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VARIATIONS SUR UN THÈME DE ALDAMA ET SHELAH

CÉDRIC MILLIET

Abstract. We consider a group G that does not have the independence property and study
the definability of certain subgroups of G, using parameters from a fixed elementary extension
G of G. If X is a definable subset of G, its trace on G is called an externally definable subset.
If H is a definable subgroup of G, we call its trace on G an external subgroup. We show the
following. For any subset A of G and any external subgroup H of G, the centraliser of A,
the A-core of H and the iterated centres of H are external subgroups. The normaliser of H

and the iterated centralisers of A are externally definable. A soluble subgroup S of derived
length ℓ is contained in an S-invariant externally definable soluble subgroup of G of derived
length ℓ. The subgroup S is also contained in an externally definable subgroup X ∩ G of G

such that X generates a soluble subgroup of G of derived length ℓ. Analogue results are
discussed when G is merely a type definable group in a structure that does not have the
independence property.
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Given a group G, a subset X ⊂ G is definable in G if there exist a first-order formula ϕ(x, ȳ)

and parameters ā from G such that X consists of all g ∈ G such that ϕ(g, ā) holds in G.

A subset X ⊂ G is externally definable if there is an elementary extension G of G and

parameters ā in G such that X consists of all g ∈ G such that ϕ(g, ā) holds in G. We write

ϕ(G, ā) for such a set X if we want to stress on the defining formula ϕ, otherwise we write

X ∩G where X stands for ϕ(G, ā). Definable subsets and externally definable ones coincide

for the field R of real numbers (L. Van den Dries [vdD86]), for the field Qp of p-adic numbers

(F. Delon [Del89]), for an algebraically closed field and more generally for stable structures

(it follows from the definability of types).
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Key words and phrases. Model theory; independence property; shattering type; VC-dimension; abelian,

nilpotent, and soluble subgroups; nice subgroup; definable and type definable envelope.
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They do not coincide in general: in the ordered abelian group (Q,+,6 ), the interval]√
2,+∞

[
is not definable in Q, but externally definable using the irrational parameter

√
2.

Externally definable sets play an important role in structures that do not have the indepen-

dence property, such as (Q,+,6). They correspond to finite unions of convex subsets in the

particular case of o-minimal and weakly o-minimal structures. Expanding the language of a

weakly o-minimal structure by unary predicates interpreting finite unions of convex subsets

preserves weak o-minimality (B. Baizhanov [Bai01]). Expanding the language of a structure

that does not have the independence property by predicates interpreting externally definable

subsets preserves the absence of the independence property (S. Shelah [She09]).

A group G does not have the independence property if for every first order formula ϕ(x, ȳ), the

Vapnik-Chervonenkis dimension of the family {ϕ(G, ḡ) : ḡ ∈ G} is finite. We shall also use

the short hand NIP group. S. Shelah [She09] and R. de Aldama [dA13] began investigating

definable subgroups of G using external parameters lying in a fixed |G|+-saturated elementary

extension G ofG. S. Shelah showed that ifG has an infinite abelian subgroup A, there exists a

definable abelian subgroup of G that contains infinitely many elements of A. R. de Aldama

went on showing that for any nilpotent subgroup N ⊂ G, there is a definable nilpotent

subgroup of G that contains N and has the same nilpotency class as N , and that for any

soluble subgroup S ⊂ G that is normal in G, there is a definable soluble subgroup of G
that contains S and has the same derived length as S. As we were further investigating

the soluble case trying to get rid of the strong normality assumption, we had to cope with

subgroups closely related to the infinitesimal numbers, in the following way: in a non-principal

ultrapower RU of the field of real numbers, the subgroup I of infinitesimal numbers is not

definable in RU . There is an external parameter ε in an elementary extension R of RU such

that I = ]−ε, ε[, so that I is externally definable as a set. I is not the trace of a definable

subgroup of R, however it is the conjunction of the uniform filtering family of symmetric

definable sets
]−1

n
,

1

n

[
that defines a group both in RU and R.

We call a subgroup H ⊂ G discernible if there is a subgroup H ⊂ G that is the intersection

of a uniform filtering family of symmetric definable subsets of G such that H = H ∩ G (we

call H a nice subgroup of G). Discernible subgroups are examples of externally definable

subsets, and in the particular case when G is a stable group, they coincide with definable

subgroups (see Lemma 3.6). We call the subgroup H ⊂ G external if there is a definable

subgroup of H ⊂ G such that H = H ∩G. Our main results are the following.

Theorem 0.1 (finding external subgroups). Let G be a NIP group, G a |G|+-saturated

elementary extension of G and H = H ∩G an external subgroup of G.

(1) There is n ∈ ω such that for every A ⊂ G, there are a1, . . . , an in G such that

CG(A) = CG(a1, . . . , an).

(2) For every n ∈ ω, there is a definable subgroup K ⊂ G such that

H = K ∩G and Zn(H) = Zn(K) ∩G.

(3) There is n ∈ ω such that for every A ⊂ G, there are a1, . . . , an in G such that
⋂

a∈A

Ha = Ha1 ∩ · · · ∩ Han ∩G.
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Theorem 0.2 (finding discernible subgroups). Let G be a NIP group, G a |G|+-saturated,

|G|+-homogeneous elementary extension of G and H = H ∩G a discernible subgroup of G.

(1) For every n ∈ ω, there are nice subgroups K,Zn ⊂ G such that

H = K ∩G, Zn(H) = Zn ∩G and Zn ⊂ Zn(K).

(2) There are n ∈ ω and a nice subgroup K ⊂ G such that for every A ⊂ G, there are

a1, . . . , an in G with

H = K ∩G and
⋂

a∈A

H = Ka1 ∩ · · · ∩ Kan ∩G.

(3) There are nice subgroups K ⊂ H and N ⊂ NG(K) of G such that

H = K ∩G and NG(H) = N ∩G.

(4) There are n ∈ ω and a nice subgroup K ⊂ G such that for every A ⊂ G and

A ⊂ Aut(G/A), there are σ1, . . . ,σn in Aut(G/A) with

H = K ∩G and
⋂

σ∈A

Hσ = Kσ1 ∩ · · · ∩ Kσn ∩G.

(5) For every n ∈ ω and A ⊂ G, the nth-centraliser Cn
G(A) is a discernible subgroup of G.

Theorem 0.3 (soluble envelopes). Let G be a NIP group, S ⊂ G a soluble subgroup of

derived length ℓ and G a |G|+-saturated elementary extension of G.

(1) There is a nice subgroup H ⊂ G with S ⊂ H such that H is soluble of derived length ℓ,

H ∩G is S-invariant and normalised by NG(S).

(2) There is a definable subset X ⊂ G with S ⊂ X such that X ∩ G is a subgroup of G

and X generates a soluble subgroup of G of derived length ℓ.

(3) If S is in addition normal in G, there is a normal, soluble of derived length ℓ, definable

subgroup H ⊂ G with S ⊂ H.

NIP groups include finite groups, abelian groups in the pure language of groups (W. Szmielew

[Szm55]), abelian ordered groups (Y. Gurevich and P. Schmitt [GS84]), groups definable in a

stable structure (e.g. linear algebraic groups over separably closed fields, C. Wood [Woo79])

and groups definable in an o-minimal structure (e.g. linear algebraic groups over the field of

real numbers). These are trivial ones for most of the considerations of this paper, as both

stable and o-minimal groups satisfy strong descending chain conditions, either on uniformly

definable subgroups [BS76] or on all definable subgroups [Pil88]: in such a group G, for every

A ⊂ G, the centraliser CG(A) and the A-core
⋂

a∈A
a−1Ha of a definable subgroup H ⊂ G are

definable, and these properties remain true in quotients of G by normal definable subgroups.

Other examples include linear algebraic groups over a field k that does not have the indepen-

dence property, and more generally groups interpretable therein, e.g. quotients H1/H2 where

H2 ⊳ H1 are definable subgroups (not necessarily Zariski-closed) of the general linear group

GLn(k) in a field structure (k, L) where L is an expansion of the field language such that the

structure (k, L) is NIP. This holds in particular with k equal to (a finite algebraic extension

of) the pure field Qp of p-adic numbers (L. Matthews [Mat93], see also [Bél12]) and more

generally to a Henselian valued field of characteristic 0 whose residue field is NIP (F. Delon
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[Del81]). Other examples of NIP fields: the valued field
⋃

n>1
Falg

p ((t1/n)) of Puisieux series

over Falg
p and more generally any valued field of charactersitic p > 0 with perfect NIP residue

field, with p-divisible value group and with no proper algebraic valuated extension having

ramification index 1 and residue degree 1 (I. Kaplan, T. Scanlon and F. Wagner [KSW11]).

In a linear algebraic group G(k) over a field k, every descending chain of Zariski-closed sub-

groups has finite length. In particular, for any subset A ⊂ G(k), the centraliser CG(k)(A)

is definable, and the A-core of a Zariski-closed subgroup H ⊂ G(k) is Zariski-closed (hence

definable), but the A-core of a definable subgroup may not be definable.

NIP groups also include general linear groups GLn(R) over a NIP ring R, which may be a

domain (such as valuation rings of the valued fields cited above) or not (such as any non-

principal ultraproduct
∏

U
Z/pnZ for a fixed prime number p).

Two examples of a less algebraic nature. The universal covering group G̃ of a definably

connected group G that is interpretable in an o-minimal expansion M of the field R is a NIP

group: G̃ is interpretable in the two sorted structure ((π1(G),+),M) (E. Hrushovski et al.

[HPP11]) hence NIP (A. Conversano and A. Pillay [CP12]). An ultraproduct of groups that

are uniformly interpretable in a NIP structure is NIP (D. Macpherson and K. Tent [MT12]).

1. Preliminaries on the independence property

Before discussing the particular case of groups, we consider an arbitrary first-order language

L, a complete theory T , one of its models M and a subset A ⊂ M . Let x̄ and ȳ be disjoint

tuples of variables of respective length p > 1 and q > 1. Given a formula φ(x̄) and a partial

type ρ(x̄) with parameters in M , i.e. a set of formulas consistent with the L ∪ M-theory of

M , we write φ(A) for the subset {(x1, . . . , xp) ∈ Ap : φ(x1, . . . , xp) holds in M} of Mp and

ρ(A) for the intersection
⋂

φ∈ρ
φ(A).

1.1. Shattering formulas. Let ϕ(x̄, ȳ) be a formula in p+ q variables with possible param-

eters in M . Given a non-zero n ∈ ω, we say that the formula ϕ(x̄, ȳ) shatters n in T if there

are parameters ā1, . . . , ān in Mp and (b̄J)J⊂{1,...,n} in M q such that
(
M |= ϕ(āi, b̄J)

)
⇐⇒ i ∈ J.

In other words, ϕ(x̄, ȳ) shatters n in T if there is a finite subset A ⊂ Mp with n elements

whose subsets are all of the form A ∩ ϕ(M, b̄) for some b̄ varying in M q. As shattering n

is a first order property, it does not depend on the model M of T chosen. We call Vapnik-

Chervonenkis dimension of ϕ(x̄, ȳ) in T , sometimes omitting to specify T when the ambient

theory is obvious, the maximal n ∈ ω that is shattered by ϕ(x̄, ȳ) in T if such a number exists,

or ∞ otherwise. We write it V C(ϕ). Note that V C(ϕ) equals V C(¬ϕ). In these definitions,

the tuples of variables x̄ and ȳ do not play the same role. We write ϕ∗(x̄, ȳ) for the dual

formula of ϕ(x̄, ȳ), obtained by interchanging the role of x̄ and ȳ. We say that ϕ(x̄, ȳ) has

the independence property in T , if it1 has infinite VC-dimension in T . The structure M or

1According to Shelah’s definition in [She90, Definition 4.2], ϕ(x̄, ȳ) has the independence property if the
dual formula ϕ∗(x̄, ȳ) has infinite VC-dimension. The two statements are equivalent as V C(ϕ) 6 n implies
V C(ϕ∗) 6 2n by [Poi85, Lemme 12.16].
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its theory T do not have the independence property (i.e. are NIP) if no formula has the

independence property in T , i.e. if every formula has a finite VC-dimension.

