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Abstract

We study the Robin Laplacian in a domain with two corners of the same opening,

and we calculate the asymptotics of the two lowest eigenvalues as the distance

between the corners increases to infinity.

1 Introduction

Let Ω ⊂ R
d be an open set with a sufficiently regular boundary (e.g. compact Lipschitz

or non-compact with a suitable behavior at infinity) and β ∈ R. By the associated Robin
Laplacian Hβ ≡ H(Ω, β) we mean the operator acting in a weak sense as

Hβf := −∆f,
∂f

∂n
= βf at ∂Ω ,

where n is the unit outward normal at the boundary; a rigorous definition is given below
(Subsection 2.3). In various applications, such as the study of the critical temperature
in the enhanced surface superconductivity (and in this context the Robin condition is
also called the De Gennes condition, see [Ka] and references therein) or the analysis of
certain reaction-diffusion processes, one is interested in the spectral properties of Hβ, the
behavior of the spectrum as β → +∞ being of a particular importance [GS, LOS]. For
sufficiently regular Ω , it was shown in [LP] that the bottom of the spectrum E(β) behaves
as

E(β) = −CΩβ
2 + o(β2) as β → +∞ ,

where CΩ > 0 is a constant depending on the geometry of the boundary. In particular,
CΩ = 1 for smooth domains, and some information on the subsequent terms of the
asymptotics was obtained e.g. in [EMP, FK, P]. In the non-smooth case one can have
CΩ > 1, and the constant is understood better in the 2D case. If ω denotes the minimal
corner at the boundary, then

CΩ =
2

1− cosω
if ω < π , and CΩ = 1 otherwise.
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Figure 1: The infinite sectors Σ1 and Σ2.

In other words, intuitively, each corner at the boundary can be viewed as a geometric well,
and it is the deepest well which determines the principal term of the spectral asymptotics,
and one may expect that the respective vertices serve as the asymptotic support of the
respective eigenfunction. One meets the natural question of what happens if one has
several wells of the same depth, i.e. several corners with the same opening. Similar
questions appear in various settings: semiclassical limit for multiple wells [HS1, HS2, H,
A, BDS], distant potential perturbations [D], domains coupled by a thin tube [BHM] or
waveguides with distant boundary perturbations [BE], in which the interaction between
wells gives rise to an exponentially small difference between the lowest eigenvalues. The
aim of the present paper is to obtain a result in the same spirit for Robin Laplacians in
a class of corner domains. We note that the eigenvalues E(Ω, β) of H(Ω, β) satisfy the
obvious scaling relation,

E(Ω, ℓβ) = ℓ2E(ℓΩ, β) , ℓ > 0 , (1)

and the regime β → +∞ is essentially equivalent to the study of E(ℓΩ, β) as ℓ → +∞
with a fixed β. We prefer to deal with scaled domains in order to have finite limits.

Let us describe our result. Let ω ∈ (0, π) and L > 0. Denote by ΩL the intersection
of the two infinite sectors Σ1 and Σ2,

Σ1 :=
{
(x1, x2) : arg

(
(x1 + L) + ix2

)
∈ (0, ω)

}
,

Σ2 :=
{
(x1, x2) : (−x1, x2) ∈ Σ1

}
,

see Fig. 1. Clearly, for ω ≥ π/2 the set ΩL is an infinite biangle whose vertices are the
points A1 = (−L, 0) and A2 = (L, 0), while for ω < π/2 we obtain the interior of the
triangle whose vertices are the above points A1 and A2 and the point A3 = (0, L tanω),
see Figure 2. Let us fix some β > 0. The associated Robin Laplacian

HL := H(ΩL, β)

is a self-adjoint operator in L2(ΩL;R), see Subsection 2.3 for the rigorous definition.
Elementary considerations show that if ω < π/2, then HL has a compact resolvent, and
the spectrum consists of eigenvalues E1(L) < E2(L) ≤ . . . . As usually, each eigenvalue
may appear several times according to its multiplicity. For ω ≥ π/2 one has

specessHL = [−β2,+∞) ,

so the discrete spectrum consists of eigenvalues E1(L) < E2(L) ≤ · · · < −β2 .
Our main result is as follows:

2



Figure 2: The domain ΩL for ω ≥ π

2
(left) and ω <

π

2
(right).

Theorem 1.1. Assume that either ω ∈
(
0, π

3

)
or ω ∈

[
π
2
, π

)
. Then, the two lowest

eigenvalues satisfy, as L→ +∞,

E1(L) = − 2β2

1− cosω

− 4β2 1 + cosω

(1− cosω)2
exp

(
− 2β

1 + cosω

sinω
L
)
+O

(
L2 exp

(
− (2 + δ)β

1 + cosω

sinω
L
))

,

E2(L) = − 2β2

1− cosω

+ 4β2 1 + cosω

(1− cosω)2
exp

(
− 2β

1 + cosω

sinω
L
)
+O

(
L2 exp

(
− (2 + δ)β

1 + cosω

sinω
L
))

,

where δ = 2
(
(cosω)−1 − 1

)
for θ < π/3 and δ = 2 for ω ≥ π/2 . In particular,

E2(L)−E1(L) = 8β2 1 + cosω

(1− cosω)2
exp

(
− 2β

1 + cosω

sinω
L
)

+O

(
L2 exp

(
− (2 + δ)β

1 + cosω

sinω
L
))

.

Our proof is in the spirit of the scheme developed by Helffer and Sjöstrand for the
semiclassical analysis of the multiple well problem [HS1, H]. In Section 2 we introduce the
necessary tools and establish some basic properties of the Robin Laplacians in polygons.
Section 3 is devoted to the proof of Theorem 1.1. In Section 4 we discuss possible gen-
eralizations and variants. In Appendix A we study the one-dimensional Robin problem
which is used to obtain a more precise result for the case ω = π

2
.

Acknowledgments. The research was partially supported by ANR NOSEVOL and
GDR Dynamique quantique. Bernard Helffer is also associated with the laboratoire Jean
Leray at the university of Nantes.

2 Preliminaries

2.1 Basic tools in functional analysis

Recall the max-min principle for the self-adjoint operators.

3



Proposition 2.1. Let A be a lower semibounded self-adjoint operator in a Hilbert space
H, and let E := inf specessA. For n ∈ N consider the quantities

En := sup
ψ1,...,ψn−1∈H

inf
u∈D(A), u 6=0
u⊥ψ1,...,ψn−1

〈u,Au〉
〈u, u〉 .

If En < E, then En is the nth eigenvalue of A (if numbered in the non-decreasing order
and counted with multiplicities). Furthermore, one obtains an equivalent definition of En
by setting

En := sup
ψ1,...,ψn−1∈H

inf
u∈Q(A), u 6=0
u⊥ψ1,...,ψn−1

a(u, u)

〈u, u〉 ,

where Q(A) is the form domain of A and a is the associated bilinear form.

LetH be a Hilbert space. For a closed subspace L ofH, we denote by PL the orthogonal
projector on L in H. For an ordered pair (E, F ) of closed subspaces E and F of H we
define

d(E, F ) = ‖PE − PFPE‖ ≡ ‖PE − PEPF‖.
The following proposition summarizes some essential properties, cf. [HS1, Lemma 1.3 and
Proposition 1.4]:

Proposition 2.2. The distance between subspaces has the following properties:

1. d(E, F ) = 0 if and only if E ⊂ F ,

2. d(E,G) ≤ d(E, F ) + d(E,G) for any closed subspace G of H,

3. if d(E, F ) < 1, then then the map E ∋ f 7→ PFf ∈ F is injective, and the map
F ∋ f 7→ PEf ∈ E has a continuous right inverse,

4. If d(E, F ) < 1 and d(F,E) < 1, then d(E, F ) = d(F,E), the map F ∋ f 7→ PEf ∈
E is bijective, and its inverse is continuous.

