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Modelling the dynamics of a sphere approaching
and bouncing on a wall in a viscous fluid

Edouard Izard, Thomas Bonometti and Laurent Lacaze†

Université de Toulouse; INPT, UPS; IMFT (Institut de Mécanique des Fluides de Toulouse),
Allée Camille Soula, F-31400 Toulouse, France

CNRS; IMFT, F-31400 Toulouse, France

The canonical configuration of a solid particle bouncing on a wall in a viscous fluid is
considered here, focusing on rough particles as encountered in most of the laboratory
experiments or applications. In that case, the particle deformation is not expected to
be significant prior to solid contact. An immersed boundary method (IBM) allowing
the fluid flow around the solid particle to be numerically described is combined with
a discrete element method (DEM) in order to numerically investigate the dynamics of
the system. Particular attention is paid to modelling the lubrication force added in the
discrete element method, which is not captured by the fluid solver at very small scale.
Specifically, the proposed numerical model accounts for the surface roughness of real
particles through an effective roughness length in the contact model, and considers
that the time scale of the contact is small compared to that of the fluid. The present
coupled method is shown to quantitatively reproduce available experimental data and
in particular is in very good agreement with recent measurement of the dynamics of
a particle approaching very close to a wall in the viscous regime St 6 O(10), where
St is the Stokes number which represents the balance between particle inertia and
viscous dissipation. Finally, based on the reliability of the numerical results, two
predictive models are proposed, namely for the dynamics of the particle close to
the wall and the effective coefficient of restitution. Both models use the effective
roughness height and assume the particle remains rigid prior to solid contact. They
are shown to be pertinent to describe experimental and numerical data for the whole
range of investigated parameters.

Key words: computational method, lubrication theory, particle/fluid flow

1. Introduction

Immersed granular and particle-laden flows are encountered in a large number
of industrial and natural applications, including chemical engineering, aeronautics,
transportation, biomechanics, geophysics and oceanography. Granular flows with
negligible effect of the surrounding fluid are gravity-driven and dissipated by inelastic
and frictional contacts, while when the effect of the fluid becomes non-negligible, the
hydrodynamic forces can drive the particle motion and the bulk kinetic energy may be
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additionally dissipated by viscous effects. In addition, such flows may exhibit strong
inhomogeneities in the spatial distribution of particle velocity and concentration. To
understand the dynamics of such complex systems, an accurate description of the
dynamics at the particle scale for a large range of particle Reynolds number and
Stokes number is needed (the Stokes number being the ratio of the relaxation time of
the particle to the characteristic time scale of the fluid). For example, in a shear-driven
immersed granular flow encountered in natural flows, some particles located at depth
in the bed are quasi-stationary while others, at the bed surface, can reptate, salt or
get entrained as a suspension in the bulk. This large range of dynamical parameters
makes the development of predictive models very difficult. It is therefore necessary
to improve the local description of canonical configurations in which processes can
be isolated. In particular, the description of a single bounce of a particle in a fluid
at rest remains challenging. Here we are interested in this configuration, namely the
bouncing of a spheroidal particle on a wall in a viscous fluid.

Experiments on binary collisions in fluid have been undertaken in many studies. In
a first approach, the collision of a particle on a wall covered by a thin liquid film
has been experimentally investigated in order to highlight the lubrication effect on the
bouncing (Barnocky & Davis 1988; Lundberg & Shen 1992). More generally, the case
of a fully immersed system has been investigated (Joseph et al. 2001; Gondret, Lance
& Petit 2002; Ten Cate et al. 2002; Pianet et al. 2007; Mongruel et al. 2010). In this
case, the dynamics is slightly more complex since unsteady drag and history force
can affect the falling of the particle well before the influence of the lubrication. In any
case, the specific effect of the presence of the fluid is to take part in the dissipation of
the initial kinetic energy leading to a decrease of the apparent coefficient of restitution
of the bouncing particle. It has been shown that a similar trend is observed for two
impacting particles (Yang & Hunt 2006).

The extension to the oblique bouncing on a wall in a fluid has been experimentally
investigated by Joseph & Hunt (2004), the aim being to highlight the effect of
lubrication on the apparent coefficient of friction. In particular, they showed that the
value of the coefficient of friction, compared to the dry case, has more of an affect
for smooth surfaces for which deformation induced by hydrodynamic pressure prior
to solid interaction is more likely to happen. As noted by Joseph & Hunt (2004),
the latter phenomenon is not observed for glass spheres and hence not expected for
‘rough’ particles, as long as the ratio between roughness height and particle diameter
is not too small.

All these experiments agreed on the dependence of the coefficient of restitution ε =
−VR/VT , defined as the ratio between the terminal velocity VT prior to impact and the
rebound velocity VR, on the Stokes number based on the terminal velocity VT , defined
by St = ρpVTD/9µ where D and ρp are the diameter and the density of the particle,
respectively, and µ is the dynamic viscosity of the surrounding fluid. For impact at
high Stokes number, St > 2000, the viscous dissipation does not affect the rebound of
the particle much and the effective coefficient of restitution approaches that of the dry
case εmax. At low St, viscous damping becomes more important leading to ε < εmax. A
critical particle Stokes number Stc ≈ 10 is experimentally observed below which no
rebound occurs. The high-St trend explains the choice of a normalized coefficient of
restitution ε/εmax usually found in the literature.

Models of binary interaction of solid particles have been widely developed in
the literature and can be divided into two main contributions: one concerning the
dynamics of the approaching solid and the second concerning the modelling of an
effective coefficient of restitution after bouncing.



Brenner (1961) gives an analytic expression for the repulsive force acting on a
smooth rigid sphere approaching a wall at low Reynolds number. When considering
an elastic solid, this force is affected by the deformation of the material. Theoretical
studies of elasto-hydrodynamic (EHD) collision of two spheres in a liquid showed
through asymptotic and numerical techniques the relation between the pressure
induced by lubrication and the deformation of the particle. These works were a
first attempt to predict if a solid particle can bounce or if it, rather, sticks to the
wall (Davis, Serayssol & Hinch 1986; Barnocky & Davis 1989). The influence of
particle roughness was introduced by Smart & Leighton (1989) who show that it
plays an important role in the contact dynamics. In particular, they highlight the
fact that, during bouncing, the characteristic length of the fluid layer is of the same
order of magnitude as the roughness height. Several studies have been devoted to
understanding and modelling the influence of the roughness during bouncing or prior
to contact. For instance, Lecoq et al. (2004) found that the dynamics of a particle
approaching a rough wall is similar to the case of an equivalent smooth wall slightly
shifted away from the original upper position of the corrugated surface.

Global models have also emerged for predicting the bouncing via the effective
coefficient of restitution ε as a function of the Stokes number. For instance, Lian,
Adams & Thornton (1996) extend the EHD theory, using a Hertz-like model for the
elastic deformation to predict the coefficient of restitution. The proposed model agrees
with numerical solutions of the system of equations but needs a scaling coefficient to
obtain a closed-form solution. Legendre, Daniel & Guiraud (2005) derived a model
for bouncing drops on a solid wall, using a mass–spring analogy accounting for the
deformation of the drop. This model has proved successful and has been shown to
reproduce the case of bouncing solid particles by adjusting an empirical constant.
More recently, the effective coefficient of restitution ε has been modelled with a
mixed contact model (Yang & Hunt 2006, 2008), for which Stc and a scaled surface
roughness have to be prescribed.

