct from p. Since φ contracts BS, the strict

transform in S′ of a general member of Pp has self-intersection strictly bigger than B2
S =B2

S′ hence cannot

be a general member of a pencil of the form P ′p′ . So B(φ) = p and for the same reason B(φ−1) = p′

which proves the equivalence of b) and c). The fact that a triangular map φ : (S,BS) 99K (S
′,BS′) maps

PB(φ) onto P ′B(φ−1) follows from the above discussion.

It remains to prove that c) implies a). If c) holds then since S and S′ are both smooth, the strict

transforms of BS and BS′ in the minimal resolution S
σ
← X

σ′
→ S′ of φ are both (−1)-curves. So φ and

φ−1 both have at least d + 1 base points including infinitely near ones and their first d + 1 base points

are supported on BS and BS′ respectively. This implies in turn that σ and σ′ factor respectively through

the minimal resolutions π : Ŝ→ S and π′ : Ŝ′→ S′ of the base points of PB(φ) and P ′B(φ−1) and that the

induced birational map φ̂ : Ŝ 99K Ŝ′ is a fibered modification. By virtue of [5, 2.2.4], the dual graph of

the total transform of BS in X looks like the one pictured in Figure 6 for which it is straightforward to

check that all intermediate surfaces occurring in the decomposition are singular. Thus φ is a triangular

map. �

The following Corollary, which is an immediate consequence of the previous Lemma, will be fre-

quently used in the sequel:

Corollary 15. If φ : (S,BS) 99K (S
′′,BS′′) and φ′′ : (S′′,BS′′) 99K (S

′,BS′) are triangular maps of smooth

completions with B2
S > 0 and φ,φ′′ in special position, then the composition φ′ = φ′′ ◦ φ : (S,BS) 99K

(S′,BS′) is either an isomorphism of pairs mapping B(φ) on B(φ′′−1) or a triangular map with B(φ′) =

B(φ) and B(φ′−1) = B(φ′′−1).

3.2. Automorphisms of quasi-projective surfaces with smooth completions.

3.2.1. Decomposition into triangular maps and normal forms. Given a strictly birational map f :

(S,BS) 99K (S′,BS′) of smooth completions with B2
S = B2

S′ > 0, Lemma 12 provides a decomposition
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of f into a finite sequence

f = φn . . .φ1 : (S,BS) = (S0,BS0
)

φ1

99K (S1,BS1
)

φ2

99K · · ·
φn

99K (Sn,BSn
) = (S′,BS′)

of triangular maps between smooth completions. Such a decomposition of f is called minimal if there

does not exist any other decomposition with strictly less than n terms. The following Proposition

provides a characterization of these minimal decompositions.

Proposition 16. A composition

f = φn . . .φ1 : (S,BS) = (S0,BS0
)

φ1

99K (S1,BS1
)

φ2

99K · · ·
φn

99K (Sn,BSn
) = (S′,BS′)

of triangular maps between smooth completions with B2
S = B2

S′ > 0 is minimal if and only if for every

i = 1, . . . ,n−1, the maps φi and φi+1 are in general position.

Furthermore, if these conditions are satisfied, then the following holds:

a) The map f is strictly birational with B( f ) = B(φ1) and B( f−1) = B(φ−1
n ),

b) For every other minimal decomposition

f = φ′n . . .φ
′
1 : (S,BS) = (S′0,BS′0

)
φ′1
99K (S′1,BS′1

)
φ′2
99K · · ·

φ′n
99K (S′n,BS′n

) = (S′,BS′)

of f there exists isomorphisms of pairs α0 = idS, αi : (Si,BSi
)
∼
→ (S′i,BS′i

), i = 1, . . .n−1 and αn = idS′ ,

such that αiφi = φ′iαi−1 for every i = 1, . . . ,n.

Proof. First note that by virtue of Corollary 15, the composition of two triangular maps in special

position is either triangular or an isomorphism of pairs. Therefore a composition φn . . .φ1 in which for

some i the maps φi and φi+1 are in special position cannot be minimal.

Next assume that f = φn · · ·φ1 is a composition for which any two successive triangular maps are in

general position. To prove a), up to changing f with its inverse, it is enough to check that f is strictly

birational with B( f−1) = B(φ−1
n ). We proceed by induction on n, the case n = 1 being obvious. If

n > 1 then by induction hypothesis fn−1 = φn−1 . . .φ1 is a strictly birational map which contracts the

curve BS0
to the proper base point p ∈ BSn−1

of φ−1
n−1. The curve BSn−1

is contracted in turn by φn onto

the proper base point of φ−1
n . But since φn−1 and φn are in general position, p is not a base point of φn

and so, f = φn fn−1 contracts BS0
onto φn(BSn−1

) = B(φ−1
n ). This shows that f is strictly birational and

that B( f−1) = B(φ−1
n ).

Now let f = φ′m . . .φ′1 : (S,BS) 99K (S
′,BS′), m ≤ n, be a minimal decomposition of f into triangular

maps. By Corollary 15 again, any two successive triangular maps must be in general position. If

φ−1
1 and φ′1 were in general position, then by a) φ′m . . .φ′1φ−1

1 . . .φ−1
n would be a strictly birational map

restricting to the identity on S′ \BS′ , whence on S′, which is absurd. Therefore, φ−1
1 and φ′1 are in

special position and it follows from Corollary 15 that α1 = φ′1φ−1
1 : (S1,BS1

) 99K (S′1,BS′1
) is either a

triangular map or an isomorphism of pairs. But if α1 is triangular, then, again by Corollary 15, we

would have B(α1) = B(φ−1
1 ) and B(α−1

1 ) = B((φ′1)
−1). The pairs of maps α1,φ

′
2 and φ−1

2 ,α1 would

then be both in general position and φ′m . . .φ′2α1φ−1
2 . . .φ−1

n would again be strictly birational. So α1

is an isomorphism of pairs and writing ψ′2 = φ′2α1, which is again a triangular map, we deduce in a

similar way that ψ′2φ−1
2 : (S2,BS2

) 99K (S′2,BS′2
) is an isomorphism, that we denote by α2. By induction,

we define ψ′r = φ′rαr−1 and obtain an isomorphism αr = ψ′rφ
−1
r : (Sr,BSr

) 99K (S′r,BS′r
) for r = 2, . . . ,m.

The last relation obtained is αmφ−1
m+1 . . .φ

−1
n = idS′ : (S′,BS′) 99K (S′,BS′) from which we deduce that

m = n, and αn = idS′ . Choosing α0 = idS we find that αiφi = φ′iαi−1 for every i = 1, . . . ,n.

This proves on the one hand that the decomposition f = φn · · ·φ1 was minimal and that b) holds for

this decomposition. �
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Definition 17. The number ℓ( f ) of triangular maps occurring in a minimal decomposition of a bira-

tional map f : (S,B) 99K (S′,BS′) of smooth completions is called the length of f .

Corollary 18. Let f = φn . . .φ1 : (S,BS) 99K (S
′,BS′) be a strictly birational composition of n ≥ 2 tri-

angular maps. If B( f ) 6= B(φ1) then there exists an index i ∈ {2, . . . ,n−1} such that φi . . .φ1 is an

isomorphism.

Proof. We proceed by induction on the number of triangular maps in the composition. If n= 2 then if φ2

and φ1 are in general position or if φ2 and φ1 are in special position and φ2φ1 is triangular then B(φ2φ1)=
B(φ1) by Proposition 16 and Corollary 15. So B(φ2φ1) = B(φ1) unless φ2φ1 is an isomorphism.

Now suppose that n > 2.

If φ2 and φ1 are in special position then either φ2φ1 is an isomorphism and we are done, or φ′2 = φ2φ1

is a triangular map with proper base point equal to that of φ1. Since f = φn . . .φ
′
2 with B( f ) 6= B(φ′2)

the induction hypothesis implies that there exists i ∈ {3, . . . ,n−1} such that φi . . .φ
′
2 = φi . . .φ2φ1 is an

isomorphism.