The following proposition can be used to estimate d(E, F ), see e.g. [HS1, Proposition
3.5].

Proposition 2.3. Let A be a self-adjoint operator in H, I ⊂ R be a compact interval,
ψ1, . . . , ψn ∈ D(A) be linearly independent, and µ1, . . . , µn ∈ R . Denote:

ε := max
j∈{1,...,n}

∥∥(A− µj)ψj
∥∥ ,

a :=
1

2
dist

(
I, (specA) \ I

)
,

Λ := the smallest eigenvalue of the Gramian matrix
(
〈ψj , ψk〉

)
.

Let E be the subspace spanned by ψ1, . . . , ψn and F be the spectral subspace associated
with A and I. If a > 0 , then

d(E, F ) ≤ 1

a

√
n

Λ
ε . (2)
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2.2 Robin Laplacians in infinite sectors

For α ∈ (0, π), we define

Sα :=
{
(x1, x2) ∈ R

2 :
∣∣ arg(x1 + ix2)

∣∣ < α
}

and consider the associated Robin Laplacian and the bottom of its spectrum:

Hα = H(Sα, β) , Eα := inf specHα .

The following result is essentially contained in [LP]:

Proposition 2.4. The operator Hα has the following properties:

• If α < π
2
, then

Eα = − β2

sin2 α
, (3)

and this point is a simple isolated eigenvalue of specHα with the associated normal-
ized eigenfunction

Uα(x1, x2) = β

√
2 cosα

sin3 α
exp

(
− β

sinα
x1

)
. (4)

• If α ≥ π
2
, then Eα = −β2 and specHα = [Eα,+∞) .

In what follows we will use another associated quantity,

Λα := inf(specHα) \ {Eα}. (5)

In view of Proposition 2.4 we have:

• if α < π
2
, then Λα > Eα. In this case, if one denotes by Pα the orthogonal projection

in L2(Sα) onto the subspace spanned by Uα, then the spectral theorem implies

〈u,Hαu〉 ≥ Λα‖u‖2 + (Eα − Λα)
〈
u, Pαu

〉
for all u ∈ D(Hα) , (6)

• if α ≥ π
2
, then Λα = Eα .

2.3 Robin Laplacians in convex polygons

In this subsection, let Ω1 ⊂ R
2 be a convex polygonal domain, i.e. is the intersection

of finitely many half-planes. Assume that Ω1 has N vertices B1, . . . , BN , and the corner
opening at Bj will be denoted by 2αj. We assume that all vertices are non-trivial, which
means, due to the convexity, that αj ∈ (0, π

2
) for all j. Define

α := min
j
αj .

Furthermore, we set ΩL := LΩ1 for some L > 0 and denote by Aj := LBj the vertices
of ΩL. We omit sometimes the reference to L and write more simply Ω . Finally, let us
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pick some β > 0 and consider the associated Robin Laplacian H := H(Ω, β). Strictly
speaking, H is the operator associated with the bilinear form

hΩ,β(u, u) =

∫∫

Ω

|∇u|2 dx− β

∫

∂Ω

|u|2 ds , u ∈ H1(Ω) ,

where ds means the integration with respect to the length parameter. Using the standard
methods we have

inf specessH ≥ −β2 .

The following proposition is a particular case of a more general result proved in [LP]:

Proposition 2.5. limL→+∞ inf specH = − β2

sin2 α
≡ Eα.

To describe the domain of H , let us recall first the Green-Riemann formula, which
states that, for f ∈ H1(Ω) and g ∈ H2(Ω),

∫

∂Ω

f
∂g

∂n
ds =

∫∫

Ω

(
f∆g +∇f · ∇g

)
dx , (7)

where n is the outward unit normal.

Proposition 2.6. There holds

D(H) =
{
u ∈ H2(Ω) :

∂u

∂n
= βu at ∂Ω

}
(8)

and Hu = −∆u for all u ∈ D(H).

Proof. The claim follows from the general scheme developped for boundary value prob-
lems in non-smooth domains [G]. We just explain briefly how this scheme appplies to the
Robin boundary condition. We note first that the associated form hΩ,β is semibounded
from below and closed due to the standard Sobolev embedding theorems. We note then
that for any u ∈ D(H) one has Hu = −∆u in D′(Ω). Furthermore, if D̃ is the set on the

right-hand side of (8), then it easily follows from (7) that D̃ ⊂ D(H). It follows also that
for f ∈ H2(Ω) the inclusion f ∈ D(H) is equivalent to the equality ∂f/∂n = βf on ∂Ω .
In view of these observations, it is sufficient to show that D(H) ⊂ H2(Ω).

Take any f ∈ D(H) ⊂ H1(Ω) and let g := Hf ∈ L2(Ω). All corners at the boundary

of Ω are smaller than π, and the trace of f on ∂Ω is in H
1

2 (∂Ω), which means that there
exists a solution u ∈ H2(Ω) for the boundary value problem:

−∆u = g in Ω,
∂u

∂n
= βf on ∂Ω ,

see [G, Section 2.4] (we are in the case where no singular solutions are present). On the
other hand, f is a variational solution of the preceding problem. This means that the
function v := f − u ∈ H1(Ω) becomes a variational solution to

−∆v = 0 in D′(Ω),
∂v

∂n
= 0 on ∂Ω .

Again according to [G, Section 2.4] we conclude that the only possible solution is constant,
which means that f = u+ v ∈ H2(Ω).
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Now let us obtain some (Agmon-type) decay estimates of the eigenfunctions of H
corresponding to the lowest eigenvalues as L → +∞. Let us start with a technical
identity.

Lemma 2.7. Let u ∈ H2(Ω) be real-valued and satisfy the Robin boundary condition
∂u/∂n = βu at ∂Ω. Furthermore, let Φ : Ω → R be such that Φ,∇Φ ∈ L∞(Ω), then

∫∫

Ω

∣∣∇(eΦu)
∣∣2dx− β

∫

∂Ω

e2Φu2ds =

∫∫

Ω

e2Φu(−∆u)dx+

∫∫

Ω

|∇Φ|2e2Φu2dx.

Proof. We just consider the case Φ ∈ C2(Ω), then one can pass to the general case using
the standard regularization procedure. We have

∣∣∇(eΦu)
∣∣2 =

( ∂

∂x1
(eΦu)

)2

+
( ∂

∂x2
(eΦu)

)2

=
( ∂Φ
∂x1

eΦu+ eΦ
∂u

∂x1

)2

+
( ∂Φ
∂x2

eΦu+ eΦ
∂u

∂x2

)2

= |∇Φ|2e2Φu2 + 2eΦu∇Φ · ∇u+ e2Φ|∇u|2

= |∇Φ|2e2Φu2 +∇(e2Φu) · ∇u .
Integrating this equality in Ω, we arrive at
∫∫

Ω

∣∣∇(eΦu)
∣∣2dx =

∫∫

Ω

|∇Φ|2e2Φu2dx+
∫∫

Ω

∇(e2Φu) · ∇udx

=

∫∫

Ω

|∇Φ|2e2Φu2dx+
∫

∂Ω

e2Φu
∂u

∂n
ds+

∫∫

Ω

e2Φu(−∆u)dx

=

∫∫

Ω

|∇Φ|2e2Φu2dx+ β

∫

∂Ω

e2Φu2ds+

∫∫

Ω

e2Φu(−∆u) dx .

