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Poly-adic filtrations, standardness, complementability and

maximality

Christophe Leuridan
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Abstract

Given some essentially separable filtration (Zn)n≤0 indexed by the non-positive

integers, we define the notion of complementability for the filtrations contained in

(Zn)n≤0. We also define and characterize the notion of maximality for the poly-

adic sub-filtrations of (Zn)n≤0. We show that any poly-adic subfiltration of (Zn)n≤0

which can be complemented by a Kolmogorovian filtration is maximal in (Zn)n≤0.

Whe show that the converse is false, and we prove a partial converse, which gener-

alizes Vershik’s lacunary isomorphism theorem for poly-adic filtrations.

Mathematics Subject Classification : 60J05.
Keywords : Filtrations indexed by the non-positive integers, product-type filtrations,
standard filtrations, complementability, maximality, exchange property.

Introduction

We fix a standard Borel probability space (Ω,A,P), namely (Ω,A) is the Borel space
associated to some Polish space. Our study focuses on filtrations indexed by the non-
positive integers, for which interesting phenomena occur near the time −∞. We work
modulo the negligible events: we say that two events B and C are almost surely equal
if P[B△C] = 0. Two sub-σ-fields B and C of A are equal modulo P (denoted by B = C
mod P) if every event of B is almost surely equal to some event of C and conversely.
Two filtrations (Fn)n≤0 and (Gn)n≤0 of (Ω,A,P) are equal modulo P if for every n ≤ 0,
Fn = Gn mod P.

To each sequence (Xn)n≤0 of random variables defined on (Ω,A,P), we associate its
natural filtration FX = (FX

n )n≤0, defined by FX
n = σ((Xk)k≤n). We call product-type

filtration any filtration that can be generated (modulo the negligible events) by some
sequence of independent random variables.

Product-type filtrations are the simplest ones to understand. It is also worthwhile to
consider filtrations sharing some weaker properties. A filtration (Fn)n≤0 of (Ω,A,P) is
called Kolmogorovian 1 when its tail σ-field

F−∞ =
⋂

n≤0

Fn

contains only events of probability 0 or 1 ; one also says that F−∞ is trivial. A filtration
(Fn)n≤0 of (Ω,A,P) has independent increments when it possesses some sequence of

1This terminology has been introduced by S. Laurent in reference to Kolmogorov’s 0− 1 law.
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innovations, i.e. a sequence (In)n≤0 of random variables such that for every n ≤ 0, Fn =
Fn−1∨σ(In) mod P, with In independent of Fn−1. Furthermore, if each random variable
In is uniform on some finite set of size rn, the filtration (Fn)n≤0 is called (rn)n≤0-adic.
To say that the innovations (In)n≤0 are uniform on some finite sets without specifying
the sizes, one says that (Fn)n≤0 is poly-adic.

Every product-type filtration is Kolmogorovian (by Kolmogorov’s 0− 1 law) and has
independent increments, but the converse is false. In particular, equalities like Fn =
Fn−1 ∨ σ(In) mod P for every n ≤ 0 (with In independent of Fn−1) and F−∞ = {∅,Ω}
mod P do not ensure that Fn = σ((Ik)k≤n) mod P for every n ≤ 0. Worse, it may
happen that (Fn)n≤0 is not a product-type filtration, meaning that no sequence of inde-
pendent random variables can generate (Fn)n≤0.

The first examples of Kolmogorovian poly-adic filtrations which are not product-
type were provided by A. Vershik in [15]. Vershik introduced the notion of standard
filtration (which coincides with the notion of product-type filtrations in the case of poly-
adic filtrations) and gave a criterion to check the standardness or non-standardness of
filtrations.

Actually, Vershik worked with decreasing sequences of measurable partitions indexed
by the non-negative integers, but this makes no difference. The notion of standardness
was translated into a probabilistic framework by M. Émery and W. Schachermayer in [6].

Most of the problems involving filtrations indexed by the non-positive integers arise
from the fact that the supremum (of σ-fields) is not distributive with regard to the
decreasing countable intersections: given a sub-σ-field F of A and a filtration (Gn)n≤0
on (Ω,A,P), the inclusion

F ∨
⋂

n≤0

Gn ⊂
⋂

n≤0

(F ∨ Gn)

may be strict modulo P. When equality holds modulo P, one says that the exchange
property (of the supremum and the intersection) holds. This is the case when F and G0

are independent. The exchange property has been studied in [16]: H. von Weizsäcker
gives necessary and sufficient conditions for the exchange property to hold. The exchange
property is involved in many situations (for example hidden Markov models, see [7]) and
the reader will not be surprised to meet it here.

The notion of immersion of filtrations plays a crucial role in this study. Let us
briefly recall some useful facts (a more complete exposition can be found in [6]). By
definition, one says that a filtration (Fn)n≤0 is immersed in a filtration (Gn)n≤0 if one of
the following equivalent conditions holds:

• Every martingale in (Fn)n≤0 is still a martingale in (Gn)n≤0.

• For every n ≤ 0, Fn ⊂ Gn and F0 is independent of Gn conditionally on Fn.

• For every n ≤ 0, and for every F0-measurable random variable X taking values in
some Polish space, the conditional laws L(X|Fn) and L(X|Gn) are almost surely
equal.

Lemma 5 in [6] shows that if (Fn)n≤0 is immersed in (Gn)n≤0, then for every n ≤ 0,
Fn = F0 ∩ Gn; therefore, (Fn)n≤0 and (Gn)n≤0 are equal modulo P as soon as F0 = G0

mod P.
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The simplest non-trivial example of immersion is produced by an independant en-
largement: if (Fn)n≤0 and (Hn)n≤0 are independent filtrations, then (Fn)n≤0 is immersed
in (Fn ∨Hn)n≤0.

We will meet another example: if (Fn)n≤0 is included in (Gn)n≤0, and if (Fn)n≤0
and (Gn)n≤0 possess a common sequence of innovations, then (Fn)n≤0 is immersed in
(Gn)n≤0.

Content of the paper

In the present paper, we consider a filtration (Zn)n≤0 on the standard Borel probability
space (Ω,A,P). Working on Polish spaces allows us to define conditional probabilities
on A (or on Z0). It also ensures that A is essentially separable, namely A can be
generated modulo P by countably many events in A (or by some real A-measurable
random variable). Equivalently, the Hilbert space L2(A,P) is separable. Therefore every
sub σ-field of A is also essentially separable.

Most of the time, we work with poly-adic filtrations. This restriction simplifies our
study, notably because of the result below provided by Vershik’s theory.

Theorem 1 (Vershik [15]). If (Zn)n≤0 is a product-type filtration such that the final
σ-field Z0 is essentially separable, then every poly-adic filtration immersed in (Zn)n≤0 is
product-type.

We introduce the notions of complementability (for filtrations indexed by the non-
positive integers) and maximality (only for poly-adic filtrations). These notions are very
close to the eponymous notions concerning 1-dimensional Brownian filtrations immersed
in a 2-dimensional Brownian filtration (see [3, 2]).

Besides, J. P. Thouvenot draw my attention to the striking analogy with the notions
of complementability and maximality that exist for a long time in ergodic theory for the
factors of an automorphism (see [12, 11]).

1. Complementability. In section 1, we study the notion of complementability.
Given a filtration included in (Zn)n≤0, we focus on the existence and the properties
of an independent complement.

Definition 2. Let (Un)n≤0 be a filtration included in (Zn)n≤0. An independent comple-
ment of (Un)n≤0 in (Zn)n≤0 is a filtration (Vn)n≤0, independent of (Un)n≤0, such that
Un ∨ Vn = Zn mod P for every n ≤ 0. One says that (Un)n≤0 is complementable in
(Zn)n≤0 if it possesses some independent complement.

Since independent enlargements of a filtration always produce filtrations in which
the initial filtration is immersed, (Un)n≤0 needs to be immersed in (Zn)n≤0 to possess
an independent complement.

Our next result shows that if (Un)n≤0 is complementable in (Zn)n≤0, then the inde-
pendent complements are isomorphic 2.

Proposition 3. Let (Un)n≤0 and (Vn)n≤0 be two independent filtrations of (Ω,A,P),
such that U0 ∨ Vn = U0 ∨ Zn mod P for every n ≤ 0. Let U be any random variable

2The definition of isomorphism of filtered probability spaces can be found in [1] or in [6].
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valued in some measurable space (E, E), generating U0, and (Pu)u∈E a regular version
of the conditional probability P given U . Then, for U(P)-almost every u ∈ E, the fil-
tered probability space (Ω,A, (Zn)n≤0,Pu) is isomorphic to the filtered probability space
(Ω,A, (Vn)n≤0,P). In particular, this result applies when (Vn)n≤0 is an independent
complement of (Un)n≤0 in (Zn)n≤0.

This result shows that if (Un)n≤0 is complementable by some product-type filtration,
then (Zn)n≤0 is product-type under Pu for U(P)-almost every u ∈ E. Furthermore,
we show that if (Zn)n≤0 is poly-adic or product-type, then every filtration which is
complementable in (Zn)n≤0 and its complement are also poly-adic or product-type.

Proposition 4. Let (cn)n≤0 be a sequence of positive integers and (Zn)n≤0 a (cn)n≤0-
adic filtration of (Ω,A,P). Let (Un)n≤0 and (Vn)n≤0 be independent filtrations such that
Un ∨ Vn = Zn mod P for every n ≤ 0. Then :

1. there exist two sequences (an)n≤0 and (bn)n≤0 of positive integers such that anbn =
cn for every n ≤ 0, (Un)n≤0 is (an)n≤0-adic and (Vn)n≤0 is (bn)n≤0-adic;

2. if (Zn)n≤0 is product-type, then (Un)n≤0 and (Vn)n≤0 are also product-type.

