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VARIATIONS SUR UN THÈME DE ALDAMA ET SHELAH

CÉDRIC MILLIET

Abstract. We study the definability of certain subgroups of a group G that does not have
the independence property. If a (type) definable subset X of an elementary extension G

of G has property P , we call its trace X ∩ G over G an externally (type) definable P set. We
show the following. Centralisers of subsets of G are externally definable subgroups. Cores
of externally definable subgroups and iterated centres of externally definable subgroups are
externally definable subgroups. Normalisers of externally definable subgroups are externally
type definable subgroups and externally definable (as sets). A soluble subgroup S of derived
length ℓ is contained in an S-invariant externally type definable soluble subgroup of G of
derived length ℓ. The subgroup S is also contained in an externally definable subset X ∩ G

of G such that X generates a soluble subgroup of G of derived length ℓ. Analogue results
are discussed when G is merely a type definable group in a structure that does not have the
independence property. A soluble subgroup S of G of derived length ℓ is contained in an
externally type definable soluble subgroup of derived length ℓ.
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Given a group G, a subset X of G is definable in G if there exist a first-order formula ϕ(x, ȳ)

and parameters ā from G such that X consists of all g in G such that ϕ(g, ā) holds in G.

A subset X of G is externally definable if there is an elementary extension G of G and

parameters ā in G such that X consists of all g in G such that ϕ(g, ā) holds in G. We write

ϕ(G, ā) for such a set X if we want to stress on the defining formula ϕ, otherwise we write

X ∩G where X stands for ϕ(G, ā). Definable subsets and externally definable ones coincide

for the field R of real numbers (L. Van den Dries [vdD86]), for the field Qp of p-adic numbers

(F. Delon [Del89]), for an algebraically closed field and more generally for stable structures

(it follows from the definability of types).

Key words and phrases. Model theory; independence property; shattering type; VC-dimension; Abelian,
nilpotent, and soluble subgroups; nice group; definable and type definable envelope.
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They do not coincide in general: in the ordered Abelian group (Q,+,6 ), the (convex)

interval ]
√

2,+∞[ is not definable in Q, but externally definable using the irrational param-

eter
√

2. Externally definable sets play an important role in structures that do not have

the independence property, such as (Q,+,6 ). They correspond to finite unions of convex

subsets in the particular case of o-minimal and weakly o-minimal structures. Expanding the

language of a weakly o-minimal structure by unary predicates interpretating finite unions of

convex subsets preserves weak o-minimality (B. Baizhanov [Bai01]). Expanding the language

of a structure that does not have the independence property by predicates interpretating ex-

ternally definable subsets preserves the absence of the independence property (S. Shelah

[She09]).

A group G does not have the independence property if for every first order formula ϕ(x, ȳ), the

Vapnik-Chervonenkis dimension of the family {ϕ(G, ḡ) : ḡ ⊂ G} is finite. We shall also use

the short hand NIP group. S. Shelah [She09] and R. de Aldama [dA13] began investigating

definable subgroups of G using external parameters lying in a fixed elementary extension

G of G. S. Shelah showed that if G has an infinite Abelian subgroup A, there exists an

externally definable Abelian subgroup of G that contains infinitely many elements of A. R.

de Aldama went on showing that any nilpotent subgroup N of G is contained in a externally

definable nilpotent subgroup of G that has the same nilpotency class as N , and that any

soluble subgroup S of G that is normalised by a |G|+-saturated elementary extension of G is

contained in an externally definable soluble subgroup of G that has the same derived length

as S. As we were further investigating the soluble case, we had to cope with subgroups closely

related to the infinitesimal numbers, in the following way: in a non-principal ultrapower

R = RN/U of the field R of real numbers, the subgroup I of infinitesimal numbers is not

definable in R. There is an external parameter ε in an elementary extension R∗ of R such

that I =] − ε, ε[, so that I is externally definable as a set. I is not externally definable as a

group, however it is the conjunction of the uniform filtering family of definable sets ] − 1
n
, 1

n
[

that defines a group both in R and R∗.

We call a subgroup H of G a discernible subgroup if there is a subgroup H of G that is the

intersection of a uniform filtering family of definable subsets of G such that H = H ∩ G.

Discernible subgroups are examples of externally definable subsets, and in the particular case

when G is a stable group, they coincide with definable subgroups (see Lemma 3.7). Our main

results are the following.