If φ2 and φ1 are in general position and either φn . . .φ2 is an isomorphism or B(φn . . .φ2) = B(φ2).
Then in both cases B(φn . . .φ2φ1) would be equal to B(φ1). So φn . . .φ2 is not an isomorphism and

its proper base point is different from that of φ2. By induction hypothesis, there exists an index j ∈
{3, . . . ,n−1} such that α = φ j . . .φ2 is an isomorphism. Replacing φ j+1 by the triangular map φ′j+1 =

φ j+1α, we have f = φn . . .φ
′
j+1φ1 and we are done by induction. �

One can think of Proposition 16 as a kind of presentation by generators and relations, the second

part saying in particular that there is essentially no relation except the obvious ones given by Corollary

15. However, even if (S,BS) = (S′,BS′) and f is the birational map induced by an automorphism of

V = SrBS, in general the triangular maps φi are not birational transformations between isomorphic

smooth completions of V (see §4.3 and 4.4 for illustrations of such situations). If one insists in having

generators that live on a particular model, one possibility is to fix a rule to pass from each possible

model to the distinguished one (S,BS). This is what is done in [14], where the relations are then ex-

pressed in terms of (intricate) amalgamated products.

Another consequence of Proposition 16 is that it enables to obtain normal forms for automorphisms

of quasi-projective surfaces admitting a smooth completion. In the following result, and in the rest of

the paper, we shall use the notation f ψ to denote the conjugate ψ f ψ−1.

Corollary 19. Let f : (S,BS) 99K (S,BS) be a birational self-map of a smooth completion. Then there

exists a birational map of smooth completions ψ : (S,BS) 99K (S
′,BS′) such that the conjugate f ψ has

one of the following properties :

a) f ψ is a biregular automorphism of the pair (S′,BS′),
b) f ψ is a triangular self-map of (S′,BS′) with the pair f ψ, f ψ in special position,

c) The pair f ψ, f ψ is in general position.

Proof. Suppose f is not biregular, and consider a minimal factorization f = φn . . .φ1 into triangular

maps given by Proposition 16. If the pair f , f is in special position and f is not triangular (that is,

n≥ 2), then we consider the conjugate fn−1 = φ−1
n f φn : (Sn−1,BSn−1

) 99K (Sn−1,BSn−1
). By hypothesis,

φ1 and φn are in special position and so, by Corollary 15, φ1φn is either an isomorphism or a triangular

map. Thus fn−1 = φn−1 . . .φ2(φ1φn) has length at most n−1 and we are done by induction. �

The existence of normal forms up to conjugacy for automorphisms of A2 was first noticed by Fried-

land and Milnor [10] as a consequence of Jung’s Theorem. This was the starting point for an exhaustive
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study of the possible dynamical behavior of these automorphisms (see [3] and references therein). In

particular, if g = f ψ satisfies Property c) in the conclusion of Corollary 19 and has length n then its

iterates gk, k ∈ Z, have length n|k|. Such a map is thus similar to a composition of generalized Hénon

maps and so one can expect that these maps will always present a chaotic dynamical behavior. On

the other hand, any finite automorphism of V , any one-parameter flow ft of automorphisms of V , or

more generally every automorphism contained in an algebraic subgroup of Aut(V ) (see Proposition 21

below) always corresponds to Case a) or b) in Corollary 19.

3.2.2. Tame automorphisms. Given any smooth completion (S,BS) of V , we denote by Aut(S,BS) the

group of automorphisms of the pair (S,BS). Note that since BS is the support of an ample divisor on S,

Aut(S,BS) is an algebraic group.

For every point p∈BS, Corollary 15 implies that the set of triangular self-maps φ : (S,BS) 99K (S,BS)
with B(φ) = B(φ−1) = p and automorphisms of the pair (S,BS) fixing p is a group, which we shall

denote by Tr(S,BS, p). By Lemma 14, the latter coincides with the subgroup of automorphisms of

V = SrBS preserving the quasi-projective A1-fibration ρp : V →A1 induced by the rational pencil Pp.

The groups Tr(S,BS, p) are not algebraic, but they are countable increasing unions of algebraic sub-

groups. More precisely, see [5, Lemma 2.2.3], there exists a birational map τ : S 99KA2 = Spec(C[x,y])
restricting to a morphism on V such that Tr(S,BS, p) is isomorphic to the subgroup of Aut(A2) consist-

ing of automorphisms of the form (x,y) 7→ (ax+b,cy+P(x)), where a,c ∈C∗, P(x) ∈C[x], preserving

the points blown-up by τ, including infinitely near ones. For every d ≥ 0, the set of all automorphisms

(x,y) 7→ (ax+ b,cy+P(x)) of A2 with P(x) of degree ≤ d is an algebraic group and those preserving

the points blown-up by τ form of closed subgroup of it, whence an algebraic group.

Definition 20. Let V be a quasi-projective surface admitting a smooth completion (S,BS), let M =
{(ψα, pα)}α∈A be a nonempty collection of pairs consisting for each α ∈ A of a birational map of

smooth completions ψα : (S,BS) 99K (Sα,BSα) and a point pα ∈ BSα . An automorphism of V considered

as a birational self-map f of (S,BS) is called:

a) M -affine (short for affine relatively to the models in M ) if there exists α such that f ψα is an

element of Aut(Sα,BSα);
b) M -Jonquières if there exists α such that f ψα is an element of Tr(Sα,BSα , pα).

We denote by M TA(V ) the subgroup of Aut(V ) generated by M -affine and M -Jonquières automor-

phisms. We call it the group of M -tame automorphisms of V .

This notion of tameness depends a priori on the choice of the collection M . However by taking the

family Mcan consisting of all pairs (Ψ, p′) where Ψ : (S,BS) 99K (S
′,BS′) is a birational map of smooth

completions and p′ is a point of BS′ , we obtain a canonical intrinsic notion of tameness.

An automorphism of V with associated birational self-map f of (S,BS) is said to be generalized affine

(resp. generalized Jonquières) if f is Mcan-affine (resp. Mcan-Jonquières). We denote

GTA(V ) = McanTA(V )

the subgroup of Aut(V ) generated by generalized Jonquières and generalized affine automorphisms. Its

elements will be called generalized tame automorphisms of V .

In other words, GTA(V ) is generated by automorphisms of V which either preserve a quasi-projective

A1-fibration V → A1 induced by a pencil of the form Pp on a suitable smooth completion of V or

extend to biregular automorphisms of suitable smooth completions of V . In fact, since for an element

f ∈ Aut(S,BS) the induced action of f on BS ≃ P1 always has a fixed point p, it follows that every

generalized affine automorphism is also generalized Jonquières. So GTA(V ) coincides with the normal

subgroup of Aut(V ) generated by automorphisms preserving an A1-fibration V → A1 as above.
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Proposition 21. Let V be a quasi-projective surface admitting a smooth completion. Then for every

algebraic subgroup G of Aut(V ), there exists a smooth completion (S,BS) of V such that G is a sub-

group of Aut(S,BS) or of Tr(S,BS, p). In particular, every algebraic subgroup of Aut(V ) consists of

generalized tame automorphisms of V .

Proof. Let (S′,BS′) be a smooth completion of V . By Sumihiro equivariant completion theorem [26],

there exists a smooth projective surface Z on which G acts biregularly and a G-equivariant open embed-

ding V →֒ Z. The induced birational map τ : Z 99K S′ has finitely many base points, including infinitely

near ones and similarly for its inverse. It follows that the number of base points of an element g of G

considered as a birational self-map g : (S′,BS′) 99K (S
′,BS′) is bounded by the sum of the number of base

points of τ and its inverse. This implies in turn that there exists a minimal integer M(S′)≥ 0 such that the

length of any such g is at most M(S′) (in the sense of Definition 17). The bound M(S′) depends on the

particular completion we choose to realize the birational action of G. Now we choose a smooth comple-

tion (S,BS) of V such that M(S) is minimal. If M(S) = 0 the birational self-map g : (S,BS) 99K (S,BS)
associated to every element of G is an automorphism of pairs and hence G⊂ Aut(S,BS).