The relation between Shelah’s independence property in [She90] and Vapnik-Chervonenkis’

dimension in [VC71] is pointed out in [Las92]. We refer to [She90] and [Adl14] for more about

NIP structures.

1.2. Shattering types. We extend the previous definitions to partial types. Let λ and µ

be two cardinal numbers, with µ 6 λ+. If π(x̄, ȳ) is a partial type in p+ q variables, we say

that π(x̄, ȳ) shatters λ up to µ in T if there is an elementary extension M of M , a subset

A ⊂ Mp with |A| = λ such that for every B ⊂ A with |B| < µ there is b̄ ∈ Mq such

that B = A ∩ π(M, b̄). Equivalently, there is an elementary extension M of M , a family

{āi : i < λ} of elements of Mp, and a family {b̄J : J ⊂ λ, and |J | < µ} of elements of Mq

such that (
M |= π(āi, b̄J)

)
⇐⇒ i ∈ J.

We say that π(x̄, ȳ) co-shatters λ in T up to µ if there is an elementary extension M of M

and families {āi : i < λ} and {b̄J : J ⊂ λ, and |J | < µ} whose elements lie respectively

in Mp and Mq, such that (
M |= π(āi, b̄J)

)
⇐⇒ i /∈ J,

or equivalently if there is A ⊂ Mp of cardinal λ such that for all B ⊂ A with |A \ B| < µ

there is b̄ ∈ Mq with B = A ∩ π(M, b̄).

If π(x̄, ȳ) shatters λ up to λ+, then it shatters and co-shatters λ up to every µ 6 λ+. In this

case, we simply say that π(x̄, ȳ) shatters λ.

If a formula ϕ(x̄, ȳ) shatters every n ∈ ω in T , by the Compactness Theorem, ϕ(x̄, ȳ) shatters

λ for every cardinal number λ. If a partial type π(x̄, ȳ) shatters every n ∈ ω in T , by the

Compactness Theorem, for every n ∈ ω, there is a finite conjunction of formulas in π(x̄, ȳ)

that has VC-dimension at least n. However, it is possible that T be NIP.

Example 1.1 (The Cantor ternary set in R). The Cantor ternary set C is the intersection of

the closed sets Cn defined by

C0 = [0, 1] and Cn+1 =
Cn

3
∪
(

2

3
+
Cn

3

)
.

C consists of the elements of [0, 1] having at least one ternary representation whose digits

belong to {0, 2}. The partial type
{
x + y ∈ Cn : n ∈ ω

}
shatters ω. For every i ∈ ω and

subset J ⊂ ω, we define

ai =
(

1

3
+

1

32

)
× 1

32i
and bJ =

∑

j∈J

2

32j+2
,

so that we have

ai + bJ =
1

32i+1
+

1

32i+2
+
∑

j∈J

2

32j+2
.

On the one hand, if i ∈ ω\J , then ai+bJ has occurrences of 1 in every ternary representation.

On the other hand, if i ∈ J , then

ai + bJ =
2

32i+1
+

∑

j∈J\{i}

2

32j+2
.
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Example 1.2 (The Cantor ternary set in Q3). The 3-adic ternary Cantor set C3 is the inter-

section of the closed subsets Cn ⊂ Q3 defined by

C0 = Z3 and Cn+1 = 3Cn ∪ (2 + 3Cn).

C3 consists of the 3-adic integers whose canonical expansion have coefficients in {0, 2} (M.

Lapidus and H. Lũ [LL08]). The ring of 3-adic integers is defined by the formula (∃y)(y2 =

1 + 3x2) and C3 is a type definable subset of Q3. The type x + y ∈ C3 shatters ω in Q3,

which can be seen taking ai = 32i + 32i+1 and bJ =
∑

j∈J
2 · 32j. Note that the field Q3 does

not have the independence property by [Mat93] (see also [Bél12, Section 4.2]).

Given a cardinal λ, here is an example of a language Lλ, an Lλ-structure M and partial type

πλ(x, y) that shatters λ in M . Let Γ be an ordered abelian divisible group containing a copy

of λ. Consider the Hahn field Q3((Γ)) of generalised power series with 3-adic coefficients.

Consider the structure
(
Q3((Γ)),+, 0, P µ

n : µ ∈ λ, n ∈ ω
)

where P µ
n is a unary predicate

interpreting the subgroup of Q3((Γ)) whose elements are of the form
∑

i∈I
ait

i with aµ ∈
3nZ3. In this language, Q3((Γ)) is an abelian structure in the sense of E. Fisher (see [Fis77],

or [Wag97, Example 0.3.1]). Any definable subset of the Cartesian product Q3((Γ))n is a

Boolean combination of cosets of acl(∅)-definable subgroups of Q3((Γ))n by [Wei93] (see also

[Wag97, Theorem 4.2.8]): the structure
(
Q3((Γ)),+, 0, P µ

n : µ ∈ λ, n ∈ ω
)

is stable.

Let Cλ
3 denote the partial type defined by

Cλ
3 =

⋂

µ∈λ

⋂

n∈ω

Cµ
n , where Cµ

0 = P µ
0 and Cµ

n+1 = 3Cµ
n ∪ (2 + 3Cµ

n) .

The realisations of Cλ
3 in Q3((Γ)) are the elements of the form

∑
i∈I

ait
i where aµ ∈ C3 for

each cardinal number µ < λ belonging to I. The families ai = 4ti and bJ =
∑

j∈J
2tj witness

that the type x+ y ∈ Cλ
3 shatters λ in Q3((Γ)).

Example 1.3 (A type that shatters every n ∈ ω, but not ω up to 4). In (R,+,6), here is a

sequence of definable subsets An ⊂ [0, 1] such that the partial type π(x, y) =
{
x− y ∈ An :

n ∈ ω
}

shatters every n ∈ ω but does not shatter ω up to 4. Define for all n ∈ ω, a definable

subset Bn ⊂ [n, n+ 1] of the form

Bn =]n, n+ 1[ \ {cn,1, . . . , cn,2n} with n < cn,1 < · · · < cn,2n < n+ 1

such that, for all i ∈ {1, . . . , n} and J ⊂ {1, . . . , n} there are an,i ∈ R and bn,J ∈ R such

that (an,i − bn,J) ∈ ]n, n+ 1[ and

(an,i − bn,J) ∈ Bn ⇐⇒ i ∈ J.

We put C =
{
ci,j : i, j ∈ ω

}
, and we may build each Bn so that the map mapping a 2 element

subset {x, y} of C to |x−y| has finite (unbounded) fibres (using a Q-basis of R for instance).

We put for all n ∈ ω,

An =] − ∞, 0] ∪ B0 ∪ B1 ∪ · · · ∪Bn ∪ [n+ 1,+∞[

It follows that, for every n ∈ ω and finite J ⊂ ω,
(
R |= π(an,i, bn,J)

)
⇐⇒ i ∈ J,
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so π(x, y) shatters every n ∈ ω. If X is an infinite set shattered by π(x, y), then there is a real

number ℓ and infinitely many 3 elements subsets Y of X with the property that |x− y| = ℓ

for some x and y in Y . This shows that π(x, y) does not shatter ω up to 4.

1.3. Nice sets. The previous examples show that shattering types can occur in a NIP theory.

We go on by giving one elementary condition under which a shattering type yields a formula

with the independence property.

A partial type ρ(x̄) with parameters in M is uniform if there is a formula ϕ(x̄, ȳ) and a subset

A ⊂ M q such that

ρ(x̄) =
{
ϕ(x̄, ā) : ā ∈ A

}
.

A family F of subsets of Mp is uniformly definable if there is a uniform p-type ρ(x̄), such that

F = {φ(M) : φ ∈ ρ}.
F is a filter if for every X and Y in F, there is Z in F such that Z ⊂ X ∩ Y . We say that

ρ(x̄) is a filter if the family {φ(M) : φ ∈ ρ} is a filter, in other words if for every φ1 and φ2

in ρ, there exists φ in ρ such that

ρ |= ∀x̄
(
φ(x̄) → φ1(x̄) ∧ φ2(x̄)

)
.

Definition 1.4 (nice subset). A partial type ρ(x̄) with parameters in M is nice if ρ(x̄) is a

uniform filter. A subset X ⊂ Mp is nice (in M) if there is a nice partial type ρ(x̄) such that

X = ρ(M).

Definition 1.5 (externally definable subset). A subset X ⊂ Mn is externally definable

if there is an elementary extension M of M and a definable subset X ⊂ Mn such that

X = X ∩Mn. Equivalently, there is a formula ϕ(x̄, ȳ) and a tuple c in M such that

X =
{
x̄ ∈ Mn : M |= ϕ(x̄, c)

}
.

Lemma 1.6. A nice set is externally definable.

Proof. Let X = ρ(M) with ρ(x̄) = {ϕ(x̄, ā) : ā ∈ A} a uniform filter. The partial type

π(ȳ) =
{
ϕ(b̄, ȳ), ∀x̄(ϕ(x̄, ȳ) → ϕ(x̄, ā)) : b̄ ∈ X, ā ∈ A)

}

is finitely satisfiable in A. It follows that X = ϕ(M, ā) for any realisation ā of π. �

Corollary 1.7. If there is a nice partial type that shatters every natural number n in T , then

T has the independence property.

Proof. If π(x̄, ȳ) = {ϕ(x̄, ȳ, ā) : ā ∈ A} is a nice partial type that shatters every n, there are

an elementary extension M1 of M and tuples {ān
i : i < n}, {b̄n

J : J ⊂ n} in M1 such that
(
M1 |= π(ān

i , ā
n
J)
)

⇐⇒ i ∈ J

for all n. By Lemma 1.6, there are an elementary extension M2 of M1 and ā ∈ M2 such that

π(M1) = ϕ(M1, ā), so ϕ(x̄, ȳ, ā) has the independence property in M2. �

Remark 1.8. In Corollary 1.7, one can neither drop the assumption that the partial type is

uniformly definable, nor drop the assumption that the partial type is a filter: the type of

Example 1.3 is equivalent to a uniform type, to a filter also, but not to a uniform filter.
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Corollary 1.9. Let M be a NIP L-structure, with = being the only relation symbol in L.

Let N ⊂ M and E ⊂ N2 be nice subsets (in M) such that N is a substructure of M and E

is an equivalence relation on N that preserves L. Then N/E is NIP when equipped with its

natural L-structure.

Proof. Let c be a constant symbol and f an n-ary function symbol. By E preserving the

language, we mean that for every (a1, . . . , an) in Nn, whenever aiE = biE holds for every

i ∈ {1, . . . , n} one has
(
fN(a1, . . . , an)

)

E
=
(
fN(b1, . . . , bn)

)

E
.

This way, the quotient space N/E has a natural L-structure defined by putting

cN/E = cN
E and fN/E(a1E, . . . , anE) =

(
fN(a1, . . . , an)

)

E
.

Since nice sets are externally definable, by a theorem of S. Shelah [She09], the structure

(M,LM , N, E) in the language L expanded by predicates for N and E is NIP. The domain

and functions of the L-structure N/E are interpretable in (M,LM , N, E), thus N/E is also

NIP.

As we shall only use this result in Theorem 4.4 for a quantifier-free formula xy = yx, we

give a direct proof for that particular case: by induction on the complexity of an L-term

t(x1, . . . , xn), for any (a1, . . . , an) ∈ Nn one has

tN/E(a1E, . . . , anE) =
(
tN (a1, . . . , an)

)

E
.

Let E = ϕ(M, b̄) and N = ν(M, c̄) for some L-formulas ϕ(x, y, z̄), ν(x, z̄) and tuples b̄, c̄
in M. For any quantifier-free L ∪ {N,E}-formula φ(x̄), one defines the L-formula φE(x̄) by

replacing any atomic subformula t(x̄) = u(x̄) by ϕ(t, u,b) ∧ ν(x1, c̄) ∧ · · · ∧ ν(xn, c̄). For any

(a1, . . . , an) ∈ Nn, one has

N/E |= φ(a1E , . . . , anE) ⇐⇒ M |= φE(a1, . . . , an).

It follows that, if the quantifier-free formula ψ(x̄, ȳ) has the independence property in M/E,

then the formula ψE(x̄, ȳ) has the independence property in M. �

2. Preliminaries on NIP groups

We now consider a NIP L-structure M and a group G definable in M .