Now, let us choose a constant b > 0 such that all corners of Ω are contained in the
ball of radius bL centered at the origin, and consider the function Φ : Ω → R defined by

Φ(x) := βmin
{

min
j∈{1,...,N}

cotαj · |x−Aj |, bL
}
.

For a compact Ω we choose the constant b sufficiently large, so that the exterior minimum
can be dropped.

Proposition 2.8. Let λ = λ(L) > 0 be such that

lim
L→+∞

λ(L) = 0 .

Then, for any ε ∈ (0, 1) there exists Cε > 0 and Lε such that, if E = E(L) is an eigenvalue
of H satisfying

E ≤ − β2

sin2 α
+ λ , (9)

and u is an associated normalized eigenfunction, then
∥∥e(1−ε)Φu

∥∥
H1(Ω)

≤ Cεe
εL for L ≥ Lǫ .
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Proof. Let r > 0. Let us pick a C∞ function χ : [0,+∞) → [0, 1] such that χ(t) = 1 for
t ≤ r and χ(t) = 0 for t > 2r, and introduce

χ̃j(x) = χ
( |x− Aj|

L

)
, j = 1, . . . , N .

We assume that r is sufficiently small, which ensures that the supports of χ̃j are disjoint
and that Φ(x) = β cotαj |x − Aj | for x ∈ supp χ̃j . An exact value of r will be chosen
later. We also complete by the function

χ̃0 := 1−
N∑

j=1

χ̃j ,

and, finally, set

χj := χ̃j

/
√√√√

N∑

k=0

χ̃2
k, j = 0, . . . , N.

We observe that we have the equalities suppχj = supp χ̃j , that each χj is C
∞, and that

N∑

j=0

χ2
j = 1 .

For any v ∈ H1(Ω) we also have χjv ∈ H1(Ω), and by a direct computation one
obtains

hΩ,β(v, v) =

N∑

j=0

hΩ,β(χjv, χjv)−
N∑

j=0

∥∥v∇χj
∥∥2
.

By construction of χj , we one can find a constant C > 0 independent of v and L with

hΩ,β(v, v) ≥
N∑

j=0

hΩ,β(χjv, χjv)−
C

L2
‖v‖2 for large L .

Now let us denote Ψ := (1− ε)Φ. By applying the preceding inequality we obtain

I :=

∫∫

Ω

∣∣∇(eΨu)
∣∣2dx− β

∫

∂Ω

|eΨu|2ds ≥ δ

∫∫

Ω

∣∣∇(eΨu)
∣∣2 dx

+ (1− δ)

[ N∑

j=0

( ∫∫

Ω

∣∣∇(χje
Ψu)

∣∣2 dx− β

1− δ

∫

∂Ω

∣∣χjeΨu
∣∣2 ds

)
− C

L2

∫∫

Ω

|eΨu|2 dx ,
]
,

(10)

where δ ∈ (0, 1) is a constant which will be chosen later.
Furthermore, considering χje

Ψu as a function from H1(Sj), where Sj is a suitably
rotated copy of the sector Sαj

(see Subsection 2.2) which coincides with Ω near Aj , we
have, for j = 1, . . . , N ,

∫∫

Ω

∣∣∇(χje
Ψu)

∣∣2dx− β

1− δ

∫

∂Ω

∣∣χjeΨu
∣∣2ds ≥ − β2

(1 − δ)2 sin2 αj

∫∫

Ω

|χjeΨu|2dx.
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By the preceding constructions, the support of χ0 is of the form suppχ0 = LΩ′ with
some L-independent Ω′. Furthermore, one can construct a smooth domain D with LΩ′ ⊂
LD ⊂ Ω and such that ∂(LΩ′) ∩ ∂Ω = ∂(LD) ∩ ∂Ω. As mentioned in the introduction,
the lowest eigenvalue of H

(
LD, β/(1− δ)

)
for large L converges to −β2/(1− δ)2, i.e. for

any v ∈ H1(LD) we have

∫∫

LD

∣∣∇v
∣∣2dx− β

1− δ

∫

∂(LD)

|v|2ds ≥ −
( β2

(1− δ)2
+ ε0

)∫∫

LD

|v|2dx,

where ε0 := ε0(L, δ) > 0 is such that limL→+∞ ε0 = 0 for any fixed δ ∈ (0, 1). By taking
v = χ0e

Ψu we obtain

∫∫

Ω

∣∣∇(χ0e
Ψu)

∣∣2dx− β

1− δ

∫

∂Ω

∣∣χ0e
Ψu

∣∣2ds ≥ −
( β2

(1− δ)2
+ ε0

)∫∫

Ω

|χ0e
Ψu|2dx.

Putting the preceding estimates together we arrive at

I ≥ δ

∫∫

Ω

∣∣∇(eΨu)
∣∣2dx−

( β2

1− δ
+

(1− δ)C

L2
+ ε1

)∫∫

Ω

|χ0e
Ψu|2dx

−
N∑

j=1

( β2

(1− δ) sin2 αj
+

(1− δ)C

L2

)∫∫

Ω

|χjeΨu|2dx (11)

with ε1 := (1− δ)ε0. On the other hand, due to Lemma 2.7 we have

I =

∫∫

Ω

e2Ψu(−∆u)dx+

∫∫

Ω

|∇Ψ|2e2Ψu2 dx

= E

∫∫

Ω

e2Ψu2dx+

∫∫

Ω

|∇Ψ|2e2Ψu2 dx =

N∑

j=0

∫∫

Ω

(
E + |∇Ψ|2

)
|χjeΨu|2 dx . (12)

We estimate as follows:

∣∣∇Ψ(x)
∣∣ ≤ (1− ε)2β2 cotα ≡ (1− ε)2β2

( 1

sin2 α
− 1

)
, x ∈ suppχ0 ,

∣∣∇Ψ(x)
∣∣ ≤ (1− ε)2β2 cotαj ≡ (1− ε)2β2

( 1

sin2 αj
− 1

)
, x ∈ suppχj , j = 1, . . . , N .

Substituting these two inequalities into (12) and using (9) we arrive at

I ≤
(
− β2

sin2 α
+ λ + (1− ε)2β2

( 1

sin2 α
− 1

))∫∫

Ω

|χ0e
Ψu|2dx

+
N∑

j=1

(
− β2

sin2 α
+ λ+ (1− ε)2β2

( 1

sin2 αj
− 1

))∫∫

Ω

|χjeΨu|2 dx .
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Combining with (11) we have:

δ

∫∫

Ω

∣∣∇(eΨu)
∣∣2 dx+ C0

∫∫

Ω

|χ0e
Ψu|2 dx ≤

N∑

j=1

Cj |χjeΨu|2 dx ,

where

C0 := (2ε− ε2)
( 1

sin2 α
− 1

)
β2 − δ

1− δ
β2 − (1− δ)C

L2
− ε1 − λ ,

Cj := − β2

sin2 α
+ (1− ε)2

( 1

sin2 αj
− 1

)
β2 +

β2

(1− δ) sin2 αj
+

(1− δ)C

L2
+ λ , j = 1, . . . , N .

As ε > 0 is a fixed positive number and both ε1 and λ tend to 0 as L → +∞ , we can
find mε > 0, δ > 0 and L0 > 0 such that C0 ≥ mε for all L > L0 . At the same time, for
the same δ and L we may estimate Cj ≤Mε , j = 1, . . . , N , which gives

∫∫

Ω

∣∣∇(eΨu)
∣∣2 dx+

∫∫

Ω

|χ0e
Ψu|2 dx ≤ Cε

N∑

j=1

|χjeΨu|2 dx , Cε :=
Mε

δ
+
Mε

mε
.

