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EXISTENCE AND DIFFUSIVE LIMIT OF A TWO-SPECIES KINETIC
MODEL OF CHEMOTAXIS

LUIS ALMEIDA, CASIMIR EMAKO-KAZIANOU, AND NICOLAS VAUCHELET

ABSTRACT. In this paper, we propose a kinetic model describing the collective motion by chemo-
taxis of two species in interaction emitting the same chemoattractant. Such model can be seen
as a generalisation to several species of the Othmer-Dunbar-Alt model which takes into account
the run-and-tumble process of bacteria. Existence of weak solutions for this two-species ki-
netic model is studied and the convergence of its diffusive limit towards a macroscopic model
of Keller-Segel type is analysed.

1. INTRODUCTION

Chemotaxis is the biological mechanism by which organisms sense their environment and
react to chemical stimuli. It induces a motion towards the attractant (positive chemotaxis) or
away from the repellent (negative chemotaxis). One consequence of positive chemotaxis is the
formation of patterns and aggregates as observed in [10}, 29, [19], 24] for motile bacteria Escherichia
coli or Dictyostelium discoideum mold. Many mathematical models have been proposed to
explain this aggregation phenomena. Among them, we can distinguish between microscopic and
macroscopic models depending on the level of description.

In [28], Othmer, Dunbar and Alt choose the microscopic setting in which cells are represented
by their velocity distribution f(z,v,t) and the chemical attractant (chemoattractant) by its
concentration S(z,t). The dynamics of f is given by

(1.1) Of +v-Vif = /V (T[S](m,v,v/,t)f(:n,v/,t) - T[S](m,v/,v,t)f(:n,v,t)) dv’,

with V a bounded domain of R%. This kinetic equation points out the run-and-tumble process
which characterises the individual motion of cells (see [21]). The left-hand side is associated to
the run phase during which cells move in a straight line at a constant speed v. The right-hand
side includes loss and gain terms resulting from the reorientation phase (tumble). Cells reorient
from v to o' with the probability per unit of time T'[S](z, ', v,t)/ [i, T[S](z,v', v,t) dv'. This
justifies why T'[S] is called the tumbling rate or kernel. Many choices of T'[S] are possible. Since
cells are able to respond to temporal changes of the gradient of the chemical substance S along
their pathways, we opt for the form of T[S] proposed in [9] :

(1.2) VeeRY v, €V, t >0, T[S)(x,v,0,t) = (0,5 + v - V.5),

where ¢ is decreasing in order to take into account the preference for favourable regions. This
model has shown to be efficient to describe the traveling pulse behaviour of bacteria observed
experimentally in [32]. Finally, the chemoattractant is emitted by the cells themselves, dif-
fuses into the medium and is naturally degraded. Then, the chemoattracttant concentration S
appearing in (I.I]) solves the following reaction-diffusion equation :

(1.3) 00S — AS+ S = / flx,v,t)dv := p(x,t), §=0,1.
v
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At a macroscopic level, the dynamics of cells is described by their density p(t,x). The well-
known Keller-Segel [25] system has been widely used to describe aggregation by chemotaxis.
This model describes the dynamics of cells thanks to a parabolic equation with an oriented drift
depending on the spatial gradient of the chemoattractant :

{ dp =V - (DVp—xpVS),

(1.4) 50,5 —AS+S=p, 5=01,

where D and x are positive constants called the diffusivity and the chemosensivity of the species
to the chemoattractant.

In the mathematical litterature both elliptic (§ = 0) and parabolic (6 = 1) cases are en-
countered. Although the point of view of microscopic and macroscopic models is different, it
has been proved that the Keller-Segel model (L4) can be derived as the diffusion limit of the
Othmer-Dunbar-Alt model (LI)—(L3) (see [2], 1L 4], 22} [31] 30]). The hyperbolic limit can also be
considered [9, [15] 23] leading to the same kind of macroscopic model with small diffusion. As a
consequence, coefficients D and y of (L4]) depend on microscopic parameters which can be mea-
sured. This allows one to fit the model with experimental data as done in [31]. Other advantages
of (L4)) are understanding of collective effects emerging from individual behaviours and its sim-
ple simulation compared to ([LI)—(L3]). However, the microscopic approach provides a general
framework of chemotaxis models which encompasses macroscopic models including hyperbolic
models obtained by a momentum method from kinetic models (see e.g. [16, [17, 18] §]).

In this work, we focus on the modelling of the chemotactic behaviour of two-interacting
species. Existing two-species models (see e.g. |20} 35 14] [7]) concern the macroscopic scale. For
instance, the following Keller-Segel two-species model is considered :

Opr =V - (D1Vp1 —x1p1VS),
(1.5) atpg =V. (Dngg - XgngS),
0SS —AS+S=p1+p2, 6=0,1,

where D1, Do and x1, x2 are the diffusivities and chemosensivities of the two species 1, 2 to the
common chemoattractant S. Which can happen in case we consider two closely related types of
cells. Many theoretical issues arise from ([.5]). The question of global existence of solutions and
understanding of the blow-up are addressed in [IT], [6} 12] in the two-dimensional case. These
results are validated by numerical simulations carried out in [26]. In addition, traveling wave
solutions of a two-species model like (L5 are studied in [27].

In this paper, we address the question of the derivation of such macroscopic model from a
kinetic point of view. We propose the following microscopic model in which the dynamics of
the distribution function f;(x,v,t) for the i-th species, i = 1,2, is governed by the two following
kinetic equations :

Ofi +v-Vufi = /V (T,-[S](m,v,v/,t)fi(a:,v/,t) — E[S](x,v’,v,t)fi(x,v,t)) dv’,

fi(z,v,t =0) = fi"(z,v), fori=1,2.

(1.6)

The position z € R?, velocity v € V (where V is a bounded set of RY) and time ¢t > 0. As
previously, the tumbling rate T;[S] takes into account temporal changes of the chemoattractant
concentration along the path of cells and reads :

(1.7) Vz eRY v €V, t >0, T;[S)(z, 0,0, t) := ¢; (0,5 + v - V,.S), fori=1,2,

where ¢; is a decreasing function. We consider the case where species 1 and 2 involved in (6]
emit the same attracting chemical substance S, whose dynamics is given by the parabolic (§ = 1)
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or elliptic (6 = 0) system :

581%5 —AS+S= / f1($,’U,t)d’U +/ fg(x,v,t)dv = Pl(x,t) +p2($7t)7 6= 07 17
Vv \4
S(z,t =0)=0, if 6 = 1.

