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Abstract

We study the structure and properties of the weak closed set of all upper bounds of a

finite family of self-adjoint operators for Löwner ordering. Firstly, we prove that we can find

a upper bound satisfying additional constraints. Secondly, we give two characterizations

of minimal upper bounds. Finally, we furnish a complete description of pairs of positives

operators such that the sum is a minimal upper bound.
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1 Introduction

Let H be a separable complex Hilbert space and B(H) be the Banach algebra of all con-
tinuous linear operators from H into H. Let T be in B(H), we denote by N (T ) the kernel of
the operator T and by R(T ) the range of T . We say that T ∈ B(H) is a positive operator
if T is a self-adjoint operator for which the inner product 〈Tx|x〉 > 0 for all x in H. This
notion of positivity induces a partial ordering on the subspace of self-adjoint operators, called
Löwner order, defined as follows: for A,B in B(H), we write A 6 B if A,B are self-adjoint

and B−A is positive. If T is a compact operator acting on H, then |T | = (T ∗T )
1

2 is a compact
positive operator. The eigenvalues µ1, µ2, ... of |T |, arranged in decreasing order and repeated
according multiplicity, form a sequence of numbers approaching 0. These numbers are called
the characteristic numbers of the operator T ; we write µk(T ) for the k-th characteristic number
of T . Let p be a positive real number, the Schatten class Sp(H) is the set of all operators such

that
∑∞

k=1 µk(T )
p < +∞. The function T −→ ‖T‖p = (

∑∞
k=1 µk(T )

p)
1

p is a norm on Sp(H),
and Sp(H) equipped with this norm is a Banach space. We denote by S∞(H) the Banach space
of all compact operators. Recall that Sp(H) is a bilateral ideal in the algebra B(H) for any
p ∈]0,+∞]. The theory of positive operators was intensely studied by many authors (see, for
instance [1], [3]). It is a crucial tool for studying a lot of problems in operator theory, especially
to obtain nice inequalities and good estimates. A natural question arise in this context: What
can be said about minimal upper bounds of a finite family of self-adjoint operators?

In Section 2, this investigation aims at the identification of a upper bound T of two self-
adjoint operators less than the identity operator which satisfies also the constraint inequality
T 6 I. More generally, we show that whenever R and S are two self-adjoint operators in a
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proper non-zero two sided ideal I of B(H) such that R,S ≤ I. Then we can find a positive
operator T in I such that R,S ≤ T ≤ I.

The next section is devoted to study of set of all upper bounds of a finite family of self-
adjoint operators. In the first part, we give a complete characterization of minimal elements
in this set. We deduce a necessary and sufficient condition to ensure that the sum of the two
considered self-adjoint operators is a minimal upper bound. Finally, we prove that the set of
minimal upper bounds coincides with the set of extremal points of the convex set of all upper
bounds of a finite family of self-adjoint operators.

In Section 4, we give a complete description of couple (R,S) of positive operators such that
the sum is a minimal upper bound. The first characterization is given by a nice factorization of R
and S with two orthogonal projections and a positive operator satisfying additional conditions.
The second one is related to a matrix representation of R and S.

Notice that from each result related to upper bounds of a finite family of self-adjoint oper-
ators, we can easily deduce the corresponding result for the lower bounds of this family.

2 Upper bounds of two self-adjoint operators under con-

straints

One of the central problem in [4] is finding the so-called "natural" lower bound or upper
bound of two self-adjoint operators. In the present section, by a different way, we study the
existence of lower bound or upper bound under additional conditions. Let I be a proper non-
zero two sided ideal in B(H). The following result shows that we can find a maximum in I for
two self-adjoint operators belonging in I satisfying an additional constraint.

Theorem 1. Let H be an infinite dimensional Hilbert space and R,S be two self-adjoint oper-
ators in a proper non-zero two sided ideal I of B(H) such that R,S ≤ I. Then there exists a
positive operator T in I such that R,S ≤ T ≤ I.

Proof. Since I is a bilateral ideal of B(H), using the Borelian functional calculus we can see
that R and S can be decomposed under the form R = R+ − R− and S = S+ − S− where the
four involving operators R+, R−, S+, S− are positive, less than the identity operator and belong
to I. Suppose that we can find a positive operator T ∈ I such that R+, S+ ≤ T ≤ I, then we
clearly have R ≤ R+ ≤ T ≤ I and S ≤ S+ ≤ T ≤ I. Thus, we have reduced the problem to
the case where 0 ≤ R,S ≤ I. From now on, we will assume that.