2.1. Descending chain conditions.

Baldwin-Saxl chain condition 2.1 (see [BS76] or [Poi87]). Let {Hi : i ∈ I} be a family

of uniformly definable subgroups of G. There is n ∈ ω such that for all finite subsets J ⊂ I,

there exists a finite subset Jn ⊂ J of size at most n such that

⋂

j∈Jn

Hj =
⋂

j∈J

Hj.
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We shall need the following stronger version. Given a subset X ⊂ G and n ∈ ω, we write

X0 = {1} and Xn for the set of products x1x2 · · ·xn of n elements of X, and X×n for the

Cartesian product X × · · · ×X. We call X symmetric if X−1 = X and 1 ∈ X. Given a pure

set Y , when there is no ambiguity, we go on writing Y n for the Cartesian product Y ×· · ·×Y .

Lemma 2.2 (a Baldwin Saxl chain condition for subsets). Let X be a family of subsets of G.

For every X ∈ X, let X1/3 ⊂ G be definable with
(
X1/3

)3 ⊂ X. Let
{
X1/3 : X ∈ X

}
be

uniformly definable by a formula ϕ(x, ȳ) with V C
(
ϕ∗(x, ȳ)

)
= n. For every X ∈ X, let

X1/3n ⊂ G be symmetric (not necessarily definable) such that
(
X1/3n

)n ⊂ X1/3. Then, for

every X1, . . . , Xn+1 ∈ X, there is j ∈ {1, . . . , n+ 1} with

X
1/3n
1 ∩ · · · ∩X

1/3n
j−1 ∩X

1/3n
j+1 ∩ · · · ∩X

1/3n
n+1 ⊂ X1 ∩ · · · ∩Xn+1.

Proof. Otherwise, there are b1, . . . , bn+1 in G and X1, . . . , Xn+1 in X such that for all j in

{1, . . . , n+ 1}, one has

(1) bj ∈
(
X

1/3n
1 ∩ · · · ∩X

1/3n
n+1

)
\Xj.

Let J ⊂ {1, . . . , n + 1} have elements j1 < · · · < jk and let bJ be the ordered product

bj1
bj2

· · · bjk
. If j ∈ {1, . . . , n + 1} \ J , then bJ ∈

(
X

1/3n
j

)n
and so bJ ∈ X

1/3
j . On the other

hand, if J has elements

j1 < · · · < ji−1 < j < ji+1 < · · · < jk,

then bJ /∈ X
1/3
j , for otherwise, we would have

bj = (b−1
ji−1

· · · b−1
j1

)bJ(b−1
jm

· · · b−1
ji+1

),

and thus bj ∈ Xj , a contradiction with (1). This shows that V C
(
ϕ∗(x, ȳ)

)
> n + 1, contra-

dicting the hypothesis. �

2.2. Nice subgroups. Let H ⊂ G be a subgroup. H is a type definable subgroup of G if

there is a partial type π(x) with parameters in G such that H = π(G) and, for any elementary

extension G of G, the set π(G) is a subgroup of G. We call π a defining type for H .

Definition 2.3 (nice subgroup). We say that H is a nice subgroup of G if H is a type

definable subgroup of G having a defining type π(x) = {ϕ(x, ā) : ā ∈ A} that is nice in G

and such that ϕ(G, ā) is symmetric for all ā in A.

By Lemma 1.6, a nice subgroup is externally definable.

Example 2.4. A definable subgroup H ⊂ G is nice. By the Baldwin Saxl chain condition,

any intersection of uniformly definable subgroups of G is nice. In particular, for any subset

A ⊂ G and subgroup A ⊂ Aut(G), the subgroups
⋂

a∈A
Ha, CG(A) and

⋂
σ∈A

Hσ are nice.

Counterexample 2.5 (A centraliser that is not nice). In an infinite extraspecial 3-group K,

which is supersimple of rank 1 (see [MS08]) and whose conjugacy classes are all finite, choose

(an)n>1 such that the chain of centralisers CK(a1) ⊃ CK(a1, a2) ⊃ CK(a1, a2, a3) ⊃ · · · is

strictly decreasing. The partial type
⋂

n>1
CK(an) is not nice as [K : CK(an)] 6 3 for

every n. Nor is it equivalent to a nice partial type, for otherwise, by the Compactness
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theorem, one could find a definable infinite subset X ⊂ K with infinitely many pairwise

disjoint left translates, contradicting the fact that K has rank 1.

Example 2.6. In an ω-saturated elementary extension R of the field R, the subgroup of

infinitesimal numbers is nicely defined in the language (+,6). In the language of fields, the

intersection of the Euclidian balls
{
x ∈ Rn : ‖x‖2 < 1/k

}
is a nice subgroup of Rn. It is also

the intersection of the family H of half hyperplanes of equations a1x1+· · ·+anxn 6 an+1 where

a1, . . . , an+1 range over Q with an+1 > 0. In GLn(R), considered as a group interpretable in

the ring Mn(R), the subgroup of elements that are infinitesimally close to 1 is nice, being the

intersection of the neighbourhoods
{

1 + x : ‖x‖2 < 1/k
}
.

Example 2.7. Let Zp be an ω-saturated elementary extension of the ring Zp of p-adics integers.

The infinitesimal numbers form a nice subgroup of Zp, defined by the intersection of the

subgroups pkZp. In GLn(Zp), as a group interpretable in the ring Mn(Zp), the intersection of

the congruence subgroups 1 + pkMn(Zp) is a nice subgroup.

2.3. Normaliser. For any two subgroups H,K ⊂ G, we write

HK =
⋂

g∈K

Hg

for the K-core of H . When G is stable, if H is definable, then HK is definable, and hence so

is NG

(
HK

)
. When G is NIP, the situation is far less straightforward. HK is merely K-type

definable and its normaliser has no obvious reason to be even type definable.

Lemma 2.8. Let H ⊂ G be a nice subgroup with defining type
{
ϕ(x, b̄) : b̄ ∈ B

}
and let

n = V C
(
ϕ∗(x, ȳ)

)
. For any subset A ⊂ G, the subgroup HA ⊂ G is nice, with defining type

{∧
16i6n

ϕ(xai , b̄) : b̄ ∈ B, a1, . . . , an ∈ A
}
.

Proof. Let F be the family of uniformly definable sets {ϕ(G, b̄) : b̄ ∈ B}. As π(G)3 ⊂ π(G)

for every elementary extension G of G, by the Compactness Theorem, for every element X

of F, there are finitely many X1, . . . , Xm in F such that (X1 ∩· · ·∩Xm)3 ⊂ X. As F is a filter,

there is an element of F, which we write X1/3, such that X1/3 ⊂ X1 ∩ · · · ∩ Xm. Similarly,

for every non-zero n ∈ ω, there is X1/3n ∈ F such that

(X1/3n)n ⊂ X1/3 ⊂ X.

Let ψ(x; ȳ, yk+1) be the formula ϕ(xyk+1 , ȳ) and n = V C
(
ψ∗(x; ȳ, yk+1)

)
where ȳ = (y1, . . . , yk).

By Lemma 2.2 applied to the family G = {Xa : a ∈ A,X ∈ F}, for every X1, . . . , Xn+1 in G,

there are Y1, . . . , Yn in G such that

Y1 ∩ · · · ∩ Yn ⊂ X1 ∩ · · · ∩Xn+1.

It follows that the family {X1 ∩ · · · ∩Xn : Xi ∈ G} is a filter. �
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We adopt the following conventions for writing down formulas. For every non-zero k ∈ ω

and formulas ϕ(x, ū), φ(x, v̄), we write

ϕ(x, ū)k for ∃x1 . . .∃xk(ϕ(x1, ū) ∧ · · · ∧ ϕ(xk, ū) ∧ x = x1x2 · · ·xk),

ϕ(x, v̄)z for ∃y(ϕ(y, v̄) ∧ x = yz),

ϕ(x, ū) ⊂x φ(x, v̄) for ∀x(ϕ(x, ū) → φ(x, v̄)).

Lemma 2.9. Let G be κ-saturated with κ > ℵ0. Let A,N ⊂ G two subgroups with |A| < κ

and |N | < κ. Let H ⊂ G be a nice subgroup with a countable defining type
{
ϕ(x, b̄) : b̄ ∈ B

}
.

Let n = V C
(
ϕ∗(x, ȳ)

)
. Assume that A ⊂ H and AN ⊂ A. For any b̄ ∈ B and a1, . . . , an in

G such that A ⊂
⋂

16i6n
ϕ(G, b̄)ai, there are a nice subgroup K ⊂ G with countable defining

type
{
ϕ(x, c̄) : c̄ ∈ C

}
, some c̄ ∈ C and α1, . . . , αn in G such that, for every g ∈ N ,

( n⋂

i=1

ϕ(G, c̄)αi

)g ⊂
n⋂

i=1

ϕ(G, b̄)ai and A ⊂ K ∩Kα1 ∩ · · · ∩Kαn .

Proof. Let (b̄i)i∈ω be an enumeration of B such that ϕ(G, b̄i+1)
2 ⊂ ϕ(G, b̄i) for all i ∈ ω. We

consider the partial type over A

ρ
(
(ȳi)i∈ω

)
=
{
ϕ(x, ȳi+1)

2 ⊂x ϕ(x, ȳi), ϕ(a, ȳi) : i ∈ ω, a ∈ A
}
.

Note that for all m ∈ ω, the sequence (b̄m+i)i∈ω satisfies ρ. We consider the partial type

π(x1, . . . , xn, ȳ0) with parameters in A ∪N ∪ {a1, . . . , an, b̄}, defined by
{

n∧

i=1

ϕ(x, ȳ0)
xi ⊂x

( n∧

i=1

ϕ(x, b̄)ai

)g
,

n∧

i=1

ϕ(a, ȳ0)
xi ∧ ϕ(a, ȳ0) : g ∈ N, a ∈ A

}
.

By Lemma 2.8, the type π(x1, . . . , xn, ȳ0) is finitely satisfiable in (N)×n × B. It follows

that π(x1, . . . , xn, ȳ0) ∪ ρ
(
(ȳi)i∈ω

)
is satisfiable. As G is κ-saturated, π ∪ ρ has a realisation

(α1, . . . , αn, (c̄i)i∈ω) in G. We put C =
{
c̄i : i ∈ ω

}
. �

Theorem 2.10 (normalising a nice envelope). Let G be κ-saturated with κ > ℵ0 and H ⊂ G

a nice subgroup defined by a partial type of size < κ. Let A ⊂ H and NA ⊂ NG(A) any

subgroups with |A| < κ and |NA| < κ. There are nice subgroups K,NK ⊂ G defined by

countable partial types such that

A ⊂ K ⊂ H and NA ⊂ NK ⊂ NG(K).

Proof. Let
{
ϕ(x, b̄) : b̄ ∈ B

}
be a defining type for H . Note that H is the intersection of

nice subgroups Hi ⊂ G having a countable defining type. We fix some β̄ ∈ B. There is some

index i and some b̄ ∈ B such that

Hi ⊂ ϕ(G, b̄) ⊂ ϕ(G, b̄)2 ⊂ ϕ(G, β̄).

We apply the previous lemma with a1 = · · · = an = 1 and put

X0 = ϕ(G, β̄) and X1 =
n⋂

i=1

ϕ(G, c̄)αi .
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One has Xg
1 ⊂ X0 for any g ∈ NA and X1X1 ⊂ X0. Let γ̄ be an element of C such that

( n⋂

i=1

ϕ(G, γ̄)αi

)2 ⊂ X1,

and put Y1 =
⋂n

i=1
ϕ(G, γ̄)αi . As A ⊂ Y1, and as the countable type

{
ϕ(x, c̄) : c̄ ∈ C

}

provided by Lemma 2.9 defines a nice subgroup H1 ⊂ G with A ⊂ H1, one can apply

Lemma 2.9 again to H1 and Y1. By induction, one finds an infinite decreasing chain of

definable subsets X0 ⊃ X1 ⊃ X2 ⊃ · · · of G such that for every i ∈ ω and g ∈ NA, one has

Xg
i+1 ⊂ Xi, A ⊂ Xi and X2

i+1 ⊂ Xi.

