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ABSTRACT 

 

We present a new method and tool for activity modeling through qualitative sequential 

data analysis. In particular, we address the question of constructing a symbolic abstract 

representation of an activity from an activity trace. We use knowledge engineering 

techniques to help the analyst build an ontology of the activity, i.e., a set of symbols and 

hierarchical semantics that supports the construction of activity models. The ontology 

construction is pragmatic, evolutionist and driven by the analyst in accordance with their 

modeling goals and their research questions. Our tool helps the analyst define 

transformation rules to process the raw trace into abstract traces based on the ontology. 

The analyst visualizes the abstract traces and iteratively tests the ontology, the 

transformation rules, and the visualization format to confirm the models of activity. With 

this tool and this method, we found innovative ways to represent a car driving activity at 

different levels of abstraction from activity traces collected from an instrumented vehicle. 

As examples, we report two new strategies of lane changing on motorways that we have 

found and modeled with this approach. 
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1. INTRODUCTION 

We introduce here new principles based on knowledge engineering techniques for 

designing systems to help analysts create models of activity from activity traces. We 

illustrate these principles with a software tool that we have implemented, and with an 

example modeling analysis that we have performed using this tool.  

By activity trace we mean a set of multiple streams of quantitative or symbolic data 

that record (at least partially) an activity performed by a subject. The analysts may be 

psychologists seeking to build theories of the subject’s cognition, ergonomists seeking to 

design better user interfaces, analysts seeking to predict the subject’s behavior in specific 

conditions, trainers seeking to improve training techniques, or even the subjects 

themselves seeking to improve their understanding of their actions. In each case, the 

created models of activity constitute micro-theories proposed by the analysts to describe, 

explain, and try to predict how the subject performs the activity. 

The principles and the tool that we introduce here address three needs for helping 

analysts construct models of activity from activity traces. The first need is for helping the 

analyst learn previously unknown aspects or details of the subject’s activity from the 

activity traces. The second need is for helping the analyst construct meaningful symbolic 

representations of interesting aspects of the activity. These representations, associated 

with the explanations proposed by the analyst, constitute the models of activity. The third 
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need is for helping the analyst test and support the created models of activity with regard 

to the activity trace. 

Activity traces have also been called protocols (Ericsson and Simon, 1993) or simply 

sequential data (Sanderson and Fisher, 1994). We prefer the term activity trace because 

this term conveys the idea that the trace is intended to be interpreted by somebody 

(designated here as the analyst). We think of a trace as a footprint that helps who sees it 

understand what happened. Our activity traces yet differ from mere footprints in that they 

are not accidentally produced or unprocessed but they rather result from the analyst’s 

choices and setup.  

Many software tools have been implemented for activity trace analysis.  A recent 

review (Hilbert and Redmiles, 2000) notes forty of them. These tools cannot 

autonomously generate a comprehensive explanation of human behavior but they 

interactively support analysis. This analysis consists of identifying, categorising, 

labelling, and transforming pieces of data and information in the activity trace. We 

summarise this process by the notion of abstraction.  The analysts use their expertise and 

knowledge to formulate a whole set of tiny hypotheses and choices concerning how to 

collect the data, how to filter it, how to cluster and label it, and how to display and to 

report it so that it responds to the analysis purpose.  

Although most of the existing tools acknowledge the central role of the analysts and 

the importance of their knowledge and expertise in the analysing process, these tools still 
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lack knowledge representation mechanisms to support the management of the analysts’ 

knowledge. For instance, MacShapa (Sanderson et al., 1994), does help analysts label and 

cluster the behavioural data. It also acknowledges the usage of these labels as symbols to 

describe the activity. It, however, does not help the analyst formulate and manage the 

symbolic inferences she can make from these symbols.  

We made the hypothesis that aspects of knowledge engineering can help design 

software systems that address the three needs identified above. We use ontology 

management facilities and rule engines to capture the hypotheses and choices made by 

the analyst. When interactively used by the analyst or a group of analysts, these facilities 

help formalize the way analysts find interesting symbolic patterns and infer models from 

them. Once this knowledge is formalized, the system uses it to automatically compute 

new representations of the activity from the activity traces. The system also helps 

analysts organize and store the different concepts and rules that summarize different 

studies and help capitalize on these studies.  