Suppose 1 ∈ σ(R), we set E = N (I − R) and we consider the matrices of R and S with
respect to the direct orthogonal sum H = E ⊕ E⊥. We easily see that they can be written
under the form

R =

(
IE 0
0 R1

)
and S =

(
A L
L∗ B

)
.

If T is a positive operator such that R,S ≤ T ≤ I, it is necessarily of the form

T =

(
IE 0
0 X

)
.

We can find such T if and only if the two following conditions are satisfied:

R1 ≤ X ≤ IE⊥ (1)
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and (
IE −A −L
−L∗ X −B

)
≥ 0. (2)

Condition (2) is successively equivalent to:

{
t2〈(IE −A)x|x〉 − 2tRe〈Ly|x〉+ 〈(X −B)y|y〉 ≥ 0

∀(x, y, t) ∈ E × E⊥ × R;

{
[〈Ly|x〉]2 ≤ 〈((1 + ε)IE −A)x|x〉〈(X −B)y|y〉

∀(x, y, ε) ∈ E × E⊥ × R
∗
+;

{
IE −A ≥ 0,

∥∥∥[(1 + ε)IE −A]−
1

2 Ly
∥∥∥
2
≤ 〈(X −B)y|y〉

∀(y, ε) ∈ E⊥ × R
∗
+;

{
IE −A ≥ 0, (X −B) ≥ 0,

∀ε > 0, L∗ [(1 + ε)IE −A]−1 L ≤ (X −B);
(3)

which in turn is equivalent to the following assertion:

IE −A ≥ 0 and X ≥ B + limL∗

ε→0
[(1 + ε)IE −A]−1 L.

The last limit exists because a monotone function of positive operators on R
∗
+, which is uni-

formly norm-bounded (here by inequalities (3)), is necessarily strongly convergent at 0. We set
K = limL∗ [(1 + ε)IE −A]−1 L. Using the fact that I − S ≥ 0, in the same manner we get

IE⊥ −B ≥ L∗ [(1 + ε)IE −A]−1 L,

for any positive ε.
We denote by IE⊥ = {PE⊥TPE⊥ ;T ∈ I} the compression of the ideal I, where PE⊥ stands

for the orthogonal projection onto the closed subspace E⊥. Setting S1 = B +K, we see that
we have to find X ∈ IE⊥ such that

IE⊥ ≥ X ≥ R1, S1,

where R1 = PE⊥RPE⊥ ∈ B(E⊥) and S1 = B +K = PE⊥SPE⊥ +K ∈ B(E⊥). Recall that a
proper non-zero two sided ideal of B(H) necessarily contains the space F(H) of all finite rank
operators and is contained in the closed subspace K(H) = S∞(H) of all compact operators (see
[8], Proposition 2.1 and Corollary 2.3). On the one hand, since S ∈ I, it implies that E is a
finite dimensional space, hence K ∈ F(H) ⊆ I. Consequently, we easily see that S1 belongs to
IE⊥ . By straightforward computations, we can also show that R1 ∈ IE⊥ . On the other hand,
we have

0 ≤ ‖S‖ I − S =

(
‖S‖ IE −A −L

−L∗ ‖S‖ IE⊥ −B

)
,

which leads to
‖S‖ IE⊥ ≥ B + limL∗

ε→0
[(‖S‖+ ε)IE −A]−1 L.

Observe that [(‖S‖+ ε)IE −A]−1 ≥ [(1 + ε)IE −A]−1, and therefore we have ‖S‖ IE⊥ ≥ B +
K = S1. We derive that ‖S1‖ ≤ ‖S‖. Notice that IE⊥ is necessarily a proper non-zero two
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sided ideal of B(E⊥), so replacing R by R1, S by S1 and I by IE⊥ , we have reduced our
problem to the case where ‖R‖ < 1, and 0 ≤ R,S ≤ I.

Assume that 1 ∈ σ(S1)(S1 → S), this time operators are decomposed with respect to the
direct orthogonal sum H = N (I − S) ⊕ R(I − S). Using the same process, we would find
X ∈ IE⊥ such that {

I ≥ X ≥ R1, S1

‖R1‖ ≤ ‖R‖ < 1 and ‖S1‖ < 1.

Then, the problem is reduced to the case where R,S ∈ I, ‖R‖ < 1 and ‖S‖ < 1. And now,
let us introduce the closed subspace defined by setting

En =
∨

k≤n

[N (µk(S)I − S) +N (µk(R)I −R)] ,

for every n ≥ 1 and consider the matrices of R and S relatively to the orthogonal direct sum
H = En ⊕ E⊥

n :

R =

(
R

′

n Un

U∗
n R

′′

n

)
and S =

(
S

′

n Vn

V ∗
n S

′′

n

)

We search T under the form

T =

(
I 0
0 Xn

)
.