In the present study, a coupled fluid–solid method is developed to investigate
the bouncing of a solid particle on a horizontal bottom wall. Simulating solid–fluid
interaction is often difficult because of the complexity of the solid shape and motion
in the fluid flow. Methods for modelling solid–fluid interaction may be divided into
two main groups, depending on the way the solid–fluid interfaces are described. One
group, usually referred to as body-fitted grid methods, makes use of a structured
curvilinear or unstructured grid to conform the grid to the boundary of the fluid
domain (see e.g. Thompson, Warsi & Mastin 1985). In situations involving complex
moving boundaries, one needs to establish a new body-conformal grid at each
time-step which leads to a substantial computational cost and subsequent slowdown
of the solution procedure. In addition, issues associated with regridding arise such as
grid-quality and grid-interpolation errors. The second group of methods is referred to
as fixed-grid methods. These techniques make use of a fixed grid, which eliminates
the need for regridding, while the presence of the solid objects is taken into account
via adequately formulated source terms added to fluid flow equations. Fixed-grid
methods have emerged in recent years as a viable alternative to body-conformal
grid methods. In this group, one can mention the immersed boundary method (IBM)
(Fadlun et al. 2000; Kim, Kim & Choi 2001; Peskin 2002; Uhlmann 2005; Feng,
Michaelides & Mao 2010; Breugem 2012; Kempe & Fröhlich 2012; Li, Hunt &
Colonius 2012), distributed Lagrangian multiplier-based methods (Ardekani & Rangel
2008) or tensorial penalty methods (Brändle de Motta et al. 2013), among others.

In the present work, we attempt to simulate the local dynamics of such systems at
the particle scale by simulating the collision of a sphere with a wall. To this end a



simple soft-sphere collision IBM is presented. The IBM consists of a direct forcing
method, using a continuous solid volume fraction to define the boundary. The granular
medium is modelled with a discrete element method (DEM) based on a multi-contact
soft-sphere approach.

The paper is structured as follows. First, we describe the numerical technique
used here. Secondly, wall–particle collisions in a fluid are simulated for a wide
range of Stokes number ranging from 1 to 104, and the use of a local lubrication
force is discussed. Then, the dynamics of the particle approaching a wall at low
Stokes number is simulated with IBM–DEM and compared to experimental data. The
extension of an existing model (Mongruel et al. 2010) is proposed with, in particular,
the implementation of an effective roughness length. Finally, a new model predicting
the effective coefficient of restitution as a function of the Stokes number and the
relative roughness height of the particles is proposed.

2. Numerical approach

2.1. Calculation of the fluid flow

The fluid flow around the particle is obtained thanks to an IBM. Assuming a
Newtonian fluid, the evolution of the flow is described using the Navier–Stokes
equations, namely

∇·V = 0, (2.1)
∂V

∂t
+ ∇ · (V ⊗ V) = g −

1

ρ
∇P +

1

ρ
∇ ·

[

µ (∇V + t
∇V)

]

+ f , (2.2)

where V, P, ρ and µ are the local velocity, pressure, density and dynamic viscosity
in the fluid, respectively, g denotes acceleration due to gravity and f is a body-force
source term used to take into account solid–fluid interaction. Equations (2.1) and
(2.2) are written in a Cartesian or polar system of coordinates. These equations are
enforced throughout the entire domain, comprising the actual fluid domain and the
space occupied by the particles. In the following, the term f will be formulated in
such a way as to represent the action of the immersed solid upon the fluid. Let us
consider a solid particle of density ρp, volume Vp and mass mp, the centroid of which
being located at xp, moving at linear and angular velocity up and ωp, respectively.
The local velocity U of the solid object is then defined by U = up + r × ωp, r being
the local position relative to the solid centroid.

The time integration of the momentum equation for the fluid (2.2) is performed via
a third-order Runge–Kutta method for all terms except the viscous term for which a
second-order semi-implicit Crank–Nicolson scheme is used. The incompressibility
condition (2.1) is satisfied at the end of each time step through a projection
method. Domain decomposition and message passing interface (MPI) parallelization
is performed to facilitate simulation of a large number of grid cells. In general, the
location of the particle surface is unlikely to coincide with the grid nodes, so that
interpolation techniques are usually employed to enforce the boundary condition by
imposing constraints on the neighbouring grid nodes. Here we adopt another strategy,
by introducing a function α, which denotes solid volume fraction, which is equal to
one in cells filled with the solid phase, zero in cells filled with the fluid phase, and
0 < α < 1 in the region of the boundary. In practice, the transition region is set up to
be of 1–3 grid cells approximately (Yuki, Takeuchi & Kajishima 2007). The forcing
term is

f = α
U − V

1t
. (2.3)
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FIGURE 1. (Colour online) Example of the grid used in the present immersed-boundary
simulation. Iso-contours of α = 0.01, 0.25, 0.5, 0.75 and 0.99. Here D/1x ≈ 20 with D
the diameter of the solid particle considered. The dashed line shows the contour of the
solid particle which is used in the DEM code.

Recall that U is the local velocity imposed on the immersed solid object while V is
the local velocity in the fluid; 1t is the time step used for the time-advancement. The
present choice, which may be viewed as a smoothing of the immersed boundary, is
an alternative to using a regularized delta function in conjunction with a Lagrangian
marking of the boundary. The latter technique is largely used in IBMs in order
to allow a smooth transfer of momentum from the boundary to the fluid (see e.g.
Fadlun et al. 2000; Uhlmann 2005). The present approach is simple to implement
and does not need any Lagrangian mesh for tracking the immersed boundary. In the
following, spherical particles are considered. The corresponding solid volume fraction
α is defined by

α(x) =
1

2
−

1

2
tanh

(

|x − xp| − R

λφ∆

)

, (2.4)

λ= |nx| + |ny| + |nz|, (2.5)

φ = 0.065(1 − λ2) + 0.039, (2.6)

where n = (nx, ny, nz) is a normal outward unit vector at a surface element, R is
particle radius, φ is a parameter controlling the thickness of the transition region
and ∆ is a characteristic grid size (∆ =

√
21x when the grid is uniform). Note

that the coefficients used in (2.6) are 1.3 times larger than those reported in Yuki
et al. (2007). This choice stems from numerical tests on moving cylinders at moderate
Reynolds number which showed that the present set of coefficients is sufficient to
suppress parasitic fluctuations of the forces applied to the objects when the latter cross
a numerical cell (not shown here). The reader is referred to Uhlmann (2005) for a
detailed discussion of this point. Iso-contours of α as defined in (2.4) for a solid
particle of diameter D are shown in figure 1. In this case, the transition region is
of three grid cells approximately.



2.2. Calculation of the particle motion

The motion of the particle is described by Newton’s equations for linear and angular
momentum of a rigid body, namely

mp

dup

dt
= mpg + Fh + Fc + Flub, Ip

dωp

dt
= Γ h + Γ c, (2.7a,b)

where Fh (resp. Γ h) is the hydrodynamic force (resp. torque) defined by

Fh = −
ρρp

ρp − ρ

∫

Vp

fdV, Γ h = −
ρρp

ρp − ρ

∫

Vp

r × fdV. (2.8a,b)

Equation (2.8) was derived by Uhlmann (2005) or Bigot et al. (2013) for instance,
and will not be repeated in detail here. Briefly, (2.8) are derived by integrating the
momentum law (2.2) and corresponding kinematic momentum law for the fluid on
the volume of the immersed object, and ensuring that the fictitious body force f

is such that these integrated laws are equivalent to the Newton equations (2.7). In
(2.7), Fc (resp. Γ c) is the contact force (resp. torque) including particle–particle and
particle–wall collisions, and Flub is a lubrication force. A detailed description of these
forces is given in §§ 2.2.1 and 2.2.2, respectively. In the case of multiple solid objects
moving in a fluid, it is known that when the distance between two objects is small
enough, the lubrication force induced by the interstitial flow becomes the dominant
force in (2.7). Depending on the properties of the fluid and the relative velocity
between the objects, the characteristic length of influence can be several orders
of magnitude smaller than the particle diameter (Joseph et al. 2001). The present
fixed-grid method described in the previous section is then unable to accurately
capture the lubrication force for a reasonable grid resolution. Moreover, in the case
of a perfectly smooth object, Flub diverges as the inverse of the distance between
particles goes to zero, therefore avoiding any possible interaction between particles.
The latter phenomenon does not consider surface roughness of real particles allowing
solid contact as explained in Smart & Leighton (1989). Modelling these short-range
interactions, both the lubrication and solid contact, is therefore crucial to capture the
small-scale physics of solid particles interacting in a fluid.