The second part of proposition 4 relies on Vershik’s theorem which ensures that every
poly-adic filtration immersed in some essentially separable product-type filtration is also
product-type.

In practice, the data are are two filtrations (Un)n≤0 ⊂ (Zn)n≤0 and we wonder
whether (Un)n≤0 is complementable in (Zn)n≤0. The immersion of (Un)n≤0 is the main
necessary condition. The paper focuses on the cases of poly-adic filtrations (Zn)n≤0. In
this case, proposition 4 shows that the poly-adicity of (Un)n≤0 is a necessary condition,
and proposition 4 along with proposition 3 shows that is is also necessary that (Zn)n≤0
is poly-adic conditionally to U0. In fact, we will see in section 5 (corollary 27) that the
conditional poly-adicity of (Zn)n≤0 always holds whenever (Un)n≤0 is a poly-adic filtra-
tion immersed in (Zn)n≤0. We will also see in section 5 that, similarly to standardness,
the complementability for poly-adic filtrations is an asymptotic property at time −∞
(corollary 28).

2. Maximality. In section 2, we study the notion of maximality for poly-adic filtra-
tions. We fix a sequence (an)n≤0 of positive integers.

Definition 5. Let (Un)n≤0 be an (an)n≤0-adic filtration immersed in (Zn)n≤0. One says
that (Un)n≤0 is maximal in (Zn)n≤0 if every (an)n≤0-adic filtration containing (Un)n≤0
and immersed in (Zn)n≤0 is almost surely equal to (Un)n≤0.

We show that any (an)n≤0-adic filtration immersed in (Zn)n≤0 is included in some
unique maximal filtration, which can be constructed explicitly.

Theorem 6. Let (Un)n≤0 be an (an)n≤0-adic filtration immersed in (Zn)n≤0. For every
n ≤ 0, set

U ′n =
⋂

s≤0

(Zs ∨ Un).

Then
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1. any sequence of innovations of the filtration (Un)n≤0 is still a sequence of innova-
tions ot the filtration (U ′n)n≤0.

2. (U ′n)n≤0 is the largest (an)n≤0-adic filtration containing (Un)n≤0 and immersed in
(Zn)n≤0. Thus (U ′n)n≤0 is maximal in (Zn)n≤0.

Remark 7. Applying the same procedure to (U ′n)n≤0 instead of (Un)n≤0 does not yield
anything new: for every n ≤ 0,

⋂

s≤0

(Zs ∨ U ′n) = U ′n.

Note that this is a true equality, and not only an equality modulo P.

Theorem 6 provides many characterizations of maximality.

Corollary 8. Let (Un)n≤0 be an (an)n≤0-adic filtration immersed in (Zn)n≤0. Let U be
a random variable taking values in some measurable space (E, E) such that σ(U) = U0

mod P, and (Pu)u∈E a regular version of the conditional probability P given U . Consider
the statements:

1. (Un)n≤0 is maximal in (Zn)n≤0.

2. For every n ≤ 0, Un =
⋂

s≤0(Zs ∨ Un) mod P.

3. U0 =
⋂

s≤0(Zs ∨ U0) mod P.

4. For U(P)-almost every u ∈ E, Pu is trivial on Z−∞.

Then (1) ⇐⇒ (2) ⇐⇒ (3) ⇐= (4).

Moreover, if for every s ≤ 0, Zs is (Pu)u∈E-separable (there exists some sub-σ-field
Hs of Z0, generated by some countable family of events, such that U(P)-almost every
u ∈ E, Zs = Hs mod Pu), then the implication (3) =⇒ (4) also holds.

Note that the inclusions below always hold:

U0 ⊂ Z−∞ ∨ U0 ⊂
⋂

s≤0

(Zs ∨ U0).

Thus condition (3) can be decomposed into the following two subconditions:

• (3a) the inclusion Z−∞ ⊂ U0 mod P,

• (3b) the exchange property for the σ-field U0 and the filtration (Zs)s≤0.

Conditions (3b) and (4) above are nothing but a reformulation in our set-up of conditions
(a) and (e) in theorem 1 of [16]. The implication (4) =⇒ (3) does not follow from
theorem 1 of [16], but it is easily proved, so we prove it directly. The partial converse
(3) =⇒ (4) under the additional assumption of (Pu)u∈E-separability of the σ-fields Zs

is more involved and follows from the implication (a) =⇒ (e) in theorem 1 of [16]. We
will not use it in the rest of the paper.

Note that the (Pu)u∈E-separability of a sub-σ-field G of A is much stronger than
the essential separability of G under Pu for U(P)-almost every u ∈ E. Moreover, the
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(Pu)u∈E-separability is not implied by the P-separability (a counterexample is given in
the Annex).

The characterization given in corollary 8 provides a necessary condition for a poly-
adic filtration to be complemented by some Kolmogorovian filtration.

Corollary 9. Let (Un)n≤0 be an (an)n≤0-adic filtration immersed in (Zn)n≤0. If (Un)n≤0
can be complemented by some Kolmogorovian filtration, then (Un)n≤0 is maximal in
(Zn)n≤0.

Corollary 8 shows also that the notion of maximality is invariant by extraction of
subsequences.

Corollary 10. Let (Un)n≤0 be a poly-adic filtration immersed in (Zn)n≤0. Let (tn)n≤0
be any subdivision of Z−. Then (Un)n≤0 is maximal in (Zn)n≤0 if and only if (Utn)n≤0
is maximal in (Ztn)n≤0.

Indeed, this directly follows from the equalities Ut0 = U0 and
⋂

m≤0

(Ztm ∨ Ut0) =
⋂

s≤0

(Zs ∨ U0).

3. Counter-examples to the converse of corollary 9. The converse of corollary 9
is false, and we give two counter-examples in section 3.

The first counter-example is the randomised dyadic split-words process, a variant of
the dyadic split-words process introduced by M. Smorodinsky in [13], which was inspired
by Vershik’s example 3 in [15]. Poly-adic split-words processes have been studied by
S. Laurent [8] and G. Ceillier [4]. The second counter-example, which uses finite fields,
is a variant of an example given in [5], which was inspired by unpublished notes of
Tsirelson [14].

To prove that these filtrations actually provide counter-examples, we use proposi-
tions 3 and 4, together with the implication (4) =⇒ (1) of corollary 8.

4. Kantorovitch - Rubinstein pseudo-metrics. Although the converse of corol-
lary 9 is false, a partial converse holds. The proof of this result involves some properties
of Kantorovitch - Rubinstein metrics, that we establish in section 4.

5. Poly-adic filtrations and piecewise complementability In section 5, we work
with two poly-adic filtrations (Un)n≤0 and (Zn)n≤0, the former being immersed in the
latter.

First, we show in lemma 24 that for every sequence (Un)n≤0 of innovations of (Un)n≤0,
one can construct a sequence (Vn)n≤0, independent of U0 such that ((Un, Vn))n≤0 is a
sequence of innovations of (Zn)n≤0.

Lemma 24 has interesting consequences (see corollary 27 and corollary 28 to have
precise statements):

• conditionally on U0, the filtration (Zn)n≤0 is poly-adic;

• the complementability of (Un)n≤0 in (Zn)n≤0 is an asymptotic property at time
−∞;
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• if we worked with filtrations indexed by the positive integers instead of the non-
positive integers, then (Un)n≥1 would necessarily be complementable in (Zn)n≥1.

Lemma 24 is also used together with the results of section 4 to prove the main result
of section 5, which is the following partial converse of corollary 9.

Theorem 11. Let (Un)n≤0 be a maximal filtration in some poly-adic filtration (Zn)n≤0.
There exists some subdivision (tn)n≤0 of Z− such that the extracted filtration (Utn)n≤0
can be complemented by some product-type filtration in the filtration (Ztn)n≤0.

Theorem 11 generalizes Vershik’s lacunary isomorphism theorem (see [15]) in the case
of poly-adic filtrations: indeed, one can take Un = {∅,Ω} and an = 1 for all n ≤ 0. Yet,
our theorem cannot be easily deduced from Vershik’s lacunary isomorphism theorem.

In the light of the counter-examples given in section 3, theorem 11 shows that the
notion of complementability is not invariant by extraction of subsequences, unlike the
notion of maximality (corollary 10).

1 Complementability

1.1 Proof of proposition 3

We refer the reader to [1] or [6] for the definition of isomorphisms.

For every n ≤ 0, choose two random variables Vn and Zn which generate respectively
Vn and Zn (modulo P). As U0 ∨ Vn = U0 ∨ Zn mod P, one gets P-almost surely Zn =
fn(U, Vn) and Vn = gn(U,Zn), where fn and gn are some measurable functions. These
equalities hold Pu-almost surely for U(P)-almost every u ∈ E.

Besides, the independence of U and V0 entails that, for almost every u ∈ E, the law
of V0 under Pu coincides with the law of V0 under P.

Call E′ the set of all u ∈ E such that:

1. V0 has the same law under Pu as under P.

2. for all n ≤ 0, Zn = fn(U, Vn) Pu-almost surely.

3. for all n ≤ 0, Vn = gn(U,Zn) Pu-almost surely.

Then U(P)(E′) = 1.