The conditions required are





Xn ≥ R
′′

n + U∗
n(I −R

′

n)
−1Un

Xn ≥ S
′′

n + V ∗
n (I − S

′

n)
−1Vn

Xn ≤ I.

We set
Yn = R

′′

n + S
′′

n + U∗
n(I −R

′

n)
−1Un + V ∗

n (I − S
′

n)
−1Vn,

Since I is a bilateral ideal, taking Xn to Yn we see that all computations made ensure that T
is in I. Consequently, the only thing remaining to show is that Yn could be chosen such that
‖Yn‖ < 1.

Lemma 2. Let T be a compact operator acting on a Hilbert space H and (Pn)n≥0 a sequence of
orthogonal projections which strongly converges to 0. Then the sequences (‖PnT‖) and (‖TPn‖)
both converge to zero.

Proof. Since T is a compact operator, the operator PnT is also compact, hence we can find a unit
vector xn in H such that ‖PnT‖ = ‖PnTxn‖. We proceed per absurdum, suppose that ‖PnT‖
does not converge to 0, then there exist δ > 0 and a subsequence (xϕ(n)), weakly convergent
to some x in the closed unit ball of H, such that ‖Pϕ(n)Txϕ(n))‖ ≥ δ. Since T is a compact
operator and Pn strongly converges to zero , we derive successively ‖Txϕ(n) − Tx‖ −→ 0 and
‖Pϕ(n)T‖ = ‖Pϕ(n)Txϕ(n)‖ ≤ ‖Txϕ(n) − Tx‖ + ‖Pϕ(n)Tx‖ −→ 0, a contradiction. Thus, the
sequence (‖PnT‖) converges to zero. The operator T ∗ is also compact, hence ‖TPn‖ = ‖PnT

∗‖
also goes to zero.
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We turn now to the end of the proof of Theorem 1. By straightforward calculations it is
verified that

‖Yn‖ ≤
∥∥∥R′′

n

∥∥∥+
∥∥∥S′′

n

∥∥∥+
‖Un‖2
1− ‖R‖ +

‖Vn‖2
1− ‖S‖ . (4)

Due to the positiveness of the operator S, we have |〈Uny|x〉|2 ≤ 〈R′

nx|x〉〈R
”

ny|y〉 for all (x, y) ∈
En ×E⊥

n , hence ‖Un‖ ≤
√

‖R′

n‖
√
‖R′′

n‖. Similarly, we get ‖Vn‖ ≤
√

‖S′

n‖
√

‖S′′

n‖. Then, from
inequality (4) we obtain

‖Yn‖ ≤
∥∥∥R′′

n

∥∥∥+
∥∥∥S′′

n

∥∥∥+

∥∥∥R′

n

∥∥∥
∥∥∥R′′

n

∥∥∥
1− ‖R‖ +

∥∥∥S′

n

∥∥∥
∥∥∥S′′

n

∥∥∥
1− ‖S‖

which can be rewritten under the form

‖Yn‖ ≤ ‖PnRPn‖+ ‖PnSPn‖+
‖QnRQn‖ ‖PnRPn‖

1− ‖R‖ +
‖QnSQn‖ ‖PnSPn‖

1− ‖S‖ , (5)

where Pn and Qn stand respectively for the orthogonal projections onto E⊥
n and En. Notice

that Pn strongly goes to zero. Since a proper non-zero two sided ideal is necessarily contained
in K(H), we see that R and S are compact operators, then applying Lemma 2 we deduce from
inequality (5) that limn→∞ ‖Yn‖ = 0. Therefore, to end the proof of Theorem 1, it suffices to
choose an integer n large enough such that ‖Yn‖ < 1 and to set Xn = Yn.

Remark 3. Notice that the method used in the proof gives a constructive way to find such a
upper bound in any proper non-zero two sided ideal of B(H).

Since every Schatten class is a proper non-zero two sided ideal of B(H), we get the following
result.

Corollary 4. Let R and S two self-adjoint operators in Sp (0 < p ≤ +∞) such that R,S ≤ I.
Then there exists a positive operator T in Sp such that R,S ≤ T ≤ I.

Corollary 5. Let R and S two self-adjoint operators in B(H) such that R,S ≤ I. Then there
exists a positive operator T in B(H) such that R,S ≤ T ≤ I.