In the present study, the small-scale interaction is modelled using a soft-sphere
discrete element method (DEM) solving (2.7). This method has been developed to
allow multi-contact interactions for a large number of particles, but is used here to
consider the simpler case of a single contact between a solid sphere and a wall.

Length scales and time scales associated with short-range interactions are small
compared to those associated with the fluid flow. The coupling between IBM and
DEM is therefore done by solving (2.7) using a time step which is at least two orders
of magnitude smaller than the fluid time step used to solve (2.1) and (2.2). In other
words, large-scale flow structures (of the order of the particle size or larger) computed
with the IBM approach are frozen during the computation of short-range interactions
with the DEM code. Such a numerical trick allows to reduce computational cost which
would have been tremendous if we had reduced the time step of the IBM down to
the time step imposed by the DEM resolution. It has been verified that changing the
ratio between the two time steps in the range 102–103 does not affect the results.
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Particle j
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FIGURE 2. (Colour online) Sketch of a contact in the DEM soft-sphere model with the
associated notation; δn is the normal signed distance of overlap defined as δn = ‖xpi −
xpj‖ − (Ri + Rj).

2.2.1. Solid contact modelling

Here, we describe the method used for dealing with solid contacts in a system of
np particles for generality. The modelling of the solid–solid interaction is done via
a soft-sphere approach (Cundall & Strack 1979), which is based on modelling the
deformation of real particles during contact by an overlap between computed non-
deformable particles (figure 2). This overlap is then used to compute the normal and
tangential contact forces, using here a linear mass–spring system and a Coulomb-type
threshold for the tangential component, in order to account for solid sliding. The force
Fc and the torque Γ c are decomposed such that

Fc =
∑

j6=i

Fij + Fwall, (2.9)

Γ c =
∑

j6=i

Γ ij + Γ wall, (2.10)

where Fij is the contact force between particles i and j, Fwall the wall–particle
interaction force; Γ ij and Γ wall are the corresponding torques. Fij and Γ ij are computed
using a local system of coordinates (n, t), depicted in figure 2, as follows:

Fij = Fnn + Ftt, (2.11)

Γ ij = Rin × Ftt, (2.12)

with

Fn =







0 if δn > 0

max

(

0, −knδn − γn

dδn

dt

)

otherwise.
(2.13)

Ft = − min(|ktδt|, |µcFn|)sign(δt), (2.14)

where Ri is the ith particle radius, δn (δt) is the normal (tangential) signed distance
of overlap, µc is the friction coefficient, kn (kt) is the normal (tangential) stiffness
and γn is the damping coefficient of the mass–spring model. Here, δt is obtained by



integrating the following equation between the time at which contact occurs and the
current time:

dδt

dt
= (upi − upj) · t. (2.15)

Note that Fwall and Γ wall are treated in a similar manner by taking an infinite
radius and mass for the wall. The constants of the mass–spring model, γn, kn and kt,
are calculated thanks to two additional parameters, namely the coefficient of normal
restitution εmax and the contact time tc which are characteristic of the elastic properties
of the particles, namely

γn = −
2m∗

tc

ln(εmax), (2.16)

kn =
m∗π

2

t2
c

+
γ 2

n

4m∗
, (2.17)

where m∗ = (mimj)/(mi + mj) is the effective mass involved in the contact. Note that
the relation (2.17) between the contact time and the material stiffness is not that
predicted by Hertz theory. This is due to the present linear model used for calculating
the normal contact force (see e.g. Schäfer, Dippel & Wolf 1996). Moreover, deducing
kn from tc is somewhat unusual since kn is related to the stiffness of the considered
material. However, it has been shown in numerous studies (see Lacaze, Phillips &
Kerswell 2008, for instance) that kn can be underestimated without modification of the
dynamics of a dry system. It allows reduction of the execution time of the simulation.
For practical reasons of coupling with the fluid, we decide to fix tc, verifying that
the value of kn is large enough to consider the particles as hard. In the case of quasi-
mono-disperse configurations, it can be shown that choosing kn as a function of tc

and vice versa is equivalent since properties of particles are the same. Finally, the
tangential stiffness coefficient kt is assumed to be proportional to the normal stiffness
coefficient kn (Foerster et al. 1994). In the present work, we set kt = 0.2kn. Details
of the DEM code and validations in the case of multi-particle configurations will be
given in a future paper. In the present case, only the normal binary interaction between
a particle and a wall is considered in detail since the coupling with a fluid solver still
needs some specific attention.

2.2.2. Lubrication force modelling

As will be shown in § 3.1, the IBM may not be accurate in capturing the detailed
flow structure in the liquid film which is drained when the particles approach each
other, if the spatial resolution used to resolve the flow in the narrow gap is too low.
This can be overcome by locally refining the grid resolution in the liquid film, as
done in Ardekani & Rangel (2008) for instance. However, this strategy becomes
inefficient when multiple contacts (of the order of 103 or more) occur in the system
and even more in three-dimensional situations. Another strategy is to add a lubrication
force Flub in (2.7) (Ten Cate et al. 2002; Breugem 2010; Kempe & Fröhlich 2012;
Simeonov & Calantoni 2012; Brändle de Motta et al. 2013). Here, only the normal
component of the lubrication force is considered. It should be noted that even in
the case of tangential interaction, Kempe & Fröhlich (2012) have shown that the
tangential component of lubrication does not affect significantly the dynamics of two



interacting objects. The lubrication force used here between particle i and particle j
of velocity upi and upj and radius Ri and Rj, respectively, is (Brenner 1961)

Flub = −
6πµ(upi · n − upj · n)

δn + ηe

(

RiRj

Ri + Rj

)2

n, (2.18)

where ηe stands for an effective roughness height accounting for the mean height
of surface asperities of real particles η. This parameter is added to (2.18) in order
to mimic real particles and avoid the divergence of the force when contact occurs
(δn = 0). Depending on the type of material used for the particles, the relative mean
height of surface asperities η/R is roughly in the range [10−6; 10−3] (Joseph et al.
2001). In the following, the same range of values of ηe/R is used. It should be noted
that the conversion from η to ηe is not trivial and ηe is therefore considered as a
way of modelling the microscopic structure of the particle surface. It is however
reasonable to assume that its order of magnitude is related to the real roughness, as
a first approximation. The reader is referred to Mongruel et al. (2013) for a detailed
discussion of this point.

The definition (2.18) using ηe is motivated by observations of Davis (1987) who
shows that the presence of surface roughness does not affect the lubrication force
until the gap between surfaces is of the same order of magnitude as the mean height
of surface asperities η. The standard lubrication model obtained for perfectly smooth
surfaces therefore still holds. In addition, Lecoq et al. (2004) show that surface
roughness indeed affects contact equivalently to if it were a smooth contact for
which lubrication is only shifted by a length of the order of the roughness height.
Again, this is in line with the definition of (2.18).