(1.8)

We determine the drift-diffusion limit of (LG)—(L8]) by performing a diffusive scaling of space
and time T = ex, t = £2t. After dropping the tilde, system (6] now reads

{52(%]25 +ev- fof = _726[56](]0@6)7

(1.9) - ,
fi(z,v,t =0) = f"(x,v), for i=1,2,

with
TE[S](f) == / (]f[S](x,U/,U,t)f(x,’U,t) — Tf[S](m,U,v',t)f(a:,v',t)) dv',
1%
where we consider as above
(1.10) Ve e R, v,0' €V, t >0, TE[S] (0,0 t) == ¢5(e0,S + 0" - V,.S), fori=1,2.

The difference of scale between terms 9;.5 and v - V.S comes from the scaling between space
and time. The equation for S¢ is unchanged and stated now as

111 00,S° — AS® + 5° = pi + b, §=0,1,
(1.11) S¢(xz,t =0)=0, ifo=1.

We first prove the global-in-time existence of solution (fi, f2,.5) of (L6)-(LS8). Then, we
prove convergence when ¢ — 0 of solutions to (LI)—(LII) towards a macroscopic model of
Keller-Segel type. The proof relies on uniform estimates on f7, f5,.S° which allow us to use the
Aubin-Lions-Simon compactness Lemma [33]. We only focus on the case of bounded tumbling
kernel T for which no blow-up of solutions in finite time is expected both at the microscopic
and macroscopic levels. This non blow-up has been proved in the one species case in [3].

The paper is organised as follows. The following Section presents the two main results : the
global-in-time existence theorem of solutions to (L9)—(LI1]) for fixed € > 0 and the convergence
as ¢ — 0 of this solution towards a macroscopic model, i.e. the drift-diffusion limit of (L9])—
(LII)). We also formally derive in this Section the equation verified by the limit. By a fixed-point
argument, global existence of solutions to the kinetic model is proved in Section Bl Section M is
devoted to the proof of the drift-diffusion limit stated in Theorem Finally, we explain in
the appendix the non blow-up of solutions of the derived macroscopic model.

2. MAIN RESULTS

Before stating our main results, we introduce some notations. We denote € := R? x V where
V is a bounded and symmetric domain of R? ie. if v € V then —v € V. For 1 < p,q < o0,
k € N* and 7 > 0, we define

o L (RY) the set of nonnegative functions in LP(R?).

o Wk4(R?) the space of functions u such that for any v € N¢ with |y| < k, DYu € LI(R9).

o C%(RY), for 0 < a < 1, the space of Holder continuous functions with exponent . It
is equipped with the norm

[u(z) — u(y)|
| o, gay = [|1ll oo ay + SUP Tm———ao
lelleo g = lulleqee) +sup ==/

o CF(R?), for 0 < a < 1, the space of functions whose derivatives up to the k-th order
are Holder continuous with exponent a.
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e LP((0,7), B), for any Banach space B on R?, the space of functions u such that for a.e.
t € (0,7), u(-,t) € B and t — |lu(-,t)||p belongs to LP((0,7)). It is endowed with the

norm :
T 1/p
lwll Lo (o,0),8) == (/0 u(-,t)]% dt) .

Finally, we define the following abbreviations which are used throughout the paper :

fi=fi (z,0,1), i/e = fie(x’vlvt)v
T7 (9] := T7 [S)(zm, v v, t), T °[S] = T7[S](x, 0,0, t), for i =1,2.

(2

2.1. Main results. In this paper, we consider tumbling rates T [S] of the form (LI0) which
meet the following requirement for ¢ = 1,2

(H1) ¢5(2) = i (1 + €6;(2)), with ¢; € R% and 6; € C®*(R) N L*°(R) is nonincreasing and
satisfies [|0; | oo () < 1.

Remark 2.1. This hypothesis is realistic since it was observed experimentally in [32] that for
bacteria F. Coli, an external stimulus modifies their natural constant tumbling kernel by adding
an anisotropic small term.

Note that the condition on the L®-norm of ¢; ensures that 7} is positive at least for € smaller
than 1, which will always be the case here since we focus on the asymptotic limit € — 0. The
positivity and the boundness of T7[S] come from its physical meaning.

If F denotes the uniform distribution on V'

(2.1) F(v) = ]l’”TE‘V,

with |V| the measure of the velocity set V. Then, the symmetry assumption of V' implies that
(2.2) / F(v)dv=1 and / vF(v)dv = 0.
\% \%4

As in [], we define the symmetric and anti-symmetric parts of 7;° by
_ TFIS] + 7S]
B 2

T;7[S] = T;7[S]

A,E R 7 7
Ge8) s =

85<(5] : = i (14 S(0:0S + 0 - V.8) + (=05 + v V,9)) )

(2.3)
= i3 (6:(c0S + - V,9) = 0(0,S + - V.S)).

From Assumption (H1), qﬁf’a and ¢;4’8 satisfy the following inequalities which are useful to
derive uniform estimates in ¢ :

¢iS,a > (11— 1051l 100 () ):
” [t
v

dv' < i [V [16:]1 7o g -

67
The expansion of 77[S] now reads :
(2.5) TE[S] = T + T [S),
with

T2 =i (VI f —p),

(2‘6) 1 L ! ! !
THSI(f) = Q/Ji(|V|0i(€8tS+v-VxS)f—/Gi(68tS+v - V.S)f dv').
\%
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Our first result concerns the global-in-time existence of solution of (L9)—(LII).

Theorem 2.2. Let e > 0 and assume that tumbling rates T, T are given by (LI0) where ¢5, ¢5
are positive, bounded and Lipschitz continuous functions.

If the initial data fi™, fi" are in LY (2) N L>(SY), then there exists a unique global solution
of (L9)—(LII)) such that
f5, 5 € L°((0,00), L1 N L™®(Q)),
S € L®((0,00), LP(RY)),  for all 1 < p < oo.

Then we establish the diffusive limit € — 0 of these solutions. The limiting system is the
following two-species Keller-Segel type equation :

op1 =V - (D1Vp1 — xa[S]p1) ,
(2.7) Op2 =V - (D2Vps — Xz[ Jp2)

58tS AS - S+ p1 + p2, 0=
where D; and x;[S] are given for i = 1,2 by

1 dv

2.8 Dizi/v@)vdv, xilS] = — /UGUVSO
29 Vg v Sl ot VS gy
The intial conditions of this system are

W / ffmdv ,Olgm / fgimdv and S™ =0 ifé=1.
1%

Theorem 2.3. Let (H1) hold. Assume that the initial data fi™, fi* belong to L} () N L> ().
Then, there exists a subsequence (f, f5,S%) of solutions of (LI)-(LIIl) that converges when e
tends to zero and we have

(ff, f5) = (PLF, p3F) in L35,((0,00), LU(Q)), 1< g < oo

(S°,V,5°) — (8°,v,S8% in IF (RYx (0,00)), 1<p< o0,
where F is the equilibrium distribution defined in Z1) and (p?, p3,S°) the solution of (2.7).