Proof. In the finite dimensional case, we proceed as in the proof of Theorem 1, the only dif-
ferences are that I = B(H) and that the number of steps is finite. In the infinite dimensional
case, we can easily find two sequences (Rn) and (Sn) of positive operators in S∞ = K(H) which
are respectively strongly convergent to R and S and such that 0 ≤ Rn ≤ I and 0 ≤ Sn ≤ I. By
previous corollary, there exists Tn in K(H) such that 0 ≤ Rn ≤ Tn ≤ I and 0 ≤ Sn ≤ Tn ≤ I.
Any weak limit point of the sequence (Tn) satisfies the desired conclusion.

If S is a self-adjoint operator, we write

m(S) = inf {λ, λ ∈ σ(S)} and M(S) = sup {λ, λ ∈ σ(S)} .

Corollary 6. Let A1, · · · , An be n self-adjoint operators in B(H). Then there exists a minimal
upper bound T in B(H) such that σ(T ) ⊆ [max(m(A1), · · · ,m(An),max(M(A1), · · · ,M(An))].
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Proof. For simplicity, we consider the case of two self-adjoint operators A,B in B(H). Taking
into account that the statement is translation invariant (translation by a scalar multiple of
the identity), we may assume that max(M(A),M(B)) > 0. Set M = max(M(A),M(B)) and
consider the two self-adjoint operators A0 = A

M
and B0 = B

M
. Since A0, B0 ≤ I, by applying

Corollary 5 we see that there exists a operator T0 ∈ B(H) such that A0, B0 ≤ T0 ≤ I. Thus,
the operator T1 = MT0 satisfies the following constraint A,B ≤ T1 ≤ MI. A straightforward
application of Zorn’s lemma with Löwner order ensures that there exists a minimal upper bound
T ∈ B(H) of A,B such that T ≤ T0. Therefore, we have max(m(A),m(B))I ≤ T ≤ MI. The
conclusion follows immediately.

Remark 7. We can remark that the previous spectral result is not valid for any minimal upper
bound of two self-adjoint operators. It suffices to consider the two following matrices acting on
C
2:

A =

(
1 0
0 0

)
and B =

(
0 0
0 1

)
.

Combining Corollary 6, Corollary 4 from [6] and Theorem 3.2 from [7], we can obtain the
next result.

Corollary 8. Let A1, · · · , An be n positive operators in B(H) satisfying σ(Ak) ⊆ [m,M ] for
some scalars 0 < m < M (k = 1, · · · , n). Let f be a increasing continuous convex function
from [m,M ] into R

∗
+, and ωk ∈ R+ such that

∑n
k=1 ωk = 1. Then, there exist a maximal lower

bound S and a minimal upper bound T of A1, · · · , An such that

1

λ(m,M, f)
f(S) ≤

n∑

k=1

ωkf(Ak) ≤ λ(m,M, f)f(T )

holds for

λ(m,M, f) = max

{
f(m) +

t−m

M −m

f(M)− f(m)

f(t)
; t ∈ [m,M ]

}
.

Proof. Since f is convex, for any t ∈ [m,M ] we have f(t) = supi∈I Li(t) where {Li; i ∈ I} is a
set of affine functions which are under the function f . Taking into account that f is increasing,
we may suppose that Li(t) = uit + vi with ui ≥ 0. We denote by ET the spectral measure
associated with T . Applying Corollary 6, we easily get the existence of a minimal upper bound
T in B(H) such that σ(T ) ⊆ [m,M ]. Let x be a unit vector and set xk =

√
ωkx. On the one

hand, applying Corollary 4 from [6], we get

n∑

k=1

ωk〈f(Ak)x|x〉 =
n∑

k=1

〈f(Ak)xk|xk〉 ≤ λf(

n∑

k=1

ωk〈Akx|x〉)

where λ = λ(m,M, f). On the other hand, we have

Li (
n∑

k=1

ωk〈Akx|x〉) =
n∑

k=1

ωkui〈Akx|x〉 ≤ ui〈Tx|x〉+ vi

=

M∫

m

(uit+ vi)dE
T
x,x(t) ≤

M∫

m

f(t)dET
x,x(t) = 〈f(T )x|x〉.

6



Taking the supremum on the left side and combining these two steps, we obtain

〈
[

n∑

k=1

ωkf(Ak)

]
x|x〉 ≤ λ〈f(T )x|x〉.

It gives the right inequality in Corollary 8.
By applying twice Jensen’s inequality, we get

f(

n∑

k=1

ωk〈Akx|x〉) ≤
n∑

k=1

ωkf(

M∫

m

tdEAk
x,x) ≤

n∑

k=1

ωk

M∫

m

f(t)dEAk
x,x =

n∑

k=1

ωk〈f(Ak)x|x〉. (6)

Since uα ≥ 0 and S is a maximal upper bound with its spectrum included in [m,M ], we
immediately see that

f(
n∑

k=1

ωk〈Akx|x〉) ≥ Lα(

n∑

k=1

ωk〈Akx|x〉) ≥ Lα(〈Sx|x〉).