In the case of particles interacting with a horizontal wall, as considered here, the
lubrication force remains similar to (2.18) but setting the radius to infinity for the
wall. The present lubrication force is switched on when the distance between particles
is such as 0 6 δn 6 R/2. This upper bound is in the range of the critical distance
hw at which the velocity of the particle decreases due to the presence of the wall
that was measured in the experiments of Joseph et al. (2001), namely 0 6 hw 6 R
for 9 6 St 6 70 (see their figure 10). We checked that the specific value of the upper
bound of the force application (within the range [1x; R]) did not affect the results
significantly (figure 6a and table 2).

3. Bouncing of a solid sphere on a wall in a viscous fluid

3.1. Dynamics of the bouncing particle and effective coefficient of restitution

The dynamics of a spherical particle of radius R and density ρp, released in a viscous
liquid initially at rest, sedimenting and then bouncing on a wall, is considered
here. To this end, the coupled equations (2.1)–(2.7) are solved, as described in the
previous section. In the range of physical parameters considered here, the fluid flow
generated by the falling particle is axisymmetric, hence the fluid flow is solved on a
two-dimensional axisymmetric grid. The simulation is performed on an (r,z)-domain
of size 10.4D × 44D, D being the particle diameter, with 80 × 880 grid points. The
spatial resolution is constant along the z direction parallel to gravity as well as in
the region 0 6 r/D 6 2.5 (D/1x = 20). For 2.5 6 r/D 6 10.4, the grid size is varied
following an arithmetic progression up to the outer wall. Note that the grid resolution
is similar to the one shown in figure 1, corresponding to D/1x = 20. Simulations
with D/1x = 10 and 40 have been performed and showed that the spatial resolution



does not affect the results (figure 6 and table 2). Free-slip boundary conditions are
imposed at all boundaries except at the bottom wall where bouncing occurs for which
a no-slip condition is applied. The particle is initially located at a distance of 4D

from the upper wall in order to ensure that the particle reaches a constant terminal
velocity VT before being influenced by the wall.

The dynamics of a sedimenting particle depends on two dimensionless parameters
which can be computed a priori, namely the density ratio ρp/ρ and the Archimedes
number Ar = ρ(ρp − ρ)gD3/µ2, ρ and µ being the fluid density and viscosity,
respectively. We set the physical properties of the particle and the fluid so that we
cover a large range of density ratios 1.7 6 ρp/ρ 6 103 and Archimedes numbers
10 6 Ar 6 2 × 104. These lead to a posteriori values of particle Reynolds numbers
10−1 6 Rep 6 160 and Stokes numbers 10−1 6 St 6 103, being defined as

Rep =
ρVTD

µ
, St =

(ρp + CMρ)VTD

9µ
, (3.1a,b)

where CM = 1/2 is the added-mass coefficient of the spherical particle. In the present
simulations, the maximum Reynolds number is 163 which is ∼20 % smaller than
the critical value ReSO = 212.58 of the Reynolds number for which a freely moving
sphere will lose rectilinear motion to attain an oblique path, as recently shown by
Fabre, Tchoufag & Magnaudet (2012) using a weakly nonlinear stability analysis.
Equivalently, the Archimedes number was less than 2.4 × 104 which is the critical
value (with the present definition) below which steady vertical particle motion with
full axisymmetry in the horizontal plane is observed, at all density ratios (Jenny,
Dusek & Bouchet 2004). Thus the use of an axisymmetric grid is relevant here.

Note that the present definition (3.1) of the Stokes number is unusual since
it accounts for the added-mass involved in the motion. This definition becomes
equivalent to the classical definition, namely St = (ρp/9ρ)Re when the density ratio
ρp/ρ is large, as in the case of solid objects in air, but not in the case of particles
or drops in liquids. In this case, Legendre et al. (2005) showed that the use of (3.1)
allows the experimental data for drops in water to fall into the range of data for
particles in air or liquids. Thus (3.1) is preferred here and will be used throughout
this work.

The evolution of the vorticity field around the particle during impact is presented
in figure 3, for the case ρp/ρ = 8, Ar = 3700 (St ≈ 53, Rep ≈ 60). Here the solid
contact parameters were set to εmax = 0.97, tc

√
g/D = 2.5 × 10−3, µc = 0.25, and the

relative effective roughness height used in the lubrication model (2.18) was set to
ηe/R = 4 × 10−4. Snapshots of the vorticity field are presented in figure 3 at different
stages of the rebound. The particle is represented by the solid volume fraction α as
defined in (2.4) which is coloured in black. In this section time is scaled by

√
D/g. At

t = 19.74, the flow field around the particle is not influenced by the wall and therefore
corresponds to the steady-state motion of the particle settling in a viscous fluid. When
the sphere gets closer to the wall (a distance of R approximately from the wall, at
t = 19.89), the fluid is pushed away from the centreline and vorticity is created at the
wall (figure 3b). Note that at this stage, the liquid film between the particle and the
wall is still accurately resolved by the fluid solver. When collision occurs at t = 20.02
(δn 6 0), the vorticity is maximum in a region close to the impact zone, indicating
strong shear stress as fluid is pushed away parallel to the wall. Once contact is
over and the particle is detaching from the wall (20.07 6 t 6 20.25), vorticity of
opposite sign emerges at the wall, the signature of the inward flow associated with
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FIGURE 3. Vorticity field around a sphere impacting a wall (ρp/ρ = 8, Ar = 3700, St ≈ 53,
Rep ≈ 60, D/1x = 20). Contours levels are set from −17.8 to 17.8 in increments of 3.9.
Here, time and vorticity are scaled by

√
D/g and

√
g/D, respectively. The vorticity field

and half-particle have been mirrored for clarity. Continuous and dashed lines correspond
to vorticity of opposite sign. (a) t = 19.74, (b) 19.89, (c) 20.02, (d) 20.07, (e) 20.17, (f )
20.25, (g) 20.48, (h) 21.06, (i) 21.27.

fluid moving back to the centreline to fill the gap between the particle and the wall.
During this stage, the initial vorticity in the wake of the falling particles preceding
bouncing decreases while vorticity of opposite sign appears around the particle. At
t = 20.48, the particle has reached its maximum height after the first bouncing and
falls back again toward the wall. Afterwards (t > 21.06), the vorticity around the
particle quickly disappears because of significant viscous dissipation.

The corresponding time evolution of the particle velocity is displayed in figure 4.
Clearly, the particle reaches a steady-state velocity, denoted VT , before being
influenced by the presence of the wall. It can be noted that before solid contact
occurs the particle velocity decreases from VT to an impact velocity, denoted VC,
which is ∼12 % less than VT in the present case. During the bouncing, the particle
velocity changes sign but does not recover its initial amplitude. The rebound velocity
is denoted VR, defined as the velocity ‘just after’ solid contact, when the particle
detaches from the horizontal wall. To be more explicit, with the present approach and
in the present problem, VR is the maximum value of the velocity of sign opposite to
VT . After the impact, a strong decrease of the velocity occurs which is followed by
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FIGURE 4. Temporal evolution of the particle vertical velocity (same case as figure 3).
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FIGURE 5. Normalized effective coefficient of restitution ε/εmax for spherical inclusions
versus the Stokes number St. Present simulations without lubrication force: ⊲, Rep ≈ 1;
△, Rep ≈ 10; ▽, Rep ≈ 100; ◭, ρp/ρ = 2.5; ◮, ρp/ρ = 8; N, ρp/ρ = 16; H, ρp/ρ = 32.
Experiments: see table 1 for key. Analytical solutions: - - - -, prediction (3.3) with κ = 1
and η/R = 10−4; · · · · · · , prediction (3.4) with εmax = 0.97, Stc = 20, δf /δ0 = 10−3; ——,
Legendre et al. (2005)’s correlation.

a milder trend. Finally, one can observe a second rebound (t ≈ 21) which is hardly
detectable from the flow visualization.