Now we get the estimate

‖e(1−ε)Φu‖2H1(Ω) = ‖eΨu‖2H1(Ω) =

∫∫

Ω

∣∣∇(eΨu)
∣∣2 dx+

∫∫

Ω

|eΨu|2 dx

=

∫∫

Ω

∣∣∇(eΨu)
∣∣2 dx+

∫∫

Ω

|χ0e
Ψu|2 dx+

N∑

j=1

|χjeΨu|2 dx ≤ (1 + Cε)

N∑

j=1

|χjeΨu|2 dx

≤ (1 + Cε) exp
[
(1− ε) max

j∈{1,...,N}
sup

x∈suppχj

Φ(x)
] N∑

j=1

∫∫

Ω

|χju|2 dx .

We have
N∑

j=1

∫∫

Ω

|χju|2 dx ≤
N∑

j=0

∫∫

Ω

|χju|2 dx =

∫∫

Ω

|u|2 dx = 1 ,

and
max

j∈{1,...,N}
sup

x∈suppχj

Φ(x) ≤ 2rβ(cotα)L .

Therefore, by taking r < ε/(2tβ cotα) , we get the conclusion.

3 The lowest eigenvalues of HL

3.1 Notation

In this section we study in greater detail the lowest eigenvalues of the operator HL. We
collect first some notation and conventions used below. Note that all the assertions of
Section 2 are applicable to HL as well. Throughout the section we will write

α :=
ω

2
and Ω := ΩL .
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Furthermore, we introduce the following transformations of R2 :

R1(x1, x2) =

(
cosα sinα
− sinα cosα

)(
x1 + L
x2

)
, R2(x1, x2) =

(
cosα sinα
sinα − cosα

)(
L− x1
x2

)
.

The geometric meaning of Rj is clear from the equalities Rj(Σj) = Sα, j = 1, 2, and we
consider the associated rotated eigenfunctions

Uj(x) := Uα(Rjx) , j = 1, 2 .

Recall that Sα and Uα are defined in Subsection 2.2, so we have

U1(x1, x2) = β

√
2 cosα

sin3 α
e−β(x1+L) cotα−βx2,

U2(x1, x2) = β

√
2 cosα

sin3 α
e−β(L−x1) cotα−βx2.

(13)

We also recall the notation
Eα := −β2/ sin2 α .

Furthermore, for j = 1, 2 we denote by Mj the Robin Laplacian in Σj ,

Mj := H(Σj , β) .

3.2 A rough eigenvalue estimate

Let us obtain some rough information on the behavior of the eigenvalues of HL as L tends
to +∞. Assuming that HL has at least n − 1 eigenvalues below the essential spectrum,
we denote

Ẽn(L) := inf(specHL) \
{
E1(L), . . . , En−1(L)

}
,

Lemma 3.1. Let ω ∈
(
0, π

3

)
∪
[
π
2
, π

)
, then for sufficiently large L the operator HL has at

least two eigenvalues below the essential spectrum, and one has

lim
L→+∞

Ej(L) = Eα, j = 1, 2 , (14)

lim inf
L→+∞

Ẽ3(L) > Eα . (15)

Proof. For δ > 0, let us pick a C∞ function χ : R+ → [0, 1] such that χ(t) = 1 for t ≤ δ
and χ(t) = 0 for t > 2δ . Introduce the functions

χ̃j(x) = χ
( |x− Aj |

L

)
, j = 1, 2 .

We assume that δ is sufficiently small, which ensures that the supports of χ̃1 and χ̃2 do
not intersect, and consider the functions

vj := χ̃jUj , j = 1, 2.

By a simple computation, as L→ +∞ we have
∫∫

Ω

vjvk dx = δjk + o(1),

∫∫

Ω

∇vj · ∇vk dx− β

∫

∂Ω

vjvk ds = Eαδjk + o(1) , j, k = 1, 2.

11



It follows that

sup
06≡v∈Span(v1,v2)

hΩ,β(v, v)

〈v, v〉 ≤ Eα + o(1) < −β2 ≡ inf specessHL ,

the last inequality being true for L large enough.
On the other hand, the functions v1 and v2 are linearly independent. It follows that

for any ψ ∈ L2(Ω) one can find a non-trivial linear combination v ∈ Span(v1, v2) which is
orthogonal to ψ. Due to the previous estimate and Proposition 2.1 we obtain then

E2(L) ≤ Eα + o(1) .

Combining with E2(L) ≥ E1(L) , and with the result of Proposition 2.5, this gives (14).
Let us now prove (15). Let us introduce

χ̃0 := 1− χ̃1 − χ̃2

and set

χj := χ̃j

/
√√√√

2∑

k=0

χ̃2
k, j = 0, 1, 2.

By a direct computation, for any u ∈ H1(Ω) we have

hΩ,β(u, u) =
2∑

j=0

hΩ,β(χju, χju)−
2∑

j=0

∥∥u∇χj
∥∥2
,

and by the construction of χj, we can find L0 > 0 and C > 0 such that for all u and
L ≥ L0

hΩ,β(u, u) ≥
2∑

j=0

hΩ,β(χju)−
C

L2
‖u‖2 .

Furthermore, we have χju ∈ H1(Σj) , j = 1, 2 . Consider the orthogonal projections
Πj := 〈Uj, ·〉Uj in L2(Σj) . By applying the inequality (6) we obtain

hΩ,β(χju, χju) ≥ (Eα − Λα)‖Πjχju‖2L2(Σj)
+ Λα‖χju‖2L2(Σj)

, j = 1, 2 .

The norms in L2(Σj) can be replaced back by the norms in L2(Ω), and we infer

hΩ,β(u, u) ≥ 〈u,Πu〉+ Λα
(
‖χ1u‖2 + ‖χ2u‖2

)
+ hΩ,β(χ0u, χ0u)−

C

L2
‖u

∥∥2
,

where Π := (Eα − Λα)
(
χ1Π1χ1 + χ2Π2χ2

)
is an operator whose range is at most two-

dimensional.
To estimate the term with χ0, we proceed as in the proof of Proposition 2.8. By

the preceding constructions, the support of χ0 has the form suppχ0 = LΩ′ with some
L-independent Ω′. Furthermore, one can construct a convex polygonal domain D with
LΩ′ ⊂ LD ⊂ Ω such that ∂(LΩ′) ∩ ∂Ω = ∂(LD) ∩ ∂Ω and that the minimal corner θ at
the boundary of D is strictly larger than ω. By Proposition 2.5 for any A < Eθ/2 and any
v ∈ H1(LD) we have, as L is sufficiently large,

hLD,β(v, v) ≥ A‖v‖2L2(LD).

12



As Eθ/2 > Eω/2 ≡ Eα, we may assume that A > Eα. Using the last equality with v = χ0u
we obtain, for large L,

hΩ,β(χ0u, χ0u) ≥ A‖χ0u‖2 .
Putting all together and noting that ‖χ0u‖2 + ‖χ1u‖2 + ‖χ2u‖2 = ‖u‖2 we obtain, for

sufficiently large L,

hΩ,β(u, u) ≥ 〈u,Πu〉+
(
E − C

L2

)
‖u

∥∥2
, E = min(A,Λα) > Eα .

Now take two vectors ψ1 and ψ2 spanning the range of Π . For any non-zero u ∈ H1(Ω)
which is orthogonal to ψ1 and ψ2 we have

hΩ,β(u, u)

〈u, u〉 ≥ E − C

L2
,

which gives the announced inequality (15) by the max-min principle.