Assume now that M(S)≥ 1, and let g : (S,BS) 99K (S,BS) be the birational self-map associated to an

element of G which realizes the bound M(S), that is g = ψM ◦ · · · ◦ψ1 is a composition of M = M(S)
triangular maps. Let h : (S,BS) 99K (S,BS) be the birational self-map associated to another element of

G.

Suppose first that ℓ(h)≥ 1 and let h = φm ◦· · ·◦φ1, where m = ℓ(h), be a minimal decomposition of h

into triangular maps. If h−1 and g were in general position then, by Proposition 16 ψM · · ·ψ1φ−1
1 · · ·φ

−1
m

would be a minimal decomposition of g◦h−1, and we would have ℓ(g◦h−1) = ℓ(g)+ ℓ(h) > M(S) in

contradiction with the definition of M(S). So B(φ1) = B(h) = B(g) = B(ψ1), and ψ1 ◦ φ−1
1 is either

triangular or biregular. If ψ1 ◦φ−1
1 is triangular, then by Corollary 15 the pairs of maps (ψ1 ◦φ−1

1 ),ψ2

and φ−1
2 ,(ψ1 ◦φ−1

1 ) are both in general position, and we have ℓ(g◦h−1) = M +m− 1, so m = 1. This

implies that if ℓ(h) ≥ 2 then ψ1 ◦φ−1
1 is biregular, and applying the same reasoning to h−1 instead of

h we also get that ψ1 ◦φm is biregular in this case. Finally observe that in the case ℓ(h) = 1 we have

ℓ(ψ1hψ−1
1 ) = ℓ(ψ1h−1ψ−1

1 ) ≤ 1: indeed either ψ1 ◦ φ−1
1 is biregular and this is clear, or ψ1 ◦ φ−1

1 is

triangular with base point equal to B(φ−1
1 ) = B(ψ1) and so ψ−1

1 and ψ1 ◦φ−1
1 are in special position.

Consider now the case ℓ(h) = 0. We claim that h fixes B(g) = B(ψ1): Otherwise g−1 and gh would

be in general position and we would have ℓ(ghg−1) = 2ℓ(g) > M(S), a contradiction. It follows that

ψ1hψ−1
1 is triangular or biregular in this case.

In conclusion, conjugating the group G by the birational map ψ1 : (S,BS) 99K (S1,BS1
), we obtain that

ℓ(ψ1hψ−1
1 ) ≤ 1 if ℓ(h) ≤ 1 whereas ℓ(ψ1hψ−1

1 ) = l(h)− 2 if ℓ(h) ≥ 2. So M(S) = 1 for otherwise we

would have M(S1)< M(S), in contradiction with the minimality of M(S). This shows that all elements

in G extend to biregular or triangular maps from S to itself. The argument above shows that the point

p = B(g) is fixed by all biregular elements of G and is the proper base point of all triangular elements

in G, that is, G⊂ Tr(S,BS, p). �

3.3. Automorphisms of affine surfaces with smooth completions. Here we consider the particular

case of affine surfaces V admitting smooth completions (S,BS). By Proposition 11, every such surface

is isomorphic to P2rC where C is a line or a smooth conic or to the complement of an ample section C

in a Hirzebruch surface πn : Fn→ P1. As we saw before, the integer d = B2
S is an invariant of V and in

fact the only invariant except in the case d = 4. Indeed, by the Danilov-Gizatullin Isomorphy Theorem

[14], the isomorphy type as an abstract affine surface of the complement of an ample section C in a

Hirzebruch surface depends neither on the ambient projective surface nor on the choice of the section,
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but only on its self-intersection. The following proposition summarizes some of the properties of the

automorphism groups of these surfaces.

Proposition 22. For an affine surface Vd admitting a smooth completion (S,BS) with B2
S = d > 0, the

following holds :

1) If d ≤ 4 then every automorphism of Vd is generalized tame, and one has Aut(Vd) = M TA(Vd)
for a finite family M of completions. In particular, Aut(Vd) is generated by countably many algebraic

subgroups.

2) If d ≥ 5 then GTA(Vd) is a proper normal subgroup of Aut(Vd) and it cannot be generated by

countably many algebraic subgroups.

Proof. The fact that for every d ≤ 4, Aut(Vd) = M TA(Vd) for a natural choice of finitely many smooth

completions M is checked in the examples in Section 4. The second part of assertion 1) then follows

from the fact groups of the form Aut(S,BS) and Tr(S,BS, p) are generated by countable families of

algebraic subgroups (see §3.2.2).

For the second assertion, we first need to prove that if d ≥ 5 then there exist smooth completions

(S,BS) of Vd with the property that the orbits of the induced action of Aut(S,BS) on BS are finite.

Namely, if d > 7 is even then Vd admits a smooth completion (F2,C) where C is a section of π2 : F2→
P1 with self-intersection d intersecting the exceptional section C0 of π2 with self-intersection −2 in

(d−2)/2 ≥ 3 distinct points. Similarly, if d ≥ 7 is odd, then there exists a smooth completion (F1,C)
of V where C is a section of π1 : F1→ P1 with self-intersection d intersecting the exceptional section

C0 of π1 with self-intersection −1 in (d−1)/2 ≥ 3 distinct points. Since in each case the set C∩C0 is

necessarily globally preserved by the induced action of the automorphism group of the ambient pair on

C ≃ P1, we conclude that the orbits of this group on C are finite. The remaining two cases d = 5,6 are

treated explicitly in the examples in Section 4, §4.4.1 1-b) and §4.5 respectively.

From now on, we identify V = Vd , d ≥ 5, to S \BS for a fixed smooth completion (S,BS) with the

property that the orbits of the induced Aut(S,BS)-action on BS are finite.

Let us show first that GTA(V ) cannot be generated by a countable family (Gi)i∈N of algebraic sub-

groups. By Proposition 21, to each Gi is associated a smooth completion (Si,BSi
) of V and a bi-

rational map of pairs ψi : (S,BS) 99K (Si,BSi
), such that ψiGiψ

−1
i is contained either in Aut(Si,BSi

)
or in Tr(Si,BSi

, pi) for some point pi ∈ BSi
. For every i ∈ N, we fix a minimal decomposition ψi =

φi,ni
. . .φi,1 : (S,BS)= (Si,0,BSi,0) 99K (Si,ni

,BSi,ni
)= (Si,BSi

) of ψi into triangular maps φi,k : (Si,k−1,BSi,k−1
)

99K (Si,k,BSi,k
). Let qi j = B(φi, j+1) and ri j = B(φ−1

i, j ): Observe that qi j and ri j are both points in

BSi, j . Then define C as the subset of BS consisting of points of the form α−1
i, j (qi j), β−1

i, j (ri, j) and

γ−1
i (pi) for all possible isomorphisms of pairs αi, j : (S,BS)→ (Si, j,BSi, j), βi, j : (S,BS)→ (Si, j,BSi, j)

and γi : (S,BS)→ (Si,BSi
) respectively.

It then follows from Corollary 18 that the set of possible proper base points of elements of Aut(V )
considered as birational self-maps of (S,BS) is contained in C . Note that Proposition 16 b) implies

that C does not depend on the choice of the minimal decompositions of the birational maps ψi. Our

choice of (S,BS) implies that the Aut(S,BS)-orbit of C is countable (in fact one could show that C

is already Aut(S,BS)-invariant, but this is not necessary for the argument). So for every point p in

its complement, a strictly birational element in Tr(S,BS, p) is an element of GTA(V ) which does not

belong to the subgroup generated by the Gi.