Now, fix u ∈ E′. Denote by L0(V0,P) the space of all real V0-measurable random
variables and L0(V0,P) its quotient by P-almost sure equality. Define L0(Z0,Pu) by the
same way.

Since V0 generates V0, every real V0-measurable random variable has the same law
under Pu as under P. Thus the inclusion map from L0(V0,P) to L0(Z0,Pu) induces an
injective morphism (for the composition with Borelian functions from R

N to R) Ψ from
L0(V0,P) to L0(Z0,Pu).

The last point to be proved is that for every n ≤ 0, Ψ maps L0(Vn,P) onto L0(Zn,Pu).
The inclusion Ψ(L0(Vn,P)) ⊂ L0(Zn,Pu) follows from the Pu-almost sure equalities
Vn = gn(U,Zn) = gn(u, Zn). The reverse inclusion follows from the Pu-almost sure
equalities Zn = fn(U, Vn) = fn(u, Vn).
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1.2 Proof of proposition 4

First, we establish the following characterization of (cn)n≤0-adic filtrations.

Lemma 12. Let (Zn)n≤0 be a filtration of (Ω,A,P). For every n ≤ 0, fix a real random
variable Rn which generates Zn. The following statements are equivalent:

1. The filtration (Zn)n≤0 is (cn)n≤0-adic.

2. For every n ≤ 0, almost surely, the conditional law L(Rn|Zn−1) is uniform on
some finite set with size cn.

Proof. Fix n ≤ 0.

If Zn = Zn−1 ∨ σ(In) mod P, where In is independent of Zn−1 and uniform on
[[1, cn]] = [1, cn] ∩ N, then there exists some measurable maps fn and gn such that
Rn = fn(Rn−1, In) and In = gn(Rn) almost surely. Almost surely, L(Rn|Zn−1) is the
push-forward by fn(Rn−1, ·) of the uniform law on [[1, cn]] ; conversely, the uniform law
on [[1, cn]] is the push-forward by gn of L(Rn|Zn−1). Hence L(Rn|Zn−1) is uniform on
some finite set with size cn.

Conversely, assume that L(Rn|Zn−1) is almost surely the uniform law on some
random finite set with size cn. Note X1 < . . . < Xcn the atoms of this conditional
law in increasing order. The random variables X1, . . . , Xcn are Zn−1-measurable, and
Rn ∈ {X1, . . . , Xcn} almost surely. Note In the unique index i ∈ [[1, cn]] such that
Rn = Xi. Then for every i ∈ [[1, cn]],

P[In = i|Zn−1] = P[Rn = Xi|Zn−1] = 1/cn,

so In is independent of Zn−1 and uniform on [[1, cn]]. Moreover, Zn = Zn−1 ∨ σ(In)
mod P, since In is Zn-measurable (modulo the negligible events) and Rn = XIn almost
surely.

We now prove Proposition 4.

Proof. Fix n ≤ 0, and let Un and Vn be real random variables generating Un and Vn

(modulo P). By independence of Un and Vn, one has almost surely

L((Un, Vn)|Zn−1) = L(Un|Un−1)⊗ L(Vn|Vn−1).

But since (Un, Vn) generates Zn (modulo P), the conditional law L((Un, Vn)|Zn−1) is
almost surely uniform on some finite set Cn with size cn.

Hence the laws L(Un|Un−1) and L(Vn|Vn−1) are almost surely uniform on some finite
sets An and Bn such that An ×Bn = Cn. The sizes of the sets An and Bn are indepen-
dent random variables whose product equals cn almost surely, so they are almost surely
constant. Call an and bn these constants.

Lemma 12 shows that filtrations (Un)n≤0 and (Vn)n≤0 are respectively (an)n≤0-adic
and (bn)n≤0-adic. But these filtrations are immersed in (Zn)n≤0. Thus Vershik’s theorem
(recalled in the introduction) ensures that if (Zn)n≤0 is product-type, then (Un)n≤0 and
(Vn)n≤0 are also product-type.
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2 Maximality

2.1 Proof of theorem 6

We begin with a general result involving two (an)n≤0-adic filtrations, one immersed in
the other.

Lemma 13. Let (Un)n≤0 and (Xn)n≤0 be (an)n≤0-adic filtrations, with (Un)n≤0 immersed
in (Xn)n≤0. Then every sequence of innovations for the filtration (Un)n≤0 is still a
sequence of innovations for the filtration (Xn)n≤0.

Proof. Let (Un)n≤0 be any sequence of innovations for the filtration (Un)n≤0. By com-
posing each Un with some deterministic bijection, one may assume that Un is uniform
on [[1, an]] = [1, an] ∩N. By immersion of (Un)n≥0 in (Xn)n≥0, one almost surely has

L(Un|Xn−1) = L(Un|Un−1) = Unif([[1, an]]),

so Un is independent of Zn−1.

Now, let (Xn) be some sequence of innovations for the filtration (Xn)n≤0, taking
values in the sets ([[1, an]])n≤0. For each n ≤ 0, choose a random variable ξn generating
Xn (modulo P). As Un is Xn-measurable and Xn = σ(ξn−1)∨σ(Xn) mod P, there exists
some measurable function hn from R × [[1, an]] to [[1, an]] such that Un = hn(ξn−1, Xn)
almost surely. Thus,

L(Un|Xn−1) = hn(ξn−1, ·)
(

Unif([[1, an]])
)

a.s..

Hence, almost surely, the map hn(ξn−1, ·) is some permutation of [[1, an]] and Xn =
hn(ξn−1, ·)

−1(Un). The equalities Xn = σ(ξn−1) ∨ σ(Xn) = σ(ξn−1) ∨ σ(Un) mod P

show that (Un)n≤0 is a sequence of innovations for the filtration (Xn)n≤0.

We now prove theorem 6.

Proof. One directly checks the inclusions U ′n−1 ⊂ U ′n and Un ⊂ U ′n ⊂ Zn ∨ Un = Zn.
This shows that (U ′n)n≤0 is a filtration containing (Un)n≤0 and contained in (Zn)n≤0.

Let (Un)n≤0 be a sequence of innovations for the (an)n≤0-adic filtration (Un)n≤0. By
assumption and by immersion of (Un)n≤0 in (Zn)n≤0, Un is uniform on some finite set
An of size an, and

L(Un|Zn−1) = L(Un|Un−1) = Unif(An),

so Un is independent of Zn−1 and a fortiori of U ′n−1. Thus, the exchange property applies
to the σ-field σ(Un) and the filtration (Zs ∨ Un−1)s≤n−1, so

U ′n =
⋂

s≤n−1

(Zs ∨ Un) =
⋂

s≤n−1

(Zs ∨ Un−1 ∨ σ(Un)) mod P

=
⋂

s≤n−1

(Zs ∨ Un−1) ∨ σ(Un) mod P

= U ′n−1 ∨ σ(Un) mod P.

Hence (Un)n≤0 is a sequence of innovations for the filtration (Un)n≤0, which is therefore
(an)n≤0-adic.
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To prove that (U ′n)n≤0 is immersed in (Zn)n≤0, one has to check that for every
n ≤ 0 and every random variable R ∈ L1(U ′0), E[R|Zn] = E[R|U ′n]. Since U ′0 = U ′n ∨
σ(Un+1, . . . , U0), one only needs to consider random variables that can be written R =
R1R2 where R1 is U ′n-measurable and R2 ∈ L1(σ(Un+1, . . . , U0)). In this case,

E[R|Zn] = R1E[R2|σ(Zn)] = R1E[R2],

which is U ′n-measurable, yielding the equality to be proved.

Now, let (Xn)n≤0 be any (an)n≤0-adic filtration containing (Un)n≤0 and immersed
in (Zn)n≤0. One checks that (Un)n≤0 is immersed in (Xn)n≤0. Lemma 13 shows that
(Un)n≤0 is a sequence of innovations for the filtration (Xn)n≤0. Thus, for every s ≤ n ≤ 0,

Xn = Xs ∨ σ(Us+1, . . . , Un) ⊂ Zs ∨ Un mod P.

Taking intersection over s, one gets Xn ⊂ U ′n, which completes the proof.

2.2 Proof of corollaries 8 and 9

First, we prove corollary 8, keeping the notations of theorem 6.

Proof. The equivalence between the statements 1 (maximality of (Un)n≤0), 2 (equality of
the filtrations (Un)n≤0 and (U ′n)n≤0) and 3 (equality of U0 and U ′0) follows from theorem 6
and the classical fact that two filtrations, one immersed in the other, are equal as soon
as their final σ-fields coincide (see [6], lemma 5).

Proof of implication (4) =⇒ (3). Assume that for U(P)-almost every u ∈ E, Pu is
trivial on Z−∞. We have to show that U ′0 ⊂ U0 mod P.

Let X ∈ L1(U ′0). For each s ≤ 0, fix some real random variable Rs which generates
Zs (modulo P). Since U ′0 ⊂ Zs∨U0 = σ(Rs, U) mod P, one has X = fs(Rs, U) P-almost
surely for some measurable function fs.

Call E′ the set of all u ∈ E such that Pu is trivial on Z−∞ and for every n ≤ 0,
Pu[X = fs(Rs, u)] = 1. Then U(P)(E′) = 1.

Fix u ∈ E′. The random variable

Xu = lim sup
s→−∞

fs(Rs, u)

is Z−∞-measurable, hence it is Pu-almost surely constant. Since X = Xu Pu-almost
surely, X = Eu[X] Pu-almost surely.