Taking the supremum with respect to α, we deduce

f(
n∑

k=1

ωk〈Akx|x〉) ≥ f(〈Sx|x〉). (7)

By Corollary 4 from [6], for the case of a single operator, we have

f(〈Sx|x〉) ≥ 1

λ
〈f(S)x|x〉. (8)

The left inequality in Corollary 8 follows directly from (6), (7) and (8).

3 Characterizations of minimal upper bounds

The following result gives a complete characterization of minimal upper bounds of a finite
family of self-adjoint operators in terms of operator ranges.

Theorem 9. Let A1, . . . , Ap be a finite family of self-adjoint operators and T be a upper bound
of A1, . . . , Ap. Then T is minimal if and only if R(

√
T −A1) ∩ · · · ∩ R(

√
T −Ap) = {0}.

Proof. Suppose that a upper bound T of A1, . . . , Ap is not minimal, then there exists an positive
operator C 6= T such that 0 ≤ Ai ≤ C ≤ T for any i ∈ {1, · · · , p}. Thus, the positive operator
R = T − C 6= 0 satisfies the inequalities R ≤ T − Ai for every i ∈ {1, · · · , p}. Let a be a unit
vector such that Ra 6= 0. Observe that (

√
Ra) ⊗ (

√
Ra) =

√
R(a ⊗ a)

√
R ≤ R. Then, we can

suppose that R = u⊗u is a rank one operator. Let j be a fixed integer belonging to {1, · · · , p}.
Since R ≤ T −Aj we have |〈x|u〉|2 ≤

∥∥√T −Ajx
∥∥2 for any x ∈ H. Let us define the operator

Z0 on R(
√
T −Aj) by setting

Z0(
√

T −Ajx) = 〈x|u〉 u

‖u‖ .
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Thus, Z0 is a contraction which could be extended on R(
√

T −Aj) by a contraction denoted

Z̃0 . Now, we define the contraction Z on H = N (
√

T −Aj) ⊕ R(
√

T −Aj) by setting

Z(a ⊕ b) = Z̃0 b. Notice that R(Z) = R(Z̃0) = R(Z0) ⊆ Cu and hence Z is a rank one
operator which can be written under the form Z = u ⊗ v where ‖u‖‖v‖ ≤ 1 and v 6= 0. It
follows that we have

〈x|u〉 u

‖u‖ = Z0

√
T −Ajx = Z

√
T −AjxR ≤ R ≤ T ≤ I =〈

√
T −Ajx|v〉u = 〈x|

√
T −Ajv〉u.

On the one hand, taking x to u, we get 〈u|
√
T −Av〉u = ‖u‖u, which implies that

√
T −Ajv 6=

0. On the other hand, we have 0 ≤ ‖u‖−1u⊗u = Z
√

T −Aj =
√

T −AjZ
∗ =

√
T −Ajv⊗u,

saying that ‖u‖−1〈x|u〉u = 〈x|u〉
√
T −Av for all x in H. For x = u, we get ‖u‖u =

〈u|u〉
√

T −Ajv = ‖u‖2
√
T −Ajv = ‖u‖

√
T −Ajv, hence u =

√
T −Ajv ∈ R(

√
T −Aj).

Since j is an arbitrary element of {1, · · · , p}, we can conclude that R(
√
T −A1) ∩ · · · ∩

R(
√
T −Ap) 6= {0}.

Assume that R(
√
T −A1) ∩ · · · ∩ R(

√
T −Ap) 6= {0} and let u0 be a non-null vector in

the vectorial subspace R(
√
T −A1) ∩ · · · ∩ R(

√
T −Ap). We can write u0 =

√
T −A1(a1) =

· · · =
√

T −Ap(ap) where a1, · · · , ap are non-null vectors in H. Then, we choose a positive
real number t such that t(‖a1‖ ∨ · · · ∨ ‖ap‖) ≤ 1 and we set u = tu0 =

√
T −A1(ta1) =

· · · =
√
T −Ap(tap). For any i ∈ {1, · · · , p}, we clearly have u ⊗ u =

√
T −Ai((tai) ⊗

(tai))
√
T −Ai ≤ T −Ai. Thus, the operator R = T − u⊗ u is a upper bound of A1, · · · , Ap, it

is less than T and different from T . Hence T is not a minimal upper bound of A1, · · · , Ap.