In the following, the simulations presented were performed for four fixed density
ratios ρp/ρ = 2.5, 8, 16 and 32 (Rep varying in the above-mentioned range) and three
specific particle Reynolds numbers Rep = 1, 10 and 100 (ρp/ρ and Ar varying in the
above-mentioned range). In the different cases, the Stokes number covers a range
of values within the interval [10−1, 103]. These simulations were performed without
a lubrication model (figure 5) and with the lubrication model (2.18) for different
cases (figure 6). A classical observable quantity extracted from the rebound of a
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FIGURE 6. (Colour online) Normalized effective coefficient of restitution versus the
Stokes number obtained with the present simulations using the lubrication force (2.18).
Comparison with (a) the same experimental data as figure 5 here represented by dots for
clarity (see table 2 for key), and (b) available computation data (see table 3 for key).

Reference Type of object Ambient fluid

◦ Gondret et al. (2002) Solid Glycerol–water
+ Joseph et al. (2001) sphere mixture

× Foerster et al. (1994) Solid sphere Air

• Legendre et al. (2005) Toluen drop Water

� Richard & Quéré (2000) Liquid drop Air

� Richard & Quéré (2000) Spherical balloon Glycerol–water

TABLE 1. Experimental data used in figures 5, 6(a) and 10.

particle in a viscous fluid is the effective coefficient of restitution ε, which has been
shown to depend on the mechanical properties of the particle and the Stokes number
(see Gondret et al. 2002, for instance). It should be noted that when the fluid does
not influence the dynamics and subsequent rebound of the particle, the bouncing
process is referred to as a ‘dry collision’. In such a case, the effective coefficient of
restitution ε is maximum and equal to the ‘dry coefficient of restitution’ εmax, the
latter corresponding to a solid impact between the particle and the wall.

Here, we define the effective coefficient of restitution as ε = −VR/VT (see figure 4).
Another option is to define the effective coefficient of restitution by using VC instead
of VT . In general, the measurement of the velocity just prior to impact is difficult since
the effective contact time can be significantly smaller than the temporal resolution of
the measurement apparatus (see Joseph et al. 2001; Gondret et al. 2002, for instance).
In the same way, the velocity just prior to impact may vary with the numerical time
step used in numerical simulations, especially if the fluid time step is larger than the
contact time. In most of the numerical studies, the velocity VT is therefore used as
the velocity prior to contact (see e.g. table 3). The same definition has been used in
the present study. In experiments, the measured velocity prior to contact might lie in
the range [VC VT]. With this in mind, Ardekani & Rangel (2008) used both VT and
a velocity just prior to impact in the interval [VC, VT] and did not show significant
modification of the evolution of the coefficient of restitution as a function of St (see
figure 6b). Here, we observed that the relative variation (VT −VC)/VT was in the range



ρp/ρ Rep ηe/R D/1x ∆lub St ε/εmax Comments

♦ 8 [0.1, 158] 2 × 10−4 20 R/2 [0.1, 149] [0, 0.85] Reference

∗ [8, 900] ≈1 2 × 10−4 20 R/2 [1, 100] [0, 0.73] Effect of Rep

� [7, 90] ≈10 2 × 10−4 20 R/2 [8, 86] [0, 0.84]
H [4, 90] ≈100 2 × 10−4 20 R/2 [60, 1090] [0.59, 0.98]

⋆ 8 58 2 × 10−4 20 R 55 0.63 Effect of ∆lub

8 [8, 158] 2 × 10−4 20 1x [8, 149] [0, 0.87]

N 1.7 [7, 163] 2 × 10−4 20 R/2 [1.7, 41.8] [0, 0.11] Effect of ρp/ρ

△ 2.5 [58, 140] 2 × 10−4 20 R/2 [19, 47] [0, 0.42]
H [4, 22] [121, 73] 2 × 10−4 20 R/2 [60, 183] [0.59, 0.9]
+ 32 [0.6, 98] 2 × 10−4 20 R/2 [2, 354] [0, 0.95]

• 8 58 10−5 20 R/2 55 0.59 Effect of ηe/R

◦ 8 58 10−3 20 R/2 55 0.67

◮ 8 46 2 × 10−4 10 R/2 49 0.58 Effect of D/1x

◭ 8 54 2 × 10−4 40 R/2 51 0.62

TABLE 2. Parameters used in the simulations of figure 6, namely the density ratio ρp/ρ,
particle Reynolds number Rep, effective roughness height ηe/R, grid resolution D/1x,
distance ∆lub of application of the lubrication force (2.18).

1–20 % in cases where rebound occurred. For instance, in the configuration ρp/ρ = 8,
(VT − VC)/VT ≈ 5 %, 12 % and 20 % at St = 149, 54 and 21. This would lead to
variations of the normal coefficient of restitution of approximately 20 % in the region
of Stokes numbers 106 St 6 100. This variation is in fact within the dispersion range
of the experimental data (see figure 6a). Therefore, it is reasonable to use the present
definition for the coefficient of restitution.

Values of ε/εmax obtained from the simulations without any lubrication model
are reported in figure 5 as a function of St. For comparison, we include available
experimental data obtained for the rebound of spherical particles, drops or balloons
from a wall (table 1). While the numerical results are in good agreement with
experiments for St>200, the effective coefficient of restitution is clearly overestimated
at lower St. This is attributed to the low spatial resolution of the flow field when
the gap between the particle and the wall is of the order of the grid size. As a
consequence, the film pressure stemming from the drainage of the liquid in the gap
is underestimated so the particle rebound is artificially enhanced.

This issue is overcome when one adds a lubrication force (2.18) in (2.7). Figure 6(a)
shows the results obtained with the present method when the lubrication model is
activated for various ρp/ρ and Rep. The numerical results fall within the range of
the experimental data. The use of (2.18) allows the method to reproduce the rebound
of a particle in a viscous fluid as the lubrication model compensates the inability
of the flow solver to capture the small-scale flow field in the gap during the film
drainage. We shall demonstrate in the next section that using (2.18) is critical, with
the present method, to accurately capture the velocity of approach of the particle at a
very small distance from the wall, typically a few per cent of the particle radius. Note
that the present implementation of the lubrication force (2.18) gives good results with
the present spatial resolution and physical parameters; however it may not be relevant
otherwise, in particular when a very fine grid resolution is used.



Reference u′ u′′ Stokes number

⊲ Ardekani & Rangel (2008) VT up(tcont + 0.001 s) (ρp + CMρ)VTD/(9µ)

⊳ Ardekani & Rangel (2008) VC up(tcont + 0.001 s) ρpVTD/(9µ)

▽ Breugem (2010) VT VR ρpVCD/(9µ)

△ Brändle de Motta et al. (2013) VT VR ρpVCD/(9µ)

♦ Kempe & Fröhlich (2012)† VT up(xp = ξn,0) with ρpVCD/(9µ)

ξn,0 = xp(up = u′)

� Li et al. (2012) Not given Not given ρpVCD/(9µ)

• Present study VT VR (ρp + CMρ)VTD/(9µ)

TABLE 3. Parameters used for the definition of the effective coefficient of normal
restitution, here defined as (u′′/u′)/εmax with εmax being the coefficient of restitution for a
dry collision, and the Stokes number reported in figure 6(b). We use the notation VC and
VR when the authors report the velocity just prior to and just after contact, respectively.
tcont is the time instant at which contact occurs. † In Kempe & Fröhlich (2012), ξn,0 is
the particle–wall distance chosen large enough to neglect hydrodynamic interaction of the
particle with the wall.

