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Abstract.

An analytic method has been applied to a biochemical pathway with coupling. The

harmonic balancing technique can be used to determine the effects of coupling on the

Goodwin metabolic pathway. Its behaviour is modelled by a set of coupled ordinary

nonlinear differential equations. This one is transformed to a single feedback loop

control with a nonlinear function and a linear filter. It is shown that coupling modifies

the linear filter such that the frequency and the amplitude of the oscillations decrease.

The results obtained here are derived by both analytical and numerical studies, and

compared with previous stability analysis of associated pathways.
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1 Introduction

The most commonly encountered form of regulated biochemical pathway, generally referred
to as the Yates-Pardee or Goodwin metabolic pathway, consists of a single pathway of
enzymatic reactions, where the last product inhibits the first enzyme (single loop negative
feedback) [14, 5]. When the length of a Goodwin metabolic pathway is increased, the
stability domain of its unique steady state is decreased [12, 14].

From a different point of view, G. Chauvet has suggested that the association of metabolic
pathways can result in an increase in their stability domain [2]; this property can be viewed
as non-trivial, because an increase in the complexity of artificial systems often results in a
decrease of their stability domain.

In our first paper [11], we showed that the parallel association of two Goodwin metabolic
pathways, consisting of a set of nonlinear coupled first-order ordinary differential equations,
can increase the stability domain of the unique steady state. Moreover, analytical and
numerical studies of the stability of this system show that the association of two units can
lead to an increase of the domain of stability. From a biological point of view, the results
suggest that the exchange of matter between compartments (e.g. cells, organelles,. . . ) may
be a source of stability for the cell metabolism.

The question arises whether this unusual property can be showed in case of nonlinear
oscillations. How coupling with exterior pools of metabolites modifies the behaviour of the
oscillations of a Goodwin metabolic system.

Moreover the role of spatial heterogeneity for chemical reactions has been the subject of
much research (see, for instance, [8, 1] and references therein). Actually the role of exterior
pools with respect to the asymptotic behaviour of such systems has been relatively neglected.
On the other hand, the presence of exterior pools appears to be rather natural [1].

In Section 2 the biological model is presented. In Section 3 some definitions and concepts
of the harmonic balancing method are given. In Section 4 we apply this technique in order
to compare the oscillations of the systems with or without coupling. In Section 5 numerical
experiments are given. In last section, some conclusions are submitted, in particular on
stability of steady state.
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Figure 1: Goodwin biochemical pathway with couplings

2 The model with coupling

We here investigate the oscillations of the Goodwin metabolic pathway [5] by means of the
harmonic balancing technique [12], with the addition of some passive diffusion coupling (see
Fig. 1). More precisely, we assume that (i) a cell or an organelle u contains a Goodwin
metabolic pathway [5]; (ii) the metabolite pool Pi, i = 1, . . . , n, can exchange matter with
the outside pool P ∗

i via passive diffusion, with a non-negative coefficient βi.
Let us consider one biological unit which contains a Goodwin metabolic pathway, and

apply the laws of mass-balance and enzyme kinetics to this system with passive diffusion
between interior and exterior compartments.

Implementing the transformation of Walter [14, 12], the system can be modelled by the
following set of differential equations that describe the time evolution of metabolic concen-
trations :















dP1

dt
= f(Pn) − b1P1 − β1(P1 − P ∗

1 ),
dPk
dt

= Pk−1 − bkPk − βk(Pk − P ∗
k ), k = 2, . . . , n,

dP∗

k

dt = βk(Pk − P ∗
k ), k = 1, . . . , n,

(1)

where Pi and P ∗
i are the respective time-dependent concentrations of a given metabolite in

the unit and the exterior pools. The coefficient bi caracterizes the positive kinetic constant
of the reaction Pi → Pi+1 in the unit. The reaction function f is given; in the Goodwin
metabolic pathway, f describes the allosteric feedback inhibition of the first reaction by the
last product, and can be written as:

f(Pn) =
1

1 + (Pn)µ
.

where µ is a positive integer. Finally, we assume that association with exterior pools results
in passive diffusion, with constant non-negative coefficients βi. If all the βi are zero, the
unit is said isolated or non-associated.