Remark 10. Let A and B be two self-adjoint operators, then T = 1/2 [A+B+ | A−B |] is a
concrete minimal upper bound of A and B. To see that, consider y =

√
T −Ax1 =

√
T −Bx2 ∈

R(
√
T −A)∩R(

√
T −B) and decompose H into the orthogonal direct sum H = E(R∗

−)⊕E(R+)
where E is the spectral measure associated with A−B. We easily see that y necessarily belongs
to E(R∗

−) ∩ E(R+) = {0}. Hence, we have R(
√
T −A) ∩ R(

√
T −B) = {0} and Theorem 9

tells us that T is a minimal upper bound. It gives an alternate proof of Corollary 5 in [2].

In case of finite dimensional Hilbert spaces, we can give a very simple characterization.

Corollary 11. Let A1, · · · , Ap be a finite family of self-adjoint operators acting on a finite
dimensional Hilbert space H. Then, a upper bound T of A1, · · · , Ap is a minimal if and only if
N (T −A1) + · · ·+N (T −B) = H.

Proof. This characterization follows directly from Theorem 9 and the equality

(R(
√

T −A1) ∩ · · · ∩ R(
√
T −Ap))

⊥ = N (T −A1) + · · ·+N (T −Ap)

which is valid in a finite dimensional Hilbert space.

Remark 12. Notice that the natural extension of this result "N (T −A)+N (T −B) is dense in
H" does not characterizes minimal upper bounds of A and B in the infinite dimensional case.
To see this, it suffices to consider the two positive operators A and B acting on L2[0, 1] and
defined by setting

Af(x) = (1− x)f(x) and Bf(x) = f(x)−
1∫

0

f(t)dt.
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Then the identity operator is a minimal upper bound of A and B but the constant functions are
not in the closure of N (I −A) +N (I −B).

The sum A+B is clearly the simpler example of upper bound of two positive operators A
and B. A natural question is: When A + B is a minimal upper bound? Theorem 9 allows us
to give a complete answer.

Corollary 13. Let A and B be two positive operators acting on H, then A + B is a minimal
upper bound of A and B if and only if R(

√
A) ∩R(

√
B) = {0}.

In what follows, we denote by MA1,··· ,Ap
the weakly closed convex set of all upper bounds

of a finite family A1, . . . , Ap of self-adjoint operators.

Theorem 14. Let A1, . . . , Ap be a finite family of self-adjoint operators and T ∈ MA1,··· ,Ap
.

Then T is an extremal point of MA1,··· ,Ap
if and only if T is a minimal upper bound of

A1, . . . , Ap.

Proof. Suppose that T is not a minimal upper bound of A1, . . . , Ap. From Theorem 9, we
derive that R(

√
T −A1) ∩ · · ·R(

√
T −Ap) 6= {0}. Proceeding as in the end of the proof of

Theorem 9, we see that there exists a rank one operator u ⊗ u such that 0 6= u ⊗ u ≤ T − Ai

for any i ∈ {1, · · · , p}. Then, the operators T1 = T − u⊗ u and T2 = T + u⊗ u both belong to
MA1,··· ,Ap

. Moreover, we have T = 1/2[T1 + T2] with T1 6= T2, and hence T is not an extremal
point of MA1,··· ,Ap

.
Conversely, assume that a positive operator T is not in the set Extr(MA1,··· ,Ap

) of extreme
points of MA,B. Then we can write T = 1/2(T1 + T2) with T1 and T2 in MA1,··· ,Ap

. Setting
R = T − T1 = T2 − T we see that R is a self-adjoint operator such that

|〈Rx|x〉| ≤ (〈(T −A1)x|x〉) ∧ · · · ∧ (〈(T −Ap)x|x〉). (9)

for all x ∈ H. Then, we need the following lemma.

Lemma 15. Let R be a self-adjoint operator acting on a Hilbert space H and S a positive
operator such that

|〈Rx|x〉| ≤ 〈Sx|x〉
for any x ∈ H. Then, we can factorize R under the form R =

√
SJ

√
S where J is a self-adjoint

contraction.

Proof. For any positive integer n, we set Sn = S+1/nI. The assumption of Lemma 15 implies

that −I ≤ S
− 1

2
n RS

− 1

2
n ≤ I. Thus, there exists a subsequence of positive integers (ϕ(n)) such

that S
− 1

2

ϕ(n)RS
− 1

2

ϕ(n) weakly converges to a self-adjoint contraction J . The functional calculus
associated to a self-adjoint operator ensures that

‖
√
Sϕ(n) −

√
S‖ = sup{|

√
t+

1

ϕ(n)
−
√
t|; t ∈ [0, ‖S‖]} ≤

√
1

ϕ(n)
.