As n depends on ϕ(x, y) only, the family
{
Xi : i ∈ ω

}
is uniformly defined by the formula

ψ(x, y1, . . . , yn+1) =
∧

16i6n

ϕ(xyi, yn+1),

where y1, . . . , yn+1 are replaced by parameters. By compactness, there is a family
(
Yi

)

i∈Q

of uniformly definable subsets of G defined by ψ(x, y1, . . . , yn+1), such that for all rational

numbers p < q, all g ∈ NA and all β̄ ∈ B, one has

Y g
p ⊂ Yq, A ⊂ Yp ⊂ ϕ(G, β̄), and YpYp ⊂ Yq.

We put Yp = ψ(G, b̄p) for some tuple b̄p. By compactness and Ramsey’s Theorem, we may

assume that the sequence (b̄p)p∈Q is indiscernible over the empty set. We define

K =
⋂

p∈Q

Yp and NK =
⋂

(p,q)∈Q2

p<q

{
x ∈ G : Y x

p ⊂ Yq and Y x−1

p ⊂ Yq

}
.

It is straightforward that K is a nice subgroup, that K ⊂ H , that NA ⊂ NK ⊂ NG(K) and

that NK is symmetric. For any rational numbers p < r < q, one has
({
x ∈ G : Y x

p ⊂ Yr

}
∩
{
x ∈ G : Y x

r ⊂ Yq

})2

⊂
{
x ∈ G : Y x

p ⊂ Yq

}
.

It follows that NK is a subgroup of G. To finish the proof of Theorem 2.10, we only need to

show that NK is a nice subgroup. For any p < q, we define 〈p, q〉 putting

〈p, q〉 =
{
x ∈ G : Y x

p ⊂ Yq and Y x−1

p ⊂ Yq

}
,

and for any r0 < r1 < · · · < rm, we define 〈r0, . . . , rm〉 by

〈r0, . . . , rm〉 = 〈r0, r1〉 ∩ 〈r1, r2〉 · · · ∩ 〈rm−1, rm〉.
Note that 〈r0, . . . , rm〉m ⊂ 〈r0, rm〉. Let φ(x, ȳ) be the formula defining uniformly the sets

〈p, q〉, and let m = V C
(
φ∗(x, ȳ1) ∧ φ∗(x, ȳ2) ∧ φ∗(x, ȳ3)

)
. Let r0 < r1 < · · · < r2m+1 be an

ordered sequence of 2m+ 2 rational numbers. By Lemma 2.2, there is i 6 2m such that

〈r0, r1〉1/3m ∩ · · · ∩ 〈ri−2, ri−1〉1/3m ∩ 〈ri+2, ri+3〉1/3m ∩ · · · ∩ 〈r2m, r2m+1〉1/3m

⊂ 〈r0, r1〉 ∩ 〈r2, r3〉 ∩ · · · ∩ 〈r2m, r2m+1〉.
To simplify notations, let us assume that i = 2. The above equation yields in particular

〈r0, r1〉1/3m ∩ 〈r4, r5〉1/3m ∩ · · · ∩ 〈r2m, r2m+1〉1/3m ⊂ 〈r2, r3〉
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As the sequence (b̄p)p∈Q is indiscernible, for any rational numbers p0 < p1 < · · · < p2m+1,

and any pi = pi,i+1
0 < pi,i+1

1 < · · · < pi,i+1
3m−1 < pi,i+1

3m = pi+1, one has

〈p0,1
0 , . . . , p0,1

3m〉 ∩ 〈p4,5
0 , . . . , p4,5

3m〉 ∩ · · · ∩ 〈p2m,2m+1
0 , . . . , p2m,2m+1

3m 〉 ⊂ 〈p2, p3〉.

In particular, by density of Q, any finite intersection of subsets of the form 〈p, q〉 for p < q

contains an intersection of 3m2 sets of the same form, so that if F denotes the family
{

〈p, q〉 :

p < q
}

, then the family
{⋂

Fm : Fm ⊂ F and |Fm| 6 3m2
}

is a uniform filter defining NK

as well. �

Remark 2.11. If H is the intersection of uniformly definable groups, then K is the intersection

of uniformly definable subgroups, but we do not see any obvious reason why NK would be

the intersection of uniformly definable subgroups.

With a similar proof, we get:

Theorem 2.12. Let G be κ-saturated with κ > ℵ0 and H ⊂ G a nice subgroup defined by a

partial type of size < κ. Let A ⊂ H and NA ⊂ NG(A) two subgroups that are the reunion of

two families of cardinality < κ of uniformly definable subsets of G. There are nice subgroups

K,NK ⊂ G defined by countable types such that

A ⊂ K ⊂ H and NA ⊂ NK ⊂ NG(K).

3. External and discernible subgroups

Let G be an infinite group, H = ϕ(G, c̄) an externally definable subgroup of G and G a fixed

|G|+-saturated elementary extension of G. Every b̄ realising the ϕ∗-type of c̄ over G satisfies

ϕ(G, c̄) = ϕ(G, b̄), so H is externally definable with parameters in G. The group H need

not be the trace on G of a definable subgroup of G though: consider the example of a convex

proper additive subgroup of an elementary extension of R.

Definition 3.1 (external subgroup). A subgroup H ⊂ G is external if there is a definable

subgroup H ⊂ G such that H = H∩G. If the elements of H satisfy a set P of quantifier-free

formulas with parameters in G, we say that H is external as a P-group.

Definition 3.2 (discernible subgroup). A subgroup H ⊂ G is discernible if there is an

elementary extension G of G and a nice subgroup H ⊂ G such that H = H ∩ G. If the

elements of H satisfy a set P of quantifier-free formulas with parameters in G, we say that

H is discernible as a P-group.

Lemma 3.3. A discernible subgroup of G is externally definable.

Proof. Let H = H∩G be discernible. By Lemma 1.6, H is externally definable, so H also. �

Lemma 3.4. A discernible subgroup H = H ∩ G is the trace over G of a nice subgroup

K ⊂ H defined by a countable partial type.
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Proof. Let π(x) = {ϕ(x, b̄) : b̄ ∈ B} be a defining type for H. Let G1 be a |G|+-saturated

elementary extension of G. Let b̄ in B. As π(G1)
2 ⊂ ϕ(G1, b̄), by the Compactness Theorem,

there are b̄1, . . . , b̄n in B such that
(
ϕ(G1, b̄1) ∩ · · · ∩ ϕ(G1, b̄n)

)2 ⊂ ϕ(G1, b̄).

As π(G1) is nice, there is c̄ in B such that

ϕ(G1, c̄) ⊂ ϕ(G1, b̄1) ∩ · · · ∩ ϕ(G1, b̄n).

Thus, the following partial type ρ(ȳ0, ȳ1, . . . , ȳn, . . . ) over H ∪ B
{
ϕ(x, ȳi+1)

2 ⊂x ϕ(x, ȳi), ϕ(x, ȳ0) ⊂x ϕ(x, b̄), ϕ(h, ȳi) : i ∈ ω, h ∈ H, b̄ ∈ B
}

is finitely satisfiable in B, hence realised by some sequence (ā0, ā0, . . . ) of elements of G1 ≻ G.

Putting π(x) =
{
ϕ(x, āi) : i ∈ ω

}
, one has H = π(G1) ∩G. �

If H is discernible as a P-subgroup of G and defined by the countable partial type π(x) ={
ϕ(x, ai) : i ∈ ω

}
, then replacing (ai)i∈ω by parameters (bi)i∈ω sharing the same type over

G changes neither H nor the first order consequences (with parameters in G) of π(x). In

particular, H is the trace on G of a nice subgroup H ⊂ G whose elements satisfy P.

An external subgroup of G is a discernible subgroup of G. The subgroup of infinitesimal

numbers of an elementary extension R of R is a discernible subgroup, an externally definable

subset, but not an external subgroup of R.

Lemma 3.5. Let H ⊂ G be the intersection of a family of uniformly external subgroups of G

with defining formula ϕ(x, ȳ). Then H is an external subgroup of G with defining formula

ϕ(x, ȳ1) ∧ · · · ∧ ϕ(x, ȳn).

Proof. By the Baldwin Saxl condition, H is a discernible subgroup of G. We can thus apply

the proof of Lemma 3.3, adding to the partial type π(ȳ) a formula ψ(ȳ) saying that ϕ(x, ȳ)

defines a subgroup of G. �

Lemma 3.6. If G is stable, a discernible subgroup H ⊂ G is definable. If H is the trace over

G of a group H defined by the nice type {ϕ(x, ā) : ā ∈ A}, there are ā1, . . . , ān in G such

that ϕ(G, ā1) ∩ · · · ∩ ϕ(G, ān) is a subgroup of H of finite index.

Proof. As G does not have the order property, there is a in A such that H = ϕ(G, a). Let

ψ(y) be a formula stating that ϕ(G, y) is a subgroup of G. The ϕ∗ ∧ ψ-type of a over G is

definable by a positive Boolean combination of formulas of the form ϕ(x, g) ∧ψ(g) for g in G

by [HH84, Corollary 2.8], hence covered by a finite union of subgroups of G. By Neumann’s

Lemma [Neu54], one of these subgroups must have finite index in H . �

Theorem 3.7 (finding external subgroups). Let G a NIP group, G a |G|+-saturated elemen-

tary extension of G and H = H ∩G an external subgroup of G.

(1) There is n ∈ ω such that for every A ⊂ G, there are a1, . . . , an in G such that

CG(A) = CG(a1, . . . , an).
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(2) There is an abelian definable subgroup Z ⊂ G such that,

Z(H) = Z ∩G.

(3) For every n ∈ ω, there is a definable subgroup K of G such that

H = K ∩G and Zn(H) = Zn(K) ∩G.

(4) There is n ∈ ω such that for every A ⊂ G, there are a1, . . . , an in G such that

HA = Ha1 ∩ · · · ∩ Han ∩G.

Proof. (1) By Baldwin Saxl’s chain condition, CG(A) is defined by a nice partial type con-

sisting of uniformly definable subgroups. It is thus an external subgroup by Lemma 3.5.

(2) By the Baldwin Saxl condition, there is n ∈ ω such that the centraliser of any finite

subset of G is the centraliser of n elements. By the Compactness theorem and the saturation

assumption, there is an n-tuple h̄ in G such that Z(H) ⊂ CH(h̄) ⊂ CH(H). It follows that

Z(CH(h̄)) contains Z(H), hence Z(H) = G ∩ Z(CH(h̄)).

(3) The following Claim is inspired by [dA13, Lemma 2.1]:

Claim 1. Let A,B ⊂ G be two subgroups and D ⊂ G a definable subgroup normalised by

both A and B such that [A,B] ⊂ D. There are two definable subgroups A,B ⊂ G containing

A and B respectively such that [A,B] ⊂ D.

Proof of Claim 1. For any subset C ⊂ G, we define the subgroups A(C),B(C) ⊂ G by

A(C) =
⋂

c∈C
[A,c]⊂D

{
x ∈ NG(D) : [x, c] ⊂ D

}
,

B(C) =
⋂

c∈C
[c,B]⊂D

{
y ∈ NG(D) : [c, y] ⊂ D

}
,

and claim that there is a finite C ⊂ G such that [A(A ∪ B ∪ C),B(A ∪ B ∪ C)] ⊂ D.

Otherwise, by induction, one could build two sequences (an)n∈ω and (bn)n∈ω such that for

every n ∈ ω, an ∈ A(A ∪ B ∪ {ak, bk : k < n}) and bn ∈ B(A ∪ B ∪ {ak, bk : k < n}) but

[an, bn] /∈ D. It would follow that [ai, bj] ∈ D if and only if i 6= j, so that the sequence

(CG(anD))n∈ω would not satisfy the Baldwin Saxl chain condition since for every j 6 n,

bj ∈
( ⋂

16i6n
i6=j

CG(aiD)
)

\
( ⋂

16i6n

CG(aiD)
)
.