Existence and uniqueness of the positive steady state are proved in [11]. Results on
the linear stability of the system at the neighborhood of the unique steady state can be
derived by both analytical1 and numerical2 studies for some values of the parameters of the
model (see [11]). Apart the fact that a systematic study of the local properties derived by
linearization, may rapidly become cumbersome, the question of discerning whether a system
possesses a stable positive steady state or a limit cycle remains to be answered. However,
existence of stable oscillations for a Goodwin system without coupling has been proved in
[6].

1Using the criterion of Liénard and Chipart.
2By computing the eigenvalues of jacobian matrix with scientific software such as MATLAB.
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Figure 2: Single feedback loop with a nonlinear function f and a linear filter G(p)

3 First order harmonic balancing technique

The harmonic balancing technique for investigating biochemical oscillators can be success-
fully employed, in particular when the function f of the feedback loop is positive, and
monotonically decreasing with his argument.

3.1 Definitions

This mathematical method [9, 4, 7] approximates the output Pn and the nonlinear element
f(Pn) by a partial sum of their Fourier series :

Pn(t) = Re
(

p
∑

k=0

xk exp(ikωt)

)

,

f(Pn(t)) = Re
(

p
∑

k=0

yk exp(ikωt)

)

,

where the coefficients yk verify :

y0 =
1

2π

∫ 2π

0

f

(

Re
(

p
∑

k=0

xk exp(ikt)

))

dt,

yk =
1

π

∫ 2π

0

f

(

Re
(

p
∑

l=0

xl exp(ilt)

))

exp(−ikt) dt, 1 ≤ k ≤ p.

Using the loop’s input-output equation :

Pn = G f(Pn)

where G is the linear filter so that :

G f(Pn) = Re ( G(0) y0 +G(iω) y1 exp(iω t) + . . .+G(i p ω) yp exp(i p ω t) ) ,

we obtain p+ 1 balance equations :

G(i k ω) yk = xk , 0 ≤ k ≤ p .

Then, an approximation to Pn(t) is obtained by solving these equations. Since the Fourier
series of the function f converges rapidly and G(p) is an extreme low pass filter, the first
order approximation :

Pn(t) = x0 + x1 cosωt

should be a very good representation of periodic solution for arbitrary dimension n of this
system.



Let us define the equivalent gain in the k-th harmonic as Fk = yk/xk. This function
Fk = yk/xk is known as the describing function of the nonlinearity f .

This first order approximation leads us to consider the following balance equations :

E G(0) =
y0
x0

G(0) = 1 , (2)

F G(iω) =
y1
x1

G(iω) = 1 , (3)

where

y0 =
1

2π

∫ 2π

0

f(x0 + x1 cos t) dt,

y1 =
1

π

∫ 2π

0

f(x0 + x1 cos t) cos t dt.

For single loop control system, E is frequency independent and the zero balance equa-
tion (2) gives us the mean value x0 as function of the amplitude x1 of the oscillation. Then,
the first balance equation (3) becomes a function of the amplitude x1 and the frequency ω,
and it is possible to separate this x1–ω relation :

G(iω) =
1

F (x1)
.

The G– and 1/F –curves are studied in the complex plane. If they intersect then the balance
conditions are satisfied and a periodic solution exists, otherwise the system cannot oscillate.
For f monotonically decreasing, it can be proved that 1/F is a continue negative real func-
tion, and the set of amplitudes is a connected compact set [12]. An intersection of G(iω)–
and 1/F (x1)–curves will occur only if :

1

FMax

≤ G(iωc) ≤
1

Fmin

where ωc is the frequency so that the G(iω)–curve first intersects the negative real axis.
This G (i ω)−curve is often called the Nyquist contour of the linear element.

