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Comparison of reverberation chamber
shapes inspired from chaotic cavities

K. Selemani, J.-B. Gros, E. Richalot, O. Legrand, O. Picon, F. Mortessagne

Abstract— Using the knowledge gained from the wave chaos
theory, we present simple shapes of resonant cavities obtained by
inserting metallic hemispheres or caps on the walls of a
parallelelipedic cavity. The presented simulation results show a
significant improvement of the field statistical properties when
the number of hemispheres or caps increases, and the
comparison with a classical reverberation chamber geometry
shows a better homogeneity and isotropy can be attained using
these new proposed shapes.

Index Terms— Chaotic cavity, field homogeneity, field
isotropy, reverberation chamber, statistical distribution.

Therefore numerous studies on chaotic microwave cavities
have focused on topological properties and several cavity
shapes of intrinsic chaotic behavior][[B4[15]. A hybrid
approach is adopted in this paper. Although each presented
cavity is provided with a mechanical stirring system, we aim
at optimizing the intrinsic properties of the cavity shape for a
fixed position of the stirrer. The basic idea is that the
improvement of the field statistical properties for the static
cavity might result in a better operating on a stirrer rotation.

In this paper, we take advantage of the knowledge gained from
the study of chaotic cavities in various physical contexts, to

propose new RC shapes leading to improvements of the fields
properties in comparison to regular RC cavities. By means of a
finite element method, modes of a classical RC and of three

I. INTRODUCTION . . . . -
) different chaotic chambers are obtained, and their statistical
HE reverberation chambers (RCs) are used fQoperties are compared. Two chaotic RCs show remarkable
electromagnetic  compatibility ~studies or antenngearyres.

characterizationsl][2]. Their operating range of frequency is
above a minimum frequency, coined the lowest usable Il CHAOTIC MICROWAVE CAVITIES

frequency (LUF). Above the LUF, the electromagnetic fields One of the most fruitful applications of the wave chaos
are supposed to be statistically isotropic, uniform angheory to electromagnetic systems stems upon the analogy
depolarised on a stirrer rotation][8|[5]. These statistical petween the Schrédinger and Helmholtz equations in the case
requirements are naturally fulfilled by most modes of a chaotist a flat 2D cavity [6]. The Schrodinger equation being scalar,
cavity [6][7]. Indeed, in a chaotic cavity, generic modes arghe small cavity height allows the problem reduction to a 2D
ergodic (see e.g. [8] for a definition of this term in thisystem with a single field component, so that the analogy
context). Without any stirring process, each compoment gfrectly appears. Within a flat cavity parallel to plane Oxy, we

such modes displays Gaussian statistics even at low frequengyall that the Helmholtz equation for harmoBiccomponent
Thus chaotic reverberation chambers allow an effectiv@ads:

reduction of the LUF [§10].

Fields isotropy and uniformity within a standard . .
parallelepipedic RC are usually obtained thanks to a modiherek is the wavenumber. The boundary conditions on the

stirrer (a rotating metallic object of complex shape [3]). mcavity ver_tical walls areEzzo.nT_his is forma_IIy equivalent to
view of its supposedly indispensable nature to fulfil thén€ time-independent Schrod|n_ger2k§qua§|on for a quantum
requirements of a well-operating RC, the stirring phenomendp'ticle of massn and energye= 7°k’/2m in a 2D infinite

in RCs has been widely studied1[-[13]. In a chaotic poten_t|al well. Due to_thls c_o_rrespondence_, most stu_dles of
chamber, these statistical properties are a direct consequefB80tC €electromagnetic cavities were carried out using 2D

of the design without the help of any mechanical movement. SyStems 14-[16]. Although the extension of quantum
techniques to a fully vectorial Helmholtz equation is not

straightforward, a few studies of 3D cavities have shown

V2E, + k%E, =0 (1)
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similar properties17]-[19].