The following assertion summarizes the preceding considerations:

Proposition 3.2. Let ω ∈
(
0, π

3

)
∪
[
π
2
, π

)
, then there exists δ > 0 and L0 such that for

L ≥ L0 the spectrum of HL in (Eα − δ, Eα + δ) consists of exactly two eigenvalues E1(L)
and E2(L), both converging to Eα as L→ +∞.

Remark 3.3. Indeed, one can prove an analog of Lemma 3.1 for the remaining ranges of
ω in a similar way, and one has:

lim
L→+∞

E1(L) = Eα and lim inf
L→+∞

Ẽ2(L) > Eα for ω ∈
(π
3
,
π

2

)
,

lim
L→+∞

Ej(L) = Eα, j = 1, 2, 3, and lim inf
L→+∞

Ẽ4(L) > Eα for ω =
π

3
, (16)

and Proposition 3.2 should be suitably reformulated. We remark that the case ω = π/3,
i.e. the equilateral triangle, was already studied in [McC, Section 7], where it was found
that after a suitable transformation one may separate the variables, and the calculation
of the eigenvalues reduces to solving a certain non-linear system, which admits a rather
direct analysis. In particular, the second inequality in (16) holds in the stronger form

limL→+∞ Ẽ4(L) = −β2.

For the rest of the section, we assume that

ω ∈
(
0,
π

3

)
∪
[π
2
, π

)
.

3.3 Cut-off functions

We are going to introduce a family of cut-off functions adapted to the geometry of the
sector Sα (see Subsection 2.2). Note that our assumptions imply α < π

2
. Pick a function

χ : R → [0, 1] such that

χ ∈ C∞(R), χ(t) = 1 for t ≤ −1, χ(t) = 0 for t ≥ 0 , (17)

13



Figure 3: The function ϕα,ℓ vanishes outside the shaded domains, and equals 1 in the
dark shaded domain.

and for ℓ > 0 we set

ϕα,ℓ(x1, x2) = χ(x1 − ℓ cosα)χ
(
|x| − (ℓ− 1)

)
. (18)

This function has the following properties for large ℓ, see Figure 3:

ϕα,ℓ ∈ C∞(Sα) ,

ϕα,ℓ(x) ∈ [0, 1] for all x ∈ Sα ,

ϕα,ℓ(x) = 1 for x = (x1, x2) ∈ {x1 ≤ ℓ cosα− 2} ∩ Sα ,
ϕα,ℓ(x) = 0 for x = (x1, x2) /∈ {x1 ≤ ℓ} ∩ Sα ,

∂ϕα,ℓ
∂n

= 0 at ∂Sα ,
∑

|ν|≤2

‖Dνϕα,ℓ‖∞ ≤ c for some c > 0 independent of ℓ .

(19)

The slightly involved construction of ϕα,ℓ guarantees that for any function f ∈ H2(Sα)
with ∂f/∂n = βf at the boundary the product ϕα,ℓf still satisfies the same boundary
condition.

Finally, we set
ψα,ℓ(x) := ϕα,ℓ(x)Uα(x) ,

where Uα is defined in (4). Using the properties (19) and a simple direct computation one
obtains:

Lemma 3.4. The function ψα,ℓ belongs to the domain of Hα , and the following estimates
are valid as ℓ→ +∞ :

‖ψα,ℓ‖2L2(Sα)
= 1 +O(ℓe−2βℓ cotα) , (20)

∥∥(−∆− Eα)ψα,ℓ
∥∥2

L2(Sα)
= O(ℓe−2βℓ cotα) . (21)
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Figure 4: The choice of the constant τ .

Now let us choose the maximal constant τ > 1 such that the two isosceles triangles
Θ1(τL) and Θ2(τL) with the side length τL and the vertex angle ω spanned at the
boundary of Ω near respectively A1 and A2 are included in Ω. More precisely,

τ :=





1

cosω
, ω ∈

(
0,
π

3

)
,

2, ω ∈
[π
2
, π

) (22)

see Figure 4.
Consider the functions

ψj(x) = vj(x)Uj(x) with vj(x) := ϕα,τL(Rjx) , j = 1, 2 .

By Proposition 3.2 we can find δ > 0 such that the interval I := (Eα − δ, Eα + δ)
contains exactly two eigenvalues of HL and the larger interval (Eα−2δ, Eα+2δ) does not
contain any further spectrum for large L.

Let E denote the subspace spanned by ψj , j = 1, 2, and F denote the spectral subspace
of HL corresponding to I . We are going to estimate the distances d(E, F ) and d(F,E)
between these two subspaces, see Subsection 2.1.

Lemma 3.5. For the Gramian matrix G := (gjk) =
(
〈ψj , ψk〉

)
we have

gjk = δjk +O(Le−2βL cotα) , j, k = 1, 2.

Furthermore, g11 = g22 and g12 = g21 .

Proof. The identities for the coefficients follow from the considerations of symmetry. It
follows from Lemma 3.4 that

‖ψj‖2 = 1 +O(Le−2τβL cotα) for j = 1, 2 .

On the other hand, using the explicit expressions (13) for Uj , we obtain

ψ1(x1, x2)ψ2(x1, x2) = 2β2 cosα

sin3 α
ϕα,τL(R1x)ϕα,τL(R2x) exp

(
− 2βL cotα) exp(−2βx2

)
.

Using the properties (19) we have

〈ψ1, ψ2〉 = O(Le−2βL cotα) .

As τ > 1 by (22), this gives the result.
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Lemma 3.6. For large L there holds

d(E, F ) = d(F,E) = O(
√
Le−βτL cotα) .

Proof. Let us show first the desired estimate for d(E, F ). By Lemma 3.4, we have

∥∥(HL − Eα)ψj
∥∥ = O(

√
Le−βτL cotα) .

Using Proposition 2.3 for the previously chosen interval I and applying Lemma 3.5 gives
the result.

We will now show that d(F,E) < 1 for large L, then by Proposition 2.2 it will follow
that d(F,E) = d(E, F ).

Let ϕ : R → R be a C∞ function such that ϕ(t) = 1 for t near 0 and ϕ(t) = 0 for
t > 1

2
and introduce

χj(x) := ϕ
( |x− Aj |

L

)
, j = 1, 2 , χ0 := 1− χ1 − χ2 .

Let uk be a normalized eigenfunction of HL associated with Ek(L) , k = 1, 2. We know
(Proposition 3.2) that Ek(L) tends to Eα as L→ +∞, so Proposition 2.8 is applicable to
uk. In particular, for some σ > 0 we have

‖χ0uk‖L2(Ω) = O(e−σL) .