Hence, X = E[X|U0] P-almost surely, which yields the inclusion U ′0 ⊂ U0 mod P.

Proof of implication (3) ⇒ (4) under the additional hypothesis. Assume that
the σ-fields (Zs)s≤0 are (Pu)u∈E-separable and that condition (3) holds. Condition (3)
provides (3a) the inclusion Z−∞ ⊂ U0 mod P and (3b) the exchange property

Z−∞ ∨ U0 =
⋂

s≤0

(Zs ∨ U0).

The implication (a) ⇒ (d) in theorem 1 of [16] ensures that the σ-field Z−∞ is also
(Pu)u∈E-separable: there exists some sub-σ-field H of Z−∞, generated by countably
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many events, such that for U(P)-almost every u ∈ E, Z−∞ = H mod Pu. Thus, one
has to show that for U(P)-almost every u ∈ E, for every A ∈ H, Pu(A) ∈ {0, 1}. Since
H is generated by countably many events, one needs only to check the property on these
generating events, so one can exchange the order of for ‘U(P)-almost every u ∈ E’ and
‘for every A ∈ H’. So let A ∈ H. As H ⊂ Z−∞ and Z−∞ ⊂ U0 mod P, one gets
PU (A) = E[1A|U0] = 1A P-almost surely, which completes the proof.

Now, we prove corollary 9.

Proof. Assume that (Un)n≤0 possesses some independent complement (Vn)n≤0 in (Zn)n≤0.
For all s ≤ 0, U0 ∨ Zs = U0 ∨ Us ∨ Vs = U0 ∨ Vs mod P. Therefore, independence of U0

and V0 yields the exchange property

U0 ∨ V−∞ =
⋂

s≤n

(U0 ∨ Vs) =
⋂

s≤0

(U0 ∨ Zs) mod P.

If (Vn)n≤0 is Kolmogorovian, statement (3) of corollary 8 holds, proving the maximality
of (Un)n≤0.

Alternative proof: let U be a random variable valued in some measurable space
(E, E), generating U0, and (Pu)u∈E a regular version of the conditional probability P

given U . If (Vn)n≤0 is Kolmogorovian, then proposition 3 shows that for U(P)-almost
every u ∈ E, (Zn)n≤0 is Kolmogorovian under Pu. The maximality of (Un)n≤0 follows,
by the implication (4) =⇒ (1) of corollary 8.

3 Counter-examples to the converse of corollary 9

In this section, we give two examples where some poly-adic filtration is maximal in some
other poly-adic filtration, but does not possess any independent complement. Both
constructions rely on the following statement.

Proposition 14. Let (Zn)n≤0 be a (cn)n≤0-adic product-type filtration, and (Un)n≤0
be an (an)n≤0-adic filtration immersed in (Zn)n≤0. Let U be a random variable taking
values in some measurable space (E, E) such that σ(U) = U0 mod P, and (Pu)u∈E a
regular version of the conditional probability P given U . If, for every u in some subset
B ⊂ E such that P[U ∈ B] > 0, the filtration (Zn)n≤0 is not product-type under Pu, then
(Un)n≤0 is not complementable in (Zn)n≤0.

Proof. The non-complementability is proved by reduction to the absurd: if the filtration
(Un)n≤0 had an independent complement (Vn)n≤0 in (Zn)n≤0, then (Vn)n≤0 would be
product-type by proposition 4. But at the same time, proposition 3 would tell that for
U(P)-almost every u, the filtration (Vn)n≤0 seen under P is isomorphic to (Zn)n≤0 seen
under Pu, leading to a contradiction.

Keeping the notations of proposition 14, we also know by corollary 8 that if, for
U(P)-almost every u, the filtration (Zn)n≤0 is Kolmogorovian under Pu, then (Un)n≤0 is
maximal in (Zn)n≤0.

So we will get counterexamples by randomising suitably processes generating Kol-
mogorovian but not product-type filtrations.
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3.1 Randomised dyadic split-words process

The main result of this subsection, namely proposition 17, relies on the non-standardness
of the dyadic split-word filtration (see [13] or [4]).

For each n ≤ 0, call En the set of all subsets of [[1, 2|n|+1]] with 2|n| elements. The

size of En is cn =
(

2|n|+1

2|n|

)

.

Definition 15. A randomised dyadic split-words process on the alphabet {a, b} is an
inhomogeneous Markov chain (Wn, In)n≤0 such that for every n ≤ 0

1. (Wn, In) is uniform on {a, b}2
|n|

× En,

2. In is independent of (Wn−1, In−1),

3. Wn is obtained from Wn−1 by keeping the letters of index in In.

More precisely, if Wn−1 = (x1, . . . , x2|n|+1) and if i1 < . . . < i2|n| are the elements of In,
then Wn = (xi1 , . . . , xi

2|n|
).

Such a process exists and is unique in law, since the family of uniform laws on the sets
({a, b}2

|n|
× En)n≤0 form an entrance law for the transitions given by conditions 2 and

3. Conditions 2 and 3 show that (In)n≤0 is a sequence of innovations for the filtration
(FW,I)n≤0, which is therefore (cn)n≤0-adic.

Note that Wn contains one half of the letters of Wn−1, like in the dyadic split-words
process. But here, this half is given by an arbitrary subsets of [[1, 2|n|+1]] with 2|n|

elements, whereas in the dyadic split-words process Wn is the left half (i.e. the letters of
index in [[1, 2|n|]]) the right half (i.e. letters of index in [[2|n| + 1, 2|n|+1]]) of Wn−1.

Actually, the randomised dyadic split-words process is close to the erased-words pro-
cess studied by S. Laurent, in which each word is obtained from the previous one by
deleting a letter whose position is chosen uniformly. Laurent [10, 9] proved that the
erased-words filtration is product-type. From this, one can deduce the following result.

Proposition 16. The randomised dyadic split-words filtration is product-type.

Proof. Since the randomised dyadic split-words filtration is poly-adic, it suffices to show
that it can be immersed in product-type filtration, thanks to Vershik’s theorem recalled in
the introduction. We actually show that it can be immersed in some filtration extracted
from the erased-words filtration.

By definition, the erased-words process on the alphabet {a, b} is an inhomogeneous
Markov chain (Mn, ηn)n≤0 such that for every n ≤ 0,

1. (Mn, ηn) is uniform on {a, b}|n| × [[1, |n|+ 1]],

2. ηn is independent of (Mn−1, ηn−1),

3. Mn is obtained from Mn−1 by deleting the ηn-th letter.

From a erased-words process (Mn, ηn)n≤0, one gets a randomised dyadic split-words by
settingWn =M−2|n| and by calling In the subset of [[1, 2|n|+1]] corresponding to the letters
of M−2|n−1| that are kept to form the word M−2|n| . This subset is some deterministic
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function of the 2|n|-uple (η−2|n|+1+1, . . . , η−2|n|). One checks that the filtration (FW,I
n )n≤0

is immersed in (FM,η

−2|n|)n≤0: the only difference between these two filtrations is that
the former “forgets” the order in which letters are deleted during each time interval
[[−2|n|+1 + 1,−2|n|]], and this order is independent of the process (Wn, In)n≤0.

Proposition 17. For every n ≤ 0, denote by Un the partition of [[1, 2|n|+1]] defined by
Un = {In, [[1, 2

|n|+1]] \ In}. Then U = (Un)n≤0 is a sequence of independent random
variables. For U(P)-almost every u ∈ E, the filtration FW,I is Kolmogorovian but not
product-type under Pu = P[·|U = u]. Therefore, the (cn/2)n≤0-adic filtration (FU )n≤0 is
maximal but not complementable in (FW,I)n≤0.

Proof. Let Fn be the set of all partitions of [[1, 2|n|+1]] with two blocks of size 2|n|. The
map hn : A 7→ {A, [[1, 2|n|+1]] \ A} from En to Fn is two to one: each element of Fn

possesses exactly two preimages in En, namely the block containing 1 and its complement
in [[1, 2|n|+1]]. Since Un = hn(In), the random variables (Un)n≤0 are independent and
generate a (cn/2)n≤0-adic filtration.

Set Vn = 1[1/∈In]. Then Vn is uniform on {0, 1}, Un and Vn are independent and
σ(Un, Vn) = σ(In). The independence of the sequences (Un)n≤0 and (Vn)n≤0 shows that
the filtration (FU

n )n≤0 is immersed in (FI)n≤0 and in (FW,I)n≤0.

To prove proposition 17, it is sufficient, by corollary 8 and proposition 14, to check
that, conditionally on U , the process (Wn, In)n≤0 generates a dyadic split-words filtra-
tion, which is known to be Kolmogorovian but not standard (see [13]). For this purpose,
we use at each time n ≤ 0 the random variables Un+1, . . . , U0 to modify the order of the
letters of Wn. The idea is to put on the left the letters Wn(i) for i belonging to the same
block as 1, and to put on the right the other ones.

For every n ≤ 0 and j ∈ [[1, 2|n|]], denote by Un(j) the block of the partition Un which
contains j and Rn(j) = Card(Un(j)∩ [1, j]) the rank of j in the block Un(j). One defines
by recursion a random map Σn from [[1, 2|n|]] to [[1, 2|n|]] by Σ0 = id{1} and, for every
n ≤ 0 and j ∈ [[1, 2|n|+1]],

Σn−1(j) = Σn(Rn(j)) + 2|n|11/∈Un(j).