Remark 2.4. Note that D; is a diagonal and positive definite matrix, thanks to the symmetry
assumption on V', and x;[S] is bounded. This ensures that the macroscopic equation (2.7])
subject to the previous initial condition admits a unique and global-in-time solution. We refer
the reader to the appendix for details.

2.2. Formal derivation of drift-diffusion limits. For the sake of clarity, we first derive
formally the limit equation ([2.7)). We consider Hilbert expansions of ff, f5 :
(2.9) fi=f24efl +E3f+o(e?), fori=1,2.

Assume S° = S° is independent of ¢ and given by (LII]) with the right-hand side p? + p9 and
consider in this part that 6; is smooth for i = 1, 2.

Injecting (2.9)) into the equation for f7 (L9)-(Z35)-(2.06) and identifying the terms in O(1)
and O(g) leads to,

1
£ = | goaw = i

v Vo f} / 0\ £0 () 1\ 30/ 0y £0
fi=pl- 220 —(/Giv-VmS fi@)dv —|V|0;(v-VzS5)f (v) ],
for i = 1,2. Replacing f? in the expression of f} yields

v prz

1_ 1 0 . 0 L
(2.10) fi = pi |V|2TZ)Z \V\ </9 -VzSY) \V\ —0i(v- VS )>, fori=1,2.
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Then for the O(£2) term, we have that
(2.11) = ilVIfZ = p}) = 0up) + v Vaof! + iU, for i=12,
where

Ui(v) = [VI[0;i(v- VSO f} — / 0:(v - VoSO £ () dvf
1%

+0,8°([V 10} (v - Vo 8°) £ / O VoSO (W) v ).
|4

We notice that [, U;jdv = 0. Equation (ZIT)) admits a solution provided the integral over V' of
the right-hand side vanishes. This implies the conservation law :

o) +Vv-Jl =0,

where J} = / vfidv, for i = 1,2. Using (ZI0) and formulas of D; and x;[S] &), it follows
\%4
that
J'=—DiV.p? +xi[S)p?,  fori=1,2.
This gives the equation for p? for i = 1,2.

3. GLOBAL EXISTENCE OF SOLUTIONS OF THE KINETIC MODEL

The purpose of this section is to prove the global existence for System (L9)—(LII). The
Green representation formula allows us to decouple (LIT]) and (L.9). This gives a system which
depends only on f;. The fixed-point argument gives the uniqueness and local existence in time
of solutions. Thanks to a-priori estimates on f;, we recover global-in-time existence. Without
loss of generality, and for the sake of simplicity of the notation, we fix ¢ = 1 and denote
G = max ¢f.

3.1. A-priori estimates. We recall that using Bessel potential (see [13]), the solution S of
elliptic/parabolic equation (L.§]) is given by

ﬂ@ﬂ=/@@@ﬁmﬁ@—%ﬂ@,5=Q

(3.1)
S(x,t) / K(y,s) (o1 +p2) (@ —y,t = s)dyds, d=1,
with
1 —lal
G(x) = 2¢ d=1
1 [ lz|? s, 2zdds
= —rl sz =2 >
(3.2) G(x) I, exp(—m s 471) sT —, d>2
1 jz?
K(x,t) == - —— >1
(z,t) T p(—7—1 d

We review some classical results on the integrability of kernels G, K and their gradients.

Lemma 3.1 (Estimates on G and K). Lett > 0. If d = 1, then there exists a constant Cy such
that

t
(33 Gl =10 [ IKC sy ds <1,

t
1
(3.4) wwmme(Awmmwmwwsaw
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For d > 2, there exists constants Cy, CIIJ such that

t d(1-p)
(3.5) Gl Lo ray <Cp / K5 8)|l ppmay ds < Cpt 2 o1<p< 1_3
0 _
/ t ; d(l-p)+p d
(36) ”va”Lp(Rd) SCP’ / HVJEK(a S)”LP(Rd) ds < Cpt 2p s 1 < p < ﬁ
0

Proof. For d = 1, simple computations give the result for G and V,G. For |K(, s)||L1(R), the
transformation y = \/% leads to

1K )l sy =
It follows that

t
LIRS s <1

By similar computations, we show that

_ly? 1
Yy ye 2 s ze
LY(R)

VoK (5 8)lly =

Ar/2

By integrating with respect to s in (0,t), we obtain the result.
We now suppose that d > 2 and compute LP-norms of G and K.

1 [e.e]
IGllome = 3= |

Performing the change of variable y = |/5-x and simplifying yields

9d(3-1) ©_ai,
”G”Lp(Rd) =31 / e U2V gy,
P 21771-2(1 P) 0

s 2;dd8
5 =
S

Lr(R4)

After straightforward computations, we deduce that for all 1 < p < d%‘l2

95 =1) d— dp
G <" 711+ .
| ”“’(Rd"pd/m%(l—%) < 2p >

A similar transformation applied to || K (-, s)|| ,»(ra) gives
d(-1
2570 4oy

—S
S .
0D

HK('7S)HLP(Rd) = €

™

We conclude that for all 1 < p < d%d2
d t d(i-p) |
K(-,s) € LP(R%) and /||K(-,s)||Lp(Rd) ds < Ct 2 .
0
For the estimates on the gradients, we have

1 [~r
e A

We apply the two successive transformations y = /5-2,t = = and simplify. We see that for
all 1 <p< d%'ll

|z s
- e it s

2-d s
xTe 4s 2 —
S

Lr(R4)

93d/2p—(2d+3) /2 d
I9:Gloqa0y = g (/2= 50~ n))

ly|2

ye 2

Lr(R4)
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Similar computations applied to VK give

o d(1/p—1)-d
IVa K () o ey = ——32—

Lr(R4)

Integrating with respect to s leads to the result. O

Lemma 3.2. Fiz 7 > 0 and v in V. Let ¢ be a Lipschitz continuous function and f,f be in
L>([0,7), L (2) N LY(Q)) such that f, f coincide at the time t = 0 and satisfy in a weak sense

(3.7) Op(f) +V - J(f) =0,
where J is a linear and bounded operator on L>(). Let S and S denote

S(w.7) = Gxp(f), S(a,7):=Gxp(f), fors=0,
S.r)i= [KCs)pD)m = shds, B(er)i= [ KC.)xplPer = s)ds, fors =1,
0 0
Then, there exists a positive constant C' such that

$(0S + v+ Vi S) = ¢(0S + v+ VaS)l|12o(@) < C ll8llcor ) I VaGlliga I(F = )z
ford =0, and

[6(9S + v - ViS) — $(9S + v - Vi S) | oo ()

< Cllpllcorw) /0 VoK (5 8)l ey [|(F = )7 = 8) Lo () dss for o =1.