In the Wave Chaos theory, it is assumed that deterministic
wavefields in complex geometries can be represented and
analyzed by statistical methods. This relies on the fact that the
spatial structure of the eigenfunctions of a resonant ergodic
cavity appear to be random. According to Berry’s hypothesis
[20][8], originally proposed in the context of Quantum Chaos,
a typical mode of an irregular cavity has all the characteristics
of a Gaussian random field in the semiclassical limit (i.e. for
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high frequencies). This hypothesis can be heuristicallyositions are chosen to avoid any geometrical symmetry.
understood within the geometrical limit of rays at higiHemispheres have a radius of 15 cm and caps of 45 cm and
frequency. Indeed, for ergodic enclosures the chaoti®cm. The highest penetration depth of the caps within the
dynamics of rays leads to modelling eigenfields as eavity is of 15 cm. The first cavity, Cavity 1 (Fig. 2a), is
superposition of plane waves with fixed wavenumber buirectly inspired from the 2D cavity of Fig. 1. It comprises a
random directions and phases (an example of an ergodic mé@enisphere fixed on its wall at z = H. For the second cavity,
in a 2D chaotic cavity is shown Fig. 1a). Cavity_2 (Fig. 2b), a second hemisphere has been added on
the plane y=0. The third cavity, Cavity 3 (Fig. 2c),
——\ J] comprises two caps on the planes z=H and y = L, as well as
o one hemisphere on the x=W plane. The choice of the
geometric modifications from Cavity 1 to Cavity 3 will be
discussed later on while explaining how non-ergodic modes
1Ty A e e BN L can appear within these cavities. In these three cavities, the
@) "':i Ll‘T;N o:r;odesofaSmal I;ke(bZ)D Ca\m"vmaﬂ tboundary | SHFTING process, beyond the scope of this paper, can be insured
g conditions: (a) an ergodic mode, (b) aybouncingimwe. Y by moving one (or two) hemisphere(s) on the related. wall .
To assess the respective performances of the chaotic
Such a semiclassical analysis also leads to statistiC@Vities, the distributions of the three electric field components

predictions about the sequence of eigenfrequencies. THE examl_ned _f0f %}Ch of t_hem an_d compared to the case of a
salient feature of this approach lies in the fact that, whatevérallelepipedic cavity equipped with a mode stirrer (Fig. 2d).
the specific details of a chaotic cavity, its spectral fluctuations"® shape and location of the latter is conform to an industrial
exhibit a universal behavior. This universality underlies thBC, €xcept a global scaling factor. As for the three other
relevance of a global approach consisting in generatiﬁ@v't_'esy tr_le c_aV|ty with _the modc_e_stlrrer is stt_Jd|ed in a fixed
artificial spectra through the eigenvalues of large randofPnfiguration i. e. for a single position of the stirrer.

matrices. This is precisely the concerns of Random Matrix
Theory (RMT). The intimate connection between semiclassic
and RMT has been anticipated by the famous Bohiga
Giannoni-Schmit conjecturel] and verified many times in
various contexts [6]. Within the framework of RMT, the
Gaussian randomness of modes is directly obtained from t
statistical features of eigenvectors of random matrice:
Deviations from universal behavior are an important issue at
are equally manifested in the field distributions of modes an
in the fluctuations of the corresponding spectra. o

As an illustration in a 2D chaotic cavity, a mode showing i
clear deviation with respect to the ergodic universal behavigg) Cavity_1:with one hemisphere
of the field is depicted in Fig. 1b. This mode is often referred
as abouncing-ball mode since it is built on ray trajectories
bouncing back and forth between parallel walls. The
properties of statistical homogeneity and isotropy are therefor
not fulfilled for such modes. Due to their regular occurrence ir
the spectrum, bouncing-ball modes contribute to significan
spectral fluctuations on a large frequency range (compared f
the mean spacing between adjacent eigenfrequencies) as w
be illustrated in Section V.

In a 3D parallelepipedic cavity with defocusing parts of the
boundary, chaotic ray motion is expected. However, regularitys
of modes may subsist due to families of ray trajectories which
bounce in a plane parallel to a pair of walls. Indeed, the S@} Cavity_3: with 2 caps & 1 hemisphere ~ (d) Cavtywith a mode stirrer
called tangential modes [22] constitutethe most important
family of regular modes whose wave vector is quantized in  Fig- 2: Cavity shapes and 3D grids for field values extact
such planes. In the following sections, we will show how to
reduce their spatial and spectral influence and thus obtain ideall he first 450 modes of each cavity are obtained by using
homogeneity and isotropy for almost all modes of a chaotldFSS software. The corresponding resonant frequencies vary
RC. between 214 MHz and about 1.28 GHz. To study the field