3.2 Functions R and R∗

Let us consider the nonlinear system (1) represented by a feedback connection of a linear
time-invariant dynamical system and a nonlinear element f(Pn), as shown in Figure 2. We
study the behaviour of this autonomous system, and we are interested in investigating the
existence of periodic solutions.

Using the simultaneous loop balance conditions, we can construct numerically a function
R of the reaction constants where if R > 1 the system oscillates and if R ≤ 1 there is no
periodic solution. Comparing the value of R and the numerical solution by Runge-Kutta
method via MATLAB software we find that this technique is very accurate.

In our case (see [12] for technical details), the unique condition for an intersection
G(iωc) ≤ 1/Fmin leads to define R as functions of the parameters bi and βk:

R(bi, βk) =
|Fmin|
b1 · · · bn

·
∣

∣

∣

∣

G(iωc)

G(0)

∣

∣

∣

∣

(4)

so that R(bi, βk) > 1 is equivalent to this latter condition.
An algorithm is then possible to determine the existence of limit cycle.
In the sequel, let us denote R ≡ R(bi, 0) when the parameters βk are zero, and R∗

otherwise. Let us note that the nonlinear block is the same for these cases. When we
compare an isolated system and an associated system with identical parameters, except βk,
we can prove, in special cases, the inequalities R∗ < R and ω∗

c ≤ ωc where the star ∗

superscript represents an associated system. Then we observe an increasing stability in the
sense that the amplitude and frequency decrease.



4 Analysis of oscillations

For the analysis of the non-associated system, i.e. when all βk = 0, we introduce the linear
filter G :

G(p) =

{

n
∏

k=1

(p + bk)

}−1

where p denotes the differentiation operator. After one or several couplings, the harmonic
balance method leads us to consider the following filter :

G∗(p) =

[

n
∏

k=1

(p+ bk)(p+ βk)

(p+ bk)(p+ βk) + pβk

]

G(p).

Proposition.

1. G (i ω) = G∗ (i ω) if and only if ω = 0 or βk = 0 , ∀ k = 1, . . . , n ;

2. The arguments of G(i ω) and G∗(i ω) verify the following formulae:

ArgG∗(i ω) = ArgG(i ω) − ψ(ω) , ψ(ω) =
n
∑

k=1

ψk(ω) ,

with

ψk(ω) = Arctan
(bk + 2 βk) ω

bk βk − ω2
− Arctan

(bk + βk) ω

bk βk − ω2
;

(iii) The modulus of G(i ω) and G∗(i ω) verify the following estimation :

|G∗(i ω)| ≤ |G(i ω)| ∀ω > 0 .

Proof. The expressions for G(iω) and G∗(iω) are :

G(iω) =

(

n
∏

k=1

1

(ω2 + b2k)1/2

)

exp

(

−i
n
∑

k=1

φk(ω)

)

G∗(iω) = G(iω)

(

n
∏

l=1

(ω2 + b2l )
1/2(ω2 + β2

l )1/2

(ω2 + c2l )
1/2(ω2 + d2

l )
1/2

)

exp

(

−i
n
∑

l=1

ψl(ω)

)

with
φk(ω) = Arctan

ω

bk
,

and
ψl(ω) = Arctan ωcl

+ Arctan ω
dl

− Arctan ω
bl

− Arctan ω
βl
, if βl 6= 0 ,

ψl(ω) = φl(ω) if βl = 0 ,

cl =
(bl + 2βl) −

√

b2l + 4β2
l

2 > 0 ,

dl =
(bl + 2βl) +

√

b2l + 4β2
l

2 > 0 .

Let us consider the linear filters G and G∗ with a unique coupling, i.e. with βl = β > 0 and
βj = 0 for all j 6= l. The expressions of G(i ω) and G∗(i ω) are deduced of the above, and
the equality G(i ω) = G∗(i ω) leads to

(

ω2 + b2l
) (

ω2 + β2
)

=
(

ω2 + c2l
) (

ω2 + d2
l

)

, and ψl = 0 ,

equivalent to
ω = 0 or β = 0 .