Theorem 0.1 (finding discernible subgroups). Let G be a NIP group, G a |G|+-saturated

elementary extension of G and H = H ∩G an externally definable subgroup of G.

(1) There is a natural number n such that for every subset A ⊂ G, there are elements

a1, . . . , an in G such that

CG(A) = CG(a1, . . . , an).

(2) For every natural number n, there is a definable subgroup K of G such that

H = K ∩G and Zn(H) = Zn(K) ∩G.
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(3) There is a natural number n such that for every subset A ⊂ G, there are elements

a1, . . . , an in G such that

⋂

a∈A

Ha = Ha1 ∩ · · · ∩ Han ∩G.

(4) For every subset A ⊂ G and every discernible subgroup H of G, the group
⋂

a∈A

Ha is

a discernible subgroup of G.

(5) The normaliser of a discernible subgroup of G is a discernible subgroup of G.

(6) For every natural number n and subset A ⊂ G, the iterated centraliser Cn
G(A) is a

discernible subgroup of G.

Theorem 0.2 (discernible soluble envelope). Let G be a NIP group and S a soluble subgroup

of G of derived length ℓ and G a |G|+-saturated elementary extension of G.

(1) There is an S-invariant discernible soluble subgroup of G of derived length ℓ that

contains S.

(2) There is a definable subset X ⊂ G such that X ∩G is a subgroup of G containing S,

and such that X generates a soluble subgroup of G of derived length ℓ.

(3) If S is in addition normal in G, there is a normal soluble subgroup of G of derived

length ℓ that contains S.

NIP groups include finite groups, Abelian groups in the pure language of groups (W. Szmielew

[Szm55]), Abelian ordered groups (Y. Gurevich and P. Schmitt [GS84]), groups definable in a

stable structure (e.g. linear algebraic groups over separably closed fields, C. Wood [Woo79])

and groups definable in an o-minimal structure (e.g. linear algebraic groups over the field of

real numbers) ; these are trivial ones for most of the considerations of this paper, as both

stable and o-minimal groups satisfy strong descending chain conditions, either on uniformly

definable subgroups [BS76] or on all definable subgroups [Pil88]. In particular, centralisers

of subsets, as well as cores of definable subgroups are definable, and these properties remain

true of quotients by normal definable subgroups.

Other examples include linear algebraic groups over a field k that does not have the indepen-

dence property, and more generally groups interpretable therein, e.g. quotients H1/H2 where

H2 ⊳ H1 are definable subgroups (not necessarily Zariski-closed) of the general linear group

GLn(k) in a field structure (k, L) where L is an expansion of the field language such that the

structure (k, L) is NIP. This holds in particular with k equal to (a finite algebraic extension

of) the pure field Qp of p-adic numbers (L. Matthews [Mat93], see also [Bél12]) and more

generally to a Henselian valued field of characteristic 0 whose residue field is NIP (F. Delon

[Del81]), or with k equal to the valued field
⋃

n>1 Falg
p ((t1/n)) of Puisieux series over Falg

p and

more generally to a valued field of charactersitic p > 0 with perfect NIP residue field, p-

divisible value group and no proper algebraic valuated extension having ramification index 1

and residue degree 1 (I. Kaplan, T. Scanlon and F. Wagner [KSW11]). Note that in an alge-

braic group G(k) over a field, every descending chain of Zariski-closed subgroups has finite

length. In particular, centralisers are Zariski-closed (hence definable), cores of Zariski-closed

subgroups are Zariski-closed, but cores of definable subgroups may not be definable.
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NIP groups also include general linear groups over an infinite NIP ring R, which may be a

domain (such as a the valuation rings of the valued fields cited above) or not (such as any

non-principal ultraproduct
( ∏

n∈N Z/pnZ
)/

U).

Two more examples of a less algebraic nature. The universal covering group G̃ of a definably

connected group G that is interpretable in an o-minimal expansion M of the field R of

real numbers is a NIP group: G̃ is interpretable in the two sorted structure ((π1(G),+),M)

(E. Hrushovski et al. [HPP11]) hence NIP (A. Conversano and A. Pillay [CP12]). An

ultraproduct of groups that are uniformly interpretable in a NIP structure (D. Macpherson

and K. Tent [MT12]) is NIP.