Drawing inspiration from the 2D chaotic cavity of Fig. 1distributions, the values of the three electric field components
[23], we studied three parallelepipedic cavities of dimensiore recorded for each mode at 1001 points within the cavity
W=0.785m along (Ox), L=0.986 along (Oy) and Volume. As shown in Fig. 2, these points are taken on a 3D
H = 0.995 m along (Oz), provided with metallic hemispheredid sampling a reduced volume in the cavities. The distance
or spherical caps on their walls (Fig. 2). Hemispheres and cdpgween two adjacent lines as well as between the limits of the
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volume of use and the cavity is of 50 mm. For eacfield properties are progressively improved through the
eigenmode, the mean of the square electric field amplitude owdifications from Cavity 1 to Cavity 3.
the grid points is normalized to one. The KS test is performed with the first 450 eigenmodes of
In Section 1ll, we focus on the electric field propertiesall cavities. The results obtained for thed®dmponents of the
Using simulation results, we first consider the distribution ofigenmodes are given in Fig. 7(a)-(d) for the four cavities.
each field component and determine if a Gaussian law Tée increase of the number of zero-answers due to
folowed. We then examine the isotropy of the field©iemispheres and caps insertion clearly appears. Moreover, the
associated to the cavity resonances through a rotation of fhaussian character of the field improves with increasing
orthonormal basis. In Section IV, we propose to use tfggguency in the four cavities: whereas thecEmponents of
standard deviations of the electromagnetic field components&o largé majority of the first modes are not normally

build an indicator of the field isotropy. In Section V, we showliStributed, the opposite conclusion can be drawn after the

h
how the conclusions of the previous sections (related to spaﬂ'o?rld mode. The same tests performgd_ op and &
ponents of the modes confirm these findings.

statistics) can also be established through the spectral statisti . S
e he results obtained for the three electric field components
of the cavities: the more complex the geometry, the more

reduced the deviations from the universal behavior are summarized in Table I. The normal law is largely
u viatl univ vior. followed in Cavity 3 with a success ratio of the KS test above

89% for each electric field component when considering all
modes. The lowest ratios are related to the cavity with one
We first examine the distribution of the three electric fielgingle hemisphere. The results obtained for the two other
components for each eigenmode. The orthonormal basiscavities are similar, with a mean success ratio over the three
defined according to the cavity edges as reported in Fig. 2.damponents of 84.4% with two hemispheres and 87.3% with
a well-operating reverberation chamber, as for the ergodicstirrer; however, the cavity with a stirrer presents a higher
modes of a chaotic cavity, a normal distribution is expectdtbterogeneity of the results associated to each component, the
for each field component. success ratio varying between 81% and 90% in this case
Let us consider as an example the mode at 999MHZ"(238gainst a variation between 84% and 88% with the two
mode) for the cavity with one hemisphere (Fig. 3). Thlemispheres.
mapping of the electric field amplitude shows, while As in all cavities, most of the first modes do not pass the
comparing to the parallelepipedic cavity, that the disturbantest and the success ratio increases with the mode order, the
associated to the hemisphere is global within the cavity, asdccess ratio has been calculated by excluding the first 30
not located in the vicinity of the hemisphere. From the 100todes (in brackets in Table I). All the success ratios are then
values of the electric field components extracted along the 3fixreased. Thus, in Cavity 3, the success ratio of the KS test
grid, we build the distribution of amplitude of each fieldexceeds 92% after eliminating the fig&t modes.
component. In Fig. 3 the numerically obtained histogram for
E, is succesfully compared to a normal distribution. Tc
guantify the agreement, the Kolmogorov-Smirnov (KS) test ¢
95% confidence is used. The result of the test is O if th
histogram and the normal law match within the confidenc
interval and 1 otherwise. For the mode studied in Fig. 3, th
answer is 0. Let us now consider the mode at 994MHZz"(23(
mode) for the same cavity (Fig. 4). The regularity of the fielc
mapping indicates that this mode corresponds to a tangent
mode lying in xy plane. The associated histogram aof E
confirms this observation as it is not fitted by a norma
distribu';ion: t.he answer of the KS te.St is Lin th.is case. . Fig. 3 Electric field amplitude and associated distributddfE, component at
_The mser.tlon. of a second _hemlsphere (Fig. 2b) aims to 999MHz (233 mode) for Cavity 1 (KS=0)
eliminate this kind of tangential modes. In the case of the
228" mode (995MHz) of the cavity with two hemispheres, a
normal distribution of E is obtained (Fig. 5). Tangential
modes are however still observed, as with the™libde
corresponding to a reflection between the bottom and the tog
of the cavity (Fig. 6). The replacement of hemispheres by
caps (Fig. 2c) in the third cavity allows a reduction of facing
plane surfaces. The suppression of the reflection between th
two vertical walls orthogonal to x-axis is however insured by
inserting a hemisphere instead of a cap for stirring purpose
this hemisphere being intended to move along its related wal
while using this RC. We will see in the following that, Fig. 4 Electric field amplitude and associated distributiE, component at
according to these design principles of a chaotic cavity, the 994MHz (230" mode) for Cavity_1 (KS=1)