By the Compactness Theorem, there is a finite tuple c̄ such that [A(c̄),B(c̄)] ⊂ D. We

consider A = A(c̄) and B = B(c̄). �

We prove (3) by induction on n. For n = 0, there is nothing to show. If there is a definable

subgroup H ⊂ G such that H = H ∩ G and Zn(H) = Zn(H) ∩ G, as [Zn+1(H), H ] ⊂
Zn(H), by Claim 1, there are two definable subgroups Zn+1,Hn+1 ⊂ G containing Zn+1(H)

and H respectively such that [Zn+1,Hn+1] ⊂ Zn(H). Replacing Hn+1 by Hn+1 ∩ H and

Zn+1 by Zn+1 ∩ Hn+1, we may assume that Hn+1 ⊂ H and Zn+1 ⊂ Hn+1. It follows that

[Zn+1,Hn+1] ⊂ Zn(Hn+1), so that Zn+1(Hn+1) contains Zn+1, hence Zn+1(H). One thus has

H = Hn+1 ∩G and Zn+1(H) = Zn+1(Hn+1) ∩G.
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(4) Follows from Baldwin Saxl’s chain condition and Lemma 3.5. �

Theorem 3.8 (finding discernible subgroups). Let G be a NIP group, G a |G|+-saturated,

|G|+-homogeneous elementary extension of G and H = H ∩G a discernible subgroup of G.

(1) There are n ∈ ω and a nice subgroup K ⊂ G such that for every A ⊂ G, there are

a1, . . . , an in G with

H = K ∩G and HA = Ka1 ∩ · · · ∩ Kan ∩G.

(2) There are n ∈ ω and a nice subgroup K ⊂ G such that for every A ⊂ G and

A ⊂ Aut(G/A), there are σ1, . . . ,σn in Aut(G/A) with

H = K ∩G and
⋂

σ∈A

Hσ = Kσ1 ∩ · · · ∩ Kσn ∩G.

(3) There are nice subgroups K ⊂ H and N ⊂ NG(K) of G such that

H = K ∩G and NG(H) = N ∩G.

Proof. (1) Let
{
ϕ(x, b̄) : b̄ ∈ B

}
be a defining type for H and n = V C

(
ϕ∗(x, ȳ)

)
. By

Lemma 2.8, the type πA

(
y1, . . . , yn, (xi)i∈ω

)
defined by

{
ϕ(x, x̄i+1)2 ⊂x ϕ(x, x̄i), ϕ(x, x̄i) ⊂x ϕ(x, b̄), ϕ(h, x̄i),

∧

16j6n

ϕ(k, x̄i)
yj ,

( ∧

16j6n

ϕ(x, x̄i)
yj

)
⊂x ϕ(x, b̄)a : h ∈ H, k ∈ HA, a ∈ A, b̄ ∈ B, i ∈ ω

}

is finitely satisfiable in A×n × Bω. Let
(
a1, . . . , an, (ci)i∈ω

)
be a realisation of πA in G. The

type ν(x) = {ϕ(x, c̄i) : i ∈ ω} is nice, and one has

H = ν(G) ∩G and HA = ν(G)a1 ∩ · · · ∩ ν(G)an ∩G.

By another compactness argument, considering the union of the types πA

(
y1,A, . . . , yn,A, (xi)i∈ω

)

when A ranges among all subsets of G, one can find a group ν(G) that does not depend on

the set A.

(2) By Lemma 3.4, we may change H and assume that it is defined by a countable type{
ϕ(x, b̄i) : i ∈ ω

}
. Without loss of generality, we may assume ϕ(G, b̄i+1)

2 ⊂ ϕ(G, b̄i) for

every i ∈ ω. Let Ā be a subset of Aut(G/A) containing exactly one extension of every σ ∈ A.

Let n = V C
(
ϕ∗(x, ȳ)

)
, let τA

(
(ȳ0,p, ȳ1,p, . . . , ȳn,p)p∈ω

)
be a partial type over A stating that

the sequences (ȳk,p)p∈ω have the same type over A for every k ∈ {0, . . . , n} and let

ρA
(
(ȳ0,p, ȳ1,p, . . . , ȳn,p)p∈ω

)
= τA

(
(ȳ0,p, ȳ1,p, . . . , ȳn,p)p∈ω

)
∪

{
ϕ(x, ȳ1,0) ∧ · · · ∧ ϕ(x, ȳn,0) ⊂x ϕ(x,σb̄i), ϕ(k, ȳ1,0) ∧ · · · ∧ ϕ(k, ȳn,0),

ϕ(x, ȳ0,p) ⊂x ϕ(x, b̄i), ϕ(x, ȳ0,p+1)
2 ⊂x ϕ(x, ȳ0,p),

ϕ(h, y0,p) : i ∈ ω, p ∈ ω, h ∈ H, k ∈ HA, σ ∈ Ā

}
.
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We claim that ρA is finitely satisfiable. For every m > 1, every i1, . . . , im ∈ ω and every

σ1, . . . ,σm in Ā, putting i = max{i1, . . . , im} + 1, one has

ϕ(G,σ1b̄i) ∩ · · · ∩ ϕ(G,σmb̄i) ⊂ ϕ(G,σ1b̄i1
) ∩ · · · ∩ ϕ(G,σmb̄in

).

By Lemma 2.2, there are j > i and j1, . . . , jn ∈ {i1, . . . , im} with

ϕ(G,σj1
b̄j) ∩ · · · ∩ ϕ(G,σjn

b̄j) ⊂ ϕ(G,σ1b̄i) ∩ · · · ∩ ϕ(G,σmb̄i).

Putting (c̄1,p, . . . , c̄n,p) = (σj1
b̄j+p, . . . ,σjn

b̄j+p) for every p, one has

(c̄k,0, c̄k,1, . . . , c̄k,p) = σjk
(b̄j , b̄j+1, . . . , b̄j+p) for every k ∈ {1, . . . , n}.

It follows that ρA is consistent. Let
(
(c̄0,p, c̄1,p, . . . , c̄n,p)p∈ω

)
be a realisation of ρA. As the

sequences (c̄k,p)p∈ω have the same type over A for every k ∈ {0, . . . , n}, there are σ1, . . . ,σn

in Aut(G/A) such that σk(c̄0,p)p∈ω = (c̄k,p)p∈ω for every k ∈ {1, . . . , n}. Putting K =⋂
p∈ω

ϕ(G, c̄0,p), one has H = K ∩G and
⋂

σ∈A
Hσ = Kσ1 ∩ · · · ∩ Kσn ∩G. Considering the

union of the types ρA
(
(ȳ0,p, ȳ1,p,A, . . . , ȳn,p,A)p∈ω

)
when A and A vary, one can find a group K

that depends neither on A nor on A.

(3) By Lemma 3.4, we may assume that H is defined by a countable type. By Theorem 2.10

applied in G to H ⊂ H and NG(H), there are two nice subgroups K,N ⊂ G such that

H ⊂ K ⊂ H and NG(H) ⊂ N ⊂ NG(K). One thus has H = K∩G and NG(H) = N∩G. �

4. Envelopes in a definable group

Let us recall the following results from [She09] and [dA13].

Theorem 4.1. Let C be a monster model of a NIP theory and G a group definable in C.

(1) (S. Shelah) If G has an infinite abelian subgroup A, then it has a definable abelian

subgroup that contains infinitely many elements of A.

(2) (R. de Aldama) If G has a nilpotent subgroup N of class n with |N | < |C|, then it has

a definable nilpotent subgroup of class n that contains N .

(3) (R. de Aldama) If G has a normal soluble subgroup S of derived length ℓ with |S| < |C|,
then it has a definable soluble subgroup of derived length ℓ that contains S.

Throughout the section, we consider a NIP group G and G a |G|+-saturated elementary

extension.

Theorem 4.2 (abelian envelope). Let A ⊂ G be an abelian subgroup. There is an external

subgroup H = H ∩ G with A ⊂ H such that H is abelian, H is A-invariant and normalised

by NG(A).

First proof (Adapted from [dA13, Lemma 2.1]). For any subset B ⊂ G, we put

C(B) =
⋂

b∈B
[b,A]=1

CG(b).

We claim that there is a finite subset B ⊂ G such that C(A ∪ B) is abelian. Otherwise we

construct by induction on n two sequences (an)n>1 and (bn)n>1 such that for every n, both

an and bn belong to C(A ∪ {ak, bk : k < n}) and [an, bn] 6= 1. It follows that [ai, bj] = 1 if
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and only if i 6= j, so that the family
(
CG(ai)

)

i>1
does not satisfy the Baldwin-Saxl chain

condition, a contradiction. As G is |A|+-saturated, by the Compactness Theorem, there are

c1, . . . , cn in B such that CG(c1, . . . , cn) is abelian, and contains A. By Lemma 3.5, the group
⋂

g∈NG(A)

⋂

σ∈Aut(G/A)

CG

(
σ(cg

1), . . . , σ(cg
n)
)
,

is external. �

Second proof. Z(CG(A)) is external (as an abelian group) by Theorem 3.7.1 and 3.7.2. It is

also A-invariant and normalised by NG(A). �

Remark 4.3. The simpler second proof provides an abelian envelope defined by the formula

Z(CG(x1, . . . , xn)), whereas the first proof provides an envelope defined by the simpler formula

CG(x1, . . . , xn).

Theorem 4.4 (soluble envelope 1). Let S ⊂ G be a soluble subgroup of derived length ℓ.

There is a discernible subgroup H = H ∩ G with S ⊂ H such that H is soluble of derived

length ℓ, H is S-invariant and normalised by NG(S).

Proof. By induction on ℓ, we show that there are two nice subgroups H,N ⊂ G defined by

countable partial types, such that H is soluble of derived length ℓ,

S ⊂ H, NG(S) ⊂ N, and H ⊳N.

If ℓ = 0, there is nothing to show. If the result holds for every ℓ-soluble subgroup of G and if

S is soluble of derived length ℓ+ 1, there are nice subgroups K,M ⊂ G defined by countable

partial types, such that K is soluble of derived length ℓ, S ′ ⊂ K, NG(S ′) ⊂ M and K ⊳ M.

As NG(S) ⊂ NG(S ′), one has NG(S) ⊂ M. We thus have

SK
/

K ⊂ M/K.

As sK = Ks holds for every s in S, one has [SK, SK] ⊂ S ′K ⊂ K, hence (SK)′ ⊂ K, so

the group SK/K is abelian.

By Corollary 1.9, the pure group M/K is a NIP structure, so the formula yx = xy does not

have the independence property in M/K. As K and M are defined by countable types and

as G is |S|+-saturated, M/K is also |S|+-saturated. By Theorem 4.2, there are a1, . . . , an in

M such that CM/K(a1K, . . . , anK) is abelian and contains SK/K. It follows that the group

L =
n⋂

i=1

{x ∈ M : [x, ai] ⊂ K}

is nice, soluble of derived length ℓ + 1 and contains S. By Theorem 2.10 applied in G to

S ⊂ L and NG(S), there are nice subgroups H,N ⊂ G with S ⊂ H ⊂ L, NG(S) ⊂ N and

H ⊳N. This ends the induction.

Putting H = H ∩G, the subgroup
⋂

σ∈Aut(G/S)

σ(H)

is discernible by Theorem 3.8.2, S-invariant and normalised by NG(S). �
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Corollary 4.5 (soluble envelope 2). Let S ⊂ G be a soluble subgroup of derived length ℓ.

There is an externally definable subgroup X = X ∩ G of G such that S ⊂ X and 〈X〉 is a

soluble subgroup of G of derived length ℓ.

Proof. By Zorn’s Lemma, we may assume that S is a maximal soluble subgroup of G of

derived length ℓ. By Theorem 4.4, there is a formula ϕ(x, y) and a subset A ⊂ G such that⋂
{ϕ(G, a) : a ∈ A} defines a nice soluble subgroup of G containing S. We write ϕ(G, a)n

for the set of products of n elements of ϕ(G, a). We say that a subset X ⊂ G is soluble

of derived length ℓ if X satisfies all the commutator identities satisfied by a soluble group

of derived length ℓ. For a definable set X, being soluble of derived length ℓ is a first order

property. The partial type over S

π(x) =
{
ϕ(s, x), ϕ(G, x)n is soluble of derived length ℓ : s ∈ S, n ∈ ω

}

is finitely satisfiable in A. Let s ∈ G be a realisation of π and let X = ϕ(G, s). The set

X ∩G is a subgroup by maximality of S. �

Remark 4.6. In an arbitrary groupG, if a subset X ⊂ G satisfies all the commutator identities

satisfied by a nilpotent group of class n, we call X a nilpotent subset of class n. If a X is

nilpotent of class n, then X generates a nilpotent subgroup of class n. If X is in addition

definable, then it is contained in a definable nilpotent subgroup of class n. This can be

shown taking Z
(
CG(X)

)
for n = 1, and Zn(En) for arbitrary n, with En defined by induction

putting E0 = G and Ek+1 =
{
x ∈ Ek : [x, Ck+1

Ek
(X)] ⊂ Ck

Ek
(X)

}
(see [AB14]). However, if

X is merely soluble of derived length 2, then X may not even generate a soluble subgroup.