1. Preliminaries on the independence property

Before discussing the particular case of groups, we consider an arbitrary first-order language

L, a complete theory T , one of its models M and a subset A ⊂ M . Let x̄ and ȳ be disjoint

tuples of variables of respective length p > 1 and q > 1. Given a formula φ(x̄) and a partial

type π(x̄), we write φ(A) for the subset {(x1, . . . , xp) ∈ Ap : φ(x1, . . . , xp) holds in M} of Mp,

π(A) for the family {φ(A) : φ ∈ π} and
⋂
π(A) the intersection of its members.

1.1. Shattering formulas. Let ϕ(x̄, ȳ) be a formula in p+ q variables with possible param-

eters in M . Given a natural number n > 1, we say that the formula ϕ(x̄, ȳ) shatters n in T

if there are parameters ā1, . . . , ān in Mp and (b̄J)J⊂{1,...,n} in M q such that

ϕ(āi, b̄J) holds in M if and only if i ∈ J.

In other words, ϕ(x̄, ȳ) shatters n in T if there is a finite subset A of Mp with n elements

whose subsets are all of the form A ∩ ϕ(M, b̄) for some b̄ varying in M q. As shattering n

is a first order property, it does not depend on the model M of T chosen. We call Vapnik-

Chervonenkis dimension of ϕ(x̄, ȳ) in T , sometimes omitting to precise T when the ambient

theory is obvious, the maximal natural number n that is shattered by ϕ(x̄, ȳ) in T if such

a number exists, or ∞ otherwise. We write it V C(ϕ). Note that V C(ϕ) equals V C(¬ϕ).

In these definitions, the tuples of variables x̄ and ȳ do not play the same role. We write

ϕ∗(x̄, ȳ) for the dual formula of ϕ(x̄, ȳ), obtained by interchanging the role of x̄ and ȳ. We

say that ϕ(x̄, ȳ) has the independence property in T , if it1 has infinite VC-dimension in T .

The structure M or its theory T do not have the independence property (i.e. are NIP) if no

formula has the independence property in T , i.e. if every formula has a finite VC-dimension.

The relation between Shelah’s independence property in [She90] and Vapnik-Chervonenkis’

dimension in [VC71] is pointed out in [Las92]. We refer to [She90] and [Adl14] the reader

willing to know more about structures that do not have the independence property.

1.2. Shattering types. We extend the previous definitions to partial types. Let λ and µ be

two cardinal numbers, with µ 6 λ+. If π(x̄, ȳ) is a partial type in p+ q variables, we say that

π(x̄, ȳ) shatters λ up to µ in T if there is a subset A of Mp of cardinal λ for an elementary

1According to Shelah’s definition in [She90, Definition 4.2], ϕ(x̄, ȳ) has the independence property if the
dual formula ϕ∗(x̄, ȳ) has infinite VC-dimension. The two statements are equivalent as V C(ϕ) 6 n implies
V C(ϕ∗) 6 2n by [Poi85, Lemme 12.16].
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extension M of M such that every subset B of A with |B| < µ equals A ∩ ⋂
π(M, b̄) for

some b̄ in Mq. Equivalently, there is an elementary extension M of M , a family {āi : i < λ}
of elements of Mp, and a family {b̄J : J ⊂ λ, and |J | < µ} of elements of Mq such that

π(āi, b̄J) holds in M if and only if i ∈ J

We say that π(x̄, ȳ) co-shatters λ in T up to µ if there is an elementary extension M of M

and families {āi : i < λ} and {b̄J : J ⊂ λ, and |J | < µ} whose elements lie respectively

in Mp and Mq, such that

π(āi, b̄J) holds in M if and only if i /∈ J,

or equivalently if there is a subset A of Mp of cardinal λ whose subsets B with |A \ B| < µ

are all of the form A ∩ ⋂
π(M, b̄) for some b̄ in Mq.

If π(x̄, ȳ) shatters λ up to λ+, then it shatters and co-shatters λ up to every µ 6 λ+. In this

case, we simply say that π(x̄, ȳ) shatters λ.

If a formula ϕ(x̄, ȳ) shatters every natural number n in T , by the Compactness Theorem,

ϕ(x̄, ȳ) shatters λ for every cardinal number λ. If a partial type π(x̄, ȳ) shatters every natural

number in T , by the Compactness Theorem, for every natural number n, there is a finite

conjunction of formulas in π(x̄, ȳ) that has VC-dimension at least n. However, it is possible

that T be NIP.