Proof. For 6 = 0, recalling the expression of S = G * p(f), differentiating with respect to ¢ and
using the conservation equation ([B.7)), we get from Green’s formula

0,8 = RdeG(y) SN —y,7)dy.
We proceed in the same way for V,S5. Putting together 9,5 and V.S terms, one obtains

OS +v-V,S8 = y V.G(y) - (J —vp)(f)(x—y,7)dy.

This formula combined with the Lipschitz continuity of ¢ implies
\¢(ats 0 VaS) — G(0S + - vx§)\ < l@llcor g \at(s —8) v V(S — 5)(

< llBllco vy |[VoG + (7 = vp)(f = ).

By applying Young’s inequality and using either ([3.4) or (B.6)), it follows that

(6015 + v+ V28) = 60 + v+ V)| < I8l oy VoGl sy 1T = 00)(f = Pl

From the assumption, J is bounded on L>°(2). Since V is a bounded domain, the linear operator
p is also bounded on L*(€2). Then, we conclude that

‘¢(8t5 +v-V,8) — ¢S +v- ng)‘ < Cléllcoaw) VaGll prway [(f = )Gl Lo (-

The case § = 1 is treated similarly. The slight difference comes from the additional term
appearing in the expression of 9;S :

S = /K(y,T)p(f)(x —,0) dy—{—/T/ K(s,y)0p(f)(x —y,m—s)dy in a weak sense.
R4 0 JRe
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Then 0,5 + v - V.S becomes
0cS +v- VoS = | K(y,7)p(f)(z —y,0)dy + //RV K(y,s)(J —vp)(f)(z —y,7 — s)dyds.
R

The substraction between ;S + v - VS and 8t§ +v- ng has the same form as in the elliptic
setting since f(-,0) = f(-,0). Therefore,

HO1S+0-V.5) = 005 + - V)| < Clollcoaey [ VK C.9)lasqu | F=F) 7= ey

O

Lemma 3.3 (A-priori bounds on fi, fa). Let 7 > 0 and (f1, f2) be a weak solution of (L.G)) such
that fi1, fo are in L1((0,7), LY N L>(Y)). We assume that tumbling rates T [S), T»[S] defined by
(LT are positive and bounded.

If the inital data (fi™, f&n%) belongs to L>°(Q)) x L>(Q), then there exists a constant C' > 0
such that fori=1,2 and t € (0,7), we have

1£:C O ) = 1] 1 @
1£i ¢ O oo (0,79, o0 (2))

ini

Vigperr

HLOO(Q) €

Proof. By integrating the equation for f; (6] with respect to v, we see that p; satisfies the
conservation law :

(3.8) Op; +V - J; =0,

with J; := / vf;. It follows that the L'-norm of p; is conserved. We show the second inequality

1%
by using the Duhamel representation formula and the Gronwall lemma. Since each equation for
1 =1 and 2 can be treated separately, the proof is identical to the single-species case. We refer
the reader to [34]. O

3.2. Proof of Theorem We now prove the global-in-time existence. It is standard that
if they exist, the solutions f] and f5 are nonnegative provided the initial data are nonnegative.
Since p; satisfies the conservation law (B.8]), by the proof of Lemma B2 0,5 4+ v - V.S is given
for § = 0 and 0 = 1, respectively, by

RS +v- VoS = [ VaGly)-(J=vo)(fi+ fo)@ =y t)dy,

05 +0- V.S = [ Kw.0p(fi+ f2)(a ~1,0)dy
R
t
[ [ VoK) = o)+ £ = gt = ) dy s,
0/R
Replacing ;S + v - VS in (L6]) yields in the case 6 =0

Ofi+v-Vufi= /\/¢i (VoG (J = 0'p)(f1 + f2)) fidv'

(3.9) VI 6i (VaG # (J —vp)(f1 + f2)) i
fi(z,v,t =0) = fi™  fori=1,2.
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For § = 1, we obtain
(3.10)

t
Oufi +v-Vofi = /V " (K p(fin 4 i) 4 /0 VoK (8) % (] v p)(fi 4 f2) (ot — s>ds) fidv!

. . . . t
Vg (K « p(fm 4 Fi) 4 /0 VLK (8% (] —vp)(fu + fa) (ot — s)ds> i
fi(z,v,t =0) = fi"  fori=1,2.

Here, we define the convolution between two vector-valued functions M, H : R — R as

d
M« H =Y M;«Hj,
§=0

where M, H; are components of M and H.

We fix 7 > 0 and introduce the Banach space (X7,| - ||x+) given by
X7 o= L'(0,7),L%°(9)) x L'((0,7), L>®()),
I fllxr:= /0 (1f1C5 8)lpoe ) + Nf2(s )l pooy) ds - for f = (f1,f2) € XT.

We build fixed-point operators F(f) = (Fi(f), Fa(f)) for Systems B.9), (3.I0) on X7. Since
these systems are different, we need to consider two cases and treat them separately.

3.2.1. Proof of the elliptic case, 6 = 0. (F1(f),Fa(f)) is the weak solution of the system:

OF; +v- -V, F = /(JSZ (va * (J — ’U/,O)(fl + fQ)) ]:z, dv’
\%4
(3:11) =~ IV16: (VoG x (J = 0p)(f1 + f2)) Fi,
Fi(nt=0)=f"  fori=1,2,
with F; := Fi(f)(z,v,t) and F, := F;(f)(z,0',1).

For f = (f1, f2)and g = (g1,92) in X7, we define the mapping F/9 := F(f) — F(g) whose
components ]-"Z-f 9 are defined by

Fl9 .= Fi(f)— Fi(g), fori=1,2.

(2

Substracting equations for F;(f) and F;(g) and collecting terms leads to

(3.12) { OF!T v VL FI9 4 V) 4i(VaG 5 (J —vp)(fr + f2))F = GI9,

Flot=0)=0, fori=1,2,

where g{ 9 is defined by

(3.13) 6f'w0t)i= [ 6 (V.G x(J —p)(fi + ) FIOW) 0
1%

— Fi(9) [V (i (VoG * (J —vp)(f1 + f2)) — ¢i (VoG x (J —vp)(g1 + 92)))
+ /V Fi(9) (W) (65 (VoG * (J = 'p)(f1 + f2)) — ¢i (VoG x (J —'p) (g1 + g2))) dv'.
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Thanks to the Duhamel formula, .7-"Z-f 9 writes
(3.14) .Fi]cg(x,v,t) = /Otexp <— /t $i(VaG x (J —vp)(fi + f2))(z —v(s — u),u)du)
X GI9(x —v(t — s),v,5)ds.