Figure 6(a) also shows the sensitivity of the numerical model to the different
parameters. In particular, the relative roughness height, the distance of activation of
the lubrication force, the grid resolution are varied and it is shown that simulations
fall within the range of the experimental data which underlines the robustness of
our numerical model. Finally, investigation of several density ratios and Reynolds
numbers shows a good agreement with experiments.

We compare in figure 6(b) the present results with those obtained with other
numerical methods (see table 3) using either a different fixed-grid approach or a
different model to handle small-scale interactions (lubrication, solid–solid contact).
Table 3 reports the various definitions used for the velocity just prior to impact, the
subsequent coefficient of restitution, and the Stokes number. The numerical results
all fall in the same range, in reasonable agreement with experimental data. This
gives further support that the present definitions for the Stokes number and restitution
coefficient are relevant for this problem.

3.2. Small-scale dynamics of a sphere approaching a wall

Mongruel et al. (2010) investigated experimentally the dynamics of a sphere settling
in a fluid toward a wall at a sufficiently low Stokes number so that no bouncing was
observed. They measured with an interferometric device the position and velocity of
the particle up to a small distance from the wall, typically in the range of a few
per cent of the particle radius. In their experiments, Mongruel et al. (2010) used
millimetric steel balls in various viscous fluids. The results revealed two regimes
which are characterized by a nonlinear dependence of the velocity on the distance
to the wall followed by a linear dependence just prior to contact (see figure 7 for
instance). The experimental measurement of the transition height delimiting these
two regimes was found in the range 0.1–6% of R for particles of radius in the
range 2.7–7 mm. Moreover, Mongruel et al. (2010) proposed a model based on a
second-order ordinary differential equation describing the temporal evolution of the
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FIGURE 7. (Colour online) Dimensionless velocity up/Vm as a function of the
dimensionless length δn/R: +, experiments of Mongruel et al. (2010); ——, analytical
solutions of (3.2) with various relative roughness heights 5 × 10−5 6 ηe/R6 5 × 10−4 (the
dashed line corresponds to ηe =0 as derived in Mongruel et al. 2010). (a) Vm =0.77 m s−1

and Stm = 10.9; (b) Vm = 0.98 m s−1 and Stm = 15.96. Inset: close-up view of the transition
region separating the linear and nonlinear regimes.

particle–wall distance δn, assuming that lubrication is the dominant effect. Following
Mongruel et al. (2010), we propose a modified version of their equation (3.4) using
the lubrication force (2.18) in which the effective roughness height of the particle ηe

is considered. Assuming δn/R ≪ 1 and the lubrication force (2.18) to be the dominant
hydrodynamic force, the evolution of the normalized particle–wall distance δn/R can
then be written as

− Stm

d2δn/R

dτ 2
=

R

δn + ηe

dδn/R

dτ
+ 1, (3.2)

where Stm = ρpV2
m/(ρp − ρ)gR is a modified Stokes number representative of particle

inertia in the near-wall region, Vm is a characteristic velocity of the particle and τ =
tVm/R. The value of Vm is measured a posteriori from experimental data in the linear
regime (see figure 7) via the relation up/Vm = δn/R ((3.2) of Mongruel et al. 2010).
Figure 7 shows the dimensionless velocity up/Vm of the particle approaching the wall
as a function of δn/R, in which both the experimental data of Mongruel et al. (2010)
and the solution of (3.2) for various relative effective roughness heights 5 × 10−5 6

ηe/R 6 5 × 10−4 are shown. The model (3.2) is shown to quantitatively reproduce
the observed dynamics of the particle and in particular the transition height between
the two regimes. More precisely, the variation of the model’s solution with respect
to the effective roughness height of the particle coincides with the dispersion of the
experimental data when δn gets closer to the transition between the two regimes.

In the following, we reproduce the experiments of Mongruel et al. (2010) for which
a steel sphere (ρp = 7800 kg m−3, µp = 0.2, εmax = 0.97, R = [4; 5.25; 6.35; 7 mm])
settles in silicon oil (ρ = 978 kg m−3, µ = 0.978 kg m−1 s−1) using the present
numerical approach with the resolution and geometry used in § 3.1. We chose
ηe/R = 2 × 10−4, which corresponds to the best fit of the experimental data in
figure 7 using model (3.2). In the numerical simulation, the sphere is initially released
40 cm above the horizontal wall. Figure 8 shows the results for the dimensionless
velocity up/Vm as a function of δn/R. Simulation results are in good agreement with
experimental data. For instance, in the case reported in figure 8(b), the values of
Vm and Stm obtained in the numerical simulation (experiments) are Vm = 0.74 m s−1
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FIGURE 8. Velocity of a sphere approaching a wall as a function of the wall–sphere
distance. (a) Experiments of Mongruel et al. (2010): - · - · -, Vm = 0.28 m s−1, Stm = 2.3;
- - - -, Vm = 0.51 m s−1, Stm = 5.7; ——, Vm = 0.77 m s−1, Stm = 10.9; (· · · · · · )
Vm = 0.98 m s−1, Stm = 15.9. Present simulations: +, Vm = 0.48 m s−1, Stm = 3.9; �,
Vm =0.62 m s−1, Stm =6.4; ◦, Vm =0.74 m s−1, Stm =9.3; ×, Vm =0.81 m s−1, Stm =10.9.
(b) +, Experimental data of Mongruel et al. (2010) (Vm = 0.77 m s−1, Stm = 10.9); ◦,
present simulation (Vm = 0.74 m s−1, Stm = 9.3). For comparison, dashed and solid lines
are the solution of (3.2) using as initial condition the distance and velocity of the particle
at times corresponding to the points highlighted by an arrow for the simulation and the
experiment, respectively. The effective roughness height for the simulation was set to
ηe/R = 2 × 10−4. Insets: close-up view near the transition between the linear and nonlinear
regimes.

(0.77) and Stm = 9.3 (10.9). The discrepancy is due to a slight difference, within 4 %,
in the steady settling velocity far from the wall. Solutions of the model (3.2) are
also presented in figure 8(b). Again, quantitative agreement is obtained between the
different methods with a maximum of the error at the transition between the two
regimes.

3.3. A new model for the prediction of the effective coefficient of restitution

In this section, we propose a new model predicting the effective coefficient of
restitution ε = −VR/VT . As shown later, this model only depends on two parameters,
namely the Stokes number (3.1) and the relative effective roughness height ηe/R.
Some recent attempts have been made to predict the coefficient of restitution using
models based either on lubrication theory (elasto-hydrodynamics model, Davis et al.

1986; Barnocky & Davis 1988; mixed contact model, Yang & Hunt 2008), or on a
mass–spring analogy (Legendre et al. 2005, 2006). Solving the equations of motion
for a spherical particle approaching a wall, and assuming lubrication force to be
dominant (see e.g. (3.5) and (3.6) below), it is possible to obtain a model of effective
coefficient of restitution (see (2.3) in Yang & Hunt 2008), as

ε

εmax

= 1 +
κ

St
ln
(η

R

)

, (3.3)

where κ is a constant of O(1) and η is the mean height of surface asperities of the
sphere. Yang & Hunt (2008) extended the model (3.3) in order to account for the
viscous dissipation occurring in the liquid wells trapped between the asperities during



the contact. The mixed-contact model is written

ε

εmax

= σ +
1/εmax + σ

St
ln

(

δf

δ0

)

, (3.4)

where 0 6 σ 6 1 is a coefficient which depends on a critical Stokes number Stc

below which there is no bouncing, as σ = 1 − Stc/St, δf is the minimum approach
distance of the particle during the collision, and δ0 is a characteristic distance at which
deformation of the sphere due to lubrication effects occurs. In their paper, Yang &
Hunt (2008) reported values of Stc and δf /δ0 in the range [5, 20] and [10−4, 10−2],
respectively.