Example 1.1 (The Cantor ternary set in R). The Cantor ternary set C is the intersection of

the closed sets In defined inductively by

I1 = [0, 1] and In+1 =
In

3
∪

(
2

3
+
In

3

)
.

It consists of the elements of [0, 1] having at least one ternary representation whose digits

belong to {0, 2}. The partial type {x+y ∈ In : n > 1} shatters ℵ0. For every natural number

i and subset J of ℵ0, we define

ai =
(

1

3
+

1

32

)
× 1

32i
and bJ =

∑

j∈J

2

32j+2
,

so that we have

ai + bJ =
1

32i+1
+

1

32i+2
+

∑

j∈J

2

32j+2
.

On the one hand, if i does not belong to J , then ai + bJ has occurrences of 1 in every ternary

representation. On the other hand, if i belongs to J , then

ai + bJ =
2

32i+1
+

∑

j∈J\{i}

2

32j+2
.

Example 1.2 (The Cantor ternary set in Q3). The 3-adic ternary Cantor set C3 is the inter-

section of the closed subsets Kn ⊂ Q3 defined inductively by

K1 = Z3 and Kn+1 = 3Kn ∪ (2 + 3Kn).

It consists of the 3-adic integers whose canonical expansion has coefficients in {0, 2} (M.

Lapidus and H. Lũ [LL08]). The ring of 3-adic integers is defined by the formula (∃y)(y2 =

1+3x2) and C3 is a type definable subset of Q3. The type x−y ∈ C3 shatters ℵ0 in Q3, taking
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ai = 32i + 32i+1 and bJ =
∑

j∈J 2.32j. Note that the field Q3 does not have the independence

property by [Mat93] (see also [Bél12, Section 4.2]).

Given a cardinal λ, here is an example of a language Lλ, an Lλ-structure M and partial

type πλ(x, y) that shatters λ in M . Let Γ be an ordered Abelian divisible group containing a

copy of the semi-group λ. Consider the Hahn field Q3((Γ)) of generalised power series with

3-adic coefficients. Consider the structure (Q3((Γ)),+, 0, (P µ
n )µ<λ, n>0) where P µ

n is a unary

predicate interpreting the subgroup of Q3((Γ)) whose elements are of the form
∑

i∈I ait
i with

aµ ∈ 3nZ3. In this language, Q3((Γ)) is an Abelian structure in the sense of E. Fisher (see

[Fis77], or [Wag97, Example 0.3.1]). Any definable subset of the Cartesian product Q3((Γ))n

is a Boolean combination of cosets of acl(∅)-definable subgroups of Q3((Γ))n by [Wei93] (see

also [Wag97, Theorem 4.2.8]): the structure (Q3((Γ)),+, 0, (P µ
n )µ<λ, n>0) is stable.

Let Cλ
3 denote the partial type defined by

Cλ
3 =

⋂

µ<λ

⋂

n>1

Kµ
n , where Kµ

1 = P µ
0 and Kµ

n+1 = 3Kµ
n ∪ (2 + 3Kµ

n) .

The realisations of Cλ
3 in Q3((Γ)) are the elements of the form

∑
i∈I ait

i where aµ ∈ C3 for

each cardinal number µ < λ belonging to I. The families ai = 4ti and bJ =
∑

j∈J 2tj witness

that the type x+ y ∈ Cλ shatters λ in Q3((Γ)).

Example 1.3 (A type that shatters every n, but not ℵ0 up to 4). In (R,+,6), here is a

sequence of definable subsets An ⊂ [0, 1] such that the partial type {x − y ∈ An : n > 1}
shatters every natural number n but does not shatter ℵ0 up to 4. Define for all n > 1, a

definable subset Bn of [n, n+ 1] of the form

Bn =]n, n+ 1[ \ {cn,1, . . . , cn,2n} with n < cn,1 < · · · < cn,2n < n+ 1

such that, there are an,i and bJ,n in R such that ai −bJ ∈]n, n+1[ and ai −bJ ∈ Bn if and only

if i ∈ J . We put C =
⋃{ci,j : i, j > 1}, and we may build each Bn so that the map mapping

a 2 element subset {x, y} of C to |x− y| has finite (unbounded) fibres (using a Q-basis of R
for instance). We put for all n > 1,

An =] − ∞, 1] ∪B1 ∪B2 ∪ · · · ∪Bn ∪ [n+ 1,+∞[

It follows that, for every n, π(an,i, bJ,n) holds if and only if i ∈ J , so π(x, y) shatters every

natural number n. If A is an infinite set shattered by π(x, y), then there is a real number ℓ

and infinitely many 3 element subsets B of A with the property that |x− y| = ℓ for some x

and y in B. This shows that π(x, y) does not shatter ℵ0 up to 4.