To explain our principles and demonstrate the system and its design, we have 

organized this paper as follows: section 2 presents the principles of activity trace 

modelling, based on a pragmatic and evolutionist approach. Section 3 presents the 

prototype software tool that we have implemented from these principles, its technical 

features, its architecture, and its user interface. Section 4 presents an example study in 

which we have used this tool to create models of lane change on motorways from activity 



ACTIVITY MODELING FROM ACTIVITY TRACES 

 

 

6 

traces generated with an instrumented car. The method is then summarized in the 

conclusion. 

2. MODELING ACTIVITY TRACES 

The notion of activity traces is widely used in the human behavior literature, and we 

cannot attribute its origin to a specific author. Only more specific related notions can be 

identified, such as pattern languages, as reviewed by Dearden and Finlay (2006), or 

grammar representations (Olson et al., 1994). Despite the wide usage of the term activity 

trace, we could not find a definition of it, which led us to propose the following 

definition:  

An activity trace is a meaningful inscription, from the viewpoint of an analyst, of the 

flow of what has happened, from the viewpoint of a subject.  

With this definition, we want to highlight that an activity trace always implies two 

viewpoints, situated in two different moments. It implies the subject’s viewpoint, when 

he or she was performing the activity, and the analyst’s viewpoint, when he or she is 

analyzing the activity trace. Indeed, an activity trace cannot be an inscription of all that 

happened (if that had any sense), because an activity only concerns what relates to the 

subject’s perspective, goals, and intentions. Thus, inevitably, the analyst has to make 

assumptions about what is meaningful to the subject when the analyst sets up the tracing 

mechanism. In addition, the activity trace depends on what activity aspects interest the 
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analyst and what makes sense to her according to her previous knowledge and to her 

analysis goals.  

Because an activity trace depends on the analyst’s knowledge and assumptions, it can 

only be modeled in an iterative way, each iteration producing new knowledge leading to 

new hypotheses for the next iteration. Ericsson and Simon (1993) described this iterative 

nature of analyzing human behavior: “In designing our data-gathering schemes, we make 

minimal essential theoretical commitments, then try to use the data to test stronger 

theories” (p. 274). Moreover, none of the iterations can produce knowledge that could be 

proven to be true in an absolute sense, but only knowledge that is more efficient and 

useful with regard to the analyst’s goals, and which is more convincing to the analyst’s 

community than the knowledge from the previous iteration. More broadly, this 

conception of knowledge relates to a pragmatic epistemology (James, 1907) and an 

evolutionist epistemology (Popper, 1972).  

These pragmatic and evolutionist aspects are crucial when defining a methodology 

and a tool for activity trace modeling. By fully acknowledging these aspects, we have 

designed a tool that facilitates and accelerates the evolutionist modeling process. The tool 

helps formulating a series of micro-hypotheses of possibly-useful symbols, possibly-

useful transformation rules to transform the low-level data into higher-level data, and 

possibly-useful representations of the activity trace based on the micro-hypotheses. If the 

obtained representation does not help the analyst understand the activity better, then she 

rejects these micro-hypotheses; if it helps, then she keeps them.  
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The tool is designed to shorten this formulation / usage / validation-or-rejection loop. 

This process leads to the construction of a set of micro-hypotheses that are validated by 

the analyst. This set constitutes a formalization of the analyst’s knowledge about how to 

understand the activity. The tool stores this knowledge, helps the analyst keep track of it, 

and helps the analysts’ community discuss and question it.  

The next section details how the tool reaches this goal by helping the analyst define 

sequences at the right level of abstraction, and simultaneously identify interesting 

subsequences, define them precisely, and query the whole trace in search for their 

occurrences.  