Ill.  FIELD DISTRIBUTIONS
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Fig. 5 Electric fleld amplltude and associated distribuddi, component at
995MHz (228' mode) for Cavity 2 (KS=0)

A

Fig. 6 Electric field amplltude and associated distributibEpcomponent at
913MHz (174" mode) for Cavity 2 (KS=1)

S
|

=0 100 150 200 2':IZI 300 350 400 450

50 100 150 200 250 300 350 400 450

(b) {

50 100 150 200 250 300 350 400 450
©

50 100 150 200 250 300 350 400 450
(d)
Fig. 7: KS test for Ecomponent of each mode (mode order in abscisse
obtained with (a) Cavity 1, (b) Cavity_2, (c) Cavi8, (d) Cavity_4.

TABLE |

KS_95%=0 KS_95% =1

E.| 80.89(84.52) | 19.11 (15.48)
Cavity 1| E, | 82.44(85.95)| 17.56 (14.05)
E.| 81.33(85) 18.67 (15)
E.| 84.44(88.81)| 15.56(11.19)
Cavity 2| E, | 87.33(92.14) | 12.67 (7.86)
E, | 87.78(92.62) | 12.22(7.38)
E« | 89.56(93.81) | 10.44 (6.19)
Cavity 3| E, | 90.22(9452) | 9.78(5.48)
E, | 89.11(92.86) | 10.89 (7.14)
E | 90.22(9381) | 0.78(6.19)
Cavity 4| E, | 81.33(84.52) | 18.67 (15.48)
E, | 89.33(9357)| 10.67 (6.43)

Results (%) of the KS test performed on the distributiothe three field
components for the 450 resonant modes of cavities, afwlarkets while
excluding the first 30 modes.

As, for an ergodic mode, the three field components are
normally distributed, we now define a global homogeneity

indicator of the three components properties. It takes the
value of 0 if each component follows a normal distribution,

and 1 if at least one of the components does not follow a
normal distribution.

0 100 150 200 250 300 350 400 450

20 100 150 200 250 300 350 400 450
(b)

50 100 150 200 250 300 350 400 450
(©

|

200 250 300 350 400 450
(d)
Fig. 8 Global homogeneity test for each mode (mode ordersoisd®
obtained with (a) Cavity 1, (b) Cavity_2, (c) Cavi8, (d) Cavity_4.