1.3. Nice sets. The previous examples show that shattering types can occur in a theory that

does not have the independence property. We go on by giving two elementary conditions for

a shattering type in a theory T to yield a formula having the independence property in T .

Given a partial type ρ(x̄) (where x̄ is a p-tuple of variables), we call
⋂
ρ(M) a ρ-definable set

in M , and we say that a subset X of Mp is type definable in M if there is a partial p-type

ρ(x̄) such that X is ρ-definable.

We say that ρ is uniform if there is a q-tuple of variables ȳ, a formula ϕ(x̄, ȳ), an elementary

extension M of M , and a parameter subset A of Mq such that

ρ(x̄) =
{
ϕ(x̄, ā) : ā ∈ A

}
.



VARIATIONS SUR UN THÈME DE ALDAMA ET SHELAH 7

Let F be a family of subsets of Mp. We say that F is uniformly definable if there is a uniform

p-type ρ(x̄), such that F = ρ(M).

If X is any set, we say that a family F of subsets of X is a filter if for every F1 and F2 in F,

there is an F in F such that F ⊂ F1 ∩ F2. We say that ρ is a filter in M if the family ρ(M)

is a filter. Note that if ρ is a filter in M , then it is a filter in every structure N elementary

equivalent to M .

Definition 1.4 (nice set). Let M be any structure, and ρ(x̄) a partial p-type. We say that

ρ(x̄) is nice in M if ρ(x̄) is a uniform filter in M . If X is a type definable subset of Mp, we

say that X is nice in M if there is a partial nice type ρ(x̄) in M , such that X is ρ-definable.

Lemma 1.5. If there is a nice partial type that shatters every natural number n in T , then

M has the independence property.

Proof. Let π(x̄, ȳ) be this type. There is an r-tuple of variables z, a formula ϕ(x̄, ȳ, z̄), an

elementary extension M of M and a set of tuples of parameters A ⊂ Mr such that

π(x̄, ȳ) =
{
ϕ(x̄, ȳ, ā) : ā ∈ A

}
.

Let n > 1 be a natural number. There are parameters ā1, . . . , ān in Mp and (b̄J)J⊂{1,...,n}

in Mq such that for every J ⊂ {1, . . . , n} and every i ∈ {1, . . . , n},

π(āi, b̄J) holds in M if and only if i ∈ J.

It follows that the partial type
∨

i/∈J π(āi, b̄J) is inconsistent. By compactness, there is a finite

conjunction φn(x̄, ȳ) of formulas in π(x̄, ȳ) such that φn(āi, b̄J) does not hold whenever i /∈ J .

As π(x̄, ȳ) is a filter, there is an element an in A such that ϕ(x̄, ȳ, ān) implies φn(x̄, ȳ). Because

ϕ(x̄, ȳ, ān) belongs to π(x̄, ȳ), it follows that for every J ⊂ {1, . . . , n} and i ∈ {1, . . . , n}

ϕ(āi, b̄J , ān) holds in M if and only if i ∈ J.

Calling z̄ any q + r tuple of variables, the formula ϕ(x̄, z̄) shatters n in M . This holds for

every natural number n > 1. �

Remark 1.6. In Lemma 1.5, one cannot drop the assumption that the partial type is uniformly

definable: Example 1.3 furnishes a type shattering every natural number n in (R,+,≤). Nor

can one drop the assumption that π(x̄, ȳ) is a filter: the type constructed in Example 1.3

is of the form {x − y ∈ An : n > 1} with every An being the complement of finitely many

points, so the same type can be written in the form {x − y ∈ Bn : n > 1} where Bn is the

complement of one point only, so that the formulas x− y ∈ Bn are uniformly definable, but

do not form a filter. More generally, in an o-minimal structure, as every definable set is the

conjunction of uniformly definable sets, every type is equivalent to a uniform type. Every

type is also equivalent to a filter, but need not be equivalent to a uniform filter.