2.1. Collecting a symbolic trace 

A raw activity trace can be made of any kind of data describing a subject’s activity 

flow and intended for an analyst’s usage. In a broad sense, it can range from video or 

audio recording to computer logs. The only common point is that the data are temporally 

organized, meaning that each data piece is associated with a timestamp referring to a 

common time base. The first abstraction step consists of converting these raw traces into 

sequences of symbols. We refer to this step as the discretization of the raw trace into a 

symbolic trace. The symbols in the symbolic trace have to be meaningful to the analyst, 

and they are chosen on a pragmatic and evolutionist basis, in compliance with a 

pragmatic and evolutionist epistemology introduced above (introduction of section 2). 

The discretization process can be manual, semi-automatic, or automatic. The definition of 
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the symbols may evolve in parallel with the implementation of the discretization process. 

This is because the later interpretation of the symbols may differ from the meaning 

initially intended by the analyst when she specifies the discretization algorithm. 

For example, in a study of car driving, we have used classical mathematical curve 

analysis method to generate symbols of interest from numerical values of the vehicle 

speed, the steering wheel angle, and the pedal positions. In this case, the symbols 

correspond to threshold crossing, local extremum, and inflexion points. Figure 1 

illustrates this discretization process. 

 

 Figure 1. Discretization of analogical traces.  

In Figure 1, the curves represent the vehicle speed in km/h, and the brake pedal 

position in percentage of range. Symbols of interest are shown on these curves as circles 

(threshold crossings, inflexion points, local extremums). The symbols are merged into the 
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symbolic trace that is represented at the bottom of Figure 1. The figure also shows a 

derivative value as an example property of interest associated with a symbol generated by 

a brake pedal threshold crossing. The analyst specifies the way to generate these symbols 

so that they correspond to meaningful events that describe the activity. In this example, 

the threshold crossing indicates the extent of the braking action and the derivative value 

indicates the abruptness of this action. Notably, while creating these symbols, the analyst 

claims the existence of the events that these symbols represent. So doing, the analyst 

defines an ontology of the activity. 

Our experience has taught us that the system must keep a connection between the raw 

trace and the symbolic trace, and provide parallel displays of both of them. The analyst 

needs to tune many parameters of the discretization algorithms, like the threshold values 

or noise filters. The analyst validates the chosen symbols and algorithms by comparing 

the symbolic trace to the raw trace and ensuring that the symbolic trace represents what is 

happening. While she defines and validates these symbols, the analyst also supports her 

claim that the events represented by these symbols “exist”. This support arises because 

the method to generate these symbols from the recorded data is formally specified and 

explained by the analyst. In this example, after we fully specified the discretization 

algorithm in accordance to our specific modeling goals, the discretization algorithm could 

then compute the symbols fully automatically.  
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2.2. Modeling the symbolic trace 

At the symbolic level, analysts most often want to focus on relations between events. 

Indeed, events are not meaningful by themselves, but they become meaningful in the 

context where they relate to each other (Sanderson and Fisher, 1994). Examples of such 

relations include a “sequence following within a certain period of time”, “co-occurrence 

within a certain period of time”, and “causality with regard to a certain explanative 

theory”. Building and understanding these relations between events is a part of the 

analyzing process. By definition, a set of elements connected through relations is a graph. 

Therefore, we model the symbolic traces with a graph structure.  

More precisely, our trace graph structure has two parts: a sequence and an ontology. 

The sequence is a part of the graph that is made of event instances and of relation 

instances between event instances. The ontology is a part of the graph that is made of 

event classes and of relations between event classes. Figure 2 illustrates this graph 

structure with a simplified example taken from the car driving study. 
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Figure 2: Activity trace modeled in a knowledge engineering system. 

The sequence is represented in the bottom part of Figure 2 and the ontology in the top 

part. In the sequence graph, event instances are represented as circles and triangles. 

Relation instances between event instances are represented as solid arrows between these 

circles and triangles. Example properties of event instances are represented with gray 

dashed arrows pointing to their value at the bottom of the figure (e.g., the duration of an 

eye movement and acceleration value associated with an inflexion point of the speed 

curve).  

Our tool displays the sequence in a similar form as shown in Figure 2; the exact form 

is shown in Figure 4. This display uses two axes: the time axis and the “abstraction” axis. 
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That is, the events’ time-code attributes determine their “x” coordinates, and the analyst 

specifies their “y” coordinates when she configures these event’s class in the ontology. 