Furthermore, using Proposition 2.6 we check that χjuk ∈ D(HL) and that

∥∥(HL − Eα)(χjuk)
∥∥
L2(Ω)

=
∥∥(−∆− Eα)(χjuk)

∥∥
L2(Ω)

=
∥∥− (∆χj)uk − 2∇χj∇uk

∥∥
L2(Ω)

= O(e−σ
′L) ,

for some σ′ > 0 , and by taking the minimum we may assume that σ = σ′ . The last
estimate can be also rewritten as an estimate in L2(Σj), and we conclude that there
exists L∗ > 0 and C > 0 such that

∥∥(−∆− Eα)(χjuk)
∥∥
L2(Σj)

≤ C e−σL

for L > L∗ .
Now let us pick any σ0 ∈ (0, σ) and split the set {L : L > L∗} into two disjoint parts I1

and I2 as follows. We say that L ∈ I1 if ‖χjuk‖L2(Ω) ≡ ‖χjuk‖L2(Σj) ≤ e−σ0L . Therefore,
for L ∈ I2 we have ‖χjuk‖L2(Σj) ≥ e−σ0L . We check again that χjuk ∈ D(Mj) , so by
applying Proposition 2.2 to the operator Mj we conclude that

d
(
Span(χjuk), ker(Mj −Eα)

)
≤ C0 e

−(σ−σ0)L , C0 > 0 ,

which means that one can find ajk ∈ R such that

‖χjuk − ajkUj‖L2(Σj) ≤ C0 e
−(σ−σ0)L ,

and
|ajk| ≤ 1 + C0 e

−(σ−σ0)L .
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On the other hand, one can find σ1 > 0 such that

‖Uj − ψj‖L2(Ω) ≡ ‖Uj − ψj‖L2(Σj) = ‖(1− vj)Uj‖L2(Σj) ≤ C1 e
−σ1L .

Therefore, writing σ2 := min(σ1, σ − σ0) , we have

‖χjuk − ajψj‖L2(Ω) = ‖χjuk − ajkψj‖L2(Σj) ≤ C2 e
−σ2L for all L ∈ I2 .

By choosing σ∗ := min(σ0, σ2) , we conclude that, for any sufficiently large L, we can find
aj ∈ R with |aj| ≤ 1 +O(e−σ∗L) , such that

‖χjuk − ajkψj‖L2(Ω) = O(e−σ∗L) .

For L ∈ I1 we can simply take ajk = 0 . We have then

uk =

2∑

j=0

χjuk =

2∑

j=1

ajkψj +O(e−σ∗L) in L2(Ω) .

As the functions uk, k = 1, 2, form an orthonormal basis in F , we have d(F,E) =
O(e−σ∗L) < 1 for large L.

3.4 Coupling between corners

Recall that PE denotes the orthogonal projection on E in L2(Ω). In addition, we denote
by ΠE the projection on E in L2(Ω) along F⊥. The following lemma essentially reproduces
Lemma 2.8 in [HS1]. We give the proof for the sake of completeness.

Lemma 3.7. For sufficiently large L we have

‖ΠE − PE‖ = O(
√
Le−βτL cotα) .

Furthermore, we have the following identities:

(a) ΠE = ΠEPF ,

(b) the inverse of K := (ΠE : F → E) is K−1 := (PF : E → F ) ,

(c) (HL : F → F ) = K−1(ΠEHL : E → E)K .

Proof. By Lemma 3.6 we can write F = {x+Ax : x ∈ E}, where A is a bounded linear
operator acting from E to E⊥ with ‖A‖ = O(

√
Le−βcL cotα). Then F⊥ = {y − A∗y : y ∈

E⊥}. Furthermore, if z = x + y with x ∈ E and y ∈ E⊥, then PEz = x and ΠEz = x̃,
where x̃ is the vector from E satisfying x̃ − (x + y) ∈ F⊥, which can be rewritten as
x̃− (x+ y) = A∗ỹ − ỹ for some ỹ ∈ E⊥. Considering separately the terms in E and E⊥

we arrive at the system x̃− x = A∗ỹ, y = ỹ, which implies

∥∥(PE − ΠE)z
∥∥ = ‖x− x̃‖ ≤ ‖A‖ · ‖y‖ ≤ ‖A‖ · ‖z‖

and proves the norm estimate.
Let us check the identities. To prove (a) we write ΠE = ΠE(PF + PF⊥) and note that

ΠEPF⊥ = 0. To prove (b), we observe first that the existence of the inverses follows from
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Proposition 2.2. Now let us take any z ∈ F . It is uniquely represented as z = x+ y with
x ∈ E and y ∈ F⊥, and PEz = x. On the other hand, one has ΠFx = z, which proves the
identity (b).

Furthermore, ΠEHL = ΠEHL(PF + PF⊥) = ΠEHLPF + ΠEPF⊥HL . Using again
ΠEPF⊥ = 0 , we conclude that ΠEHLu = ΠEHLPFu for any u ∈ E . Finally, as HLPFu ∈
F for any u ∈ E, we have

(ΠEHL : E → E) = (ΠE : F → E)(HL : F → F )(PF : E → F ) .

Combining with (b) leads to (c).

Lemma 3.8. The matrix M of ΠEHL : E → E in the basis (ψ1, ψ2) is

M =

(
Eα w12

w21 Eα

)
+O(L3/2e−2βτL cotα) , L→ +∞,

where we denote

wjk :=

∫∫

Ω

vk(Uj∇Uk − Uk∇Uj)∇vj dx .

Proof. The proof follows the scheme of Theorem 3.9 in [HS1]. We have

PEu =
2∑

j,k=1

cjk〈ψk, u〉ψj ,

where cjk are the coefficients satisfying

2∑

j,k=1

cjk〈ψk, ψℓ〉ψj = ψℓ , ℓ = 1, 2 , i.e.

2∑

k=1

cjk〈ψk, ψℓ〉 = δjl , ℓ = 1, 2 .

In other words, (cjk) = G−1, where G is the Gramian matrix of (ψj), and in virtue of
Lemma 3.5 we have

cjk = δjk +O(Le−2βL cotα) .

Therefore, if we introduce another operator Π̂ by Π̂u =
∑2

j=1〈ψj , u〉ψj , we have

‖PE − Π̂‖ = O(Le−2βL cotα) .

Combining with Lemma 3.7 we obtain

‖ΠE − Π̂‖ = O(Le−βτL cotα) .

Here we used the inequality τ ≤ 2 , see (22).
Now, using the structure of ψj = vjUj we have

HLψj = Eαψj − 2∇vj∇Uj − (∆vj)Uj .
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The L2(Ω)-norms of two last terms on the right hand side are O(
√
Le−βτL cotα) , which

gives
ΠEHLψj = ΠE

(
Eαψj

)
+ Π̂

(
− 2∇vj∇Uj − (∆vj)Uj

)

+ (ΠE − Π̂)
(
− 2∇vj∇Uj − (∆vj)Uj

)

= Eαψj + Π̂
(
− 2∇vj∇Uj − (∆vj)Uj

)
+O(L3/2e−2βτL cotα)

= Eαψj +

2∑

k=1

bjkψk +O(L3/2e−2βτL cotα).

(23)

with

bjk := −
∫∫

Ω

(
2∇vj∇Uj + (∆vj)Uj

)
ψk dx = −

∫∫

Ω

(
2∇vj∇Uj + (∆vj)Uj

)
vkUk dx.

Using the Green-Riemann formula (7) we have

∫∫

Ω

(−∆vj)Uj
)
vkUk dx =

∫∫

Ω

∇vj∇(UjUkvk) dx−
∫

∂Ω

∂vj
∂n

UjUkvk ds

=

∫∫

Ω

UjUk∇vj∇vk dx+
∫∫

Ω

Ujvk∇vj∇Uk dx+
∫∫

Ω

vkUk∇vj∇Uj dx ,

which gives

bjk = δjkwjk + εjk, εjk :=

∫∫

Ω

UjUk∇vj∇vk dx . (24)

Note that

U1(x1, x2)U2(x1, x2) =
2β2 cosα

sin3 α
exp

(
− 2βL cotα) exp(−2βx2

)
(25)

and that ∇v1∇v2 is supported in a parallelogram of size O(1) in which the value of x2 is
at least

S := (τ − 1)L cotα− 2/ sinα ,

see Figure 5. Therefore,
ε12 = ε21 = O(e−2τβL cotα) .