Consider for instance two generators a and b of the alternating group A5. The set {a, b}
obviously satisfies the equation

[
[x, y], [z, t]

]
= 1, but A5 is not solvable.

Theorem 4.7 (normal soluble envelope). Let S ⊂ G be a normal soluble subgroup of derived

length ℓ. There is a normal, soluble of derived length ℓ, definable subgroup H ⊂ G such that

S ⊂ H.

Proof. Note that S need not be normal in G, so Theorem 4.1.3 does not apply. The following

proof is due to F. Wagner. We show that the result holds for every G and every ℓ-soluble

subgroup of G by induction on ℓ. For ℓ = 1, the group S is abelian and normal. For any

elementary extension G of G and s1, . . . , sn in S, the conjugacy classes sG
1 , . . . , s

G
n generate

an abelian subgroup of G. By the Baldwin Saxl chain condition, there is a natural number

n such that the partial type over S

π(x1, . . . , xn) =
{
s ∈ CG(xG

1 , . . . , x
G
n ), CG(xG

1 , . . . , x
G
n ) ⊂ CG(s) : s ∈ S

}

is finitely satisfiable in S. As G is |S|+-saturated, there are a1, . . . , an in G such that

S ⊂ CG(aG
1 , . . . , a

G
n ) ⊂ CG(S).

It follows that Z(CG(aG
1 , . . . , a

G
n )) is normal in G, abelian and contains S. If S is soluble of

derived length ℓ+ 1, by induction hypothesis, S ′ is contained in a normal, soluble of derived

length ℓ, definable subgroup K of G. SK
/

K is a normal abelian subgroup of G/K. As G/K

is interpretable in M , it is a NIP pure group. As G/K is |S|+-saturated, SK
/

K is contained

in a normal abelian interpretable subgroup H
/

K of G
/

K, and H is as desired. �
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5. Further chain conditions à la Baldwin Saxl

We consider a NIP structure M and a type definable group G ⊂ Mm. Two new difficulties

appear: G need not be the intersection of definable groups, and if H ⊂ G is a type definable

normal subgroup, the pure group G/H might have the independence property unless the

formulas defining H relatively to G are controlled.

5.1. Relatively nice subgroups. We say that G ⊂ Mm is a type definable group in M if

there is a definable map ∗ from M2m to Mm, a partial m-type π(x̄) with parameters in M

such that G = π(M) and, for every elementary extension M of M , the subset π(M) ⊂ Mm

is a group for ∗M. We call π a defining type of G. Assuming ∗ to be definable rather than

type definable is no restriction by a compactness argument (see [Poi85, page 170]).

By the Compactness Theorem, there exists a sequence β of definable subsets βi ⊂ Mn that

contain G, and a definable involution −1 from β0 to β0 with the following properties: for

every x̄ ∈ β0, one has x̄x̄−1 = x̄−1x̄ = 1 and x̄1 = 1x̄ = x̄; for every n ∈ ω one has β−1
n = βn

and βn+1 ∗ βn+1 ⊂ βn; for every x̄1, . . . , x̄2n in βn, the element x̄1x̄2 · · · x̄2n is well-defined,

independently of the order of the 2n − 1 computations. We call β a base of G.

For any subset X ⊂ βn and k 6 2n, we write Xk for the subset of β0 consisting of products

x1x2 · · ·xk of any k elements x1, . . . , xk of X, and X×k for the Cartesian product X×· · ·×X.

For a set Y , when there is no ambiguity, we go on writing Y k for the Cartesian product

Y × · · · × Y . A subset X ⊂ β0 such that 1 ∈ X and X−1 = X is called symmetric.

Throughout the section, we consider G = π(M) a type definable group in M of base β. A

type definable subgroup H ⊂ G is called relatively definable in G if there is a formula ϕ(x̄)

such that π∪{ϕ} is a defining type of H . We call ϕ a defining formula of H . More generally:

Definition 5.1 (relatively nice subgroup). A type definable subgroup H ⊂ G is relatively

nice in G if there is a formula ϕ(x̄, ȳ) and a subset A ⊂ Mk such that π(x̄)∪{ϕ(x̄, ā) : ā ∈ A}
is a defining type of H , the family

{
π(M) ∩ ϕ(M, ā) : ā ∈ A

}
is a filter for every elementary

extension M of M and the sets ϕ(G, ā) ⊂ β0 are symmetric for every ā ∈ A. We call ϕ(x̄, ȳ)

a defining formula of H .

A family H of relatively nice subgroups of G is called uniform if its members have a common

defining formula.

Lemma 5.2 (Baldwin Saxl chain condition for relatively nice subgroups). If H is a uniform

family of relatively nice subgroups of G, there is n ∈ ω such that any finite intersection of

members of H is the intersection of at most n of them.

Proof. Otherwise, by the usual Baldwin Saxl argument, for every n ∈ ω one would find

H1, . . . , Hn in H and tuples (bJ)J⊂{1,...,n} of elements in G such that bJ ∈ Hi ⇐⇒ i ∈ J . Let

ϕ(x̄, ȳ) be a common defining formula for the members of H, and let π(x̄)∪{ϕ(x̄, āi) : āi ∈ Ai}
a defining type for Hi. Let BJ and Bi be the finite sets

BJ =
{
bJ : J ⊂ {1, ..., n}

}
, Bi =

{
bJ ∈ B : i ∈ J

}
.
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As the family
{
ϕ(BJ , āi) : āi ∈ Ai

}
is a filter for every i ∈ {1, . . . , n}, by the Compactness

Theorem, there are (ā1, . . . , ān) in G such that Bi ⊂ ϕ(BJ , āi) ⊂ ϕ(BJ , āi) for every i and

every āi ∈ Ai, so that M |= ϕ(bJ , āi) if and only if i ∈ J , a contradiction. �

Corollary 5.3. If H is a uniform family of relatively nice subgroups of G, then
⋂

H∈H
H is

relatively nice and the family
{⋂

H∈K
H : K ⊂ H

}
is uniform.

Proof. Let n be the natural number provided by Lemma 5.2 and for every H in H, let

{ϕ(x̄, ā) : ā ∈ AH} be a type defining H relatively to G. Let A be the set
⋃

H∈H
AH . Calling

ψ(x̄, ȳ) the formula ϕ(x̄, ȳ1) ∧ · · · ∧ ϕ(x̄, ȳn), the type {ψ(x̄, ā) : ā ∈ An} defines the group⋂
H∈H

H and the family {π(M) ∩ ψ(M, ā) : ā ∈ An} is a filter by Lemma 5.2. �

5.2. Uniform definability. A third difficulty arises. If H ⊂ G is a relatively nice subgroup

with defining type {ϕ(x̄, āi) : i ∈ ω} and |āi| = k, it is not clear whether there is a uni-

form partial type ρ
(
(ȳi)i∈ω

)
such that for every countable B ⊂ Mk, M |= ρ(B) implies that

⋂
b̄∈B

ϕ(G, b̄) is a relatively nice subgroup of G. This prevents applying compactness argu-

ments. We introduce therefore a strengthening of the preceding notions. The Compactness

Theorem ensures that for all i ∈ ω, there is j ∈ ω and a definable set Xi with G ⊂ Xi ⊂ β1

and

(2)
(
Xi ∩ ϕ(M, aj)

)2 ⊂ ϕ(M, ai).

Definition 5.4 (nice subgroup). We say that H ⊂ G is nice (in G) if it is relatively nice

with defining type {ϕ(x̄, ā) : ā ∈ A} and there is a definable set X with G ⊂ X ⊂ β1 such

that for all ā ∈ A, there is b̄ ∈ A such that
(
X ∩ ϕ(M, b̄)

)2 ⊂ ϕ(M, ā).

We call X a second base for N .

If H ⊂ G is nice in G and K ⊂ H is nice in H , then K is nice in G.

Definition 5.5 (uniform family of nice subgroups). A family H of nice subgroups of G is

uniform if its members have the same defining formula and share a common second base.

Lemma 5.6 (a uniform family is closed under intersections). If H is a uniform family of nice

subgroups of G, then
⋂

H∈H
H is nice in G, and the family

{⋂
H∈K

H : K ⊂ H
}

is uniform.

Proof. By Corollary 5.2, the subgroup
⋂

H∈H
H is relatively nice inG, and it is easy to see that

a common second base for H is a common second base for the family
{⋂

H∈K
H : K ⊂ H

}
. �

Example 5.7. A relatively definable subgroup H = ϕ(G) is nice. As (G ∩ ϕ(M))2 ⊂ ϕ(M),

by the Compactness theorem, H has a second base.

Example 5.8. For any g ∈ G, the centraliser CG(g) is relatively definable in G, and the family

{CG(g) : g ∈ G} is uniform, sharing β2 as a second base if one puts β1 = φ1(M) and chooses

φ1(x̄) ∧ x̄ȳ = ȳx̄ as a defining formula. In particular, CG(A) is nice for any A ⊂ G.
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Example 5.9. If G is type definable over A ⊂ M , if A ⊂ Aut(M/A) and H ⊂ G is nice with

an A-definable second base X, then {Hσ : σ ∈ A} shares X as a second base, and
⋂

σ∈A
Hσ

is nice.

Example 5.10. Let G be type definable over A, and H ⊂ G a relatively nice subgroup with

defining type {ϕ(x, ai) : i ∈ I} where I is a linearly ordered set. If (ai)i∈I is indiscernible

over A, the set Xi provided by (2) does not depend on ai, so H is nice.

Lemma 5.11. If H ⊂ G is a nice subgroup and g ∈ G, then Hg is nice and the family

{Hg : g ∈ G} is uniform. In particular HA is nice for any A ⊂ G.

Proof. By Lemma 5.6, we need only find a common second base for {Hg : g ∈ G}. Let

X ⊂ β1 be a second base for H and {ϕ(x̄, ā) : ā ∈ A} a defining type. For all ā ∈ A there is

b̄ ∈ A such that (
X ∩ ϕ(M, b̄)

)2 ⊂ ϕ(M, ā).

By the Compactness theorem, there is a definable Y ⊂ β3 such that G ⊂ Y 3 ⊂ X. It follows

that for every g ∈ G, one has
(
Y ∩ ϕ(M, b̄)g

)2 ⊂ ϕ(M, ā)g. �

Lemma 5.12 (Baldwin Saxl chain condition for subsets). Let X be a family of subsets of β0.

For all X ∈ X, let X1/3 ⊂ β2 be symmetric with (X1/3)3 ⊂ X and let X1/3 =
{
X1/3 : X ∈ X

}

be uniformly definable by a formula ϕ(x̄, ȳ). Let n = V C(ϕ∗(x̄, ȳ)). For every X ∈ X, let

X1/3n ⊂ βn+1 be symmetric with
(
X1/3n

)n ⊂ X1/3. For all X1, . . . , Xn+1 ∈ X, there is

j ∈ {1, . . . , n+ 1} with

X
1/3n
1 ∩ · · · ∩X

1/3n
j−1 ∩X

1/3n
j+1 ∩ · · · ∩X

1/3n
n+1 ⊂ X1 ∩ · · · ∩Xn+1.

Proof. Similar to the proof of Lemma 2.2. �

Corollary 5.13 (uniform definability of niceness). Let H ⊂ G be a type definable subgroup

with defining type {ϕ(x̄, ā) : ā ∈ A}. H is nice if and only if there is a definable X with

G ⊂ X ⊂ β1 such that for all ā ∈ A there is b̄ ∈ A with
(
X ∩ ϕ(M, b̄)

)2 ⊂ ϕ(M, ā).