Moreover, since we have: ψl(0) = 0, limβ→0+ ψl(ω) = 0, and bl β = cl dl when ω = 0 or
β = 0, the converse is obvious.

The arguments of G(i ω) and G∗(i ω) verify: ArgG∗(i ω) = ArgG(i ω) − ψl(i ω) and, by
means of Arctan property:

ψl(ω) = Arctan
(bl + 2 β) ω

bl β − ω2
− Arctan

(bl + β) ω

bl β − ω2
.

The identities: c2l +d2
l = b2l +4 β2 +2 bl β, and cl dl = bl β lead to the inequality: ∀ω ∈ R,

|G∗(i ω)| ≤ |G(i ω)|.
By successive iterations, we obtain the same results with multiple couplings. Corollary.

In the complex plane, the G∗(i ω)-curve, for ω > 0, is nearer the origin than the G(i ω)-
curve. Proof. Let us note that we have: G∗(0) = G(0) ∈ R

∗+, and ∀ω > 0, ArgG(i ω) =
−
∑n

k=1
Arctan ω

bk
< 0. If ω is large enough, the Arctan property gives us ψl(ω) < 0, then

ArgG∗(i ω) > ArgG(i ω). Moreover, as positive ω increases, the modulus and the argument
of G(iω) and G∗(iω) decrease monotonically:

lim
ω→+∞

G(i ω) = lim
ω→+∞

G∗(i ω) = 0 ,

lim
ω→+∞

ArgG(i ω) = lim
ω→+∞

ArgG∗(i ω) = −n π
2
.

The curves spiral to origin. Since the G∗(i ω)-curve does not intersect the G(i ω)-curve
except at ω = 0 or if βk ≡ 0, for all k, and since the modulus and the arguments of G∗(i ω)
are smaller than those of G(i ω) when ω is large enough, we deduce than the G∗(i ω)-curve
is nearer the origin in the complex plane than the G(i ω)-curve.

The G(iω)– and G∗(iω)–curves first cross the negative real axis at frequencies ωc and
ω∗

c , if they exist, so that :

n
∑

i=1

Arctan
ωc

bi
= π (5)

n
∑

i=1

(

Arctan
ω∗

c

bi
+ ψi(ω

∗
c )

)

= π (6)

where

ψi(ω
∗
c ) = Arctan

(bi + 2βi)ω
∗
c

biβi − (ω∗
c )2

− Arctan
(bi + βi)ω

∗
c

biβi − (ω∗
c )2

.

The expression simplifies still further when the following special case is considered. Let us
note that a solution ωc > 0 of Eq. 5 exists if and only if n ≥ 3. Proposition.

1. If βl bl > ω2
c for all l, then ω∗

c ≤ ωc ;

2. If bk ≡ b and βk ≡ β > 0, 1 ≤ k ≤ n, then

(a) ω∗
c ≤ ωc if and only if β ≥ b tan2 π

n .

(b) R∗ < R .

Proof. If βl bl > ω2
c , for all l = 1, . . . , n, then

ψl(ωc) > 0 , and

n
∑

l=1

(

Arctan
ωc

bl
+ ψl (ωc)

)

> π ;

so we obtain: ω∗
c ≤ ωc .

If bk ≡ b and βk ≡ β > 0, 1 ≤ k ≤ n, we obtain first: ωc = b tanπ
n , and we consider

the formula 6:
n
∑

l=1

Arctan
ω∗

c

b
+ ψl(ω

∗
c ) = π .



Let us note that ψl(ωc) = 0 according to the case β = 0.
Let us denote ψ ≡ nψ0 with

ψ0(ω) = Arctan
(b+ 2 β) ω

b β − ω2
− Arctan

(b+ β) ω

b β − ω2
.

We observe that, under this form, ψ0(ω) = 0 if and only if ω = 0, or
√
b β, or +∞ to the

limit. In R
+, the function ψ0 is positive in the interval

[

0,
√
b β
]

.