Legendre et al. (2005) performed experiments with light drops rising in a liquid
and bouncing on a wall. They modelled the possible rebound of the inclusion using
an analogy with a dissipative mass–spring system. They obtained the expression
ε/εmax = exp(−χ/St) with χ a parameter which includes the viscous effects of the
film drainage. According to their experiments, the original value of χ was estimated
to be a constant χ ≈ 14. However, it appeared that quantitative agreement with other
types of inclusion was found for χ ≈ 35.

The above-mentioned models are compared to experimental data in figure 5. In
models (3.3) and (3.4) we have set κ = 1, η/R = 10−4, and εmax = 0.97, Stc = 20,
δf /δ0 = 10−3, respectively, which are in the range of values reported in Yang &
Hunt (2008). The models (3.3) and (3.4), which are based on lubrication theory,
quantitatively reproduce experimental observation in some specific ranges of St.
However, they are not able to predict the effective coefficient of restitution for the
whole range of Stokes number. Conversely, Legendre et al. (2005)’s model is in good
agreement with experiments; however recall that it makes use of an adjusted constant.

Here we revisit both types of theory to derive a simple model which is able to
capture reasonably well the observed effective coefficient of restitution for the whole
range of Stokes number considered here (see figure 10 below). First, it can be noted
that for large Stokes number, St ≫ 1, the bouncing is similar to dry configurations. In
this regime, lubrication acts on a length scale that is small compared to the effective
roughness height of the particle. On the other hand, at relatively small Stokes number,
St 6 O(10), no bouncing occurs. Lubrication is dominant and dissipates the initial
kinetic energy of the particle before it reaches the wall. In the intermediate regime,
bouncing occurs but is largely affected by the surrounding fluid, as observed in
figure 5. In the following model, the influence of this surrounding fluid is considered
by introducing a lubrication component into two distinct stages.

The first stage starts from a characteristic time at which the particle velocity begins
to be influenced by the wall (i.e. for δn ≈ R, approximately, see figures 3 and 4 and
corresponding discussions) up to the time at which collision occurs (δn = 0). During
this stage, the particle is assumed (i) not to be deformed and (ii) to be affected by
viscous forces generated by the displacement of fluid due to the presence of the wall.
On such a length scale, O(R), lubrication is therefore supposed to act only through
dissipation of the kinetic energy but not to deform the particle. During the first stage,
the particle velocity decreases from VT to VC (see figure 4 for definition). In the
second stage, however, the particle gets deformed and bounces. During this stage, we
assume that the particle kinetic energy is converted into energy of elastic deformation
and is only partially restored into kinetic energy because some of the energy has been
dissipated by both inelastic deformation and viscous dissipation. During the rebound,
lubrication still occurs due to the drainage of the fluid on the length scale of the



Stage 1

R

Stage 2

FIGURE 9. Sketch of the bouncing of a particle split into two distinct stages as assumed
in the model derived in § 3.3: δn is the particle–wall distance; ηe is the effective roughness
height of the sphere and ξ is the deformation of the particle during contact. Deformation
is assumed to take place only during stage 2 (δn = 0).

effective roughness height ηe. One of the specific aspects of the present model is
then to consider that the elastic stress related to the deformation of the particle during
bouncing and the pressure induced by the lubricating fluid film are of the same order
of magnitude. This assumption is not straightforward and will be elaborated at the end
of this section. During the second stage, the particle velocity goes from VC to VR.

In order to estimate the ratio VC/VT , we consider that the particle, at centroid
location xp and of velocity up = upn, is moving toward a flat wall in a fluid at rest
and we assume that the particle is subject to a steady drag force which is balanced
by the buoyancy force, the added-mass force and the lubrication force Flub = Flubn
defined in (2.18) which, in the present case, becomes Flub = −6πµupR2/(δn + ηe).
The kinematic equations then become,

dxp

dt
= −up, (3.5)

(mp + CMm)
dup

dt
= Flub, (3.6)

where m is the mass of the fluid contained in a sphere of radius R and CM = 1/2
is the added-mass coefficient. Note that, strictly speaking, the added-mass coefficient
CM changes as the particle gets closer to the wall (see e.g. the discussion in Legendre
et al. 2005). In practice, CM is increased from 0.5 to 0.7 approximately when the
particle is very close to the wall. Here, however, we keep CM = 1/2 for simplicity.
Using the relation xp = R + δn, then dividing (3.6) by (3.5) in order to eliminate time,
and integrating between δn = 0 (up = VC) and δn = R (up = VT), we find the ratio
β ≡ VC/VT , namely

β ≡
VC

VT

= 1 +
1

St
ln
(ηe

R

)

, (3.7)

where we assumed that R≫ηe. Equation (3.7) is similar to the relation given by Davis
et al. (1986).

Regarding the second stage, we follow Legendre et al. (2005)’s analysis and use a
mass–spring model to describe the deformation ξ of the particle (see figure 9) where



we take into account energy loss due inelastic deformation and viscous dissipation.
Here, the deformation force is considered to be linear with ξ and hence does not
follow the Hertzian model for simplicity. This is in line with the collision model used
for our simulations. The deformation of the particle is then governed by

(mp + CMm)
d2ξ

dt2
+ (6πµR2/ηe + γn)

dξ

dt
+ knξ = 0, (3.8)

with initial conditions ξ = 0 and dξ/dt = VC when the particle impacts on the wall.
Recall that γn and kn are the damping and stiffness coefficient of the soft-sphere mass–
spring model, respectively. Here the lubrication damping term in (3.8) is inversely
proportional to the relative roughness height of the particle. Strictly speaking, this term
could vary during impact if the fluid film thickness between the two solids varies.
We assume here that this length remains of the same order during impact implying
that the lubrication force only evolves with the velocity due to the deformation of the
particle during impact, as also assumed in the model developed by Legendre et al.
(2005). Integrating (3.8) with the corresponding initial conditions gives the classical
solution ξ(t) of a damped harmonic oscillator (not shown), then using the definitions
dξ(tcont)/dt = VC (at the time of contact tcont) and dξ(tcont + τ)/dt = VR (at the time of
rebound) gives

VR = −VC exp

(

−
λτ

2m∗

)

, (3.9)

with τ being the half-period of oscillation

τ = π

√
m∗/kn

√

1 − λ2/4knm∗
, (3.10)

and where m∗ = mp + CMm and λ = 6πµR2/ηe + γn. Equation (3.10) indicates that
the larger the viscosity and/or γn, the larger τ , so that the contact time is larger
accordingly, as expected. However, recent experiments on the impact of a solid
sphere on a wall showed that the effective contact time remains finite and of the
order of the contact time predicted by Hertz theory (considering no interaction with
the surrounding fluid), in a large range of Stokes number 20 6 St 6 103 (Legendre
et al. 2006). Therefore, it is reasonable to approximate (3.10) by τ = π

√
m∗/kn.

Moreover, we further assume a balance between elastic stress of deformation and
lubrication pressure induced by the fluid film on the effective roughness height which
gives R/ηe ≈

√
kn/6πµVC. The implications of the above assumptions are discussed

at the end of the section. Using this together with (3.9) and the approximation
τ = π

√
m∗/kn, we obtain an expression for the rebound velocity VR, as a function of

the contact velocity VC,

VR

VC

= −εmax exp

(

−
π/2√
βSt

)

, (3.11)

where β is a parameter defined in (3.7) which depends on the Stokes number and
the effective roughness height. Note that (3.11) implies that β > 0 so that β varies in
the range ]0, 1]. Combining (3.7) and (3.11), we find a new model for the prediction
of the normalized effective coefficient of restitution for a colliding solid sphere in a
viscous fluid,

ε

εmax

=
−VR/VT

εmax

= β exp

(

−
π/2√
βSt

)

. (3.12)
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FIGURE 10. (Colour online) Same as figure 5 but with new model added. ♦, Present
simulations with lubrication force (2.18) for ρp/ρ = 8, ηe/R = 2 × 10−4. Experiments: other
symbols, see table 2 for key. ——, Model (3.12) with various relative roughness heights
10−6 6 ηe/R 6 10−3: ηe/R increases from the lower curve to the upper curve.