Proof. Without loss of generality, we put β0 = φ(M), replace ϕ(x̄, ȳ) by φ0(x̄) ∧ ϕ(x̄, ȳ) ∧
ϕ(x̄−1, ȳ) and assume that X = β1. Let X =

{
ϕ(M, ā) : ā ∈ A

}
and X1/3j =

{
βj+1 ∩ϕ(M, ā) :

ā ∈ A
}

for any non-zero j ∈ ω. Let ā ∈ A. By assumption, there are ā = b̄0, b̄1, . . . , b̄j such

that for all ℓ ∈ {0, . . . , j},
(
β1 ∩ ϕ(M, b̄ℓ+1)

)2 ⊂ ϕ(M, b̄ℓ).

It follows that
(
βj+1 ∩ ϕ(M, b̄j)

)j ⊂
(
βj+1 ∩ ϕ(M, b̄j)

)2j

⊂
(
βj ∩ ϕ(M, b̄j−1)

)2j−1

⊂ · · · ⊂ β1 ∩ ϕ(M, b̄0).

Putting n = V C(ϕ∗(x̄, ȳ)), the families X, X1/3 and X1/3n satisfy the assumptions of Lemma 5.12,

so the family
{
βn+2 ∩

⋂
ā∈B

ϕ(M, ā) : ā ∈ B, |B| 6 n+ 1
}

is a filter. �
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5.3. Normaliser. Let H ⊂ G be a nice subgroup with defining type {ϕ(x̄, ā) : ā ∈ A} and

N ⊂ G a type definable subgroup that normalises H . By the Compactness Theorem, for all

ā ∈ A, there are b̄ ∈ A, definable sets Xā, Kā with G ⊂ Xā ⊂ β2 and N ⊂ Kā ⊂ β2 such that

for all g ∈ Kā, (
Xā ∩ ϕ(M, b̄)

)g ⊂ ϕ(M, ā).

Definition 5.14 (uniformly normal subgroup). If H ⊂ G is nice and normalised by a type

definable subgroup N ⊂ G, we say that H is uniformly normalised by N if there are definable

sets X,K with G ⊂ X ⊂ β2 and N ⊂ K ⊂ β2 such that for all ā ∈ A, there is b̄ ∈ A such

that for all g ∈ K, (
X ∩ ϕ(M, b̄)

)g ⊂ ϕ(M, ā).

Theorem 5.15 (normalising a nice envelope). Let M be κ-saturated for κ > ℵ0 and let

H ⊂ G be a nice subgroup (resp. relatively definable) defined by a partial type of size < κ.

Let A ⊂ H and NA ⊂ NG(A) be subgroups of cardinality < κ. There are a nice (resp. a

conjunction of a uniform family of relatively definable) subgroup E ⊂ G, and a type definable

subgroup NE ⊂ G such that

A ⊂ E ⊂ H and NA ⊂ NE ⊂ NG(E).

Moreover, NE normalises E uniformly.

Proof. Let {ϕ(x, b̄) : b̄ ∈ B} be a defining type for H . There is a definable X0 ⊂ β1 containing

G such that for all b̄ ∈ B, there is c̄ ∈ B with

(3)
(
ϕ(M, c̄) ∩X0

)2 ⊂ ϕ(M, b̄).

There are also definable symmetric Xn ⊂ βn+1 such that X2
n+1 ⊂ Xn for all n ∈ ω. As G

is the intersection of type definable groups defined by such countable types, we may assume

without loss of generality that G =
⋂

n∈ω
Xn. By Lemma 5.12 and (3), replacing ϕ(x̄, ȳ) by

a finite conjunction of ϕ(x̄, ȳi), one may also assume that
{
ϕ(M, b̄) ∩X0 : b̄ ∈ B

}
is a filter.

Claim 2. There is n ∈ ω such that for all b̄ ∈ B and a1, . . . , an ∈ G with A ⊂
⋂

16i6n
ϕ(G, b̄)ai,

there are a nice subgroup K ⊂ G with countable defining type {ϕ(x̄, c̄) : c̄ ∈ C}, some

α1, . . . , αn ∈ G and c̄ ∈ C such that for all g ∈ NA
(

n⋂

i=1

ϕ(M, c̄)αi ∩Xn

)g

⊂
n⋂

i=1

ϕ(M, b̄)ai ,
(
ϕ(M, c̄)∩X0

)2 ⊂ ϕ(M, b̄) and A ⊂
n⋂

i=1

Kαi ∩K.

Proof of Claim 2. Fix b̄ ∈ B. By the Compactness Theorem, there is an upper bound n ∈ ω

for
{
V C

(
ϕ(ȳ, b̄)x̄

)
: b̄ ∈ M

}
. By Lemma 5.11, the family {Hg : g ∈ G} is uniform, of second

base Xk say, so there exists b̄1 ∈ B such that for all g ∈ G,

(4)
(
ϕ(M, b̄1)g ∩Xn+k

)3n ⊂ ϕ(M, b̄)g and
(
ϕ(M, b̄1) ∩X0

)2 ⊂ ϕ(M, b̄).

By Lemma 5.12, for every g1, . . . , gn+1 ∈ G, there is i ∈ {1, . . . , n+ 1} with

⋂

j∈{1,...,n+1}\{i}

ϕ(M, b̄1)gj ∩Xn+k ⊂
n+1⋂

j=1

ϕ(M, b̄)gj .
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By induction on |J |, for all finite J ⊂ G, there are Jn ⊂ J with |Jn| < n+ 1 and b̄2 ∈ B with

(5)
⋂

g∈Jn

ϕ(M, b̄2)
g ∩Xn+k ⊂

⋂

g∈J

ϕ(M, b̄)g and
(
ϕ(M, b̄2) ∩X0

)2 ⊂ ϕ(M, b̄).

We put Xi = φi(M) for every i ∈ ω and consider the partial type

ρ(x̄1, . . . , x̄n, (z̄i)i∈ω) =

{(
ϕ(x̄, z̄i+1) ∧ φ0(x̄)

)2 ⊂x̄ ϕ(x̄, z̄i), ϕ(ā, z̄i),

(
ϕ(x̄, z̄0) ∧ φ0(x̄)

)2 ⊂x̄ ϕ(x̄, b̄),




n∧

j=1

ϕ(x̄, z̄0)x̄j ∧ φn+k(x̄)



 ⊂x̄




n∧

j=1

ϕ(x̄, b̄)aj




g

,

ϕ(ā, z̄i)
a1 , . . . , ϕ(ā, z̄i)

an , x̄1 ∈ G, . . . , x̄n ∈ G : g ∈ NG(A), ā ∈ A, i ∈ ω

}
.

By (5), the type ρ is finitely satisfiable in NG(A)×n ×Bω. Let (α1, . . . , αn, C) be a realisation

of ρ. By Corollary 5.13, the type
{
ϕ(x̄, c̄) : c̄ ∈ C

}
defines a nice subgroup of G. �

Let n ∈ ω provided by Claim 2. We may assume that n > 6. We call ψ(x̄, ȳ1 . . . , ȳn+1) the

formula ϕ(x̄, ȳn+1)
ȳ1 ∧ · · · ∧ ϕ(x̄, ȳn+1)

ȳn.

Claim 3. There are (c̄j)j∈ω ∈ (M |B|)
ω

and (γ̄j)j∈ω ∈ (Gn)ω such that for all g ∈ NA, j ∈ ω

and b̄ ∈ B,

ψ(M, γ̄j, c̄j) ∩X0 ⊂ ϕ(M, b̄),

A ⊂
(
ψ(M, γ̄j+1, c̄j+1) ∩Xn

)g ⊂ ψ(M, γ̄j, c̄j) and
(
ψ(M, γ̄j+1, c̄j+1) ∩Xn

)2 ⊂ ψ(M, γ̄j, c̄j).

Proof of Claim 3. We fix b̄ ∈ B and first build two families (c̄j)j∈ω, (γ̄j)j∈ω depending on b̄.

We take c̄0 = b̄ and γ0 = (1, . . . , 1). As H is nice, there is d̄1 ∈ B such that

(6)
(
ϕ(M, d̄1) ∩X0

)2 ⊂ ϕ(M, c̄0).

By Claim 2, there are c̄1 and γ̄1 such that for all g ∈ NA,

A ⊂
(
ψ(M, γ̄1, c̄1) ∩Xn

)g ⊂ ψ(M, γ̄0, d̄1).

By (6), (
ψ(M, γ̄1, c̄1) ∩Xn

)g ⊂ ψ(M, γ̄0, d̄1) ∩X3 ⊂ ψ(M, γ̄0, c̄0).

One also has
(
ψ(M, γ̄1, c̄1) ∩Xn

)2 ⊂
(
ψ(M, γ̄0, d̄1) ∩X3

)2 ⊂ ψ(M, γ̄0, c̄0).

We go on inductively using Claim 2. As the family {ϕ(M, b̄) ∩ X0 : i ∈ I} is a filter, the

conclusion follows from the Compactness Theorem and the saturation assumption. �

Claim 4. There is an indiscernible sequence (c̄q)q∈Q ∈ (Gn+1)ω such that for all g ∈ NA

rational numbers p < q and b̄ ∈ B,

ψ(M, c̄p) ∩X0 ⊂ ϕ(M, b̄),

A ⊂
(
ψ(M, c̄p) ∩Xn

)g ⊂ ψ(M, c̄q) and
(
ψ(M, c̄p) ∩Xn

)2 ⊂ ψ(M, c̄q).

Proof of Claim 4. From Claim 3 by the Compactness Theorem and Ramsey’s. �
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We may now finish the proof of Theorem 5.15. For every m > n define Nm
p,q ⊂ Xm by

Nm
p,q =

{
g ∈ Xm :

(
XXm

n ∩ ψ(M, c̄p)
)g ⊂ ψ(M, c̄q)

}
.

Note that
(
XXm

n

)

m>n
is an increasing sequence so

(
Nm

p,q

)

m>n
is decreasing. Define

N =
⋂

m>n

⋂

p<q

Nm
p,q and E =

⋂

q∈Q

ψ(M, c̄q) ∩G.

As
(
XXm

n

)g ⊂ XXm+1

n for all g ∈ Xm+1 and m > n, for every rational numbers p < r < q and

natural number m > n, one has
(
Nm+1

p,r ∩Nm+1
r,q

)2 ⊂ Nm
p,q.

It follows that N ⊂ G is a subgroup. For all m > n+1 one has G ⊂ XXm
n so N normalises E.

By Lemma 5.12 and indiscernibility of (c̄q)q∈Q, for any fixed m > n, there is k(m) ∈ ω

such that every finite intersection of Nm
p,q contains an intersection of at most 3k2 sets of

the form Nm+3k
s,t . By the Compactness theorem, one can find a countable descending chain

N1 ⊃ N2 · · · ⊃ Nℓ ⊃ · · · of definable subsets of X such that for all ℓ > 1,

NA ⊂ Nℓ ⊂
⋂

p<q

Nm+ℓ
p,q and N2

ℓ+1 ⊂ Nℓ

It follows that
⋂

ℓ>1
Nℓ is a type definable subgroup of G that uniformly normalises E. The

group E is nice by Remark 5.10. �

5.4. External and discernible subgroups. G still stands for a type definable group of

type π and base β in the NIP structure M . We fix M a |G|+-saturated elementary extension

of M and we write G for π(M).

Definition 5.16 (external subgroup). A subgroup H ⊂ G is external if there is a relatively

definable subgroup H ⊂ G (a witness) with H = H ∩G. A family of external subgroups is

uniform if there is a corresponding family of relatively definable witnesses having a common

defining formula and sharing a common second base.

Lemma 5.17. The conjunction of a uniform family H of external subgroups of G is an

external subgroup of G, and the family
{⋂

H∈K
H : K ⊂ H

}
is uniform.