We would like to bound / ”.Fifg(',t)HLoo(Q)dt and / H.Féfg(’,t)|’Loo(Q)dt by the X™-norm of
0 0
f —g. We deal with the first term. By using the boundness of ¢1, we get

617, v.9)] < o /V Ao av

+ | FL@] V] |1(VeG * (J —vp)(f1 + f2)) — $1(VG * (J —vp)(g1 + g2))|

+ /V [F1(9) (V)] [61(VaG (] = v'p)(f1 + f2) = 1(VaG x (J = 'p)(g1 + g2))| dv'.

Since ¢ is a Lipschitz continuous function, by applying Lemma with f = f1 + fo and
g = g1 + g2, we find that

9%(,v,5)| ggbgm/ Fo (@0, 5)| !
\%

+ Cllgnlon ) IVa Gl o (r.a(g)r + [ 1A ) 3 109l
Hence,
|16 9) e < S IVHFC8) e
+C(1+ V) lo1llcor @I VGl 1 way | F1 () (-5 8) | oo () '21:2 1(fi = 90) (s $) | oo ) -

Since ¢; is nonnegative, from (B.I4]) we have
t
‘]—'{g(:n,v,t)‘ < / ‘g{g(:n —v(t— s),v,s)‘ ds.
0
Taking the L°-norm on €2 of both sides gives

t
7200 ey = 108 ey

Recalling the estimate on Hg{g(-, S)HLOO(Q) above, it follows that

#0760 gy < 90 W1 [ I

e /0 1F1 () ) iy 3 I S

212

L> ()

The bound on [[F1(g)(+, 8)[| 00 (g 18 similar to the one given by Lemma B3l By using this
estimate, we get

T e

L°°(Q)

+C e‘z’mw"/'t/ Z (f )| oo () ds-

i=1,2

Lo ()
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The Gronwall lemma asserts that
Fc H dt < C) (T VI — / () -
[ o], < i 3 109Dl

We obtain a similar estimate on ]:2f 9 by replacing ¢7"** by ¢, Summing the estimates on
.7-"Z-f 9 for i = 1,2, we deduce that

/ SN 0) eyt < C (77 / S — 90 () oy
i=1,2 1=1,2

with ¢ = max (@] ¢5'*"). Recalling the definition of the X7-norm, we conclude that

IF() = F(@llx- < C(e” T = 1IIf = gllx--
Therefore, there exists a sufficiently small time 79 > 0 such that F is a contraction mapping
on X™ = LY((0,79), L>(2)) x L*((0,79), L>=(£2)). Thus, Banach fixed-point Theorem gives the
existence and uniqueness of weak solution f = (f1, f2) of (L9)—(LII) in X™.

d)ma:v

From the a-priori estimates of Lemma [3.3] we see that f(-,7) is bounded in L'(Q) N L>(9).
We now consider our problem with the initial condition f(-,79), apply the same strategy and
obtain the existence up to the time 27y. By iterating this procedure, we extend the solution to
LY((0,7), L®()) x L'((0,7), L= ().

3.2.2. Proof of the parabolic case, 6 = 1. In this case, (F1(f), Fo(f)) verifies
¢
WFi+v-VoFi = / i (/ VK (-, 8) % (J = v'p)(fi + fo) (-t — ) ds> Fidv!
1% 0

(3.15) W1 ([ VK (=0l + )t = 5)ds) B

Fi(,t=0)= fi"  fori=1,2.

7

Therefore, (F{9, F19) satisfies
Ol 0V V10 ([ Ve« ()i + )t = o) ds) F7 = 61
Fl9t=0)=0, fori= 1,2(1
where G/9 is defined by
6/*(z.0.0):= | o, / VoK (5) (] =) (fo + fo) (ot — 8)ds) FI9 (0 )do!
9)(6: / VoK () (T—up) (1 £2) (- t—s)ds)) / VoK (-, 8)4(J—0p) (g1 +-02) -, t—5)ds))

) (& /V K(-,8)x(J—=v'p)(fi+f2) (-, t—5)ds)—p; /V K(-, 8)%(J—v"p)(g1+g2) (-, t—5)ds))dv'.

By the Duhamel formula, we obtain the expression of ]-'Z-f I(x,v,t)
(3.16)
t t U
Efg(%%t) :/ exp <—/ b (/ VoK(,r)x (J—vp)(f1+ fo)(x —v(s —u),u — r)dr) du>
0 s 0
X Qifg(s,a; —o(t — s),v)ds.
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Using the boundness of ¢; and applying Lemma [3.2] we get

‘g{g(%vys)‘ S(ﬂnam/v‘f-'lfg(x,q)/ys)‘dv/—i—C(’fl(g)’+/ ]fl(g)])|]¢1Hco,1(R)

/ IV Corllaggey 321G = 96)Crs — ) ooy

i=1,2

Taking the L*-norm on €2 of both sides gives
(317) (1617, 8)ll () < ST IVIHIFL(8) L@ + CA+ [V DIg1llcor @ H]:l(g)('as)HLoo(Q)

/ IV o)l 310 = 905 = )l ooy -

i=1,2
From (B.I0), it is clear that

‘]—'{g(:n,v,t)‘ < /t ‘g{g(:v —o(t — s),v,s)‘ ds.
0

It follows that
19, 8)]l e / 1679, )| oy s

Using the bound on ||G{(, 8)|| Lo (@) B.IT) yields

t t
f max f
|70, <ot | Hflg("S)HLoo(md”Cl/o 1F1(9)(+9)l| 1
(/ ||v K ||L1(Rd Z || _T)HLOO(Q) d"") dS.
i=1,2

By using the estimate on [[F1(g)(+, 8)|| oo () Which is the same as in Lemma[3.3] we have

],y 270 [ [5]

L>(9) Loo(Q)

—|—C’1€¢717LMVt/O /0 IV K ()|l o1 rey Z II(fs —gz‘)(S—Tw,')HLw(Q) drds.
i=1,2

We bound the integral over (0,s) by the integral over (0,¢). By applying a change of variable
and the Fubini Theorem, it follows that

gy 501 [ [
L=(9Q) Loo(Q)
C’ |V | </ ||v K ||L1(Rd > (/ Z || ||Loo )dS) .
i=1,2
By Lemma 3.}, [[VoK(-,7)| 11 (re) is integrable and we have
S L
L2 () L°°(Q)
+C e¢mantt1/2/ Z ” ”Loo )dS
i=1,2
Applying the Gronwall Lemma gives a bound on H]:lf g (',t)HLOO(Q) and the rest of the proof is

analogous to the elliptic case.
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4. RIGOROUS PROOF OF DRIFT-DIFFUSION LIMIT

In this section, we investigate the diffusive limit of the kinetic model, i.e we prove Theorem 231
We start by giving estimates on S for given functions p1, p2 and useful inequalities. Afterwards,
we state a proposition which gives uniform estimates on f{, f5, S°. Finally, we conclude by using
Aubin-Lions-Simon compactness lemma [33].