Next, to derive that GTA(V ) is a proper subgroup of Aut(V ), we exploit a more precise version of the

Danilov-Gizatullin Isomorphy Theorem (see [8, §3.1], in particular Lemma 3.2 and the discussion just

before) which asserts that if (S′,BS′) and (S′′,BS′′) are smooth completions of V and p′ ∈ BS′ , p′′ ∈ BS′′
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are general points, then the A1-fibered affine surfaces ρ′ |V ′ : V ′ = S′rBS′ → A1 and ρ′′ |V ′′ : V ′′ =
S′′rBS′′ → A1 are isomorphic. More precisely, this holds whenever ρ′ and ρ′′ have reduced fibers, a

property which is always satisfied for general p′ and p′′. In view of Lemma 14, this implies in particular

that for every pair of general points p and p′ in BS, there exists a triangular map θ : (S,BS) 99K (S,BS)
with B(θ) = p and B(θ−1) = p′. By virtue of Lemma 23 below, such a map θ corresponds to an

element of GTA(V ) if and only if B(θ) and B(θ−1) belong to a same orbit of the induced action of

Aut(S,BS) on BS. Since Aut(S,BS) acts on BS with finite orbits, it follows that we can find two general

points p, p′ of BS in distinct orbits; a corresponding triangular self-map θ then induces an element of

Aut(V )\GTA(V ). �

In the proof of the previous theorem, we used the following characterization of generalized tame

automorphisms of length 1:

Lemma 23. A triangular map θ : (S,BS) 99K (S,BS) of smooth completions is a generalized tame au-

tomorphism of S\BS if and only if B(θ) and B(θ−1) belong to a same orbit of the action of Aut(S,BS)
on BS.

Proof. Clearly if there exists an automorphism α ∈ Aut(S,BS) such that p = B(θ) = αB(θ−1), then

αθ ∈ Tr(S,BS, p), hence θ is generalized tame.

Conversely, let θ be a generalized tame triangular map. For any automorphism α ∈Aut(S,BS), αθ is

again generalized tame and triangular hence can be written in the form

αθ =
n

∏
i=1

g
ψi

i = ψngnψ−1
n . . .ψ1g1ψ−1

1

where for every i = 1, . . . ,n, ψi : (Si,BSi
) 99K (S,BS) is a birational map of smooth completions, and

gi ∈Aut(Si,BSi
)∪

⋃
pi∈BSi

Tr(Si,BSi
, pi). Among all such factorizations (for all choices of α), we choose

one with the property that L = ∑n
i=1(ℓ(ψi)+ ℓ(gi)+ ℓ(ψ−1

i )) is minimal, which implies that for all i we

have ℓ(g
ψi

i ) = 2ℓ(ψi)+ ℓ(gi). Furthermore among all factorizations realizing this minimum L, we pick

one with the minimal number n of factors.

Now if a composition of the form β = ∏
j0
i=i0

g
ψi

i , where 1 ≤ i0 ≤ j0 ≤ n, were an isomorphism, then

for all k > j0 we could write

g
ψk

k β = ββ−1g
ψk

k β = βg
β−1ψk

k

So we could shift the β all the way to the left, without increasing L since ℓ(ψk) = ℓ(β−1ψk), and this

would contradict the minimality of n. Thus we can assume that no composition of the form ∏
j0
i=i0

g
ψi

i is

an isomorphism, or in other words that ℓ(∏
j0
i=i0

g
ψi

i )≥ 1. Taking i0 = j0 we obtain in particular that no

g
ψi

i is an isomorphism. We deduce from Corollary 7 that B(g
ψi

i ) = B(ψ−1
i ) if ψi is not an isomorphism,

and B(g
ψi

i ) = ψi(B(gi)) otherwise. We also observe that in both cases B(g
ψi

i ) = B((g
ψi

i )−1).
Now we check that we are in position to apply Corollary 18. Since we already know that no compo-

sition of the form ∏
j0
i=i0

g
ψi

i is an isomorphism, and since ℓ(g
ψi

i ) = 2ℓ(ψi)+ ℓ(gi), it remains to exclude

the existence of two indexes j0 > i0 such that g
ψ j0

j0
= f h with f ,h in general position and β = h∏

j0−1
i=i0

g
ψi

i

an isomorphism. In such a case we would have

j0

∏
i=i0

g
ψi

i = f β = h−1ββ−1h f β =

(

j0−1

∏
i=i0

g
ψi

i

)

β−1h f β.
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But on one hand β−1h f β = (β−1h) f h(h−1β) =
(

∏
j0−1
i=i0

g
ψi

i

)−1

g
ψ j0

j0

(

∏
j0−1
i=i0

g
ψi

i

)

is a conjugate of g j0 ,

and on the other hand h, f are in special position. So ℓ(β−1h f β) = ℓ(h f )< ℓ( f h), in contradiction with

the minimality of L.

Therefore, it follows from Corollary 18 and the observation made on the proper base point of g
ψi

i that

for all i0 = 2, . . . ,n:

B

(

g
ψi0

i0

)

= B

(

n

∏
i=i0

g
ψi

i

)

and B





(

i0−1

∏
i=1

g
ψi

i

)−1


= B

(

g
ψi0−1

i0−1

)

.

Furthermore if ∏
i0−1
i=1 g

ψi

i and ∏n
i=i0

g
ψi

i were in general position for some index i0, then by Corollary

7 we would have

ℓ

(

n

∏
i=1

g
ψi

i

)

= ℓ

(

n

∏
i=i0+1

g
ψi

i

)

+ ℓ

(

i0

∏
i=1

g
ψi

i

)

≥ 2,

in contradiction with the fact that αθ is triangular. So all such compositions are in special position, and

we obtain B

(

g
ψi0

i0

)

= B

(

g
ψi0−1

i0−1

)

. Finally B
(

g
ψn
n

)

= B
(

g
ψ1

1

)

, and we have

B(θ) = B(g
ψ1

1 ) = B(gψn
n ) = B(θ−1α−1) = αB(θ−1). �

4. EXAMPLES

Here we illustrate our algorithm by describing the automorphism groups of affine varieties admitting

a smooth completion with boundary BS of self-intersection at most 6. We first check that we recover

the well-known structure of the automorphism group of A2. Then we consider the case of the affine

quadric surface P1×P1 r∆ started in Section 1 for which we recover in particular the description of

its automorphism group given for instance in [21]. We briefly discuss the case of the complement of

a smooth conic in P2 which is similar. As a next step, we describe the situation for affine surfaces

admitting smooth completions with boundaries of self-intersection 3 and 4 for which two new phe-

nomena arise successively: the existence of non isomorphic A1-fibrations associated to rational pencils

Pp with proper base point on the boundary, and the existence of non isomorphic smooth completions

of a given affine surface. We observe that all these examples share the common property that their

automorphisms are tame. Finally, we consider the more subtle situations of affine surfaces admitting

smooth completions with boundary of self-intersection 5 and 6 for which we establish the existence of

non-tame automorphisms.

4.1. Automorphisms of A2, P2 r{smooth conic} and of the smooth affine quadric surface.

4.1.1. The affine plane. Here we derive Jung’s Theorem from the description of the triangular maps

which appear in the factorization of an automorphism of A2 (see also [20] and [23], which contain

proofs of Jung’s Theorem derived from the philosophy of the (log) Sarkisov program). We let

A2 = Spec(C[u,v]) = P2 rL0 = Proj(C[x,y,z])r{z = 0}

with (u,v) = (x/z,y/z), and we define the affine and Jonquières automorphisms with respect to this

unique completion, with the choice of p∞ = [1 : 0 : 0] (see Definition 20). The restriction to A2 of the

rational pencil ρ : P2
99K P1 generated by L0 and the line y = 0 coincides with the second projection

prv : A2→ A1. Since the pairs (P2,L) where L is a line are the only smooth completions of A2, our al-

gorithm leads to a factorization of an arbitrary polynomial automorphism f of A2 into a finite sequence
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of triangular birational maps φi : (P2,Li−1) 99K (P
2,Li), where the Li are lines. These maps are obtained

as sequences of 2ki−2, ki ≥ 2, elementary links as in Theorem 1 of the form

(P2,Li−1) 99K (P
2(2),B1) 99K · · · 99K (P

2(ki),Bki−1) 99K · · · 99K (P
2(2),B2ki−3) 99K (P

2,Li)

where P2(d) is the weighted projective plane P2(d,1,1), obtained from the Hirzebruch surface πd : Fd→
P1 by contracting the section with self-intersection −d, and each intermediate boundary is the image

by the contraction of a fiber of πd . Since Aut(P2) acts transitively on pairs consisting of a line and

a point of it, we may associate to each φi two isomorphisms of pairs αi : (P2,L0)→ (P2,Li−1) and

βi : (P2,L0)→ (P2,Li), which map p∞ = [1 : 0 : 0] respectively onto the proper base points of φi and

φ−1
i . Then the induced birational map β−1

i φiαi restricts on A2 to an automorphism commuting with the

second projection. Thus each β−1
i φiαi is a triangular automorphism of A2 in the usual sense (but in

this paper, we prefer to use the terminology “Jonquières”, since we reserve “triangular” for a more gen-

eral notion). Thus every automorphism of A2 is M -tame with respect to the family M = {(idP2 , p∞)}
and via Proposition 16, we recover the classical description of the automorphism group of A2 as the

free product of its affine and Jonquières subgroups amalgamated along their intersection. We also re-

cover via Proposition 21 another classical fact: any algebraic subgroup of Aut(A2) is conjugated to a

subgroup of affine or Jonquières automorphisms.