On the other hand, by Lemma 3.4 we have

ε11 = ε22 = O(Le−2βτL cotα) .

Substituting these estimates into (24) and then into (23) leads to the conclusion.

Lemma 3.9. There holds

w := w12 = w21 =
2β2 cos2 α

sin4 α
e−2βL cotα +O

(
Le−2βτL cotα

)
.
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Figure 5: Computation of S. In the dark shaded domain there holds v2 = 1 , cf. Figure 3.
We have θ = π

2
−α and, hence, S =

(
(τ −1)L−2 cos α

)
tan θ ≡ (τ −1)L cotα−2/ sinα .

Proof. The equality w12 = w21 follows from the symmetry considerations. Furthermore,
we have the equality

U1∇U2 − U2∇U1 = 2β cotα

(
1
0

)
U1U2 .

Substituting the expression for U1U2 from (25) we obtain

w12 =
4β3 cos2 α

sin4 α
e−2βL cotαA , A :=

∫∫

Ω

e−2βx2v2
∂v1
∂x1

dx .

Using the explicit construction of v1 and v2 we can see that, for
x2 < S := (τ−1)L cotα−2/ sinα , we have the following property: if (x1, x2) ∈ supp∇v1,
then v2(x1, x2) = 1 , see Figure 5. This allows one to estimate A by

A =

∫∫

Ω∩{x2≤S}

e−2βx2
∂v1(x1, x2)

∂x1
dx+O

(
Le−2β(τ−1)L cotα

)
.

On the other hand, by Fubini

∫∫

Ω∩{x2≤S}

e−2βx2
∂v1(x1, x2)

∂x1
dx =

S∫

0

e−2βx2

(∫
∂v1(x1, x2)

∂x1
dx1

)
dx2.

The interior integral is equal to 1 for any x2, which finally gives

A =

S∫

0

e−2βx2dx2 +O
(
Le−2β(τ−1)L cotα

)
=

1

2β
+O

(
Le−2β(τ−1)L cotα

)
.
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Lemma 3.10. The matrix N of ΠEHL : E → E in the orthonormal basis

φk =

2∑

j=1

ψjσjk, k = 1, 2, σ := (σjk) :=
√
G−1 ,

has the form

N = N0 +O(L2e−2βτL cotα) with N0 =

(
Eα w
w Eα

)
.

Here G is the Gramian matrix from Lemma 3.5.

Proof. Due to Lemma 3.5 we have G = I + T with T = O(Le−2βL cotα), which shows
that

σ = I − 1

2
T +O(L2e−4βL cotα) , σ−1 = I +

1

2
T +O(L2e−4βL cotα) .

On the other hand, using the matrix M from Lemma 3.8, we have N = σ−1Mσ. So we
get

N =
(
I +

1

2
T +O(L2e−4βL cotα

)(
Eα +

(
0 w
w 0

)
+O(L3/2e−2βtL cotα)

)

×
(
I − 1

2
T +O(L2e−4βL cotα

)

=

(
Eα w
w Eα

)
+

1

2

[
T

(
0 w
w 0

)
−
(
0 w
w 0

)
T

]
+O(L2e−2βτL cotα) .

The term in the square brackets equals zero due to Lemma 3.5, and this achieves the
proof.

Proof of Theorem 1.1. Now we are able to finish the proof of the main theorem. The
eigenvalues of the matrix N0 from Lemma 3.10 are E± := Eα ± |w|, and in view of
Lemma 3.9 we have

E± = − β2

sin2 α
± 2β2 cos2 α

sin4 α
e−2βL cotα +O

(
Le−2βτL cotα

)
.

By Lemma 3.9, these numbers E± coincide up to O(L2e−2βτL cotα) with the eigenvalues of
HL in I, which are exactly E1(L) and E2(L) . It remains to apply elementary trigonometric
identities to pass from α = ω/2 to ω .

4 Conclusion

To conclude this article, let us add a few remarks.

Remark 4.1. The family of operators HL includes one case in which one can separate
the variables, namely, the case ω = π

2
, for which the estimate of Theorem 1.1 takes the

form
E1/2(L) = −2β2 ∓ 4β2e−2βL +O(L2e−4βL) . (26)
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On the other hand, one can represent HL = A⊗1+1⊗BL, where A and BL are operators
in L2(0,∞) and L2(−L, L) respectively:

Au = −u′′, D(A) =
{
u ∈ H2(0,∞) : u′(0) + βu(0) = 0

}
,

BLv = −v′′ , D(BL) =
{
v ∈ H2(−L, L) : v′(−L) + βv(−L) = v′(L)− βv(L) = 0

}
.

One easily computes
specA = {−β2} ∪ [0,+∞) .

On the other hand, BL has a compact resolvent and, if one denotes its eigenvalues by
εj(L), then

Ej(L) = −β2 + εj(L) .

The behavior of εj(L), j = 1, 2, can be studied in a rather explicit way by using the 1D
nature of the problem, see Proposition A.3 in the appendix, and one gets

E1/2(L) = −2β2 ∓ 4β2e−2βL + 8β2(2βL− 1)e−4βL +O(L2e−6βL) ,

One observes that the remainder estimate in our asymptotics (26) only differs by the
factor L from the exact one.

Remark 4.2. One can also consider the case ω = π
3
, i.e. the case of the equilateral

triangle. In this case one has an interaction between the three corners. The above scheme
works in essentially the same way; see also [HS2] and [FH, Section 16.2] for the general
discussion. One can prove that, for sufficiently large L, there exists a bijection σ between
the three lowest eigenvalues of HL and the three eigenvalues of the matrix

N0 =



Eα w w
w Eα w
w w Eα


 , w = 24 β2e−2

√
3L ,

such that σ(E) = E +O(L2e−4
√
3βL) .

Note that the eigenvalues of N0 are Eα−w (simple) and Eα+w (double), which means
that the three lowest eigenvalues of HL behave as

E1(L) = −4 β2 − 24 β2e−2
√
3L +O(L2e−4

√
3βL) ,

Ej(L) = −4 β2 + 24 β2e−2
√
3L +O(L2e−4

√
3βL) , j = 2, 3 ,

i.e. no splitting is visible between E2 and E3 . Actually there is no surprise, as a symmetry
argument as well as the explicit formulas from [McC, Section 7] show that

E2(L) = E3(L).

Remark 4.3. One may see from the proof that the result admits direct extensions to a
little bit more general domains. Namely, assume that Ω = LΩ′ with some L-independent
Ω′ and such that Ω coincides with ΩL near the axis Ox1 in the following sense: one still
can construct the triangles Θj(τL), j = 1, 2, as in Subsection 3.3 for some τ > 1, and
Ω does not contain any further corner whose opening is smaller or equal to ω. Then
Theorem 1.1 is valid for the first two eigenvalues of H(Ω, β) with δ = 2(τ − 1). It would
be interesting to know if any result of this kind can be obtained for more general domains
and more general relative positions of the corners. For the smooth domains, one may
expect that the role of the corners is played by the points of the boundary at which the
curvature is maximal [EMP, P], which gives rise to similar questions. This is actually the
case for surface superconductivity, see [FH] and references therein.
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Remark 4.4. Our considerations were in part stimulated by the paper [BND] which
studies the asymptotic behavior of the eigenvalues of the magnetic Neumann Laplacians
in curvilinear polygons, but in our case we were able to obtain a more precise result due
to the fact that we know the exact eigenfunction of an infinite sector. One may wonder
if our machinery can help to progress in the problem of [BND]. We note that both the
magnetic Neumann Laplacian and the Robin Laplacian appear as approximate models in
the theory of surface superconductivity and are closely related to the computation of the
critical temperature [GS, HS1].