4.1. A-priori estimates.

Lemma 4.1 (Estimates on S¢). Fiz 7 > 0. Let p,q,« be such that 1 < p < c0,d < q < 00,0 <
a<l-— g. Assume that p5, p5 € L=([0, 7], L (R%) N LY(RY)). Then, we have

e For 6 =0, S¢(-,t) is bounded in CY*(RY) for all t € [0,7] and there exists a constant c
independent of € and t such that

15°Cs Dl e ey < ¢ <||(p‘i +05) ¢ Ol L ey + 1107 + p%)(-,t)llm(m) :

e For § =1, 5% is bounded in L*°([0, 7], C+*(R%)) N L>([0, 7], WP (RY)) and there exists
a constant c; independent of € such that

15511 oo (0,77, wrw®ay) IS | Loo (j0,77,010 R < r (1074051 oo (0,71, 21 Ry T 10T +05 ]| Lo (0,1, La(REY) ) -

Proof. The result for the case § = 0 is classical and follows from elliptic regularity. We refer the
reader to [3, chapter 9] for details. We just give main arguments and derive bounds for S¢. By
the elliptic regularity, we know that S°(-,t) is bounded in W29(R%) and the following estimate
holds.

15°Cs D)llwza@ay < Cll(PT + p5) (5 )l La(ra)-

By the Morrey theorem, W24 is continuously embedded into C1Y with v =1 — g.

W24(RY) — CHY(RY).
The interpolation between L' and L4 implies that for all d < p < q, (p5 +p5)(:,t) are bounded in
LP and by elliptic regularity S¢(-,t) is bounded in W?2P. Thus, the W?2P-norm of S¢ is bounded
by LP-norms of pf and p5.
15°C, llwza ey < Cll(AT + 05) ()| Lo (ra)-

By the Morrey Theorem, we conclude that for all 0 < aa < 1 — g, S(-,t) belongs to C1* and we
have the estimate

155 ¢ B)lleramay < CISTC D llwze @a),

where p is given by 1 — ;?l =aq.

We now deal with the case § = 1. We recall that S is given by the convolution with the kernel
K defined in ([3.2). Applying the Young inequality and using Lemma Bl yields for all ¢ in [0, 7]

155 Ol ey < ([ N0y d ) 165 + 5l oy

198 Ollequey < ([ IVRC St ay ) 165+ A3l o

Similarly, we have
15°Cs Ml L1 (mey < 1K (s 8)l ey ds ) (10T + P31l Loo (0,7, 01 (RY)
0

1957 )l 1 ey < ( /0 1K)l ds> 165 + 25 e o.r 11
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By an interpolation argument, we deduce that S¢ is bounded in L>([0, 7], W'P(R?)) for any
p between 1 and co. Thanks to the Morrey theorem, S° belongs to L>°([0, 7], C%*(R%)) with
0<a<1l- g.

Fix = and 2/ in R? and set r := |z — 2/|. For the sake of simplicity, we define p® := p5 + p5.
Let us prove that V.S is bounded in L>°(]0, 7], C%*(R?)). We split the integral into two parts
Il and IQ.

VS (x,t) — VS (', t) = /0 /]Rd (VK(z —y,t —s) = VK(z' —y,t — 5))(p] + p5)(y, s) dy ds

= I + I,
with

t
:/0/(2 (VK(Jf—y,t—s)—VK(x'—y,t—s))(pi+p§)(y73)dyd37

Iz::/O/Rd\Bzzr (VK(z —y,t —s) — VK (2’ —y,t — s)) (0] + p3)(y, s) dy ds.

We now estimate I7. Using the definition of VK and the triangle inequality, we get

—(t—s) | _y|
[1_247'(' a2 //B (2T ( )d/2+lp (y7 )dde

_‘f” y| —s T —y
2(1r) S // o h )%ﬂ (y, 5) dy ds.

These two terms are identical and we will be treated in the same manner. We just carry out
computations for the first one. Since y belongs to B, (2r), r = |x — 2/|, we have

¢ el oy o — gy
4 (t—s) r—y o /a
e 4t—9) — ,8)dyds <2%|x —x
/O/Bz(% (t—s)22’ o) dy | |

)
U ey eyl
X e 4i-s) ———p°(y,s) dy ds.
/O/Bz(%) (t— )d/2+1p( s)

Therefore, I; reads

ga—1 of [1 R
I < L / / Bk onn G | MR
1= (477)7/2 ‘a: x! < 0 Bz(%)e (t — )d/2+1p “(y,s)dy ds

R T S P
(t—s) Yy
+ e ,8)dyds | .
/o/Bz(zr) (t— )d/2+1p (v 5)dy

We conclude by bounding the integral over the ball B, (2r) by the integral over the whole space.
We now deal with I,. We first compute the hessian D2K of the kernel K.

1 I; Rz 1212
2 _ - t —t
DiK(z,t) = (47rt)d/2( " + 2 e~ 4 .

We decompose D2K into two parts :

D2K (x,t) = o <—Id+ ) i) e_% W‘ X ——.

’ (47)d/2 Vi Vi $d/2+1
By using the change of variable u = %, we notice that the first part of the rhs is bounded by a
nonnegative constant C. Thus,

C e
2 e st
|DIK| (x,t) < e



16 L. ALMEIDA, C. EMAKO-KAZIANOU, AND N. VAUCHELET

Moreover, we remark that for all y in R?\ B,(2r) and u in [0, 1]
|t —y+ul@ —2)| >z —y|l—ule—2| > (1 —u/2)z—yl.
We infer that for all y in R?\ B,(2r) and u in [0, 1]

|D§K|(w—y+u(gg’_a:),t—s)§ﬁexp( % (t—s)).

Hence,

1 jz —y|?
L <Clzx— S - (t— ¢ dy ds.
= O e ) R
We deduce that

o o —yl'” o )
L <C' - //]Rd\Bx% t—sd/2+1eXp T30 5 —(t—3s) | p°(y,s)dyds,

2
o B (P ) |
<C'w— //]Rd £ 5)dl1 exp 3900 5) (t—s) | p°(y,s)dyds

Then using Young’s inequality, we have for any positive constant ¢ and any p € (d, q),

M—(t—s) c t e —(t—s)
o t— 5) d/2+1 s p*(y, s)dyds < ; m” I

It is clear that

— y 7a+il
Iy = = exp (= L 1 oy < 0 - 50

This implies that for all « < 1 — g and all d < p < q

c‘iiy‘ =) ) (y, ) dy ds < C TtkTQ_Z;;e_tdt 0% ] 7,00 ayy < 00
Ra ( t —5) d/2+1 0 Leo([0,7], LP(RY)) :

So, the C1® bound of S¢ follows. O

Lemma 4.2. Fix S > 0 and let f be a velocity distribution and ¢ > 1. Then, we have

(4.1) 67EISICf — FH( = ()T

N O[S (f + F)2(f — (F)Y)
2¢7[S¢] f=1r ’

where qﬁf’e[S],(b?’E[S] are the symmetric and anti-symmetric parts of TF[S] defined in ([2.3]).
There also exists a constant ¢, depending on q such that

(f+ 20 = ()Y ¢, (e
f— < e(f1+(f)).