The analyst can use the “y” coordinate to express different meanings; our 

recommendation is to use it to express an idea of abstraction level related to a specific 

analysis. In this example, the lowest level (circles) represents the events obtained from 

the discretization process; the intermediary level represents events that describe the 

activity in usual driving terms: accelerate, glance, turn signal on/off (blinker); and the 

higher level represents events describing lane change behavior: indicator of intention to 

change lane, and index of lane change. This example expresses the analyst’s assumption 

that the conjunction of an acceleration and a glance to the left rear mirror can generate an 

indicator of the driver’s intention to change lane (L.C. Indicator). 

In the ontology graph, the nodes represent event classes, and the edges represent the 

relation “subclass of” (dashed black arrows). The analyst defines the ontology during the 

modeling process. For example, the “Collected events” class includes all the event classes 

that come from the discretization process. The “Driving descriptors” class gathers the 

intermediary event classes that describe the activity in usual driving terms. The “Lane 

Change descriptors” class gathers the most abstract event classes describing lane changes. 

The dotted gray arrows in the figure represent the relation “type of” going from event 

classes defined in the ontology to event instances in the sequence.  

Again, like most ontologies, this ontology is made by the analyst on a pragmatic 

basis. It is likely that two analysts will create two different ontologies. While the software 
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cannot demonstrate that one is better than the other, it does help the analysts formalize 

and discuss them. This discussion leads to the construction of a language for describing 

the activity that represents an agreement about the terms that can be used to describe the 

activity. In addition, the ontology also supports the analysts’ agreement about how the 

trace should be visualized, because the visualization properties of the symbols are stored 

in the ontology.  

This trace formalism enables the analyst to conduct a hierarchical analysis of the 

activity. Event instances form a hierarchy where higher-level events are temporal patterns 

of lower-level events. The ontology also defines a hierarchy because some event classes 

are sub-classes of others. Notably, these two hierarchies are different because lower-level 

event instances do not necessarily belong to a sub-class of the class of higher-level event 

instances. 

3. SYSTEM IMPLEMENTATION 

We have implemented a prototype system based on an assemblage of open source 

knowledge-engineering tools: an ontology editor, an inference engine, visualization 

facilities, and documentation facilities. This system is named ABSTRACT (Analysis of 

Behavior and Situation for menTal Representation Assessment and Cognitive acTivity 

modeling). Figure 3 illustrates this assemblage. 
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 Figure 3: The architecture of the ABSTRACT activity analysis system.  

The system can be split into three levels: a lower level, at the bottom of the figure, 

which is the Collection System; a core level, in the center of the figure, which is the 

Symbolic Trace System itself; and a higher level, on the top of the figure, which is a 

Documentation level. 

3.1. The collection system 

The collection system integrates tools to help the analyst prepare the symbolic trace. 

We call these tools collection agents. Collection agents may be automatic when specified 

once by the analyst, or may require the analyst’s intervention. Automatic collection 

agents can be tools for preprocessing sensor data or computer logs, as in the example of 
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section 2.1. Semi-automatic collection agents can be tools for helping the analyst take 

notes, record interviews, or transcript video data. As noted, this discretization cannot be 

done blindly, but must be driven by the analyst. Hence, this level requires visualization 

facilities. We use Microsoft Excel with specific Visual Basic Application (VBA) macros 

as a visualization tool for the collection system. In this visualization, each event of the 

symbolic trace is displayed as a line in the spreadsheet. The lines are colored according to 

the event’s type, and the event’s properties are organized in different columns. We have 

implemented a specific video player and analogical data player that triggers VBA macros 

that automatically scrolls down the spreadsheet in synchronization. Some of these 

facilities are also available in commercial quantitative data analysis tools such as 

MacShapa (Sanderson et al., 1994) and NVivo. These facilities allow the analyst to check 

and validate or reject the symbolic trace, that is, refine the discretization algorithm and its 

diverse parameters until she gets a satisfying and meaningful symbolic trace including 

appropriate properties of interest.  