A 1D Robin problem

In this section, we study the one-dimensional Robin problem. The expressions obtained
have their own interest, but some estimates can be used to obtain a better estimate for
the analysis of the two-dimensional situation, as explained in Remark 4.1.

Lemma A.1. For β > 0 and ℓ > 0, denote by Nβ,ℓ the operator acting in L2(0, ℓ) as
f 7→ −f ′′ on the functions f ∈ H2(0, ℓ) satisfying the boundary conditions f ′(0) = 0
and f ′(ℓ) = βf(ℓ). Then the lowest eigenvalue EN(β, ℓ) is the unique strictly negative
eigenvalue, and

EN (β, ℓ) = −β2 − 4β2e−2βℓ + 8β2(2βℓ− 1)e−4βℓ +O(ℓ2e−6βℓ) as ℓ tends to +∞ , (27)

and the associated eigenfunction is x 7→ cosh(
√

−EN (β, ℓ)x) .

Proof. Let us write EN (β, ℓ) = −k2 with k > 0. The associated eigenfunction f must
be of the form f(x) = Aekx + Be−kx with some (A,B) ∈ R

2 \
{
(0, 0)

}
. Taking into the

account the boundary conditions we get the linear system

A−B = 0 , (k − β)ekℓA− (k + β)e−kℓB = 0 .

It follows that f(x) = 2B cosh(kx). The system has non-trivial solutions iff

(k − β)ekℓ = (k + β)e−kℓ . (28)

This can be rewritten as kℓ tanh(kℓ) = βℓ. One easily checks that the function

(0,+∞) ∋ t 7→ t tanh t ∈ (0,+∞)

is a bijection, which means that the solution k to (28) is defined uniquely, which shows
that we have exactly one negative eigenvalue.

To calculate its asymptotics, we first take into account the signs of all terms in (28),
which gives k > β .

Rewriting (28) in the form

(k − β) = 2βe−2kℓ/(1− e−2kℓ) = 2βe−2βℓe−2(k−β)ℓ/(1− e−2(k−β)ℓe−2βℓ) ,

we get that
k − β = O(e−2βℓ) . (29)
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It follows also from (28) that

k =
1 + e−2kℓ

1− e−2kℓ
β =

(
1 + 2e−2kℓ +O(e−4kℓ)

)
β , ℓ→ +∞ . (30)

Implementing (29), we infer that

k =
(
1 + 2e−2βℓ +O(ℓe−4βℓ)

)
β = β + 2βe−2βℓ +O(ℓe−4βℓ) . (31)

By taking an additional term in (30),

k =
1 + e−2kℓ

1− e−2kℓ
β =

(
1 + 2e−2kℓ + 2e−4kℓ +O(e−6kℓ)

)
β , ℓ→ +∞ ,

and by using (31) one gets

k = β + 2βe−2βℓ + 2β(1− 4βℓ)e−4βℓ +O(ℓ2e−6βℓ) . (32)

Computing E = −k2 gives the result.

Lemma A.2. For β > 0 and ℓ > 0, denote by Dβ,ℓ the operator acting in L2(0, ℓ) as
f 7→ −f ′′ on the functions f ∈ H2(0, ℓ) satisfying the boundary conditions f(0) = 0
and f ′(ℓ) = βf(ℓ), and let ED(β, ℓ) denote its lowest eigenvalue. Then ED(β, ℓ) < 0 iff
βℓ > 1, and in that case it is the only negative eigenvalue. Furthermore,

ED(β, ℓ) = −β2 + 4β2e−2βℓ + 8β2(2βℓ− 1)e−4βℓ +O(ℓ2e−6βℓ) as ℓ tends to +∞ , (33)

and the associated eigenfunction is x 7→ sinh(
√

−ED(β, ℓ)x).

Proof. Let us write ED(β, ℓ) = −k2 with k > 0. The associated eigenfunction f is of the
form f = Aekx + Be−kx with some (A,B) ∈ R

2 \
{
(0, 0)

}
. Taking into the account the

boundary conditions we get the linear system

A+B = 0 , (k − β)ekℓA− (k + β)e−kℓB = 0 ,

which gives the representation f(x) = 2A sinh(kx). Non-trivial solutions exist iff

(β + k)e−kℓ = (β − k)ekℓ . (34)

The preceding equation can be rewritten as

kℓ coth(kℓ) = βℓ .

One easily checks that the function

(0,+∞) ∋ t 7→ t coth t ∈ (1,+∞)

is a bijection, which shows that (34) has a solution iff βℓ > 1, and if it is the case, the
solution is unique, which gives in turn the unicity of the negative eigenvalue.

For the rest of the proof we assume that

βℓ > 1 .
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By considering the signs of both sides in (34) we conclude that k < β. Furthermore, we
may rewrite (34) as g(k) = 0 with

g(k) = log(β + k)− log(β − k)− 2kℓ .

We have g(0+) = 0 and g(β−) = +∞ . The equation g′(k) = 0 takes the form

β2 − k2 =
β

ℓ
,

and its unique solution is

k∗ = β

√
1− 1

βℓ
.

It follows that the equation g(k) = 0 has a unique solution k in (0, β) and that k ∈ (k∗, β) .
On the other hand, we obtain the estimate

k∗ > β
(
1− 1

βℓ

)
= β − 1

ℓ
.

Hence, the solution of g(k) = 0 satisfies

β − 1

ℓ
< k < β . (35)

We rewrite (34) in the form

β − k =
2k

e2kℓ − 1
.

and we deduce with the help of (35) that

β − k = O(e−2βℓ) as ℓ→ +∞.

By going through the same steps as in the proof of Lemma A.1, one gets the result.

Proposition A.3. For β > 0 and ℓ > 0, let Bℓ denote the operator acting in L2(−ℓ, ℓ)
as f 7→ −f ′′ on the functions f ∈ H2(−ℓ, ℓ) satisfying the boundary conditions
f ′(±ℓ) = ±βf(±ℓ) , and let E1(ℓ) and E2(ℓ) be the two lowest eigenvalues, E1(ℓ) < E2(ℓ) .
Then:

• E1(ℓ) < 0 ,

• E2(ℓ) < 0 iff βℓ > 1 ,

• all other eigenvalues are non-negative.

Furthermore,

E1(ℓ) = −β2 − 4β2e−2βℓ + 8β2(2βℓ− 1)e−4βℓ +O(ℓ2e−6βℓ) ,

E2(ℓ) = −β2 + 4β2e−2βℓ + 8β2(2βℓ− 1)e−4βℓ +O(ℓ2e−6βℓ) ,

as ℓ tends to +∞. The respective eigenfunctions f1 and f2 are

f1(x) = cosh
(√

−E1(ℓ)x
)
, f2(x) = sinh

(√
−E2(ℓ)x

)
.
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Proof. Let us use the notation of Lemmas A.1 and A.2. Note that:

• Bℓ commutes with the reflections with respect to the origin,

• its first eigenfunction f1 is non-vanishing and even, hence, f ′
1(0) = 0 ,

• its second eigenfunction f2 has one zero in (−ℓ, ℓ) and is odd, hence f2(0) = 0 .

Therefore, E1(ℓ) = EN(β, ℓ) and E2(ℓ) = ED(β, ℓ) , and the result follows from Lem-
mas A.1 and A.2.
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[HS2] B. Helffer, J. Sjöstrand: Puits multiples en limite semi-classique II. Interaction
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