A recursion shows that the maps Σn are permutations. Indeed, if Σn is a random
permutation of [[1, 2|n|]], the recursion formula shows that Σn−1 induces an increasing
bijection from Un(1) to [[1, 2|n|]] and an increasing bijection from [[1, 2|n|+1]] \ Un(1) to
[[2|n| + 1, 2|n|+1]]. Thus Σn−1 is a random permutation of [[1, 2|n|+1]]. Morevoer, since
Un(1) = Σ−1n−1([[1, 2

|n|]]), the knowledge of Σn−1 enables us to recover Un and Σn. A
recursion shows that for every n ≤ 0, σ(Σn) = σ(Un+1, . . . , U0).

Since Wn, (Un+1, . . . , U0) and (Vn+1, . . . , V0) are independent, and Wn is uniform on
{a, b}2

|n|
, one gets that the random variable W ′n = Wn ◦ Σ−1n is uniform on {a, b}2

|n|

and that W ′n, (Un+1, . . . , U0) and (Vn+1, . . . , V0) are independent. Thus, the process
(W ′n, Vn)n≤0 is independent of the process (Un)n≤0. Furthermore, for every n ≤ 0,

FU
0 ∨ FW ′,V

n = FU
0 ∨ FW,I

n mod P.

By Proposition 3, for U(P)-almost every u, the filtration (FW,I)n≤0 seen under Pu is
isomorphic to the natural filtration of (W ′n, Vn)n≤0 seen under P.

Let us check that (W ′n, Vn)n≤0 is a dyadic split-words process. For each n ≤ 0, denote
by Φn(1) < . . . < Φn(2

|n|) the elements of In. Then for every r ∈ [[1, 2|n|]],

Σn−1(Φn(r)) = Σn(r) + 2|n|Vn.
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For every i ∈ [[1, 2|n|]],
Σn−1(Φn(Σ

−1
n (i))) = i+ 2|n|Vn,

hence, as Wn =Wn−1 ◦ Φn,

W ′n(i) = Wn(Σ
−1
n (i))

= Wn−1(Φn(Σ
−1
n (i)))

= Wn−1(Σ
−1
n−1(i+ 2|n|Vn))

= W ′n−1(i+ 2|n|Vn).

In other words, W ′n is the left half or the right half of W ′n−1 according that Vn equals
0 or 1, which shows that (W ′n, Vn)n≤0 is a dyadic split-words process. The proof is
complete.

Let us mention a question raised by the referee. The problem of identifying sequences
(tn)n≤0 satisfying theorem 11, namely such that that the extracted filtration (Utn)n≤0
is complementable in (FW,I

tn )n≤0, arises naturally. Since conditionally on U , the process
(Wn, In)n≤0 generates an (rn)n≤0-adic split-words filtration, with rn = 2tn−tn−1 , propo-
sition 14 shows that an (rn)n≤0-adic split-words filtration needs to be product-type for
(Utn)n≤0 to be complementable in (FW,I

tn )n≤0. This necessary condition is equivalent to

∑

n≤0

tn − tn−1

2|tn|
= +∞,

thanks to the known characterization of standard filtrations among split-words filtrations
(see [4]). Is this condition also sufficient?

3.2 An example using finite fields

In this subsection, we randomise a process studied in [5], which was inspired by an
example constructed by Tsirelson [14].

Let q ≥ 5 be a prime number or some power of a prime number. For every n ≤ 0,
denote by Kn the field with q2

|n|
elements. Let (Zn)n≤0 be a sequence of independent

random variables such that for every n ≤ 0,

Z2n−1 = En is uniform on Kn and Z2n = (Xn, Yn) is uniform on K2
n.

Set c2n−1 = q2
|n|

and c2n = q2
|n|+1

. The filtration (FZ
n )n≤0 is (cn)n≤0-adic.

For every n ≤ 0, Kn−1 can be seen as a 2-dimensional vector space on Kn. Since
the random variable Z2n−2 = (Xn−1, Yn−1) is uniform on K2

n−1, it can be identified with
some random variable (An, Bn, Cn, Dn) uniformly distributed on K4

n. Set

U2n−1 = 0Kn
and U2n = Yn −AnX

4
n −BnX

3
n − CnX

2
n −DnXn − En ∈ Kn.

The random variables Xn and Yn are uniform on Kn, and FZ
2n−1, Xn, Yn are independent,

whereas AnX
4
n+BnX

3
n+CnX

2
n+DnXn+En is FZ

2n−1∨σ(Xn)-measurable. Hence U2n is
independent of FZ

2n−1∨σ(Xn) and uniform on Kn, so (Xn, U2n) is independent of FZ
2n−1

and uniform on K2
n.

Therefore, the random variables (Un)n≤0 are independent, the filtration (FU
n )n≤0 is

immersed in (FZ
n )n≤0 and (an)n≤0-adic with a2n−1 = 1 and a2n = q2

|n|
for every n ≤ 0.
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Proposition 18. Set U = (Un)n≤0 and see U as a random variable taking values in some
product space E. For U(P)-almost every u ∈ E, the filtration (FZ

n )n≤0 is Kolmogorovian
but not product-type under Pu = P[·|U = u]. Therefore, the (an)n≤0-adic filtration
(FU

n )n≤0 is maximal but not complementable in (FZ
n )n≤0.

Proof. Let υ denote the Haar measure of the additive group G =
∏

n≤0Kn. By con-
struction, the sequence of random variables (Yn − AnX

4
n − BnX

3
n − CnX

2
n −DnXn)n≤0

is FX,Y
0 -measurable, whereas the random variable (En)n≤0 is independent of FX,Y

0 with
law υ. By difference, (U2n)n≤0 is also independent of FX,Y

0 with law υ.

Since the sequence (U2n−1)n≤0 is deterministic, the process (Z2n)n≤0 = ((Xn, Yn))n≤0
is independent of the random variable U = (Un)n≤0. Besides, the process (Z2n−1)n≤0 is
a deterministic function of the processes (Z2n)n≤0 and (Un)n≤0, since for every n ≤ 0,

Z2n−1 = En = (Yn −AnX
4
n −BnX

3
n − CnX

2
n −DnXn)− U2n.

Let (Pu)u∈E be a regular version of the conditional probability P given U . The law of
(Zn)n≤0 under Pu is described as follows: the random variables (Z2n)n≤0 are independent
and uniform on the sets (K2

n)n≤0, and for every n ≤ 0, Z2n−1 is a deterministic function
of (Z2n−2, Z2n) given by

Z2n−1 = (Yn −AnX
4
n −BnX

3
n − CnX

2
n −DnXn)− u2n.

Under Pu, the filtration (FZ
2n)n≤0 is product-type so the asymptotic σ-field FZ

−∞ is
trivial. Yet, we prove below that (FZ

n )n≤0 is not product-type by negating the I-cosiness
criterion, like in [5].

Let (Z ′n)n≤0 and (Z ′′n)n≤0 be copies defined on some probability space (Ω,A,Pu)
of the process (Zn)n≤0 seen under Pu, such that both natural filtrations (FZ′

n )n≤0 and
(FZ′′

n )n≤0 are immersed in (FZ′

n ∨ FZ′′

n )n≤0. The key step of the proof is the inequality,
for every n ≤ 0,

Pu[Z
′
2n 6= Z ′′2n|F

Z′

2n−2 ∨ FZ′′

2n−2] ≥ (1− 4/q2
|n|
)1[Z′

2n−2
6=Z′′

2n−2
].

Indeed, with obvious notations, the point Z ′2n = (X ′n, Y
′
n) belongs to the graph of the

polynomial function x 7→ A′nx
4 + B′nx

3 + C ′nx
2 + D′nx + E′n + u2n and the similar

statement holds for Z ′′2n = (X ′′n, Y
′′
n ). If (A′n, B

′
n, C

′
n, D

′
n) 6= (A′′n, B

′′
n, C

′′
n, D

′′
n), the two

graphs intersect in at most four points, and X ′n must be the first component of one of
these points to make the equality Z ′2n = Z ′′2n possible. But since (FZ′

n )n≤0 is immersed
in (FZ′

n ∨FZ′′

n )n≤0, the random variable X ′n is uniform on Kn under Pu[·|F
Z′

2n−2∨FZ′′

2n−2].
The inequality follows.

A recursion yields, for every n ≤ 0,

Pu[Z
′
0 6= Z ′′0 |F

Z′

2n ∨ FZ′′

2n ] ≥
∏

n−1≤k≤0

(1− 4/q2
|k|
)1[Z′

2n 6=Z′′
2n]
.

If (Z ′n)n≤0 and (Z ′′n)n≤0 are independent until some deterministic time N > −∞, one
gets (by taking the expectations in both sides and passing to the limit as n→ −∞)

Pu[Z
′
0 6= Z ′′0 ] ≥

∏

k≤0

(1− 4/q2
|k|
) > 0,

which shows that the random variable Z0 does not satisfy the I-cosiness criterion.
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Hence, the filtration (FZ
n )n≤0 is Kolmogorovian but not product-type under the prob-

abilities Pu. By corollary 8 and proposition 14, (FU
n )n≤0 is maximal but not comple-

mentable in (FZ
n )n≤0.

4 Kantorovitch - Rubinstein pseudo-metrics

Kantorovitch - Rubinstein (or Wasserstein L1) metrics play an important role in Vershik’s
theory, and one will not be surprised to meet them here. We recall the definition, and
we establish some lemmas that will be used in section 5.

Throughout the present section, (E, E) denotes a measurable space and d a measur-
able bounded pseudo-metric on (E, E). We call ∆ the diameter of (E, d).