3.2. The symbolic trace system 

The symbolic trace system is the knowledge-engineering system itself. At this level, 

the traces are modeled as described in section 2.2. In addition, they are associated with a 

set of inference rules and a set of style-sheets. A style-sheet is a specification for 

displaying the trace on the screen. It specifies how semantic properties of the events that 

are defined in the ontology should be converted into visualization properties, such as 

shape and position. Style-sheets also implement particular time scales, and particular 
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filters to display only the interesting aspect of the trace for a particular analysis. They 

correspond to different ways of looking at the trace according to different modeling 

goals.  

The inference rules produce inferred symbols from patterns of previously existing 

symbols. The principle is to query the graph in the search for subgraphs that match 

certain patterns, and to attach new nodes and arcs to the matching subgraphs. These new 

nodes represent the inferred symbols and the new arcs represent the inference relations. 

The usage of this inference mechanism is further described in Section 3.5. 

Technically, the sequence part of the activity traces is encoded as Resource 

Description Framework (RDF) graphs. We choose RDF because it is the most widely 

used specification for graph encoding. We use XML as a serialization of RDF to store 

sequences, because XML makes RDF graphs easy to share with other applications. The 

ontology is encoded as RDF-Schema (RDFS), because RDFS is the simplest ontology 

language based on RDF. We use Protégé as a graphical ontology editor. That is, an 

installation of Protégé is embedded in our tool, and the analyst uses it to define the 

ontology of his traces. The graphical displays of our traces are encoded under the 

Scalable Vector Graphic (SVG) specification. Because Firefox natively supports SVG, 

we use it as a visualization tool, and we have implemented most of the tool as a web 

application in PHP. We use Extensible Stylesheet Language (XSL) as a transformation 

language for transforming RDF traces into their SVG graphical representation. We use 

SPARQL as a query language for graphs, as we will explain in section 3.5. 
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3.3. The documentation system 

Analysts using our symbolic trace system expressed the need for a higher system 

layer providing a way to both index and attach documentation to episodes of interest. We 

implemented this by associating the symbolic trace system with a wiki. As we have made 

the choice of implementing ABSTRACT as a web application, analysts can reference 

each episode of interest by their URL, and easily paste this URL into a wiki page.  

Moreover, some new wiki implementations, like Semantic Mediawiki1, include semantic 

facilities. We are still investigating how these semantic facilities can be used to merge the 

ontology editor with the documentation system into a single semantic documentation 

system.  

3.4. System usage 

The user interface is accessible as a web-page in any browser that supports SVG, 

such as Firefox. This interface is illustrated in Figure 4. It has four tabs: the Open tab that 

allows the analyst to select a trace in a list; the Info tab that displays general information 

about the selected trace, such as its creation date and its version, and the management of 

stylesheets; the View tab that displays graphical visualizations of the trace; and the Edit 

                                                

1 Semantic Mediawiki (http://semantic-mediawiki.org) 
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tab that allows the analyst to write queries to transform the trace. The interface also 

provides a link to the ontology editor, Protégé. 

 

Figure 4: ABSTRACT User interface. 

The View tab shown in Figure 4 provides the following functionalities (noted with 

numbered boxes): 

1. Unique ID of the analysis, including aspects of the trace file and analyses done. 

2. Selection of different visualization style sheets in drop-down lists. Different 

visualizations can be displayed simultaneously on the screen, and their time-code 

is synchronized. 
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3. Time code: this value corresponds to the cursor position in the visualization 

modules (vertical red line). The analyst can enter a time code and click Go to to 

focus on it.  

4. Visualization sample with a time span of 10 seconds. The analyst can scroll the 

trace left and right with the mouse. This visualization example corresponds to the 

simplified description given in Figure 2.  

5. Visualization sample of an entire trace (20 minutes), with only the high-level 

symbols displayed. These trace examples come from our car driving study and are 

further explained in section 4. 

6. The analyst can show the symbols’ properties by clicking on the symbols. 

7. The system can synchronize with a video player. When this box is checked, the 

system gives the timecode control to the video player and automatically follows 

it. 