4.1.2. The smooth affine quadric surface. The structure of the automorphism group of the smooth

affine quadric surface Q = Spec(C[x,y,z]/(xz− y(y+ 1)) is similar to that of the affine plane. Via the

open embedding

Q →֒F0 =P1×P1 = Proj(C[u0 : u1])×Proj(C[v0 : v1]), (x,y,z) 7→ ([x : y], [x : y+1]) = ([y+1 : z], [y : z]),

we identify Q with the complement of the diagonal D0 = {u0v1− u1v0 = 0}. The rational pencil on

F0 generated by D0 and the union of the two rules {u1 = 0}∪{v1 = 0} has a unique proper base point

p = ([1 : 0], [1 : 0]) and the restriction to Q of the corresponding rational map ρ : F0 99K P
1 coincides

with the A1-fibration prz : S→ A1. The minimal resolution X → F0 is obtained by blowing-up two

times the point p with successive exceptional divisors F and C0. The surface X then dominates the

Hirzebruch surface π1 : F1→ P1 via the contraction of the strict transforms of {u1 = 0} and {v1 = 0}.
Since Pic(Q) ≃ Z, it follows from Proposition 11 that the pairs (F0,D) where D is a smooth curve of

type (1,1) are the only possible smooth completions of Q. Proposition 16 and the description of the

resolution of triangular maps given in §3.1.2 lead to a decomposition of every automorphism of Q into

a sequence of triangular maps

φi : (F0,Di−1) 99K (P̂
2(2),B1) 99K · · · 99K (P̂

2(ki),Bki−1) 99K · · · 99K (P̂
2(2),B2ki−3) 99K (F0,Di)

where the projective surface P̂2(d) is obtained from the Hirzebruch surface πd : Fd→ P1, with negative

section C0, by first blowing-up two distinct points in a fiber F rC0 of Fd → P1 and then contracting

successively the strict transforms of F and C0. The intermediate boundaries are the images by these

contraction of a fiber F ′ of Fd distinct from F . Remark that P̂2(d) dominates the weighted projective

plane P2(d) via a single divisorial contraction, hence the notation.

Since Aut(F0) acts transitively on the set of pairs consisting of a smooth curve of type (1,1) and

a point on it, we may associate to each φi two isomorphisms of pairs αi : (F0,D0)→ (F0,Di−1) and

βi : (F0,D0)→ (F0,Di), which map p∞ = ([1 : 0], [1 : 0]) respectively onto the proper base points of φi

and φ−1
i . Thus the induced birational map β−1

i φiαi restricts on Q to an automorphism commuting with

the A1-fibration prz. Such automorphisms come as the lifts via the morphism pz,y : Q→A2 of Jonquières

automorphisms of A2 of the form (z,y) 7→ (az,y+ zP(z)), or the form (z,y) 7→ (az,−(y+ 1)+ zP(z))
where a∈C∗ and P(z) is a polynomial. Every automorphism of the second family is obtained from one
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of the first family by composing with the affine involution (z,y) 7→ (z,−(y+1)) of A2 which lifts to the

involution Q induced by the ”symmetry” with respect to the diagonal D0 in P1×P1. We recover in this

way the presentation given in [21] of Aut(V ) as the amalgamated product of Aff(Q) = Aut(F0,∆) |Q
and Aut(Q,prz) = Tr(F0,∆, p∞) |Q over their intersection. In particular, similarly as in the case of A2,

we have Aut(Q) = M TA(Q), with respect to the family M = {(idF0
, p∞)}. Proposition 21 says in turn

that every algebraic subgroup of Aut(V ) is conjugated to a subgroup of Aff(Q) or Aut(Q,prz). For

instance, every algebraic action of the additive group Ga on Q is conjugated to an action preserving the

fibration prz.

4.1.3. The complement of a smooth conic. Since the automorphism group of P2 acts transitively on the

set of pairs consisting of a smooth conic and a point of it, every smooth pair (P2,C) where C is a smooth

conic is isomorphic to (P2,C0) where C0 = {yz− x2 = 0}, and every rational pencil Pp associated to

a point on C is conjugated to Pp0
generated by C0 and 2L0 where L0 denotes the tangent to C0 at the

point p0 = [0 : 0 : 1]. The corresponding A1-fibration q = ρp0
|V : V = P2 rC0 → A1 has a unique

degenerate fiber L0 ∩V , of multiplicity 2. The automorphism group of V is then the amalgamated

product of Aff(V ) = Aut(P2,C0) |V and Aut(V,q) = Tr(P2,C0, p0) |V over their intersection. Again, we

have Aut(V ) = M TA(V ), for M a collection consisting of a unique model. The interested reader can

find more details in [22, §1.1].

4.2. Complement of a section with self-intersection 3 in F1. By Proposition 11, a smooth completion

of (S,BS) of an affine surface V with B2
S 6= 1,4 is of the form (Fn,C) where C is an ample section. Since

B2
S is an invariant of V , we see that if B2

S = 3 the only smooth completions of V are pairs (F1,C) where C

is a section of self-intersection 3. If we identify π1 : F1→ P1 with the blow-up σ of P2 = Proj(C[x,y,z])
at the point q = [0 : 1 : 0] with exceptional divisor C0 and denote by F∞ the strict transform of the line

{z = 0} ⊂ P2, then every such section C is the strict transform of a smooth conic in P2 passing through

q. The automorphism group of F1 acts transitively on such sections and so, every smooth completion

of V is isomorphic to (F1,D0) where D0 denotes the strict transform of the conic {yz− x2 = 0} ⊂ P2

tangent to the line {z= 0} at q. The automorphism group of the pair (F1,D0) acts on D0 with two orbits:

the point p∞ = D0∩C0 = D0∩F∞ and its complement. This implies in turn that every rational pencil

Pp associated to a point on D0 is conjugated either to Pp∞ or to Pp0
where p0 = σ−1([0 : 0 : 1]). Both

of these pencils have a unique singular member consisting of the divisor C0 +2F∞ in the first case and

L+F0 where L and F0 are the respective strict transforms of the lines {y = 0} and {x = 0} of P2 in the

second case. The induced A1-fibrations on V ≃ F1rD0 are not isomorphic: the one induced by Pp∞ has

a unique degenerate scheme theoretic fiber which consists of the union of two affine lines C0∩V and

F∞∩V where F∞∩V occurs with multiplicity 2, while the one induced by Pp0
has a unique degenerate

fiber consisting of two reduced affine lines L∩V and F0∩V . In particular we see from Lemma 14 that

any triangular map V →V is either in Tr(F1,D0, p∞), or up to left-right composition by automorphisms

of (F1,D0), in Tr(F1,D0, p0).
Now given an automorphism of V considered as a birational self-map f of (F1,D0) with decompo-

sition

f = φn ◦ · · · ◦φ1 : (F1,D0) = (S0,BS0
) 99K · · · 99K (Si,BSi

) 99K · · · 99K (Sn,BSn
) = (F1,D0)

into triangular maps, we can find isomorphisms αi : (F1,D0)→ (Si−1,BSi−1
), βi : (F1,D0)→ (Si,BSi

),

i = 1, . . . ,n such that for every i = 1, . . . ,n, ψi = β−1
i φiαi is an element of either Tr(F1,D0, p0) or

Tr(F1,D0, p∞). Writing f as

f = βnψn(α
−1
n βn−1) . . .β2ψ2(α

−1
2 β1)ψ1α−1

1
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where α−1
1 ,βn and α−1

i βi−1, i = 2, . . . ,n are elements of Aut(F1,D0), we conclude that Aut(V ) is gen-

erated by Aut(F1,D0), Tr(F1,D0, p0) and Tr(F1,D0, p∞). In other words Aut(V ) = M TA(V ) for the

family M = {(idF1
, p0),(idF1

, p∞)}. Remark that in this case we cannot use a single model anymore.