DO | =

oSN + T = ()| <

(4.2)

Proof. For (41]), we observe that

(65408107 — 1) £ o<[5)(7 + 1)) > 0.

Expanding this inequality and dividing both sides by (f¢~* — (f)971)/(f — f) gives the result.
To prove ([42]), we show that for a > 0, the following function A is bounded
(14 a)?(1 —ad™1h)

A:rar— A=)+ a)
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In fact, we have lim,_; A(a) = 2(¢ — 1) > 0. Then A can be continuously extended to [0, col.
Since A tends to 1 at infinity and is positive, A is bounded by a positive constant. O

Proposition 4.3. Assume that the initial data f{™ and fi" belong to L% (1) N L>°(2). Under
Assumption (H1), the solution of (LI)-(IIl) admits uniform estimates in € in the following
spaces :

Ji, f3 € Lig.((0,00), L(Q)), 1<q<oo,

5,75 € L*(Q x (0,00)),

§° € L33 ((0,00), CL(RY N WIP(RY), 1<p<o0,0<a<],
where 5 is given by

€ f _sz

rs =
! €

The proof is the same in parabolic and elliptic cases and we carry out the proof only in the
parabolic setting.

Proof. Let e >0, 7>0,1<¢g<o00,1<p<ooand0 < a <1 Theexistence of f{, f5,5°
follows from Theorem We remind the general conservation law for pJ

(4.3) Op; +V - J; =0,
1
with J; := E/ vffdv. This gives that ff(-,t) € L*(Q2) and we have
\%4

175Gty = 1™ 0 o)-

We suppose that ¢ > 1 and now prove the uniform boundness of f7(-,7) in L9(€2). Multiplying
equation for f£ (L9) by (f£)9~! and integrating over V and RY gives

(4.4) th/Rd/ faqdvdx_——//TaSa 1) (£5)7 " dv da.

Let x and g be two real-valued functions. From the decomposition of 77[S] in its symmetric
and anti-symmetric parts, we have

€ _ 1 ,€ / / /
/‘/72 [S1(9)x(g) dv = /V/V ¢7°18](g — ¢') (x(9) — x(¢)) dv' dv
+ % /V/V ¢ 1S](g + ) (x(9) — x(¢')) dv' d.

When applied to g = ff and x = 2971, we get from (£4)

aqvx 1 Sercer( e _ (€Y eg—1 _ e\ yq—1 v dv dx
1) 28 [ [umravass o [ ] e81s06z - a0t - @) o
= otz [ 6107 + G0 = () v

We remark that the term depending on QS;S’& [S] is positive whereas the sign of the other term is
unknown. However, Lemma allows us to bound it by two terms whose signs are known.

In fact, combining ([@1]) and ([A2]) gives

SPELSIE + G = ()] < oISz — U = ()Y

7[5
" 2¢5¢ 5]

[\

+e ()7 + ()9
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Using this inequality in ([d.3]), we get
q Ser e e\ yg-1 ,
th /Rd fl dvdm+4€2 /Rd// ¢ S fz (fz))((fz) ((fl)) )d’U dvdzx

¢AaS€ . g /
252 /Rd/ V2¢SESE ()4 (D)) dvdv de.

We deduce that

07 157] , ,
(fi)?dvde < Y9 1 ((£5))7) do dv' d.
th/Rd/f v x_2‘€2/Rd/V2¢S€SE Z) +((f7,))) vav ar

Applying the Fubini theorem to the right-hand side and using (2.4]), one gets

d c
(4.7) a/ / ()7 dvdo < L V161 / / (f)° dv da.
R4V R4V

Applying the Gronwall lemma, we conclude that for any 7 > 0 and any ¢ > 1, f7 is uniformly
bounded in L*°([0, 7], L1(Q2)), i = 1,2.

We now prove the uniform boundness of 7§ in L? (Q X [0,7']). Applying (£6) to ¢ = 2 and
integrating over t in (0,7), we obtain

//Rd// ¢SESE (ff - (fE)) dv' dv dzx dt < 2¢* // (M2 — (f6)2(z,v,7)) dvda

¢A€Sg . )
+ 2¢ //]Rd/ v2¢5655 2+ ((f5))?) do dv' dz dt.

¢ [5°]
265’

[ L s - oo avavavar <oz [ [ g avas
can [ ] [ S i

Since ff is uniformly bounded in L>([0, 7], L?(£2)), then from the Fubini Theorem and (Z.4]) we

have
/()T/]Rd/v/v OPESE)(fE — (fF))? v’ dv da dt < c&2.

From (2.4]), we have
zﬁi////(ff—(ff)')zdv’dvd:ndtgcsz.
0 JRA VIV

We rewrite this inequality in terms of r; and obtain

/O/Rd/v/v (v~ ())" df dvdedt < =

Expanding the left-hand side and using / ridv = 0 leads to
\%4

2dvdx dt <
J Lo antear < 5

By the symmetry of we have
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We finish with uniform estimates on S¢. Applying Lemma [£1] for a ¢ > d, it follows that

1S oo (fo,71, wrp(re)) + 15[ oo 0,7, 0100 (RA)) <
cr (11651 oo 0,77, L2 (Rey) + 11051 Lo (0,71, 22 Ry + 11051 Loc (0,7, Lo (re) + 1031 Loe (0,1, La(reY)) -

We know that f7 is uniformly bounded in L*°([0, 7], L9(€2)). Using the total mass conservation,
we deduce that S is uniformly bounded in L*°([0, 7], CV*(R%) N WHP(R?)) for any p and «
verifying 1 <p <oocand 0 < a < 1. O

4.2. Proof of Theorem [2.3l We prove the theorem in the parabolic setting § = 1. The proof
in the elliptic one is analogous.

We first recall the following Aubin-Lions-Simon compactness lemma.

Lemma 4.4 (Aubin-Lions-Simon, [33]). Let 7 > 0 and p,q be such that 1 < p < 00,1 < g <
oco. Let V. E, F be Banach spaces such that

VS EF
If A is bounded in W1P((0,7), F) N L((0,7),V), then A is relatively compact in L1((0,7), E).

Proof of Theorem [2.3. Let us fix 1 < ¢ < 00, 1 < p < oo and 7 > 0. We decomposed the
proof into three steps.