3.5. The transformation mechanism 

The analyst uses the Edit tab to write queries that infer higher-level symbols from 

patterns of lower-level symbols. For instance, Table 1 illustrates a query to infer the Lane 

Change indicator symbol shown in Figure 2, which indicates that a lane change is about 

to happen. In this example, the analyst wants to test the hypothesis that this indicator can 

be inferred from a conjunction of an accelerate event with an acceleration value greater 

or equal than 1 m/s2, followed by a glance event pointing to the left mirror (generated by 

an eye-tracker), both within 1 second of each other. 
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The graph elements, either from the sequence or the ontology, are handled as triples 

[node, edge, node]. A query consists of a selection clause (WHERE) and a CONSTRUCT 

clause. The selection clause specifies a pattern of triples that should match the graph, and 

the CONSTRUCT clause specifies a pattern of triples that should be added to the graph 

wherever a pattern matches the selection clause. In addition, matching patterns can be 

restricted by a FILTER clause. The syntax shown in Table 1 has been simplified for 

clarity2. 

Table 1: Simplified inference query to infer a lane change. 

CONSTRUCT  
(?r1, infer , Indicator_Symbol) 
(?r2, infer , Indicator_Symbol) 
(Indicator_Symbol, type , Lane_Change_Indicator) 
WHERE 
(?r1, type , Accelerate) 
(?r2, type , Left_Mirror_Glance) 
(?r1, time-code , ?d1) 
(?r2, tine-code , ?d2) 
(?r2, Acceleration_Value , ?v1) 
FILTER 
( ?v1 > 1) 
(sequence(?d1,?d2,1)) # in order, within 1 second 

In this query, ?r1, ?r2, ?d1, ?d2, and ?v1 represent variables. Each of them must 

match the same graph element each time they appear in the query. The sequence function 

tests that the time codes ?d1 and ?d2 occur in order and within the parameter of 1 second 

of each other. 

                                                

2 The complete SPARQL syntax can be found in the SPARQL documentation, 

http://www.w3.org/TR/rdf-sparql-query/ 
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In our implementation, the analyst has to know SPARQL to specify queries on the 

trace. To make it simpler, however, we have implemented a template mechanism that 

prepares skeletons of queries. We have also added some customized functions in our 

implementation of SPARQL, such as the sequence function presented above. These 

functions facilitate the specification of queries that compare time codes of events, and 

make it easier to specify temporal constraints. In so doing, we are implementing a 

semantics of time, for example, the semantics of the relation of co-occurrence and of 

sequential ordering. In the future, we plan to add options to let the analyst specify these 

queries from a graphical interface based on the visualization of the trace. 

The Edit tab allows the analyst to visualize the resulting trace in a similar way as the 

View tab, but it also allows her to reject the trace if she is not satisfied by the result. This 

feature helps the analyst refine the query in search for the best symbols and inferences 

rules she can get to describe the activity from the actual data. Our system returns the 

number of times the pattern has matched in the trace. This number indicates the number 

of new symbols added. The system also provides an export function to a text file that can 

be imported into other tools like Microsoft Excel for further statistical computations. 

Queries are saved as independent files and the tool helps the user reference them. The 

database of queries associated to the ontology constitutes a representation of the analyst’s 

understanding about how to make sense of the activity trace. 
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4. EXAMPLE ACTIVITY MODEL  

We report here an example activity modeling analysis taken from a car driving study 

(Henning et al., 2007). Another example analysis—in a study of non-state political 

violence—is reported by Georgeon, Morgan, Horgan, and Braddock (2010). Figure 5 

shows a 10 second section of a car-driving activity trace focusing on a lane change on a 

motorway. The legend is presented in Figure 6. 

 

Figure 5: Example of lane change on a motorway (screenshot with text labels added at the top). 

 

Figure 6: Legend of car driving symbolic trace. 

In Figure 5, the “Button” is an index signal from the experimenter recorded during 

the experiment, the start thinking event comes from a verbal signal given by the driver in 
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a video-based post-experiment interview, and the lane crossing event is the moment 

when the left front wheel crosses the lane, manually encoded from the video. The 

representation of the driving episode given in Figure 5 is then automatically generated 

with the inference rules defined by the analyst.  