4.3. Complement of a section with self-intersection 4 in F0. Here we consider the case of an affine

surface V admitting a smooth completion by a smooth rational curve with self-intersection 4, and which

is not isomorphic to the complement of a conic in P2. According to Proposition 11, the corresponding

pairs (S,BS) are either (F0,B) where B is an arbitrary smooth rational curve with self-intersection 4

(which is automatically a section with respect to one of the two rulings) or (F2,B) where B is a section

of the P1-bundle structure π2 : F2 → P1. First we review these smooth completions (S,BS) with a

particular emphasis on the rational pencils Pp related with all possible triangular elementary maps that

can occur in the factorization given by Proposition 16. Given such a pencil Pp, we let σ : Ŝ→ S be

the minimal resolution of the corresponding rational map ρp : S 99K P1. The last exceptional divisor

extracted by σ is a section C of the induced P1-fibration ρpσ : Ŝ→P1 and one can prove (see [5], Section

2) that Ŝ dominates π1 : F1→ P1 through a uniquely determined sequence of contractions τ : Ŝ→ F1 in

such a way that the general fibers of ρpσ coincide with that of π1τ and that the strict transform τ∗(C)
of C coincides with the exceptional section of π1 : F1→ P1 with self-intersection −1. We will use this

point of view to give a uniform description of the different pencils involved: see Figure 7.
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FIGURE 7. The three models of pencils with their resolution (the index of the excep-

tional divisors Ei corresponds to their order of construction coming from F1).
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4.3.1. The case (F0,B). With the bi-homogeneous coordinates introduced in §4.1.2, every pair (F0,B)
where B is an irreducible curve with B2 = 4 is isomorphic to (F0,D0) where D0 = {u

2
1v0− u2

0v1 = 0}.
Letting C0 = {v0 = 0} and F0 = {u0 = 0} we have D0 ∼ C0 + 2F0. The automorphism group of the

pair (F0,D0) acts on D0 with two orbits : the pair of points {p′0, p′∞}= {([0 : 1], [0 : 1]),([1 : 0], [1 : 0])}
and their complement. This implies in turn that there exist only two models of rational pencils Pp′ up

to conjugacy by automorphisms of (F0,D0), say Pp′0
and Pp′1

where p′1 = ([1 : 1], [1 : 1]). They can be

described as follows:

a) The pencil Pp′1
is generated by D0 and H +F1 where H = {(u0− 3u1)(v0 + 3v1)+ 8u1v1 = 0}

is the unique irreducible curve of type (1,1) intersecting D0 only in p′1, with multiplicity 3, and F1 is

the fiber of the first ruling over the point [1 : 1]. The restriction of this pencil to V0 = F0 rD0 is an

A1-fibration V0 → A1 with a unique degenerate fiber consisting of the disjoint union of two reduced

affine lines H ∩V0 and F1∩V0. See Figure 7 (model I).

b) The pencil Pp′0
is generated by D0 and C0 +2F0 (note that C0 is the tangent to D0 at the point p′0).

Its restriction to V0 is an A1-fibration V0→ A1 with a unique degenerate fiber consisting of the disjoint

union of a reduced affine line C0∩V0 and a non reduced one F0∩V0, occurring with multiplicity 2. See

Figure 7 (model II).

The fact that the A1-fibrations associated to the pencils Pp′0
and Pp′1

are not isomorphic implies further

that every triangular self-map φ : (F0,D0) 99K (F0,D0) is the product of an element of Tr(F0,D0, p′0) or

Tr(F0,D0, p′1) and an element of Aut(F0,D0).

4.3.2. The case (F2,B). Letting C0 be the exceptional section of π2 : F2→P1 with self-intersection −2,

a section B of π2 with self-intersection 4 is linearly equivalent to C0 +3F∞ where F∞ is a fiber of π2. In

particular B intersects C0 transversely in a single point, which we can assume to be C0∩F∞. We identify

F2 r (C0∪F∞) to A2 with coordinates x and y in such way that the induced ruling on A2 is given by the

first projection and that the closures in F2 of the level sets of y are sections of π2 linearly equivalent to

C0+2F∞ (equivalently, the closure of the curve {y = 0} in F2 does not intersect C0). With this choice, B

coincides with the closure of an affine cubic defined by an equation of the form y = ax3 +bx2 + cx+d.

Since any automorphism of A2 of the form (x,y) 7→ (λx+ν,µy+P(x)) where P is a polynomial of

degree at most 2, extends to a biregular automorphism of F2, it follows that every pair (F2,B) where B

is a section with self-intersection 4 is isomorphic to (F2,D2) where D2 is the closure in F2 of the affine

cubic in A2 with equation y = x3. Furthermore, the automorphism group of the pair (F2,D2) acts on

D2 with two orbits: the fixed point p∞ = D2∩C0 = D2∩F∞ and its complement. Again, we have two

possible models of rational pencils Pp up to conjugacy by automorphisms of (F2,D2), say Pp0
where

p0 = (0,0) ⊂ A2 ⊂ F2 and Pp∞ :

a) The pencil Pp0
is generated by D2 and H+F0 where H ∼C0+2F∞ is the closure in F2 of the affine

line {y = 0} ⊂A2 which intersects D2 only in p0, with multiplicity 3, and where F0 = π−1
2 ([0 : 1])⊂ F2.

Its restriction to W0 = F2 rD2 is an A1-fibration W0→ A1 with a unique degenerate fiber consisting of

the disjoint union of two reduced affine lines H ∩W0 and F0∩W0. A minimal resolution of this pencil

is given in Figure 7 (model I).

b) The pencil Pp∞ is generated by D2 and C0 + 3F∞ (remember that D2 intersects C0 transversely

in p∞). Its restriction to W0 is an A1-fibration W0 → A1 with a unique degenerate fiber consisting of

the disjoint union of a reduced affine line C0 ∩W0 and a non reduced one F∞ ∩W0, occurring with

multiplicity 3. See Figure 7 (model III).

4.3.3. Connecting triangular maps. By the Danilov-Gizatullin Theorem, (F0,D0) and (F2,D2) can

arise as smooth completions of a same affine surface. However, let us briefly explain how to derive this
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fact directly by constructing appropriate triangular maps φ : (F2,D2) 99K (F0,D0). In view of Lemma

14 and of the description of the rational pencils given above, the only possibility is that the proper

base points of such a map φ and its inverse belong respectively to the open orbits of the actions of

Aut(F2,D2) on D2 and of Aut(F0,D0) on D0. Let us construct a particular quadratic triangular map Φ0

with B(φ) = p0 and B(φ−1) = p′1 (see Figure 8 for the notations).
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FIGURE 8. Quadratic triangular map Φ0 : (F2,D2) 99K (F0,D0).