If µ and ν are probability measures on (E, E), one defines the Kantorovitch - Rubin-
stein pseudo-distance between µ and ν by

d(µ, ν) = inf
π∈Π(µ,ν)

∫

E2

d(x, y)dπ(x, y),

where Π(µ, ν) is the set of all probability measures on E2 with marginals µ and ν. One
gets a pseudo-metric on the set of all probability measures on (E, E).

We begin with an elementary lemma.

Lemma 19. Let µ, ν be probability measures on E carried by some finite set {c1, . . . , cℓ}.
Then

d(µ, ν) ≤ ∆
ℓ

∑

k=1

[µ(ck)− ν(ck)]+ = ∆
ℓ

∑

k=1

[ν(ck)− µ(ck)]+ =
∆

2

ℓ
∑

k=1

|µ(ck)− ν(ck)|.

Proof. One can build on a same probability space two random variables X and Y taking
values in {c1, . . . , cℓ}, with respective laws µ and ν, such that

P[X = Y ] =

ℓ
∑

k=1

µ(ck) ∧ ν(ck).

Since d(X,Y ) ≤ ∆ 1[X 6=Y ], one has

d(µ, ν) = E[d(X,Y )] ≤ ∆P[X 6= Y ] = ∆
ℓ

∑

k=1

(µ(ck)− µ(ck) ∧ ν(ck)).

The statement follows.

Most of the time, it is hard to calculate d(µ, ν). But when µ and ν are isobarycenter
of n Dirac masses, the following classical result holds.

Lemma 20. Let a1, . . . , an and b1, . . . , bn be points in E, non necessarily distinct.

If µ =
1

n

n
∑

k=1

δak and ν =
1

n

n
∑

k=1

δbk , then d(µ, ν) = min
σ∈Sn

1

n

n
∑

k=1

d(ak, bσ(k)).
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Proof. Let υ be the uniform law on [[1, n]]. One checks that the image by the map (i, j) 7→
(ai, bj) of any probability measure γ ∈ Π(υ, υ) is a probability measure π ∈ Π(µ, ν), and
conversely: it suffices to set

γ(i, j) = π(ai, bj)/|{(k, l) ∈ [[1, n]]2 : (ak, bl) = (ai, bj)}|.

But the probability measures of Π(υ, υ) are exactly the measures given by γ(i, j) =
mi,j/n, where M = (mi,j)1≤i,j≤n is some bistochastic matrix. Hence

d(µ, ν) = inf
M

1

n

∑

1≤i,j≤n

d(ai, bj)mi,j ,

where M ranges in the set of all bistochastic matrices. The quantity to minimize depends
linearly of M . As the set of all bistochastic matrices is the convex hull of the permutation
matrices, the greatest lower bound above is achieved at some permutation matrix.

In the proof of theorem 11, we will use approximation of probability measures by
isobarycenters of Dirac measures.

Lemma 21. Assume that (E, d) is precompact (for every ε > 0, one can cover E by
finitely many balls of radius ε). To any probability measure µ on a (E, E), one can
associate a family of points (rn,k(µ))n≥k≥1 of E, which depends measurably on µ, such
that the probability measures

νn =
1

n

n
∑

k=1

δrn,k(µ)

satisfy d(µ, νn) → 0 as n→ +∞.

Proof. By precompacity of E, one can build a sequence of finite sets Fn = {cn,1, ..., cn,ℓ(n)}
such that

1 << ℓn << n and Dn := sup
x∈E

d(x, Fn) → 0 as n→ +∞.

For each n ≥ 1, we define a map fn from E to E by

fn(x) = cn,Kn(x) where Kn(x) = min{k ∈ [[1, ℓn]] : d(x, cn,k) = d(x, Fn)}.

Since fn is measurable and d(x, fn(x)) ≤ Dn for every x ∈ E, one has d(µ, fn(µ)) ≤ Dn.
Set (denoting by ⌊·⌋ the integer part)

fn(µ) =
∑

k∈[[1,ℓn]]

αn,kδcn,k
and νn =

∑

k∈[[1,ℓn]]

⌊nαn,k⌋

n
δcn,k

+
(

1−
∑

k∈[[1,ℓn]]

⌊nαn,k⌋

n

)

δcn,1
.

But by lemma 19, d(fn(µ), νn) ≤ ∆ℓn/n. Hence, d(µ, νn) → 0 as n→ +∞.

Besides, νn is the isobarycenter of n Dirac masses, in points rn,1, . . . , rn,n given by
repeating as many time as necessary cn,1, ..., cn,ℓ(n). These points depend of µ only
through the values µ[Kn = k] for k ∈ [[1, ℓn]], and the formulas above show that this
dependence is measurable.

We will apply lemma 21 to the space [0, 1] endowed with various pseudo-metrics. If
we worked only with the usual metric, it would have been sufficient to define rn,k(µ) as
the image of (2k − 1)/(2n) by the quantile function of µ.

The pseudo-metrics that we will introduce on [0, 1] are provided by the compositions
of some distance with some bounded Borel map. The next lemma will be useful in this
context.
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Lemma 22. Let H be some bounded Borel map from [0, 1] to some metric space (E, d).
One defines a pseudo-distance dH on [0, 1] by dH(r, r′) = d(H(r), H(r′)). Take two
probability measures µ and ν on [0, 1], and call H(µ) and H(ν) the images by H of µ
and ν. Then dH(µ, ν) = d(H(µ), H(ν)).

Proof. When π ∈ Π(µ, ν), the image of π by the map (x, y) 7→ (H(x), H(y)) belongs to
Π(H(µ), H(ν)). To prove the equality above, one only needs to show that any coupling
of Π(H(µ), H(ν)) can be obtained by this way.

Let (U, V ) be a random variable taking values in E × E with marginals H(µ) and
H(ν). We want to build some random variable (X,Y ) such that (H(X), H(Y )) = (U, V )
almost surely. A possible way to do this is to use an auxiliary random variable T ,
independent of (U, V ) and uniform on ]0, 1[, and to set

(X,Y ) = (F←(U, T ), G←(V, T )),

where F (u, ·) and G(v, ·) are the conditional distribution functions of X given H(X) = u
and of Y given H(Y ) = v, and F←(u, ·) and G←(v, ·) their left-continuous pseudo-
inverses: for every t ∈]0, 1[,

F←(u, t) = inf{x ∈ R : F (u, x) ≥ t} and G←(v, t) = inf{x ∈ R : G(v, x) ≥ t}.

Indeed, by independence of U and T , one gets for PU -almost every u ∈ E,

L
(

F←(U, T )
∣

∣U = u
)

= L
(

F←(u, T )
)

= L
(

X
∣

∣H(X) = u
)

.

Since U and H(X) are equidistributed, (F←(U, T ), U) and (X,H(X)) are also equidis-
tributed. In particular, the law of F←(U, T ) is µ and H(F←(U, T )) = U almost surely.
The same arguments work with V .

We will also use the following fact.

Lemma 23. Assume that (E, d) is a precompact metric space. Let (µn)n≥1 and µ be
probability measures on E, (endowed with the Borel σ-field). If µn → µ narrowly, then
d(µ, µn) → 0.

Proof. Assume that µn → µ weakly, and fix ε > 0. Then (E, d) can be covered by finitely
many open balls with radius ε. Call c1, . . . , cℓ their centers. For each k ∈ [[1, ℓn]], denote
by Dk the set of all atoms of the image of µ by the map x 7→ d(ck, x) from E to R. Call
D the union of the Dk. Then D is countable, and for every r ∈ R+ \D, the union of the
spheres S(ck, r) is µ-negligible.

Fix r ∈ [ε, 2ε] \D. The Borel sets

A1 = B(c1, r), A2 = B(c2, r) \B(c1, r), . . . , Aℓ = B(cℓ, r) \
ℓ−1
⋂

k=1

B(ck, r)

form a partition of E and for every k ∈ [[1, ℓn]], ∂Ak ⊂ S(c1, r) ∪ · · · ∪ S(ck, r) so
µ(∂Ak) = 0 and µn(Ak) → µ(Ak) as n→ +∞.

Define a map f from E in E by f(x) = ck if x ∈ Ak. Then d(x, f(x)) ≤ r for every
x ∈ E, so for every probability measure ν on E, d(ν, f(ν)) ≤ r ≤ 2ε. Call ∆ the diameter
of (E, d). By lemma 19, one gets for every n ≥ 1,

d(µ, µn) ≤ 4ε+ d(f(µ), f(µn)) ≤ 4ε+
∆

2

ℓ
∑

k=1

|µ(Ak)− µn(Ak)|.

Hence d(µ, µn) ≤ 5ε eventually, which completes the proof.
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5 Poly-adic filtrations and piecewise complementability

In the whole section, we fix a (cn)n≤0-adic filtration (Zn)n≤0, and an (an)n≤0-adic filtra-
tion (Un)n≤0 immersed in (Zn)n≤0.

5.1 Completing the innovations

First, we show that any sequence of innovations of (Un)n≤0 can be completed to provide
a sequence of innovations of (Zn)n≤0.

Lemma 24. Let (Un)n≤0 be a sequence of innovations of (Un)n≤0, taking values in the
sets ([[1, an]])n≤0. Then for every n ≤ 0, one has cn = anbn with bn ∈ N. Furthermore,
there exists some sequence (Vn)n≤0 of uniform random variables on the sets ([[1, bn]])n≤0
such that for every n ≤ 0, Zn = Zn−1∨σ(Un, Vn) mod P, with Zn−1, Un, Vn independent.
In particular, ((Un, Vn))n≤0 is a sequence of innovations of the filtration (Zn)n≤0.