Proof. Let A ⊂ M a subset and X ⊂ G a definable subset such that ϕ(G, ā) ⊂ G is a

subgroup with second base X for all ā ∈ A. Let H be the intersection of ϕ(G, ā) over A. By

Lemma 5.12, we may replace the formula ϕ(x̄, ȳ) by ϕ(x̄, ȳ1) ∧ · · · ∧ϕ(x̄, ȳn), the set X by an

nth root containing G, and assume that {ϕ(G, ā) ∩ X : ā ∈ A} is a filter. The type

ρ(ȳ) =
{

(ϕ(x̄, ȳ) ∧ ψ(x̄)) ⊂x̄ ϕ(x̄, ā)), ϕ(h̄, ȳ), (ϕ(x̄, ȳ) ∧ ψ(x̄))2 → ϕ(x̄, ȳ) : ā ∈ A, h̄ ∈ H
}

is finitely satisfiable in A. Let ā be a realisation in M. The subgroup ϕ(G, a) ⊂ G is

relatively definable, X is a second base and H = ϕ(G, a). �

Definition 5.18 (discernible subgroup). A subgroup H ⊂ G is discernible if there is a nice

subgroup H ⊂ G (a witness) such that H = H ∩G. A family of discernible subgroups of G

is uniform if there is a corresponding family of nice witnesses that is uniform.
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Lemma 5.19. The conjunction of a uniform family H of discernible subgroups of G is a

discernible subgroup, and the family
{⋂

H∈K
H : K ⊂ H

}
is uniform.

Proof. By Lemma 5.6. �

Theorem 5.20 (on external subgroups). Let M be a NIP structure, M ≻ M an |M |+-

saturated elementary extension, G = π(M) a type definable group, G = π(M) and H = H∩G
an external subgroup of G.

(1) There is n ∈ ω such that for every A ⊂ G, there are a1, . . . , an in G with

CG(A) = CG(a1, . . . , an).

(2) For every n ∈ ω, there are relatively definable subgroups K,Zn ⊂ G such that

H = K ∩G, Zn(H) = Zn ∩G and Zn ⊂ Zn(K).

(3) There is n ∈ ω such that for every A ⊂ G, there are a1, . . . , an in G with

HA = Ha1 ∩ · · · ∩ Han ∩G.

(4) For every A ⊂ G containing the parameters of π, for every A ⊂ Aut(M/A), the group

HA is external.

Proof. (1) By Example 5.8, the groups CG(a) form a uniform family of external subgroups.

By Lemma 5.17, CG(A) is external, and by the proof of Lemma 5.17, CG(A) is of the desired

form.

(2) Similar to the proof of Theorem 3.7.3 using the following claim instead of Claim 1.

Claim 5. Let A,B ⊂ G be two subgroups, D ⊂ G a relatively definable subgroup normalised

by both A and B such that [A,B] ⊂ D. Assume that A and B are contained in a relatively

definable subgroup ND of G that normalises D. There are two relatively definable subgroups

A,B ⊂ G containing A and B respectively and such that [A,B] ⊂ D.

Proof of Claim 5. Similar to the proof of Claim 1, defining

A(C) =
⋂

c∈C
[A,c]⊂D

{
x ∈ ND : [x, c] ⊂ D

}
, B(C) =

⋂

c∈C
[c,B]⊂D

{
y ∈ ND : [c, y] ⊂ D

}
,

. �

(3) By Lemma 5.11, the groups Ha form a uniform family of external subgroups. By

Lemma 5.17, HA is external. By the proof of Lemma 5.17, HA is of the desired form.

(4) Let M1 be an |M |+-homogeneous elementary extension of M and G1 = π(M1). For every

σ ∈ A, let σ̄ ∈ Aut(M1/A) be an extension of σ and Ā = {σ̄ : σ ∈ A}. Putting H = φ(G)

and H1 = φ(G1), one has HA = HĀ
1 ∩ G. Since H1 has a second base definable over A by

Example 5.7, the family {Hσ̄
1 : σ̄ ∈ Ā} is uniform by Example 5.9. By Lemma 5.17, HA is

external. �

Theorem 5.21 (on discernible subgroups). Let M be a NIP structure, M ≻ M an |M |+-

saturated elementary extension, G = π(M) a type definable group, G = π(M) and H = H∩G
a discernible subgroup of G.
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(1) For every n ∈ ω, there are nice subgroups K,Zn ⊂ G such that

H = K ∩G, Zn(H) = Zn ∩G and Zn ⊂ Zn(K).

(2) For every A ⊂ G, the group HA is discernible.

(3) For every A ⊂ G containing the parameters of a second base of H and π, for every

A ⊂ Aut(M/A), the group HA is discernible.

(4) There are a nice subgroup K ⊂ H of G and a type definable subgroup N ⊂ NG(K) of

G such that

H = K ∩G and NG(H) = N ∩G.

Proof. (1) Similar to the proof of Theorem 3.7.3, using the following claim instead of Claim 1.

Claim 6. Let A,B ⊂ G two subgroups, D ⊂ G a nice subgroup such that [A,B] ⊂ D.

Assume that A and B are contained in a nice subgroup ND of G that uniformly normalises

D. There are two nice subgroups A,B ⊂ G containing A and B respectively such that

[A,B] ⊂ D.

Proof of Claim 6. As in Claim 1, there is a finite C ⊂ ND such that, defining for any S ⊂ ND

A(S) =
⋂

c∈S
[A,c]⊂D

{
x ∈ ND : [x, c] ⊂ D

}
and B(S) =

⋂

c∈S
[c,B]⊂D

{
y ∈ ND : [c, y] ⊂ D

}
,

one has [A(A ∪ B ∪ C),B(A ∪ B ∪ C)] ⊂ D. Let {ϕ(x, ai) : i ∈ I} be the type that defines

D relatively to G and let β2 = φ2(M). Let us show that, for any S ⊂ ND, putting

Hi(s) = {g ∈ φ2(M) : [g, s] ⊂ ϕ(M, ai)} ,
the family H =

{⋂
i∈I

ND ∩ Hi(s) : s ∈ S
}

is a uniform family of nice subgroups in ND. By

Lemma 5.6, this will show that A(A∪B ∪C) and B(A∪B ∪C) are nice in ND, hence in G.

We need only find a common second base for the members of H. As D is nice in G, there is

a definable set Y with G ⊂ Y such that for all i ∈ I there is j ∈ I with
(
Y ∩ ϕ(M, aj)

)2 ⊂ ϕ(M, ai).

As D is uniformly normal in ND, there is a definable Z with ND ⊂ Z ⊂ φ2(M) such that

for all j ∈ I, there is k ∈ I such that for all g ∈ Z,
(
Z ∩ ϕ(M, ak)

)g ⊂ ϕ(M, aj).

There are also definable sets Y1/6 and Z1/4 containing ND with
(
Y1/6

)6 ⊂ Y and
(
Z1/4

)4 ⊂ Z.

We put W = φ3(M) ∩ Y1/6 ∩ Z1/4 and claim that
(
W ∩ Hk(s)

)2 ⊂ Hi(s) for any s ∈ ND.

For all elements g, h ∈ W ∩ Hk(s), one has

[g, s]h ∈
((

Z1/4
)4 ∩ ϕ(M, ak)

)h

and [h, s] ∈
(
Z1/4

)4 ∩ ϕ(M, ak),

and so

[g, s]h ∈ ϕ(M, aj) and [h, s] ∈ ϕ(M, aj),
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hence

[gh, s] = [g, s]h[h, s] ∈
((

Y1/6
)6 ∩ ϕ(M, aj)

)2

⊂ ϕ(M, ai).

This shows that gh belongs to Hi(s) and that W is the desired second base. �

(2) HA is discernible by Lemma 5.11 and Lemma 5.19.

(3) Let M1 be an |M |+-homogeneous elementary extension of M and G1 = π(M1). For

every σ ∈ A, let σ̄ ∈ Aut(M1/A) be an extension of σ and Ā = {σ̄ : σ ∈ A}. Putting

H = φ(G) and H1 = φ(G1), one has HA = HĀ
1 ∩ G, so HA is discernible by Example 5.9

and Lemma 5.19.

(4) By Theorem 5.15. �

Corollary 5.22. Let G be a NIP group, A ⊂ G a subset and n ∈ ω, then Cn
G(A) is discernible.

Proof. The nth centraliser of A is defined by induction on n putting C0
G(A) = {1} and

Cn+1
G (A) =

⋂

k6n

NG(Ck
G(A)) ∩

{
g ∈ G : [g, A] ⊂ Cn

G(A)
}
.

We proceed by induction on n. For n = 1, this is Theorem 3.7.1. Assume that Cn
G(A) =

Cn ∩ G where Cn ⊂ G is nice. One has [Cn+1
G (A), A] ⊂ Cn. As A and Cn+1

G (A) normalise

Cn
G(A), by Theorem 3.8.3 applied to Cn ∩G, there is a nice subgroup N ⊂ G that normalises

Cn (hence normalise it uniformly) and contains both A and Cn+1
G (A). By Claim 6, there is

a nice subgroup H ⊂ G such that [H, A] ⊂ Cn and Cn+1
G (A) ⊂ H. By induction hypothesis

and Theorem 3.8.3, there is a nice subgroup M of G such that

M ∩G =
⋂

k6n

NG(Ck
G(A)).

Putting Cn+1 = M ∩ H, one has

Cn+1
G (A) = Cn+1 ∩G. �

6. Envelopes in type definable groups

Let M be a NIP structure and G a type definable group. We fix a |G|+-saturated extension

M of M and write G for π(M).

Theorem 6.1 (abelian envelope). Let A ⊂ G be an abelian subgroup. There is an external

subgroup H = H ∩ G with A ⊂ H such that H is abelian, H is A-invariant and normalised

by NG(A).

Proof. The A-invariant subgroup Z(CG(A)) contains A and is normalised by NG(A). It is an

external abelian subgroup by Theorem 5.20.1 and 5.20.2. �

Theorem 6.2 (nilpotent envelope). Let N ⊂ G be a nilpotent subgroup of class n. There

is an external subgroup H = H ∩ G with N ⊂ H such that H is nilpotent of class n, H is

N-invariant and normalised by NG(N).
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Proof. By induction on k 6 n, we build a chain Z0 ⊳ · · ·⊳Zk of relatively definable subgroups

of G such that

Z0 = {1}, Zk(N) ⊂ Zk and [Zk, N ] ⊂ Zk−1.

If Zk is built, as one has

[Zk+1(N), N ] ⊂ Zk(N) ⊂ Zk,

and as N is contained in the subgroup CG(Zk/Zk−1) which normalises Zk, by Claim 5, there

is a relatively definable subgroup Zk+1 of G containing Zk+1(N) such that

[Zk+1, N ] ⊂ Zk.

For every k 6 n, the group

Hk =
{
x ∈ Zn : [Zk, x] ⊂ Zk−1

}

is external by Lemma 5.17, and the group H1 ∩ · · · ∩ Hn is a nilpotent group of class n

that contains N . This finishes the induction, and one concludes with Theorem 5.20.3 and

5.20.4. �

Theorem 6.3 (soluble envelope). Let S ⊂ G be a soluble subgroup of derived length ℓ.

There is a type definable subgroup N ⊂ G with NG(S) ⊂ N and a nice and uniformly normal

subgroup H ⊂ N that contains S and is soluble of derived length ℓ. More precisely, H is the

intersection of a uniform family of relatively definable subgroups of N.

Proof. Let us consider the derived series S⊲S(1)⊲· · ·⊲S(ℓ), and let H1 be a relatively definable

abelian subgroup of G that contains S(ℓ−1) and that is normalised by NG(S). Let N1 be a

type definable subgroup of G that normalises H1 and contains NG(S). We build by induction

on k 6 ℓ two families 1 ⊳H1 ⊳ · · · ⊳Hk and N1, . . . ,Nk of subgroups of G such that for every

k 6 ℓ, the group Nk is a type definable subgroup of G that contains NG(S) and Hk is a nice

and uniformly normal subgroup of Nk that satisfies

S(ℓ−k) ⊂ Hk and [Hk,Hk] ⊂ Hk−1.

If Nk and Hk are built, one has

[S(ℓ−k−1), S(ℓ−k−1)] ⊂ S(ℓ−k) ⊂ Hk.

By Claim 6, there is a nice subgroup Kk+1 of Nk such that

S(ℓ−k−1) ⊂ Kk+1 and [Kk+1,Kk+1] ⊂ Hk.

By Theorem 5.21.4 there is a type definable subgroup Nk+1 of G that contains NG(S) and

a nice subgroup Hk+1 of Kk+1 that contains S(ℓ−k−1) and is uniformly normalised by Nk+1.

We put

N = N1 ∩ · · · ∩ Nℓ and H = Hℓ. �
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