Let Ŝ→ F2 be the minimal resolution of the base points of the rational pencil Pp0
as in §4.3.2.a)

above. The surface Ŝ can also be obtained from P2 by a sequence of blow-ups with successive excep-

tional divisors C, E1, E2, E3 and E4 in such a way that curves l and B = D2 correspond to the strict

transforms of a pair of lines in P2 intersecting at the center q of the first blow-up. In this setting, the

strict transform of C0 ⊂ F2 in Ŝ coincides with the strict transform of a certain line L in P2 intersecting

B in a point distinct from q. Let ψ̂ : Ŝ 99K Ŝ′ be any fibered modification of degree 2 and let B′ be the
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strict transform in Ŝ′ of the second exceptional divisor produced. Then one checks that there exists a

unique smooth conic ∆ in P2 tangent to B in q and to L at the point L∩ l such that its strict transform in

Ŝ′ is a (−1)-curve which intersects transversely the strict transforms of E2 and B′ in general points. By

successively contracting E4, . . . ,E1, we arrive at a new projective surface S′ in which the strict transform

of B′ is a smooth rational curve with self-intersection 4 and such that the strict transforms of ∆ and E3

are smooth rational curves with self-intersection 0, intersecting transversely in a single point. Thus

S′ ≃ F0 and φ̂ : Ŝ 99K Ŝ′ descends to a triangular map ψ : (F2,D2) 99K (F0,B
′). Moreover, the proper

base point of ψ−1 is located at a point where B′ intersects the two rulings transversely. So there exists

an isomorphism of pairs β : (F0,B
′)→ (F0,D0) such that Φ0 = βψ : (F2,D2) 99K (F0,D0) is triangular

and maps Pp0
onto Pp′1

.

4.3.4. The automorphism group. To determine the automorphism group of an affine surface V admit-

ting a smooth completion (S,BS) with B2
S = 4 we can proceed as follows. First we may assume up to

isomorphism that V = F2 rD2. Then given an automorphism ξ of V we consider a minimal factoriza-

tion of the associated birational self-map f of (F2,D2) into triangular maps

f = φn ◦ · · · ◦φ1 : (F2,D2) = (S0,BS0
) 99K · · · 99K (Si,BSi

) 99K · · · 99K (Sn,BSn
) = (F2,D2)

where each Si is isomorphic either to F0 or F2.

If the intermediate surfaces S j are not all isomorphic to F2, then we let j ∈ {1, . . . ,n− 1} and

k ∈ { j+1, . . . ,n} be minimal with the property that S j ≃ Sk−1 ≃ F0 and Sk ≃ F2. Replacing if nec-

essary φ j−1, φ j and φ j+1 by αφ j−1, βφ jα
−1 and φ j+1β−1 for isomorphisms α : (S j−1,BS j−1

)→ (F2,D2)
and β : (S j,BS j

) → (F0,D0), we may assume from the beginning that (S j,−1,B j−1) = (F2,D2) and

(S j,B j) = (F0,D0). We may assume similarly that (Sk−1,BSk−1
) = (F0,D0) and (Sk,BSk

) = (F2,D2).
Now consider the triangular maps φ j : (F2,D2) 99K (F0,D0) and φk : (F0,D0) 99K (F2,D2). Since the

A1-fibrations induced by the pencils Pp∞ on F2 and Pp′0
on F0 are not isomorphic and not isomor-

phic to those associated to points in D2 \ {p∞} and D0 \ {p′0} it must be that B(φ j) ∈ D2 \ {p∞} and

B(φ−1
j ) ∈ D0 \{p′0} (see §4.3.1 and 4.3.2). It follows that there exist automorphisms α j ∈Aut(F2,D2)

and β j ∈ Aut(F0,D0) mapping B(φ j) onto p0 and B(φ−1
j ) onto p′1 respectively. So replacing φ j−1,

φ j and φ j+1 by α jφ j−1, β jφ jα
−1
j and φ j+1β j respectively, we may assume from the beginning that

B(φ j) = p0 and B(φ−1
j ) = p′1. For the same reason, we may assume that B(φk) = p′1 and B(φ−1

k ) = p0.

Strictly speaking, in the case k = j+ 1, we have to insert an automorphism α ∈ Aut(F0,D0) between

φ j and φ j+1, which will play the same role as φk−1 . . .φ j+1 in the sequel. Recall that by construc-

tion, the particular triangular map Φ0 : (F2,D2) 99K (F0,D0) constructed in §4.3.3 has B(Φ0) = p0

and B(Φ−1
0 ) = p′1. It then follows from Corollary 15 that Φ−1

0 φ j : (F2,D2) 99K (F2,D2) is an element

of Tr(F2,D2, p0) while Φ0φk : (F0,D0) 99K (F0,D0) belongs to Tr(F0,D0, p′1). Summing up, we can

rewrite f in the form

f = φn · · ·φk+1Φ−1
0 [(Φ0φk)φk−1 · · ·φ j+1]Φ0

[

(Φ−1
0 φ j) · · ·φ1

]

= f ′Φ−1
0 [(Φ0φk)φk−1 · · ·φ j+1]Φ0

[

(Φ−1
0 φ j) · · ·φ1

]

where f ′ : (F2,D2) 99K (F2,D2) has length ℓ( f ′) < ℓ( f ) and where the sequences (Φ0φk) · · ·φ j+1 and

(Φ−1
0 φ j) · · ·φ1 only involve intermediate surfaces isomorphic to F0 and F2 respectively.

Now we deduce as in §4.2 that (Φ−1
0 φ j) · · ·φ1 can be written as a sequence of elements in Aut(F2,D2),

Tr(F2,D2, p0) and Tr(F2,D2, p∞). Similarly, (Φ0φk) · · ·φ j+1 can be decomposed into a sequence of el-

ements in Aut(F0,D0), Tr(F0,D0, p′0) and Tr(F0,D0, p′1) and so Φ−1
0 [(Φ0φk) · · ·φ j+1]Φ0 can be written
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as a composition of elements of the conjugates of these groups by Φ0 : (F2,D2) 99K (F0,D0). We

conclude by induction on the length that Aut(V ) = M TA(V ) with

M =
{

(idF2
, p0),(idF2

, p∞),(Φ0, p′0),(Φ0, p′1)
}

.

4.4. Automorphisms of the complement of a section with self-intersection 5 in F1. While it could

seem at first glance similar to the previous ones, this case exhibits a new behavior which is more

representative of the general situation: the existence of non-tame automorphisms.

4.4.1. Possible models and associated rational pencils. In view of Proposition 11 there exists only two

possible types of smooth completions (S,BS) with B2
S = 5 and SrBS affine: the complements of sec-

tions with self-intersection 5 in either π1 : F1→ P1 or π3 : F3→ P1.

1) In the first case, every such section B is linearly equivalent to C0 +3F where C0 is the exceptional

section of π1 and F a fiber. In particular, B ·C0 = 2 and with the notations of §4.2, we have two

possible pairs up to isomorphisms: first (F1,D1) where D1 is the strict transform of the nodal cubic

C1 = {x
3− z3 = xyz} ⊂ P2 with tangents {z = 0} and {x = 0} at q0 = [0 : 1 : 0]; and second (F1,D2)

where D2 is the strict transform of the cuspidal cubic C2 = {x
3 = z2y} ⊂ P2 tangent to {z = 0} at q0.

a) The automorphism group of (F1,D2) acts on D2 with three orbits : p∞,2 =C0∩F∞, p0,2 = σ−1([0 :

0 : 1]) and their complement. The pencil Pp∞,2 is generated by D2 and C0+3F∞ and it restricts on V0,2 =

F1 rD2 to an A1-fibration with a unique degenerate fiber consisting of two affine lines C0 ∩V0,2 and

F∞∩V0,2, the second one occurring with multiplicity 3. The pencil Pp0,2 is generated by D2 and L+2F0

where L∼C0 +F∞ is the strict transform of the tangent line to C2 at [0 : 0 : 1] and F0 = π−1
1 π1(p0,2). Its

restriction to V0,2 is an A1-fibration with a unique degenerate fiber consisting of two affine lines L∩V0,2

and F0 ∩V0,2, the second one occurring with multiplicity 2. Finally, for every p ∈ D2 r (p0,2 ∪ p∞,2),

the pencil Pp is generated by D2 and H +Fp where Fp = π−1
1 (π1(p)), and H ∼ C0 + 2F∞ is the strict

transform of the unique smooth conic in P2 intersecting C2 with multiplicity 4 at σ(p) and 2 at q0.

The induced A1-fibration on V0,2 has a unique degenerate fiber consisting of two reduced affine lines

H ∩V0,2 and Fp∩V0,2.

b) The automorphism group of (F1,D1) acts on D1 via the dihedral group of order 6 generated by

the symmetry with respect to the point p1 = σ−1([1 : 0 : 1]) and the lift of the Z3-action on C1 defined

by ε · [x : y : z] = [εx,ε−1y : z]. In particular, the induced action has no open orbit.