Let us denote ω∗
0 =

√
b β. If β ≥ b tan2 π

n , then ∀ω ∈
[

0,
√
b β
]

, ψ0 > 0, and nArctan
ω∗

0

b ≥
π, this implies: ω∗

c ≤ ω∗
0 .

Since nψ0 (ω∗
c ) ≥ 0, we deduce: nArctan

ω∗

c

b < π, this implies: ω∗
c ≤ ωc.

Conversely, if ω∗
c ≤ ωc, then ω∗

c ≤ b tanπ
n , and

n
∑

l=1

Arctan
ω∗

c

bl
= nArctan

ω∗
c

b
≤ π ,

this leads: ψ (ω∗
c ) ≥ 0, then ω∗

c ∈
[

0,
√
b β
]

.
Secondly, it is sufficient to prove |G∗(iω∗

c )| < |G(iωc)| . The representation of G∗ leads
to:

|G∗(iω)| < |G(iω)| ∀ω > 0 .

The functions |G∗(iω)| and |G(iω)| versus ω are continuous and monotonically decreasing
with increasing positive frequency.

Let us denote ωd so that |G∗(iω∗
c )| = |G(iωd)| . If ωc < ωd, |G(iωd)| < |G(iωc)|, then

|G∗(iω∗
c )| < |G(iωc)| . It remains to prove: ωc < ωd , so |G∗(iω∗

c )| < |G(iωc)| is always
verified. The equality:

Arctan
ω∗

c

b
+ Arctan

(b+ 2β)ω∗
c

bβ − (ω∗
c )2

− Arctan
(b+ β)ω∗

c

bβ − (ω∗
c )2

= Arctan
ωc

b

leads to:

ωc =
bω∗

c
5 +

(

b3 + 2bβ2
)

ω∗
c
3 + 2b3β2ω∗

c

(b+ β)ω∗
c
4 + (b2β + b3 + bβ2)ω∗

c
2 + b3β2

.

Moreover, |G(iωd)| = |G∗(iω∗
c )| implies:

ω2
d =

ω∗
c
4 + (2bβ + 4β2)ω∗

c
2

ω∗
c
2 + β2

.

So, we obtain:

ω2
d − ω2

c = C1 ω
∗
c
12

+ C2 ω
∗
c
10

+C3 ω
∗
c
8

+C4 ω
∗
c
6

+C5 ω
∗
c
4

+C6 ω
∗
c
2

with
C1 = β2 + 2 bβ > 0, C2 = 6 b3β + 12 bβ3 + 6 b2β2 + 4 β4 > 0,
C3 = (4 b3β + 2 bβ3)(2 bβ + 4 β2) + 12 b3β3 + 9 b2β4 + 6 b5β + 3 b4β2 > 0,
C4 = 2 (b4β2+b3β3)(2 bβ+4 β2)+2 b3β2(b2β+bβ2+b3)+10 b3β5+10 b5β3+3 b6β2+2 b7β > 0,
C5 = 5 b6β4 + 10 b5β5 + 4 b7β3 > 0 and C6 = 2 b7β5 .

Lastly, we deduce: ωc < ωd , then R∗ < R .

Applications

1. According to the condition: β ≥ b tan2 π
n , when n ≥ 3, it is possible to find ωc and ω∗

c

solutions of Eqs 5 and 6. This condition leads to β ≥ +∞ when n = 2, β ≥ 3 b when
n = 3, β ≥ b/3 when n = 6 . In the case n = 2, when bk ≡ b and βl ≡ β, the formulae
5 and 6 have no solutions: no oscillations occur. In the cases n > 2, couplings with
large β give smaller frequencies.



2. The concentrations Pi, 1 ≤ i ≤ n, of steady states are not modified by coupling; when
steady state is unstable, oscillations appear [11] and coupling decreases the frequency
of the oscillations of the system if the diffusion coefficient β is large enough versus
kinetic coefficient b. Moreover, if the number of reactants increases, then the stability
effect of pools is more effective:

n→ +∞ =⇒ β ≥ b tan2 π

n
→ 0 =⇒ ω∗

c ≤ ωc .