Using the trace querying facilities of ABSTRACT on this driving data set, we could 

identify two categories of lane changes that we explain by the performance of two 

strategies (Figure 7 and Figure 8). In these descriptions, the lower part is a representative 

trace episode from our database while the upper part is drawn by hand as an abstract 

description of the strategies. This upper part also shows the car trajectory in the lanes, 

respecting the scale ratio length/width: about 300 m of 4 m wide lanes. 

 

Figure 7: Lane change with acceleration (Lane_Change_Delayed).  

The strategy displayed in Figure 7 is characterized by beginning in a situation where 

the subject is impeded by a slow vehicle. In this case, the subject starts accelerating  

[1] almost at the same time as he looks at his left mirror [2]. Then, if there is no vehicle 
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coming from behind, he starts looking at the left lane [3], he switches his blinker on [4], 

and he performs the lane change [5]. In this situation, the acceleration associated with a 

glance to the left mirror appears as a good predictor of the lane change. It occurs more 

than one second before the subject switches the blinker on.  

In the situation of Figure 8, no slow vehicle impedes the subject, and he performs the 

lane change “on the fly”. In this case, we can find no behavioral sign of his intention to 

change lane before the blinker is switched on [1]. Nevertheless, the blinker appears to be 

a sufficient predictor in that case, because it is switched in anticipation of the lane 

change, several seconds before the maneuver: looking to the left lane [2], looking to the 

left mirror [3], and starting steering [4]. 

 

Figure 8: Lane change anticipated without acceleration (Lane_change_anticipated). 

In parallel of searching and identifying these categories of situations and strategies, 

we define symbols to represent them and inference rules to generate these symbols. 

Finally, we have named the first strategy Lane_change_delayed and represented it with 



ACTIVITY MODELING FROM ACTIVITY TRACES 

 

 

26 

white triangles, and the second strategy Lane_change_anticipated represented with white 

squares. Figure 9 shows that these two types of event occur four times in a representative 

20-minute motorway ride of a subject.  

 

Figure 9: Categorization of lane changes between Lyon and airport (20 minutes long). 

Figure 9 displays only the symbols that are useful to see the lane changes: the index 

button pressed by the experimenter (blue circles), the blinker (orange triangles up and 

down), the accelerations (ochre triangles to the right), the left mirror glances (gray 

triangles to the left), main junctions on motorways given by the GPS position (green 

square and triangles on the bottom of the display), and the lane change category symbols 

(white triangles and squares). In this example, one lane change (marked by the vertical 

cursor line in the figure) was not categorized. The uncategorized cases would require 

further study to understand their specificity. Once the analyst has finished her analysis, 

she can export the abstract traces into a spreadsheet to compute and report the statistics of 

the occurrences of events of interest. 

Despite the extensive existing studies of car driving (e.g., Groeger, 2000) and on lane 

change maneuvers (e.g., Salvucci and Liu, 2002), we could find no representation of the 
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driving activity that could compare to ours in terms of comprehensiveness of the data and 

capacity to support higher-level understanding. In the case of lane changes, this 

innovative description helped us discover different strategies that have not been reported 

in the literature before. So doing, this study shows how our principles and tool have 

addressed the needs enounced in the introduction: our prototype tool helped us generate 

comprehensive symbolic representations of the activity at an appropriate abstraction level 

to discover previously unknown knowledge about the activity. It also helped us explain, 

report, and back up our models with the collected traces.  

5. RELATED WORK 

In this section, we situate our work in relation to two research areas, the area of 

qualitative data analysis and the area of trace-based reasoning.  

In the area of qualitative data analysis, many of software tools address the need for 

supporting the transcription of raw data into sequences of encoded events, for example, 

Dismal (Ritter and Larkin, 1994, Ritter and Wood, 2005), NVivo, INTERACT, 

InfoScope, MORAE, MarShapa (Sanderson et al., 1994), and MacVisSTA. As such, 

these tools relate to our collection system as described in Section 3.1. Among these tools, 

MacVisSTA (Rose et al., 2004) particularly relates to this aspect of our work in that it 

supports merging multimodal data into a common timeline.  