In the four cavities, many of the modes follow a normal
distribution (Fig. 8(a)-(d)). Table Il summarizes the results of
this global test for all the modes in all cavities. It clearly
indicates that the insertions of a second hemisphere then caps
significantly increase the number of modes with three
normally distributed components. Once again, the best
homogeneity is obtained for the cavity with two caps and a
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hemisphere: 79% of the modes have their three componeni
following a normal distribution, and the success ratio reaches
84% after eliminating the firsBO modes According to this
test, the homogeneity obtained with two hemispheres is bette UL L
than with the stirrer (with a success ratio of 76% against S0 100 iS00 200 ( d)ze.n 300 350 400 450
72%). As expected, the cavity with one single hemisphere:ig 9. Global homogeneity test, after basis rotationgich mode, with (a)
leads to the lowest success ratio, with a value of 64%. Cavity_1, (b) Cavity_2, (c) Cavity_3, (d) Cavity_4.
The success ratios obtained while excluding the 86st TABLE Il
modes are indicated in brackets in Table Il. All the success
ratios are increased, but the conclusions on the comparison  Test response 0 1
between the four cavities remains unchanged. Cavity 1 7267 (77.62) | 2733 (22.38)
TABLE Il Cavity 2 80.22 (85.48) 19.78 (14.52)
0 I Cavity_3 82.00 (87.86) 18.00 (12.14)
Test response Cavity 4 82.44 (86.67) 17.56 (13.33)
Cavity 1 63.78 (67.86) 36.22 (32.14) _ —
= Results (%) of the global homogeneity test, after basisontdor all modes,
Cavity_2 76 (80.95) 24 (19.05) and in brackets by excluding the first 30 modes.
Cavity_3 79.33 (84.76) 20.67 (15.24) As a consequence of the use of a coordinate system
Cavity_4 72.44 (76.90) 27.56(23.10) independent of the geometry particularities, an increase of the
Results (%) of the global homogeneity test performedianades, and in &t Of zero answers to the global homogeneity test is observed
brackets by excluding the first 30 modes. for the four cavities (Table Ill) either by considering all modes

or by excluding the firsBO ones. For all modes, this increase
Besides homogeneity, the field is also required to g of 8.89% in Cavity 1, 4.22% in Cavity 2, 2.67% in
isotropic in a well-operating reverberation chamber. We recqi;lavity_g and 10% in Cavity 4. These changes of the test
that anergodic field is also isotropic. The field isotropy will answers indicate that the associated modes are not ergodic as
be studied in more details in the fourth part, but we willheir field distributions are sensitive to the chosen projection
perform here a preliminary test on this property. basis. As the test response is the least sensitive to the
coordinate system for Cavity_3, we can suppose that a better
The test on the field isotropy is as follows. If the field issotropy is attained in this cavity. This will be confirmed using
isotropic then it presents the same distribution regardless giother test.
the chosen orthonormal coordinate SyStem. To Verify this The modes whose three Components are norma”y
property, we modify the first chosen coordinate system of Figistributed in both coordinate systems, as expected for
2 by performing a rotation o, = 30° about the Ox axis, of Gaussian ergodic modes, are presented in Fig)-(d). For
¢, = 20° about the Oy axis and gf= 60° about the Oz axis. each mode, if the global homogeneity test takes the value 0 in
The already presented tests are then applied, for edsbth coordinate systems, then 0 is indicated, else 1 is
eigenmode of the four cavities, to the three componerdssociated to this mode. The zero answer is obtained for 56%
related to this new basis. The results obtained for the glolflall modes with one hemisphere, 70% with two hemispheres,

homogeneity indicator are presented in Fig. 9(a)-(d). 74% with two caps and one hemisphere, and 68% with the
stirrer (see Table 1V). As with the previous indicator, we can
' ' ' conclude that the best performances are obtained with
Cavity_3 then Cavity_2.
As already noticed, the field statistical properties improve
00 150 200 250 300 =50 400 45D with increasing frequency for all cavities. The percentage of

@) normally distributed modes in both bases increases for the four
; T cavities when omitting the first 30, 50 and 100 modes (Table
IV). Thus, from the 10% mode, 90% of the modes of
Cavity_3 pass the test in both coordinate systems. It has to be
' ; ' ' ' ; noticed that the third cavity always presents the best
100 150 200 (beD 500 350 400 450 performances and the first cavity the worst either considering
e : : all the modes or after eliminating the first ones.

The very first modes of all cavities do not pass the
homogeneity test. The first zero answer appears respectively at
- - - the 53" mode in Cavity_1, 40 mode for Cavity 2, 33mode
50 100 150 2000 250 300 330 400 450 for Cavity_3 and 28 mode for Cavity 4, but the zero answers

© are at the lowest frequencies isolated and the one value
remains majoritary up to about one hundred modes. At higher
frequencies, the one values appear isolated: the last two
successive one answers occur at rank 342-343 for Cavity 1,

cC

1
50
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273274 for Cavity_2, 151-152 for Cavity 3 and 263-264 fobetween them as an indicator of the field istropy. The

Cavity_4. Due to mode overlapping at high frequency, therthonormal basis as defined in Fig. 2 is chosen.