Proposition.

If bk = βk ≡ b, for all k, then

1. n = 4 =⇒ ω∗
c = ωc ;

2. n > 4 =⇒ ω∗
c ≤ ωc .

Proof.

If bk = βk ≡ b , ∀ k, then we have:

ψ0(ω) = Arctan
2ω

(

3 −
√

5
)

b
+ Arctan

2ω
(

3 +
√

5
)

b
− 2 Arctan

ω

b
.

The expression of ψ0 (ωc) gives us:

• if n = 4, Arctan 2

3+
√

5
+ Arctan 2

3−
√

5
= π

2
, then ω∗

c = ωc ;

• if n ≥ 4, then ψ0 (ωc) = Arctan 3 tanπ/n

1−tan2
π/n

− 2 π
n ≥ 0, and the result is obtained:

ω∗
c ≤ ωc .

Proposition.

Let us assume that the systems admit both oscillations, i.e. the G(iω)− and 1/F (x)−curves
intersect in the complex plane at point −x of negative real axis (see [12]), and the G∗(iω)−
and 1/F (x)−curves intersect at point −x∗ < 0 (so, we consider the amplitudes x, x∗ > 0).

Then: x∗ < x . Proof.

The above results state that, since |G∗(iω)| ≤ |G(iω)|, the G∗(iω)-curve is nearer the origin
in the complex plane than the G(iω)-curve. The G∗ (i ω)−curve spirals into the origin in
a clockwise direction faster than the G (i ω)−curve. This is sufficient to prove the above
result. Indeed, when we consider the associated system, the balance method gives us the
following first harmonic equation : G∗(iω) = 1/F (x) where F is a real function of x, the
amplitude of the oscillation, and ω, the frequency (coupling does not modify this function
F ). If theG(iω)−, respectively G∗(iω)−, and 1/F (x)−curves intersect in the complex plane,
oscillations occur with amplitude x, respectively x∗, and the amplitude x∗ of a periodic
solution is smaller when coupling exists (the point −x∗ of the negative real axis is nearer
the origin than the point −x).

5 Numerical experiments

Let us compute the expressions R and R∗. First, we need the expressions of G and G∗, then
the approximate solutions ωc and ω∗

c of Eqs 5 and 6.
Simulations are obtained using the original system:























dS1

dτ
= α0

1 +K Sµ
n
− α1 S1 − g1(S1 − S∗

1 ),

dSk
dτ

= αk−1Sk−1 − αkSk − gk(Sk − S∗
k), k = 2, . . . , n,

dS∗
k

dτ
= gk(Sk − S∗

k), k = 1, . . . , n,

(7)

Defining new variables t, P1, . . . , Pn, P ∗
1 , . . . , P

∗
n as:

t =
(

α1 · · ·αnK
1/µα0

)1/n

τ ,



Table 1: Nonassociated system: αj = 1, j = 1, . . . , n− 1, µ = 5

n α0 K αn R Oscillation

5 50 0.01 0.5 0.8673 No

5 50 1 1 0.9851 No

7 5 0.1 0.5 0.9730 No

7 50 1 5 1.1115 Yes

8 5 0.1 0.5 1.0811 Yes

8 5 0.1 1 0.8653 No

Table 2: Associated system: αj = 1, j = 1, . . . , n− 1, gl = 1, l = 1, . . . , n, µ = 3

n α0 K αn R∗ Oscillation

7 50 0.1 0.5 0.8735 No

8 10 10 1 0.9953 No

9 150 0.1 0.5 1.2199 Yes

10 50 1 0.5 1.3253 Yes

12 1 2 0.5 0.8911 No

15 200 0.01 0.1 1.2414 Yes

P1 = α−1
0

(

α1 · · ·αn−1K
1/µα0

)1/n

S1 ,

Pk = (α1 · · ·αn−1α0)
−1
(

α1 · · ·αn−1K
1/µα0

)k/n

Sk , k = 2, . . . , n ,

P ∗
k = (α1 · · ·αn−1α0)

−1
(

α1 · · ·αn−1K
1/µα0

)k/n

S∗
k .