At the symbolic level—also called transcript level in some studies—tools like Theme 

(Magnusson, 2000) support the automatic discovery of temporal patterns based on 
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statistical properties.  We consider our tool complementary to these tools because our tool 

helps find symbolic pattern based on the meaning they have to the analyst rather than on 

their statistical properties. In the car-driving example, our symbols of interest are not 

particularly frequent or infrequent nor do they obey pre-assumed statistical laws. 

HyperRESEARCH appears to be the only qualitative data analysis tool that supports 

the validation of hypothetic theories through rule-based expert system techniques (Hesse-

Biber et al., 2001). We find HyperRESEARCH’s underlying principles for theory 

building very similar to ours. It, however, does not focus on temporal semantics and does 

not offer symbolic timeline visualization facilities to support activity modeling. Its rule 

engine also does not exploit elaborated hierarchical semantics defined in an ontology, as 

apposed to our solution based on SPARQL and RDF Schemas. 

The other related research area, Trace-Based Reasoning (TBR) (Cordier et al., 2009) 

comes from the domain of knowledge representation, and more precisely from Case-

Based Reasoning (CBR) (Aamodt and Plaza, 1994). CBR consists of helping users solve 

new problems by adapting solutions that have helped them solve previous problems. TBR 

extends CBR to retrieve useful cases as episodes from the stream of an activity trace 

(Mille, 2006). Our work relates to TBR because both address the question of modeling 

and representing a stream of activity for future usage. In particular, we pull lessons from 

the work of Settouti, Prié, Marty, and Mille (2009) that implemented a trace-based 

system to support the management and the transformation of traces. TBR has been used 

to implement companions that provide assistance to the user based upon previous usage 
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(e.g., Cram et al., 2008), or to support reflexive learning by providing the users with a 

dynamic display of his passed activity (Ollagnier-Beldame, 2006). As opposed to these 

works, our work helps a user (the analyst) understand the activity of another user (the 

subject). So doing, our work brings principles of qualitative data analysis to TBR and 

brings TBR techniques to address problems of quantitative data analysis. 

6. CONCLUSION 

We have defined the principles of a methodology and a software tool to help an 

analyst create models of activity from activity traces in an iterative and interactive 

fashion. These principles relate to the notion of abductive reasoning in that they consist 

of helping analysts form, organize, and test micro-hypotheses to explain and represent the 

activity. Specifically, they help investigate what concepts and semantics describe the 

activity the best and represent these concepts in an ontology and apply this semantics 

through a rule engine. These principles are summarized in Figure 10. 
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Figure 10: Activity modeling from activity traces 

In Figure 10, the collected raw data is represented as curves along the activity axis. 

The first analysis step consists of collecting this raw trace. The second step consists of 

producing a symbolic trace (symbols represented by circles) through the discretization of 

the raw trace. The third step consists of modeling the symbolic trace by inferring more 

abstract symbols (represented as squares and triangles) and organizing these symbols in 

an ontology (hierarchy of white rectangles). The fourth step consists of producing 

explained models of activity (round-angled rectangles) that are backed up by the abstract 

trace. During the modeling process, the analyst formalizes her understanding of the 
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activity in the form of transformation rules, ontology, and documentations that are stored 

in the system, which allows capitalizing on the analyst’s knowledge across studies. 

To illustrate these principles, we have implemented a prototype software tool through 

an assemblage of open source knowledge engineering software modules. With this tool, 

we have modeled car-driving activity traces collected with an instrumented vehicle. This 

analysis allowed us to identify and describe two strategies of lane change on motorways. 

This example shows that our knowledge engineering approach of activity modeling from 

activity traces offers answers to the needs for tools to help analysts understand better an 

observed activity, create models of this activity, report, and back up these models with 

the observational data.  

The abstract activity traces that we have constructed constitute a model of the car 

driver in their own, in that the analysts can use our tool to query these traces to answer 

new questions they may have about the driving activity. Our future developments will 

consist of simulating the activity, for instance, in the field of car driving, generating 

realistic driving behavior in a driving simulator, based on our abstract activity traces. 
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