presence of isolated non-homogeneous modes migh be les$he standard deviations are calculated for each eigenmode

detrimental to the field uniformity than two consecutive nonfrom the component values at the 1001 sampling points, for

homogeneous modes. The superiority of Cavity 3 is alg@ch cavity. The mode dependence of the 3 standard

observed for this aspect. deviations is depicted in Figll for the cavity with a
hemisphere, and in Fid.2 for the cavity with two caps and

one hemisphere (the same analyses were also performed for
the other two cavities).
1
03774 g il il T r|"| dINTY
S0 100 150 200 250 300 350 400 450 o I '
0
0.5774 i i ' IR Pt TR
=
4]
S50 100 150 200 250 300 350 400 450 0
0.5774 [RAUPRLEI RS EhR (Lt i
T | [
b
50 100 150 200 250 300 350 400 450
Mode order

100 150 200 250 Fig. 11: Standard deviation ofyEE, and E for Cavity_1.

(©)

300 350 400 450

20

100 150 200 254

()

3000 350 400 450

0.5774
C}h

Fig. 10: Global homogeneity test in both bases for each mode)of (
Cavity_1, (b) Cavity_2, (c) Cavity_3, (d) Cavity_4.
TABLE IV
From the From
Allthe | 54 mode From the | he 104"
modes 51" mode
mode ! 1 ! !
_ 100 200 300 400
Cavity 1 56.44 60.48 63.5 70.29
Cavity 2 69.56 74.52 77 85.14 Fig. 12: Standard deviation of,EE, and E for Cavity_3.
Cavity 3 74.44 79.29 82.75 90.29 ) o .
= We notice a decrease of the standard deviations excursion
Cavity 4 68.00 72.38 75.25 8228 when frequency increases for both cavities. Whatever the

Percentage of modes presenting normal distributionetmtinses frequency, the standard deviation fluctuations are much

smaller in Cavity_3. The value of 0.577 indicated in Figs. 11

To further investigate the field isotropy, the standar@nd 12 corresponds to an ideal Gaussian mode whose three
deviations of the three field components of each mode wffmPonents have a zero mean and identical standard
now be examined. dev!at!ons. It is expected in a ch_aotlc cavity that the stgnda_trd
deviations fluctuate around this value. This behavior is
observed with Cavity 3.

The mean values of the standard variations of each
omponents are given in Table V; the fig2 modes have
L i . been excluded to the mean calculation as we already showed
deviations of each field component. Therefore, we examifga the first modes are not homogeneous. The obtained mean
here the standard deV|fat|ons of the three electr!c fielhiues are compared (into brackets) to the ideal 0.577 value. It
components for each eigenmode, and use the differengg esrs that the smallest differences are obtained with

IV. STANDARD DEVIATION AND FIELD ISOTROPY

The field isotropy implies an equality of the standar



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HEE TO EDIT) <

7
Cavity_3 then Cavity_2, whereas Cavity 1 presents the largest 1
ones 0.8
05
0.4
TABLE V 0.2
Std. deviations 0
E E E Ac
andAc X Y z ©)
) 0.537 0.544 0.530 1 :
Cavity_1 ©0.08) | (0.033) (©0.047) | 0418 oafllibly
: 0549 0.564 0556 |' '
Cavity_2 (0.028) | (0.013) ©.021) | 028 05| I U1 . D N ik FEEEETEEEEL EEEES
) 0563 0572 0571 f
0.177 0.4rpk- - N
Cavity_3 (0.014) | (0.005) (0.006) ! | | 'I|' ll . |i|| f|| ” rl ‘”
I . v | [}
. 0.567 0.539 0.545 =g R N A L 1T -
Caiy_4 | oo | ooz | oz | %% N LI A AL Bl L L
Means of the standard deviations of each componenfansl from the 31 S0 100 130 200 250 300 330 400 450
mode. In brackets, the difference between 0.577ant mean standard (d)
deviation. Fig. 13:Ac versus frequency of each mode (mode order in absiss@) for

Cavity_1, (b) Cavity_2, (c) Cavity_3, (d) Cavity 4.