It follows that the sequence (S
1

2

ϕ(n)[S
− 1

2

ϕ(n)RS
− 1

2

ϕ(n)]S
1

2

ϕ(n)) weakly converges to
√
SJ

√
S, and hence

R =
√
SJ

√
S.

9



We now turn to the end of the proof of Theorem 14. Using (9) and Lemma 15, we obtain
that there exist self-adjoint contractions J1, · · · , Jp such that R =

√
T −A1J1

√
T −A1 = · · · =√

T −ApJ2
√
T −Ap. We immediately deduce that the non-null vectorial subspace R(R) is

contained in R(
√
T −A1) ∩ · · · ∩ R(

√
T −Ap). Then, Theorem 9 implies that T is not a

minimal upper bound of A1, . . . , Ap.

4 Description of pairs (R, S) of positive operators such that

the sum R + S is a minimal upper bound

In this section, we give a complete description of all pairs of positive operators for which
the sum is a minimal upper bound.

Theorem 16. Let R and S be two positive operators in B(H), then the following assertions
are equivalent.

1. The sum R+ S is a minimal upper bound of R and S.

2. There exist two orthogonal projections P1 and P2 with orthogonal ranges and a positive
operator X such that R = XP1X, S = XP2X and R(X) ⊆ R(P1+P2) = R(P1)⊕R(P2).

3. There exist two orthogonal subspaces E1 and E2 of H, a positive operator A ∈ B(E1), a
positive operator B ∈ B(E2) and a bounded operator L ∈ B(E2, E1) satisfying |〈x|Ly〉|2 ≤
〈Ax|x〉〈By|y〉 for all (x, y) ∈ E1 × E2, such that

R =




A2 AL 0
L∗A L∗L 0
0 0 0


 and S =



LL∗ LB 0
BL∗ B2 0
0 0 0


 ,

with respect to the orthogonal direct sum H = E1 ⊕ E2 ⊕ (E1 + E2)
⊥.

Proof. Firstly, we prove the implication (1) ⇒ (3). We denote by P the orthogonal projection
on R(R+ S) and by Q = I − P the orthogonal projection on N (R+ S). Let us introduce the
operators 




R̃ε = (R+ S + εI)−
1

2 (R+ ε
2I)(R+ S + εI)−

1

2 − 1
2Q

and

S̃ε = (R+ S + εI)−
1

2 (S + ε
2I)(R+ S + εI)−

1

2 − 1
2Q,

(10)

where ε is any positive real number. Observe that R̃ε + S̃ε = I −Q = P , therefore we see that
R̃ε is a positive contraction. Let us show that R̃ε (resp. S̃ε) are weakly convergent.

Let x = (R+ S)
1

2a and y = (R+ S)
1

2 b be in R(R+ S)
1

2 . On the one hand, we have

〈R̃εx|y〉 = 〈(R+
ε

2
I)(R+ S + εI)−

1

2 (R+ S)
1

2a|(R+ S + εI)−
1

2 (R+ S)
1

2 b〉.

On the other hand, setting A = R + S and denoting by EA the spectral measure associated
with A, we see that

∥∥∥(A+ εI)−
1

2A
1

2a− Pa
∥∥∥
2
=

∫

]0,‖A‖]

ε2

(
√
t+

√
t+ ε)2(t+ ε)

dEA
a,a(t) → 0

10



in virtue of the dominated convergence theorem. Therefore, 〈R̃εx|y〉 converges for any x, y ∈
R((R + S)

1

2 ). Now, if x ∈ N (R + S), we have R̃εx = 0. Let δ > 0 and x, y ∈ R(R+ S)
1

2 =

R(R+ S) such that ‖x− x′‖ ∨ ‖y− y′‖ ≤ δ with x′, y′ ∈ R((R+ S)
1

2 ) , then a straightforward
computation leads to

|〈R̃ε1x|y〉 − 〈R̃ε2x|y〉| ≤ |〈(R̃ε1 − R̃ε2)x
′ |y′〉|+ 2δ2 + 2δ(‖x‖+ δ) + 2δ(‖y‖+ δ)

Since |〈(R̃ε1 − R̃ε2)x
′ |y′〉 → 0 when ε → 0, we see that (〈R̃εx|y〉) is a Cauchy sequence, hence

is convergent. Finally, the sequence (〈R̃εx|y〉) converge for any x, y ∈ H. Thus, the uniformly
bounded operator function (R̃ε) (resp. (S̃ε) ) weakly converges to some positive operator R̃
(resp. S̃). Taking the limit when ε goes to 0, we easily obtain from (10) the following equalities:
R =

√
R+ SR̃

√
R+ S and S =

√
R+ SS̃

√
R+ S. We also get R̃+ S̃ = P .