For the pair (F1,D1), we have two types of pencils : the first family consists of the pencils Pp
εk

at the

points pεk = σ−1([1 : 0 : εk]), k = 0,1,2. These are generated respectively by D1 and Lεk +2Fεk where

Lεk ∼C0+F is the strict transform of the tangent line to C1 at the point [1 : 0 : εk] and Fεk = π−1
1 (π1(pεk)).

The induced A1-fibrations on V0,1 = F1 rD1 have a unique degenerate fiber consisting of the disjoint

union of two affine lines Lεk ∩V0,1 and Fεk ∩V0,1, the second occurring with multiplicity 2.

On the other hand, for every point p ∈ D1 r {p1, pε, pε2}, the pencil Pp is generated by D1 and

Hp + Fp where Fp = π−1
1 (π1(p)), and Hp is the strict transform of the unique smooth conic in P2

intersecting C1 with multiplicity 4 at σ(p) and 2 at q0 if p ∈ D1 rC0 or the strict transform of one of

the two smooth conics intersecting C1 with multiplicity 6 at q0 otherwise. In each case the induced

A1-fibration on V0,1 has unique degenerate fiber consisting of the disjoint union of two reduced affine

lines H ∩V0,1 and Fp∩V0,1.

In contrast with the previous case, the description of the action of Aut(F1,D1) on D1 implies that

even though the A1-fibrations on F1\D1 induced by the pencils Pp, p∈D1r{p1, pε, pε2} are abstractly
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isomorphic, they are no longer pairwise conjugate via elements of Aut(F1,D1).

2) In the second case (F3,B), a section B of π3 with self-intersection 5 is linearly equivalent to

C0+4F where C0 is the exceptional section of π3 with self-intersection −3 and F is a fiber of π3. Since

the automorphism group of F3 acts transitively on such sections, there exists a unique model (F3,D3)
up to isomorphism of pairs. Furthermore, the automorphism group of (F3,D3) acts on D3 with two

orbits: the point p∞ = D3∩C0 and its complement. The pencil Pp∞ is generated by D3 and C0 + 4F∞

where F∞ = π−1
3 (π3(p∞)) and it restricts on W0 = F3 rD3 to an A1-fibration over A1 with a unique

degenerate fiber consisting of two affine lines C0 ∩W0 and F∞ ∩W0, the second one occurring with

multiplicity 4. For every other point p ∈D3 r p∞, the rational pencil Pp is generated by D3 and H +Fp

where Fp = π−1
3 (π3(p)), and H ∼ C0 + 3F is the unique section of π3 intersecting D3 at p only with

multiplicity 4. The induced A1-fibration on W0 has a unique degenerate fiber consisting of two reduced

affine lines H ∩W0 and Fp∩W0.

4.5. Automorphisms of the complement of a section with self-intersection 6 in F0. In this case a

further new phenomenon occurs: the existence of uncountably many isomorphy types of smooth com-

pletions (S,BS), only finitely many of these having non-trivial automorphism groups. Below we only

summarize these possible abstract isomorphy types and observe what is strictly necessary to finish the

proof of Proposition 22. The three types of possible models of smooth completions (S,BS) of an affine

surface with B2
S = 6 are (F0,C), (F2,C) and (F4,C) where C is each time an ample section with self-

intersection 6.

1) The case (F4,C): a section C with C2 = 6 is linearly equivalent to C0 +5F where C0 is the excep-

tional section of π4 : F4→ P1 with self-intersection −4 and F is a fiber of π4. Note that C intersects

C0 transversally in a unique point p∞,4. The automorphism group of F4 acts transitively on the set of

such sections and, identifying F4 r (C0∪F∞) where F∞ = π−1
4 (π4(p∞,4)) with A2 in a similar way as in

§4.3, we may assume that C =C4 is the closure of the affine quintic {y = x5} ⊂A2. The automorphism

group of (F4,C4) acts on C4 with two orbits: the point p∞,4 =C4∩C0 and its complement.

2) The case (F2,C): a section C with C2 = 6 is linearly equivalent to C0 + 4F where C0 is the

exceptional section of π2 : F2 → P1 with self-intersection −2 and F is a fiber of π2. Such a section

intersects C0 either in a single point with multiplicity two or transversally in two distinct points.

a) In the first case, up to an automorphism of F2 we may assume that C =C2,1 is the closure in F2 of

the intersection of the quartic {yz3 = x4} ⊂ P2 with A2. The group Aut(F2,C2,1) acts on C2,1 with three

orbits: the point p∞,2 =C2,1∩C0, the point p0,2 = (0,0)⊂ A2 ⊂ F2 and their complement.

b) In the second case, up to an automorphism of F2 we may assume that C =C2,2 is the closure in F2

of the intersection of the quartic {xyz2 = x4− z4} ⊂ P2 with A2. The group Aut(F2,C2,2) acts on C2,2

via the dihedral group of order 8 generated by the symmetry with center at the point ps = [1 : 0 : 1] and

the lift of the Z4-action on {xyz2 = x4− z4} defined by ε · [x : y : z] = [εx : ε−1y : z].

3) The case (F0,C): a section C of the first projection π0 = pr1 : F0 = P1×P1 with C2 = 6 is linearly

equivalent to C0 +3F where C0 is a fiber of pr2 and F a fiber of π0. Such sections can be first roughly

divided into three classes according to the number of fibers of the second projection which intersect C

with multiplicity 3.

a) If there exist at least two such fibers intersecting C with multiplicity 3 then the pair (F0,C) is

isomorphic to (F0,C0,0) where C0,0 = {u
3
1v0 + u3

0v1 = 0}. The group Aut(F0,C0,0) is then isomorphic
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to C∗×Z2 where C∗ acts by λ · ([u0 : u1], [v0 : v1]) = ([λu0 : u1], [λ
3v0 : v1]) and where Z2 exchanges

u0,v0 with u1,v1.

b) If there exists a unique fiber of pr2 intersecting C with multiplicity 3, then the pair (F0,C) is iso-

morphic to (F0,C0,1) where C0,1 = {u
3
1v0 +u2

0(u0 +u1)v1 = 0}. Its automorphism group is isomorphic

to Z2, acting via ([u0 : u1], [v0 : v1]) 7→ ([−u0−2u1/3 : u1], [−v0−4v1/27 : v1]).
c) Finally, if there is no fiber of pr2 intersecting C with multiplicity 3 then the pair (F0,C) is iso-

morphic to a pair of the form (F0,C1,b) where C1,b = {u
2
1(u0 + u1)v0 + u2

0(u0 + bu1)v1 = 0} for some

b ∈ Cr {0,1} such that the polynomial s(t) = 2t2 +(b+ 3)t + 2b has simple roots (this last condi-

tion guarantees precisely that C1,b cannot intersect a fiber of pr2 with multiplicity 3). Furthermore,

such a curve C1,b has exactly four horizontal tangents at the following points Pi(b) = (pi(b),qi(b)):
P1(b) = ([0 : 1], [0 : 1]), P2(b) = ([1 : 0], [1 : 0]), P3(b) = ([r1 : 1], [r2

1(r1 +b)/(r1 +1) : 1]) and P4(b) =
([r2 : 1], [r2

2(r2 + b)/(r2 + 1) : 1]), where r1,r2 ∈ Cr {−1} are the roots of s(t). It follows from this

description that two pairs (F0,C1,b) and (F0,C1,b′) are isomorphic only if there exists a permutation

σ ∈S4 such that the cross-ratios of (p1(b), p2(b), p3(b), p4(b)) (resp. (q1(b),q2(b),q3(b),q4(b))) and

(pσ(1)(b
′), pσ(2)(b

′), pσ(3)(b
′), pσ(4)(b

′)) (resp. (qσ(1)(b
′),qσ(2)(b

′),qσ(3)(b
′),qσ(4)(b

′))) are equal. A

direct computation implies in turn that there exists uncountably many isomorphy classes of such pairs

all having a finite group of automorphism of order at most 24 and that this group is in fact trivial except

for finitely many of these.
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