Thus, in the ideal case of an isotropic field, the standard fig. 13(a)-(d) indicates\s highly varies with the mode
deviations of the three electric field components are equal. Tg¢der. However this indicator globally decreases with the
evaluate the isotropy of the modes, we propose the indicatRequency in all cavities, with a stabilization of its mean and
Ac defined in Eq. 2. Its value, comprised between O and tandard deviation around the ¥S@node. In the whole
decreases when the three standard deviations become simifggquency band, we notice that the lowest mean and maximal
Ac is equal to 1 when one field component vanishes whereagalues ofAc are obtained with Cavity_3. The mean values of

in the ideal isotropic case, it is vanishing. Ao, calculated for each cavity from its"3inode, are given in
) Table V. The lowest mean values are obtained with Cavity 3
Ao = max(ﬁxvo’yvaz)— min (vao’y’az) (2) then Cavity_2, indicating an improvement of the field isotropy
max(o,,0,,0,)+mn(c,,o,,0,) compared to the classical RC equipped with a mode stirrer.
1 ——N-Ngy ===~ N
12— @ To=316 B s
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Fig. 14: Evolution of the spectral fluctuations. &lating part of the counting
functions,N-N,,, for (a) Cavity_1, (b) Cavity_2, (c) Cavity_3 afd)
Cavity_4 (continuous lines)Nr is the contribution of the tangential modes
(red dotted line). The value of the standard desadi of N-N,, is indicated in
the inset.
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V. SPECTRAL FLUCTUATIONS modifications of the chaotic cavities allow a significant

RMT has introduced various statistical tools to analyzg#duction of the role of rﬁgular modesf Ofn the specl;[r?l
spectral fluctuations of chaotic cavities [6]. We use here tﬁléjctuatlon_s. by reduc!ng t € amount of facing parafie
simplest one: the fluctuations of the counting functhof) surfaces in the chaotic cavities, the spectral fluctuations
The latter gives the number of resonant modes up to thcome c!oser to thos? expected from RMT pred|ct|ons.. .

. An obvious conclusion from the results presented in this
frequencyf. Its smooth parlN,, is related to the geometry of

) : . paper is that facing parts of parallel walls should be
the caylty through the Wey!s |av¥24].- In Fig. 14(a)-(c) the eliminated from any RC where ergodicity of modes is wanted.
fluctuating part of the counting functioni;N,,,

_ : : tionS;Nay, respectively  the yery simple cavity modifications we propose, consisting
associated with the 3 chaotic cavities is shown within thg inserting metallic hemispheres or caps on the cavity walls,
frequency range [0.4 GHz, 1.28 GHz]. For Cavity 1, withermit a significant improvement of the field statistical
only 1 hemisphere, the deviations from RMT predictiongroperties. The stirring process is not addressed in this paper
concerning these fluctuations are important, thus indicatingit the adaptation of these new cavity shapes to mechanically
the significant presence of non-ergodic modes in the spectrugtirred reverberation chambers could be performed in two
Indeed, in spite of the defocusing part of the boundary, tleays. The first one would consist in improving a classical RC
cavity still possesses parallel walls and remains close toequipped with a stirrer by inserting metallic caps on its walls.
parallelepipedic room. In such a cavity, many modes als the second one, the chaotic cavity itself could be used as an
reminiscent of the modes of a regular one for which ergodRC and one hemisphere could be used as a mode-stirrer by
features are not expected. The most important family &foving it on the cavity wall. In both approaches, it is
regular modes consists of tangential modes (TgM) which, fxpected that the spectral overlap of homogeneous and
the parallelepipedic cavity, have a single null wave vectd$Otropic modes will lead to be_ttef _statlsncal field propert_|es
component. The non-zero components are quantized in than when the modes do not individually meet the required

planes parallel to the walls of the cavity. The countin tatistical properties. It would result in the improvement of
function for TgM perpendicular to each axis can be obtainfﬂe reverberation chambers operation especially in the weak

through a procedure introduced in Ref9[[and has recently overlap regime, with a potential decrease of their LUF.
been extended by Gros et &5] to the case of RCs. In Fig.
14, the red dotted curve corresponds to the contribution of
TgM to N._Nav' Note that the amp“_tUdeS of the_ﬂUCtuatlonS a'r?l] P.S. Kildal, K. Rosengren, J. Byun, J. Lee, “Definition of effective
progressively reduced from Cavity 1 to Cavity_3 due to the" ' giversity gain and how to measure it in a reverbenatibanber”,
corresponding suppression of TgM. In Cavity 3, the Microwave and Optical Technology Letters, vol. 34, no. 1, pp. 56-59,
remaining fluctuations are much closer to the amplitudg July 2002. . o