The resulting equation is equation (1) where :

bk = αk

(

α1 · · ·αn−1K
1/µα0

)−1/n

, βk = gk

(

α1 · · ·αn−1K
1/µα0

)−1/n

.

5.1 Non-associated system

Simulations are obtained, and results are shown in Table 1 using the original system (7).
Direct simultations using MATLAB software confirm this fact.

5.2 Associated system

Some results are shown in Table 2 where the existence of oscillations are pointed out.
Comparing the value of R∗ and the numerical solution of the set of equations (7), we observe
that the values of R∗ confirm the existence or not of a periodic solution.

5.3 Comparison between isolated and associated systems

The results in Table 3 exhibit the effects of coupling on the value R∗ versus R. When gk

are not zero, the numerical values of R∗ are always smaller than those of R. The stability
of associated system is increased.



Table 3: Isolated and associated systems: αj = 1, j = 1, . . . , n − 1, gl = 1, l =
1, . . . , n, µ = 3

n α0 K αn R R∗

7 50 0.1 0.5 1.2949 0.8735

8 5 0.1 1 0.8653 0.5992

9 150 1 1 1.6742 1.2231

10 10 2 0.1 0.9513 0.7967

12 100 0.01 5 1.3426 1.0568

Table 4: Frequency comparison: αj = a, j = 1, . . . , n, gl = g, l = 1, . . . , n, K = 2

n α0 µ g a tan2 π
n ωc ω∗

c

3 50 6 0.065 0.783 0.452 0.556

4 200 7 0.046 0.461 0.461 0.502

4 50 5 0.726 0.363 0.363 0.222

6 5 6 0.210 0.280 0.486 0.516

6 200 2 1.020 0.170 0.294 0.155

8 100 4 1.009 0.086 0.209 0.107

5.4 Frequency comparison

We suppose: αj = a, j = 1, . . . , n, and gk = g, k = 1, . . . , n. Let us note that the
condition β > b tan2 π

n for the nondimensioned system (1) is equivalent to the condition
g > a tan2 π

n for the original system (7). We can verify the property ω∗
c < ωc when this

condition is satisfied (see, for instance, Table 4 where the opposite cases are shown). In
these cases, we have also obtained R∗ < R. Extensive simulations have conducted us to the
special case: if bk ≡ b, βk ≡ β, for all k = 1, . . . , n, so that b = β tan2 π

n , then n = 22 has
given ω∗

c = ωc.

6 Discussion

Recently, much attention has been paid to the inhomogeneity and anisotropy of the cell
milieu. Although the existence of cellular microenvironments has been demonstrated exper-
imentally in many cases, the physiological significance of cellular organization remains open
for speculation. Especially, little is known on the consequences of pools existence on the
dynamic behaviour of metabolic pathways, while dynamic properties of metabolic pathways
in homogeneous media have been studied for several decades (see, for instance, [12]).

Since the association of metabolic chains can result in an increase in their stability
domain (review in [2]), we have studied, in the present work, some effects of pools existence
on the oscillations of a Yates-Pardee (or Goodwin) metabolic chain. These effects confirm,
in part, Chauvet’s hypothesis of increasing stability via association of metabolic units.

Our results show that coupling with exterior pools of metabolites modifies the behaviour
of the oscillations of a Goodwin metabolic system in the following way : (i) periodic solutions
of the system with coupling have lower amplitudes and frequencies; (ii) coupling can give
rise to a steady state, instead of a periodic solution. These observations are consistent with
the increase of stability observed when two Goodwin-Yates-Pardee metabolic pathways are



associated [11].Thus the stability of the Goodwin-Yates-Pardee metabolic pathway, which is
the most commonly encountered form of regulated biochemical pathway, is enhanced when
matter can be exchanged with the outside.
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