Let us show that P is a minimal upper bound for R̃ and S̃. Suppose that there exists
a positive operator J 6= P such that R̃, S̃ ≤ J ≤ P . It leads to R =

√
R+ SR̃

√
R+ S ≤√

R+ SJ
√
R+ S ≤ R + S, and similarity S ≤ R + S. Since R + S is minimal, we have

necessarily R + S =
√
R+ SJ

√
R+ S, which in turn implies

√
R+ S(P − J)

√
R+ S = 0. It

follows that (P − J)
√
R+ S = 0 and finally P = J because the positive operator P − J is null

on N (R+ S).

On the one hand, Corollary 13 gives that R(
√

R̃)∩R(
√
S̃) = {0}. On the other hand, the

inequalities 0 ≤ R̃ ≤ P successively imply QR̃Q = 0,
√

R̃Q = 0, and hence R̃P = R̃ = R̃∗ =

PR̃. Let x ∈ H, we then have R̃x− R̃2x = PR̃x− R̃2x = S̃R̃x ∈ R(
√

R̃)∩R(
√

S̃) = {0}, thus
R̃ = R̃2. In a similar way we prove that S̃ = S̃2, hence R̃ and S̃ are two orthogonal projections.
Set E1 = R(R̃) and E2 = R(S̃), we have

R̃ =



I1 0 0
0 0 0
0 0 0


 and S̃ =



0 0 0
0 I2 0
0 0 0




with respect to the orthogonal sum H = E1 ⊕ E2 ⊕ (E1 + E2)
⊥. The matrix of the positive

operator
√
R+ S is necessarily of the form

√
R+ S =




A L 0
L∗ B 0
0 0 0




where A ∈ B(E1) and B ∈ B(E2) are positive operators and L ∈ B(E2, E1) is a a bounded
operator satisfying |〈x|Ly〉|2 ≤ 〈Ax|x〉〈By|y〉 for all (x, y) ∈ E1×E2 because of the positiveness
of

√
R+ S. The equalities R =

√
R+ SR̃

√
R+ S and S =

√
R+ SS̃

√
R+ S give the desired

matrix representations of R and S.
Concerning the implication (3) ⇒ (2), we have just to set X =

√
R+ S, P1 = R̃ and

P2 = I − R̃ (with the notations used in the proof of (1) ⇒ (3)). Notice that the property:
|〈x|Ly〉|2 ≤ 〈Ax|x〉〈By|y〉 for all (x, y) ∈ E1 × E2, ensures that the self adjoint operator X is
positive. By construction, the subspaces Im(P1) and Im(P2) are contained in Im(X).

Let us now prove the implication (2) ⇒ (1). Since R = XP1X and S = XP2X, we have
R + S = XP1X + XP2X = X(P1 + P2)X = X2. The last equality is due to the inclusion
R(X) ⊆ R(P1+P2) and the fact that P1+P2 is necessarily an orthogonal projection. We thus
have X =

√
R+ S. We suppose that L is a upper bound of R and S such that L ≤ R+S = X2.
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Notice that ‖
√
Lx‖ ≤ ‖Xx‖. According to the well known criterion of Douglas about range

inclusion and factorization of operators ( see [5] for more informations), we see that there exists
a contraction Y ∈ B(H) such that

√
L = Y X and KerY = KerX. Let x = Xx1 + x0 where

x1 ∈ H and x0 ∈ KerX, we have

〈Y ∗Y x|x〉 = 〈Y ∗Y (Xx1 + x0)|Xx1 + x0〉 = 〈Y Xx1|Y Xx1〉
= 〈Lx1|x1〉 ≥ 〈P1Xx1|Xx1〉 = 〈P1x|x〉.

We derive that Y ∗Y ≥ P1 and in the same manner we can prove that Y ∗Y ≥ P2. Therefore,
for any x ∈ R(P1) we have ‖x‖2 = ‖P1x‖2 ≤ ‖Y x‖2 ≤ ‖x‖2, hence Y ∗Y x = x. Similarly,
Y ∗Y x = x for any x ∈ R(P2). Thus, we have Y ∗Y x = x for every x ∈ R(P1)⊕R(P2) ⊇ R(X).
Finally, we can conclude that L = (

√
L)∗(

√
L) = (Y X)∗(Y X) = XY ∗Y X = X2 = R + S.

Hence R+ S is minimal.

The second author wishes to note that the original idea of this paper is due to the first
author.
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