. . . . | Larry K. Warne et al., “Statistical Properties of Linear Antenna Impedance
predlcte_d by RMT. As in t_he DYGYIOUS sectlops, th in an Electrically Large Cavity”, IEEE Trans. Antennas and
comparison is extended to Cavity 4 (Fig. 14(d)) which, here Propagation, vol. 51, no. 5, pp. 978-992, May 2003.
again, exhibits a behavior intermediate between Cavity 1 afl M- O. Hatfield, M. B. Slocum, E. A. Godfrey, and G. Freyer,

. . . . . “Investigations to extend the lower frequency limit of reverberation
Cavity 2. And this is particularly well illustrated by chamber,” in Proc. IEEE Int. Symp. Electromagn. Compat., Denver, CO,

evaluating the standard deviatienof N-N,, as shown in the 1998, vol. 1, pp. 2@3.
inset for each cavity. [4] D. A. Hill, “Plane wave integral representation for fields in reverberation
chambers”, |EEE Trans. Electromag. Compat., vol. 40, no. 3, pp. 209-
217, Aug. 1998.
[5] A. K. Mitra and T. F. Trost, “Statistical Simulations and Measurements

. . ;" Inside a Microwave Reveeration Chamber”, in Proc. |EEE/EMC
As most resonant modes in chaotic cavities present Symposium, Austin, 1997, pp. 48-53.

homf)geneous and i_SOtrOPi_C fields, we drew inspiration frone) 4.-J. stockmanQuantum Chaos: an introduction, Cambridge University
studies developped in the field of wave chaos to propose three Press, 1999.
simple geometric modification of a parallelipedic cavity with[7] O-NLegreE)r_ld, Ft_. Mor_tessLe}gne, “X\’avest Chaos cfjoil ﬂtl)e lgelmhgltz liquaticcﬁ” in
H . H _ . ew Directions in Linear Acoustics an Ioration: uantum a0s,

thg aim pf follqwmg the requwemer_ﬂs for well-operating RCs. Random Matrix Theory, and Complexity, Cambridge University Press,
Using simulation results, comparisons between these three 5g10.
chaotic cavities and a classical RC equipped with a mode] M.V. Berry, “Semiclassical mechanics of Regular and Irregular Motion”,
stirrer have been performed. In a first stage, we demonstrated " ”ChaOt'C B?agoulr of ?aer f:”'Sf'hC ngmsys edited )?){XSI-H-S "
that the ratio of field components of modes following a Hgngg‘;nArﬁgterdémofgés)es ouches o2, session (North-
normal dI.StI’IbUtIOH is, for two c_haotu; cavities, hlghe_r than f_OI’[g] L. R. Arnaut, “Operation of electromagnetic reverberation chambers with
the classical RC, and that this ratio grows with increasing wave diffractors at relatively low frequencies,” IEEE Trans.
frequency. The field isotropy was also discussed from twg  Electromagn. Compat, vol. 43, no. 4, pp. 63%53, Nov. 2001.
different points of view. First. the invariance of the field [10] Andrea Cozza, “The Role of Losses in the Definition of the Overmoded

e P . L ’ . Condition for ReverberatiorChambers and Their Statistics”, |EEE
statistical properties with respe.ct to the orthonormal b_asp has Trans Electromagn. Compat., vol. 53, no. 2, pp. 296-307, May 2011.
been tested. Then, the analysis of the standard deviations[uif] D.Il. Wu, D.C. Chang;The effect of an electrically large stirrer in a
the three components and, for each mode, of their dispersions, ?Ode'iggeldeghiﬂmb’elfg%? Trans. Electromag. Compat., vol. 31, no.

; ; » PP. -169, May .
gonflrmed. the same t“?”d' In complete accordance witle the 2] L. R. Arnaut, ”Limit Distributions for Imperfect Electromagnetic
flndlngs_ in _the spatial domam,_ we also performed a ° Reverberation”, IEEE Trans. Electromag. Compat., vol. 45, no. 2, pp.
comparison in the spectral domain. We showed how the 357-377, May 2003.
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