Remark 25. Actually, the proof below shows that the the statement given in lemma 24
reduce to results involving two-times filtrations.

Proof. We fix n ≤ 0 and we look at the filtrations at times n and n− 1. By immersion
of (Un)n≥0 in (Zn)n≥0,

L(Un|Zn−1) = L(Un|Un−1) = Unif([[1, an]]) a.s.. (1)

In particular, Un is independent of Zn−1.

Let (Zn)n≤0 be some sequence of innovations of the filtration (Zn)n≤0, taking values
in the sets ([[1, cn]])n≤0. For each n ≤ 0, fix some real random variable Rn which generates
Zn modulo P.

Since Un is Zn-measurable and Zn = σ(Rn−1) ∨ σ(Zn) mod P, there exists some
measurable function fn from R× [[1, cn]] to [[1, an]] such that Un = fn(Rn−1, Zn) almost
surely. But Rn−1 is Zn−1-measurable whereas Zn is independent of Zn−1 and uniform
in [[1, cn]], hence

L(Un|Zn−1) = fn(Rn−1, ·)
(

Unif([[1, cn]])
)

a.s.. (2)

Equalities 1 et 2 show that for every u ∈ [[1, an]],

1

an
=

1

cn
|fn(Rn−1, ·)

−1(u)| a.s..

Thus cn = anbn with bn ∈ N, and for Rn−1(P)-almost every r ∈ R, the map fn(r, ·) is
bn to one: each element v ∈ [[1, an]] has exactly bn antecedents.

For each z ∈ [[1, cn]], denote by gn(r, z) the rank of z among the bn antecedents of
f(r, z). Then the map z 7→ (fn(r, z), gn(r, z)) is a bijection from [[1, cn]] to [[1, an]] ×
[[1, bn]], which depends measurably on r. Set Vn = gn(Rn−1, Zn). The random variable
(Un, Vn) is obtained from Zn by applying the random bijection (fn(Rn−1, ·), gn(Rn−1, ·)),
which depends only on Rn−1. Hence (Un, Vn) is independent of Rn−1 and uniform on
[[1, an]]× [[1, bn]], and Zn = Zn−1 ∨ σ(Un, Vn) mod P. We are done.

Remark 26. The sequence (Vn)n≤0 provided by lemma 24 is independent of U ′0 (with
the notations of theorem 6).
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Proof. Fix n ≤ 0. By theorem 6, U ′0 = U ′n ∨ σ(Un+1, . . . , U0) mod P. Since Zn,
(Un+1, . . . , U0) and (Vn+1, . . . , V0) are independent and since U ′n ⊂ Zn, (Vn+1, . . . , V0) is
independent of U ′0, which completes the proof.

5.2 Consequences of lemma 24

We now mention two consequences of lemma 24 which are interesting by themselves
although they will not be used in the proof of theorem 11.

Corollary 27. Let X be a random variable taking values in some measurable space
(E, E) such that σ(X) = U0 mod P, and (Px)x∈E a regular version of the conditional
probability P given X. Then for X(P)-almost every x, the filtration (Zn)n≤0 is (bn)n≤0-
adic under Px, where cn = anbn for every n ≤ 0.

Proof. Let (Un)n≤0 be a sequence of innovations of (Un)n≤0, taking values in the sets
([[1, an]])n≤0, and (Vn)n≤0 the sequence of the complements of innovations provided by
lemma 24.

By assumption, the σ-field generated by the random variables (Un)n≤0 is included
(and possibly strictly included) in U0, which equals σ(X) modulo P. Therefore, Un =
un(X) almost surely for some measurable function un from E to [[1, an]].

For each n ≤ 0, let Rn be a real random variable such that σ(Rn) = Zn mod P.
Since σ(Vn) ⊂ σ(Rn) ⊂ σ(Rn−1, Un, Vn) mod P, there exist some measurable functions
ϕn from R to [[1, bn]] and ψn from R× [[1, an]]× [[1, bn]] to R such that Vn = ϕn(Rn) and
Rn = ψn(Rn−1, Un, Vn) almost surely.

Since Vn = ϕn(ψn(Rn−1, Un, Vn)) almost surely, the independence of Rn−1, Un and
Vn shows that for Rn−1(P)-almost every r ∈ R and for every u ∈ [[1, an]], the map
ϕn ◦ ψn(r, u, ·) is the identity map on [[1, bn]], so ψn(r, u, ·) is injective.

Furthermore, for X(P)-almost every x,

Rn = ψn(Rn−1, un(X), Vn) = ψn(Rn−1, un(x), Vn) Px-almost surely.

The equality σ(Rn−1) ∨ σ(X) = σ(Rn−1, Un, Un+1, . . . , U0) mod P and the indepen-
dence of the random variables Rn−1, Un, Vn, Un+1, . . . , U0 show that Vn is independent
of σ(Rn−1) ∨ σ(X), so Rn−1 and Vn are independent conditionally on X. Denoting by
Lx(·|Zn−1) the conditional law given Zn−1 computed under Px, this yields

Lx(Rn|Zn−1) = ψn(Rn−1, un(x), ·)(Unif([[1, bn]])) Px-almost surely.

Thus, for X(P)-almost every x, the law Lx(Rn|Zn−1) is Px-almost surely uniform on
some finite set with size bn. The result follows by lemma 12.

Lemma 24 and remark 25 have also two striking consequences. The first one shows
that in the world of poly-adic filtrations indexed by the non-positive integers, comple-
mentability is an asymptotic property at time −∞. The second one shows that it is not
worth studying complementability in the world of poly-adic filtrations indexed by the
positive integers.

Corollary 28.

1. (Un)n≤0 is complementable in (Zn)n≤0 if and only if (Un)n≤−1 is complementable
in (Zn)n≤−1.
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2. If the filtrations were indexed by the positive integers, then (Un)n≥1 would automat-
ically be complementable in (Zn)n≥1.

Proof. 1. Let U0 be an innovation of the filtration (Un)n≤0 at time 0. Remark 25
provides a random variable V0, independent of U0, such that (U0, V0) an innovation
of the filtration (Zn)n≤0 at time 0. If (Vn)n≤−1 is an independent complement of
(Un)n≤−1 in (Zn)n≤−1, then the filtration (Vn)n≤0 given by V0 = V−1 ∨ σ(V0) is
an independent complement of (Un)n≤0 in (Zn)n≤0. The converse does not require
any proof.

2. If the filtrations were indexed by the positive integers, we could set U0 = Z0 =
{∅,Ω} to get poly-adic filtrations indexed by the non-negative integers. Fixing a
sequence (Un)n≥1 of innovations of (Un)n≥0 and a sequence (Vn)n≥1 of complements
of innovations in (Zn)n≥0, we would get an independent complement of (Un)n≥1 in
(Zn)n≥1 by setting Vn = σ(V1, . . . , Vn) for every n ≥ 1.

5.3 Proof of theorem 11

We now assume that the (an)n≤0-adic filtration (Un)n≤0 is maximal in the (cn)n≤0-adic
filtration (Zn)n≤0. We have to build a subdivision (tn)n≤0 of Z− such that the filtration
(Utn)n≤0 is complementable by some product-type filtration in the filtration (Ztn)n≤0.

For convenience, we fix some sequence (Rn)n≤0 of random variables taking values in
[0, 1] such that for every n ≤ 0, Rn generates Zn (modulo P).

By hypothesis, the filtration (Un)n≤0 possesses some sequence (Un)n≤0 of innova-
tions, uniform on the sets ([[1, an]])n≤0, and lemma 24 provides a sequence (Vn)n≤0 of
uniform random variables on the sets ([[1, bn]])n≤0, independent of (Un)n≤0, such that
((Un, Vn))n≤0 is a sequence of innovations of the filtration (Zn)n≤0.

With the help of the properties established in section 4, we are going to modify
the sequence (Vn)n≤0 to get another sequence (V ′n)n≤0, independent of (Un)n≤0 and
equidistributed as (Vn)n≤0, such that the natural filtration of ((Un, V

′
n))n≤0 coincides

with the one of (Zn)n≤0 at infinitely many times.

We are led to group the innovations by intervals of time: For s ≤ t ≤ 0, set Us,t =
(Us+1, . . . , Ut) and Vs,t = (Vs+1, . . . , Vt). These random variables take values in the finite
sets

As,t =
∏

s<k≤t

[[1, ak]] and Bs,t =
∏

s<k≤t

[[1, bk]].

Since Zt = Zs∨σ(Us,t, Vs,t) mod P, there exists some measurable map hs,t from [0, 1]×
As,t ×Bs,t to [0, 1] such that Rt = hs,t(Rs, Us,t, Vs,t). Moreover, as Vs,t is independent of
Zs ∨ σ(Us,t), the conditional law of Rt given Zs ∨ σ(Us,t) is

L(Rt|Zs ∨ σ(Us,t)) =
1

|Bs,t|

∑

v∈Bs,t

δhs,t(Rs,Us,t,v).

We start by proving the following result.

Lemma 29. Let t ≤ 0 and Ct = At,0 × Bt,0. Let H be some Borel map from [0, 1] into
[0, 1]Ct . Endow R

Ct with the norm | · |1 defined as the average of the absolute values of
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the components and [0, 1]Ct with the induced metric d1. Define the pseudo-metric dH on
[0, 1] by dH(r, r′) = |H(r)−H(r′)|1. As s→ −∞, the conditional law L(Rt|Zs∨σ(Us,t))
tends almost surely to the conditional law L(Rt|Ut) for the Kantorovitch - Rubinstein
pseudo-metric associated to dH .