As mentioned above, this new model only depends on two parameters, namely St
and ηe/R (via β). Note that here no adjustable constant was used. The model (3.12)
is plotted in figure 10 for a range of relative roughness heights 10−6 6 ηe/R 6 10−3.
Good agreement is observed for both small and large values of the Stokes number.
Note that the sensitivity of (3.12) with respect to ηe/R is larger at moderate-to-small
Stokes numbers. This is in line with the dispersion of experimental results which is
observed to be larger at low St. Furthermore, as has been observed numerically by
Ardekani & Rangel (2008), (3.12) verifies that the effect of the roughness decreases
with increasing Stokes number.

Note that (3.12) can be rewritten as a function of the critical Stokes number Stc

below which there is no bouncing. Taking ε = 0 and using (3.7), one finds a relation
between Stc and ηe, namely Stc = ln(R/ηe). Using this relation with the range of ηe/R
reported in figure 10 gives 7 6 Stc 6 14, in reasonable agreement with the range 5 6

Stc 6 20 reported in experiments (Joseph et al. 2001; Gondret et al. 2002). However,
it must be stressed that ηe is an effective roughness height accounting for the mean
height of surface asperities of real particles η. A detailed investigation of the relation
between these parameters would require a specific study which is beyond the scope of
the present work. Finally, using this definition of Stc, (3.7) can be equivalently written
as β = (St − Stc)/St, and one can thus express ε/εmax as a function of Stc from (3.12),
namely

ε

εmax

=
(

1 −
Stc

St

)

exp

(

−
π/2√

St − Stc

)

. (3.13)

As already mentioned, the model (3.12) has been obtained by assuming (i) the
contact time τ only depends on elastic parameters and not on solid and viscous
dissipations and (ii) R/ηe ∼

√
kn/6πµVC, i.e. the elastic stress balances the pressure

induced by the lubricating film. Note that the aim of simplifications associated
with these assumptions is to derive a simple predictive model which can reproduce
the coefficient of restitution for a large range of St and with a minimum set of
non-dimensional numbers. As a result, the normalized solution (3.12) is only a



function of β and St and does not depend on the elastic properties of the particle.
Note that the solid dissipation associated with the deformation of the particle during
contact is accounted for in εmax used to scale ε. We have already discussed assumption
(i). Assumption (ii), however, needs some discussion. In particular, two other extreme
cases could have been considered to model bouncing. A first one is to assume that
lubrication effects are important enough to induce elastic deformation of the particle
prior to any solid contact.

This situation has been treated by Davis et al. (1986) for smooth particles. In this
specific case, they show that the restitution is again strongly related to St and, to a
lesser extent, to a so-called elasticity parameter which includes among other things the
elastic properties of the particle. This configuration cannot be captured by the present
model since (3.8) assumed no deformation of the particle prior to solid contact. Davis
et al. (1986)’s solution proved to be pertinent at small St and for smooth particles. On
the other hand, it is not at present clear how this solution holds for rough particles and
larger St, and therefore able to describe the experimental data reported in the literature
and discussed here. Once again, the choice made here is to consider that roughness
effects prevail over elasto-hydrodynamic deformations.

The other extreme case would be to suppose that the lubrication pressure remains
small compared to the elastic stress during solid bouncing. In that case, the solid
dissipation can be considered as dominant over the fluid dissipation on the time scale
of the solid contact, and therefore λ = γn. This would lead to a modification of the
exp term in (3.12) which would be close to unity and therefore ε/εmax = β. As this
solution slightly overestimates the experimental and numerical data, the new model
(3.12) is therefore preferred to predict the effective coefficient of restitution of the
particle bouncing in a viscous fluid.

3.4. A note on the critical distance of influence of the wall

As mentioned earlier, Joseph et al. (2001) measured in their experiments the critical
distance hw at which the velocity of the particle decreases due to the presence of the
wall, and found 06 hw 6R for 96 St6 70. Above this distance, there is no wall effect
on the particle which is moving steadily, the drag force balancing the buoyancy force.
The wall effect implies a modification of hydrodynamic forces in the system leading
to unsteady motion of the particle. Cox & Brenner (1967) show that, at moderate
Reynolds number, the correction scales as 1/h with h being the distance from the
wall, here h = δn + ηe ∼ δn at leading-order. Even if an inertial correction can be added
to this solution (Cox & Brenner 1967), we focus here on the dominant wall effect
associated with the leading-order correction. The expansion is shown to be consistent
with the lubrication theory. Therefore, in non-dimensional form, a small deviation
from steady equilibrium induced by the wall is dictated by a balance between inertia
and modified drag (or equivalently lubrication force), i.e.

St
dũp

dt̃
∼

ũp

h̃
, (3.14)

where the tilde refers to dimensionless quantities using VT and R as the velocity and
length scales respectively. Defining the critical distance hw as the distance from which
the particle starts to decelerate, a natural scaling emerges from (3.14)

hw

R
∼

1

St
. (3.15)
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FIGURE 11. Critical distance hw of influence of the wall as a function of the Stokes
number: �, experiments of Joseph et al. (2001); ——, best fit using model (3.15).

The model (3.15) is compared to the experimental measurements of Joseph et al.

(2001) in figure 11. A good agreement is observed, giving further support that hw

scales as St−1.

4. Conclusion

A simple soft-sphere IBM has been developed and used to quantitatively reproduce
experimental observations of the dynamics of a solid particle bouncing on a horizontal
wall in a viscous fluid. The proposed numerical method is based on two different
time steps considering that solid contact occurs on a time scale that is much smaller
than the fluid one. Simulations are shown to be in good agreement with available
experimental results as well as other numerical models available in the literature, for
the whole range of investigated parameters, provided that a local lubrication model is
used including an effective roughness height modelling the roughness of real particle
surfaces. Also, two models, accounting for the effective roughness length, have been
proposed here to describe a regime in which the solid particle can stick to the wall
(small Stokes number, i.e. St < 10) and a regime characterized by a bounce of the
particle (St > 10).

In the first regime, St < 10, the numerical results show that this type of fixed-grid
approach is able to accurately reproduce the approach of a sphere toward a wall, even
at a very small distance from the wall, i.e. less than a few per cent of the sphere
radius. This specific case is considered as a demanding test to validate the lubrication
force implemented in the numerical model. Moreover, the analytic model, extended
from Mongruel et al. (2010), shows that the implementation of the roughness length
allows one to predict more accurately the dynamics of the particle approaching the
wall. In the second regime, St > 10, the bouncing is characterized by an effective
coefficient of restitution which tends to the solid one for large St as already observed
in numerous experimental and numerical studies. The numerical method is shown here
to predict reasonably well this coefficient of restitution within the range of dispersion
of experimental and numerical results. The proposed restitution model allows the
reproduction of the coefficient of normal restitution observed in experiments and
numerical studies, with no adjustable constant. Moreover, the present results support
the experimental observation that the particle roughness could be responsible for the
variance of effective restitution when St decreases to Stc (see e.g. Joseph et al. 2001).



The numerical model used in this study can be easily extended to more complex
systems. It will be used in a future work to describe and characterize large-scale
dynamics of multiple interacting particles in dense packing configurations.
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