Step 1 : Uniform estimates for 9;(VS¢) and 0;(S%). We differentiate the conservation law
@3)) of pf with respect to .

OV p; +V, V- I =0.
Summing these equalities for ¢ = 1,2 gives
VPl +p5) + VaV - (JT + J3) = 0.
By multiplying by the kernel K (¢t — s,z — y) and integrating by parts, one gets

(4.8) O (VS%) + Vu(V - S7) =V, </dK(t,y)(p1 + p2)(0,2 — y) dy> ,
R
where S7¢ denotes
t
5% = [ | Klt= s =) + Bl v dyds.
0JRd

From Proposition &3] r¢ is uniformly bounded in L*(Qx [0,7]). Since Jf = [;, vrf dv, we deduce
by the Cauchy-Schwarz inequality that J£ is also bounded in L2(£2 x [0, 7]).

The mathematical form of S”¢ implies that S”¢ satisfies the same parabolic equation as S¢
with the right-hand side J} + J5. Using the parabolic regularity, we conclude that

5% € L*((0,7], Hp (RY)).
Then, from (4.8)), we get that
0:(VS%) € L*((0, 7], Ly (R)).

Moreover, we know the expression of 0;5¢ from Lemma

05" = | Kn) 6+ ") o =)y + [ [ VoK s (f + ) o = yr = ) dys.
The same conclusion holds for 9;5°¢ :

atS€ € L2((07 T]7 leoc (Rd))
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Step 2 : Extraction of subsequences. By the Ascoli Theorem, we have the following embed-
dings :

Cloc (RY) < L,

From the Aubin-Lions-Simon Lemma 4] there exists subsequences (S¢). and (V.S). that

strongly converge in L (R? x (0,7]). This result is extended to p between 1 and 2 by the

continuous embedding of L into L{’OC. The extraction of weak-* convergent subsequences

of f{,f5 and weak convergent subsequences r{,r5 follows from the separability or reflexivity

property of Banach spaces L>((0,7], L1(€)), L*(Q x (0, 7]).
We find a subsequence of (ff, f5,.5°) which satisfies
P A B i L((0,7, L9(Q),

(RY) — L (RY), 2<p<oc.

loc

ri =1, s =g, in LA x (0,7]),
5¢— 8% Vv,8 = v,S8" in Ll (R?x (0,7]),

for any p, g such that 1 < ¢ < oo and 1 < p < .
As a consequence, p5 converges weakly-* in L>((0, 7], L?(R%)).

i) > ([ soa, [ 0] in 220,70, 29(R)

Step 3 : Passing to the limit. This step consists in identifying limits f? , fé) , 7"(1)7 7"(2) . We now
operate in either L2 ((0,7], L?(R%)) or L2 ((0,7], L2(2)). We pass to the limit in the relation

loc loc

If = piF +erf to get
=pF and f3'=pF in Li((0,7], L*(2)).
We replace ff by p5F + erf into T.2(f§), the equation for £ (L9) now reads
(4.9)
e fi +v-Vafi == |VI]diri + 1 (/V 0i(0,S° + v/ - VoS5 ff v — V] 0;(eS° + v - Vﬁa)ff) :

From the previous study, we have

04S¢ is uniformly bounded in L%((0, 7], L2 .(R9)),

loc

and

VS8 — V8% in L2((0,7], L . (RY)).

loc
Since #; is Lipschitz continuous, we deduce that
0,(€01S° + v - V,5%) — 0;(v - V.5°) in L2((0, 7], L. (Q)).
We also know that
5 = pYF in L2((0, 7], Li,c (2))-
The combination of these arguments gives
dv’
14

0i(0,5° +v - V.5°) ff — p)0i(v - V2S°) ]lﬁf‘v in L?((0,7], Li, (2)).

/ 0;(€0,5° + ' - V. 8°) f£ dv' — pf / 0:(v' - V,S°) in L*((0, 7], L},0 (),
1% 1%

By passing to the limit in ([3]), we obtain 7).

0__U'Vmp? p_? / (o Od_vl_ (v - 0
= i (Lo w g -t v.s0).
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We deduce that J£ converges weakly in L2((0, 7], L2 .(R%)).

szé/vff:/vr 4/1}7‘
1%

By passing to the limit in the conservation law (£3]), we find the equation for p{.

atp?+v-/w?:0.
1%

Next, the equation for S is obtained by passing to the limit in (TIT]).

APPENDIX : WELL-POSEDNESS OF THE MACROSCOPIC SYSTEM

In this appendix, we explain briefly the global well-posedness of solutions to the para-
bolic/parabolic or parabolic/elliptic system ([2.7]) provided the chemosensitivities x;[S] are bounded
and D; are symmetric positive definite. More precisely, we consider the system

8tp1 =V (Dlvmpl - Xl[S]pl) )
8tp2 =V (D2vmp2 - X2[S]p2) )
58tS=AS—S+p1+p2, 520717

complemented with the initial condition
™= / fiMdv,  py = / f¥dv,  S™ =0 ifs=1.
1% v
Then we have the following a-priori estimate :

Proposition 4.5. Let t > 0 and q > 2. Let (p1,p2,S) be a positive weak solution of [2.7) such
that pi" € LY(RY). Let us assume that there exists x3° such that ||x;[S]||lL~ < x$° and that
there exists D™ such that D;X - X > D™"|| X |%. Then, there exists a constant C > 0 such
that for alli=1,2, and T € [0, 1],

/ lpil?dx < C / / Pl 3|V opi P dads < C
Rd 0 JRrd

Proof. We multiply the equation of p; by pg_l (¢ > 2) and integrate over R

1d -
P! da;:—/ DiVapi - V(p! 1)dsc+/ piXilS] - Va(p!™") da.
Rd R4

th R4
Using assumptions on D; and x;[S] yields

1d (g—1 -1
pldzr < —4D§’”"(QT)/ v (pf/z)( dw+2x§’°q—/ pl? ‘Vx(p?ﬂ)‘ dz,
g dt q Rd q Jra
. . . , . . 9 19 . 2D
Using the Cauchy-Schwarz inequality and Young’s inequality 2ab < ea® 4 b*/e with e = o0
we get '
1d (¢—1) ENE qg—1

41 gppintd 2 )| e < ()P / Yz,
R e el G Ry L
We conclude by the Gronwall inequality. O

In the case at hand, D;, x;[S] are defined by

dv

1
Dizi/v@)vdv andXiS:—/UHUVS
VI Jv ] o )!V\

Then each D; is a positive, defnite and diagonal matrix, since the domain V' is symmetric; x;[5]
is also bounded. We can apply the previous result which implies the non blow-up in finite time
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of weak solution. Then global existence is obtained by extending local existence thanks to the
above a priori estimate. We refer the interested reader to [5], where the single-species case has
been considered.
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