Proof. By corollary 8, we know that for every t ≤ 0,

Ut =
⋂

s≤0

(Ut ∨ Zs).

But for every s ≤ t, Ut = Us ∨ σ(Us,t), hence Ut ∨ Zs = Zs ∨ σ(Us,t). The reverse
martingale convergence theorem ensures that, for every Borel set B ⊂ [0, 1],

P[Rt ∈ B|Zs ∨ σ(Us,t)] → P[Rt ∈ B|Ut] a.s. as s→ −∞.

Therefore, for every Borel set B ⊂ [0, 1]Ct ,

P[H(Rt) ∈ B|Zs ∨ σ(Us,t)] → P[H(Rt) ∈ B|Ut] a.s. as s→ −∞.

Applying this statement to all products of intervals ]−∞, r] with r rational shows that
almost surely, the distribution function of the law L(H(Rt)|Zs ∨ σ(Us,t)]) tends to the
distribution function of L(H(Rt)|σ(Ut)) at any continuity point of the latter, so

L(H(Rt)|Zs ∨ σ(Us,t)]) −→ L(H(Rt)|Ut) narrowly.

All these probability measures are are carried by [0, 1]Ct , so lemma 23 shows the conver-
gence for the Kantorovitch - Rubinstein metric associated to d1. The result follows by
lemma 22.

We now have all the tools to prove theorem 11. We abbreviate the notations by
using the symbol

M

to denote the arithmetic means: for any finite family (xk)k∈F of
real numbers,

M

k∈F

xk =
1

|F |

∑

k∈F

xk.

We are going to build a subdivision (tn)n≤0 of Z− and a sequence (V ′tn−1,tn)n≤0 of
random variables taking values in the sets (Btn−1,tn)n≤0 such that for every n ≤ 0,
(Utn−1,tn , V

′
tn−1,tn) is independent of Ztn−1

, distributed as (Utn−1,tn , Vtn−1,tn) and

Ztn = Ztn−1
∨ σ(Utn−1,tn , Vtn−1,tn) mod P.

We proceed recursively and start with t0 = 0.

Let n ≤ 0. Assume that tn < · · · < t0 and V ′tn,tn+1
, . . . , V ′t−1,t0 are already con-

structed. Then
Z0 = Ztn ∨ σ(Utn,t0 , V

′
tn,t0) mod P.

Thus
R0 = hn(Rtn , Utn,t0 , V

′
tn,t0) a.s.,

where hn is some measurable map from [0, 1] × Ctn to [0, 1]. Define a measurable map
Hn from [0, 1] to [0, 1]Ctn by

Hn(r) = (hn(r, u, v))(u,v)∈Ctn
.
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Lemma 29 applied to Hn shows that almost surley, as s → −∞, the conditional law
L(Rtn |Zs ∨ σ(Us,tn)) tends to the conditional law L(Rtn |Utn) for the Kantorovitch -
Rubinstein pseudo-metric associated to dHn

. But we already know that

L(Rtn |Zs ∨ σ(Us,tn)) =
M

v∈Bs,tn

δhs,t(Rs,Us,tn ,v)
.

Besides, by lemma 21, the law L(Rtn |Utn) can be approached in pseudo-metric dHn
by

some discrete law

M

v∈Bs,tn

δΥn(v),

where the Υn(v) are σ(Utn)-measurable random variables. Hence, almost surely

dHn

(

M

v∈Bs,tn

δhs,tn (Rs,Us,tn ,v)
,
M

v∈Bs,tn

δΥn(v)

)

→ 0.

Since the pseudo-metrics dHn
are bounded 1, the convergence holds also in L1(P). We

choose tn−1 < tn so that the random variable

Dn = dn

(

M

v∈Btn−1,tn

δhtn−1,tn
(Rtn−1

,Utn−1,tn
,v) ,

M

v∈Btn−1,tn

δΥn(v)

)

fulfills E[Dn] ≤ 2n−1. But by lemma 20,

Dn = min
σ∈S(Btn−1,tn

) Mv∈Btn−1,tn

dn
(

htn−1,tn(Rtn−1
, Utn−1,tn , v) , Υn(σ(v))

)

.

Choose a random permutation Σn, measurable for Ztn−1
∨ σ(Utn−1,tn), which achieves

the minimum above, and set V ′tn−1,tn = Σn(Vtn−1,tn). Then V ′tn−1,tn is Ztn-measurable,
independent of Ztn−1

∨ σ(Utn−1,tn) and uniform on Btn−1,tn , which enables the recursive
construction.

With these notations, one gets

Dn =
M

v∈Btn−1,tn

dn
(

htn−1,tn(Rtn−1
, Utn−1,tn , v) , Υn(Σn(v))

)

= E
[

dn
(

Rtn ,Υn(V
′
tn−1,tn)

)
∣

∣Ztn−1
∨ σ(Utn−1,tn)

]

a.s.,

since Rtn = htn−1,tn(Rtn−1
, Utn−1,tn , Vtn−1,tn) a.s.. But

dn
(

Rtn ,Υn(V
′
tn−1,tn)

)

=
∣

∣Hn(Rtn)−Hn(Υn(V
′
tn−1,tn))

∣

∣

1

= E

[

∣

∣hn(Rtn , Utn,0, V
′
tn,0)− hn(Υn(V

′
tn−1,tn), Utn,0, V

′
tn,0)

∣

∣

∣

∣

∣
Ztn

]

,

since (Utn,0, V
′
tn,0) is independent of FZ

tn and uniform on Kn.

Set Sn = hn(Υn(V
′
tn−1,tn), Utn,0, V

′
tn,0). Then Sn is U0∨FV ′

0 -measurable and E[Dn] =

E
[

|R0 − Sn|
]

tends to 0 as n→ −∞. Therefore, R0 is U0 ∨ FV ′

0 -measurable modulo P.

The filtration (Utn ∨FV ′

tn )n≤0 is not only included but also immersed in the filtration
(Ztn)n≤0, since these two filtrations admit a common sequence of innovations, namely
((Utn−1,tn , V

′
tn−1,tn))n≤0. Since their final σ-field coincide modulo P, these filtrations are

almost surely equal.
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Annex: About the notion of (Pu)u∈E-separability

Let U be a random variable on (Ω,A,P), taking values in some measurable space (E, E),
and (Pu)u∈E a regular version of the conditional probability P given U . According to [16],
one says that a sub-σ-field G of A is (Pu)u∈E-separable if there exists some sub-σ-field
H of G, generated (without completion) by some countable family of events, such that
for U(P)-almost every u ∈ E, G = H mod Pu. This definition leads to two remarks.

1. The σ-field H introduced above does not depend of u ∈ E, so the (Pu)u∈E-
separability is not equivalent to the essential separability under Pu for U(P)-almost
every u ∈ E.

2. For every events A and B, the equality P(A△B) = 0 implies Pu(A△B) = 0 for
U(P)-almost every u ∈ E, but this U(P)-almost sure subset of E may depend on
A and B.

Actually, the (Pu)u∈E-separability is a rather subtle notion. It is much stronger than the
essential separability under Pu for U(P)-almost every u ∈ E, and it is not implied by
the essential separability under P. We give now a counterexample illustrating these two
statements.

A good way to identify the problem is to consider the simplest example where the ex-
change property fails. Thus, we take i.i.d uniform random variables (Zn)n≤0 on {−1, 1},
we set Un = Zn−1Zn for every n ≤ 0, U = (Un)n≤0 and Pu = P[·|U = u]. One checks
that the whole sequence (Zn)n≤0 can be recovered from U and from any random variable
Zn; moreover, Z0 is independent of U , so the inclusion

σ(U) ∨ FZ
−∞ ⊂

⋂

n≤0

(σ(U) ∨ FZ
n ) = FZ

0

is strict modulo P.

By Kolmogorov’s 0-1 law, the tail σ-field FZ
−∞ is trivial (thus essentially separable)

under P. But FZ
−∞ is not trivial anymore under the probability measures Pu: given

U = u, there are exactly two possibilities for the sequence (Zn)n≤0, each occurs with
probability 1/2, and the choice among these two possibilities is asymptotic at time −∞.
More precisely, Z0 = limn→−∞ Znun+1 · · ·u0 Pu-almost surely and Z0 generates FZ

−∞

modulo Pu. Thus Pu has two atoms on FZ
−∞, each one of mass 1/2, so FZ

−∞ is still
essentially separable under Pu.

Yet, FZ
−∞ is not (Pu)u∈E-separable. By von Weizsäcker’s theorem [16], this statement

follows from the (Pu)u∈E-separability of each FZ
n and from the fact that the exchange

property fails.

Here is a direct proof (without using von Weizsäcker’s theorem) of the non-(Pu)u∈E-
separability of FZ

−∞. Let H be a sub-σ-field of FZ
−∞, generated (without completion) by

some sequence (An)n≥0 of events. For every n ≥ 0, P(An) is 0 or 1.Replacing some An

by their complement does not modify the σ-field generated by the sequence (An)n≥0, so
one may assume that P(An) = 1 for every n ≥ 0. Since n varies in a countable set, one
gets that for U(P) almost every u, Pu(An) = 1 for every n ≥ 0, therefore H is trivial
under Pu, so H cannot be equal to FZ

−∞ modulo Pu.
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