Corollary 1.7. Let M be a NIP structure, N a substructure whose domain is a nice subset

and E a type definable equivalence relation on N defined by a nice partial type that preserves

the language. Then no existential formula (∃z̄)ϕ(x̄, ȳ, z̄) has the independence property in the

structure N/E.
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Proof. If ϕ(x̄, ȳ, z̄) is quantifier free, puting

E(x, y) =
∧

i∈I

Ei(x, y) and N =
∧

i∈I

Ni,

then ∃z̄ϕ(āE, b̄E, z̄) holds in N/E if and only if the nice partial type
{
(∃x̄1)(∃x̄2)(∃z̄)ϕ(x̄1, x̄2, z̄) ∧ Ei(ā, x̄1) ∧ Ei(b̄, x̄2) ∧ (ā, b̄, x1, x̄2, z̄) ∈ Ni : i ∈ I

}

holds in M . �

With no assumption on the type π(x̄, ȳ), but under large cardinals assumptions, we get the

following Lemma. A cardinal λ is ω-Erdös if for every partition of the set [λ]<ℵ0 of finite

subsets of λ into two equivalence classes, there is a subset of λ of order type ω whose finite

subsets lie in the same class.

Lemma 1.8. If there is a countable partial type π(x̄, ȳ) and an ω-Erdös cardinal λ such that

π(x̄, ȳ) co-shatters λ up to ℵ0 in M , then M has the independence property.

Proof. Assume that π(x̄, ȳ) is the conjunction of the formulas {ϕn(x̄, ȳ) : n > 1}. Without

loss of generality, we may inductively replace ϕn+1 by ϕn ∧ ϕn+1 and assume that ϕn+1(x̄, ȳ)

implies ϕn(x̄, ȳ) for every n. For every finite J ⊂ λ and every i in J , the partial type π(āi, b̄J)

is inconsistent. By compactness, there is a least n(J) depending on J such that, for every i

in J , the formula ϕn(āi, b̄J) does not hold. We consider the equivalence relation defined by

n(J) = n(I) for finite subsets I and J of λ. By [Jec03, Lemma 17.30], for every partition of

the set [λ]<ℵ0 in countably many classes {Ci : i > 1}, there is a class Ci and a subset of λ of

order type ω whose finite subsets lie in the same class Ci. So, there is a countable subset I

of λ and a natural number m such that n(J) = m for every finite subset J of I. This shows

that for all finite J ⊂ I, and all i in J , the formula ϕm(āi, b̄J) does not hold, so ϕm(x̄, ȳ) has

the independence property. �

Question. In particular, assuming the existence of an ω-Erdös cardinal, if a countable partial

type shatters every cardinal in M , then M has the independence property. Does the statement

hold in ZFC ?

2. Preliminaries on NIP groups

Let us consider a first-order structure M that does not have the independence property and

G a group definable in M .

2.1. Descending chain conditions. We begin by the Baldwin-Saxl descending chain con-

dition for uniformly definable subgroups.

Baldwin-Saxl chain condition 2.1 (see [BS76] or [Poi87]). Let {Hi : i ∈ I} be a family of

uniformly definable subgroups of G. There is a natural number n > 1 such that for all finite

subsets J of I, there exists a finite subset Jn of J of size n such that
⋂

j∈Jn

Hj =
⋂

j∈J

Hj.
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We shall need the following stronger version. For any subset X of the group G and natural

number n, we write Xn for the set of products x1 . . . xn of any n elements of X, and X×n

for the Cartesian product X × · · · × X. For a set Y , when there is no ambiguity, we go on

writing Y n for the Cartesian product Y × · · · × Y .

Lemma 2.2 (a Baldwin Saxl chain condition for subsets). Let X be a family of subsets of G.

For all X in X, let X1/3 stand for a definable subset of G such that
(
X1/3

)3 ⊂ X. Assume

that the family {X1/3 : X ∈ X} is uniformly definable by a formula ϕ(x, y), and that the

formula ϕ∗(x, y) has VC-dimension n. For all X in X, assume that there is a subset X1/3n

of G such that
(
X1/3n

)n ⊂ X1/3. Assume that
(
X1/3n

)−1
equals X1/3n and contains 1. Then,

for every X1, . . . , Xn+1 in X, there exists j in {1, . . . , n+ 1} such that

X
1/3n
1 ∩ · · · ∩X

1/3n
j−1 ∩X

1/3n
j+1 ∩ · · · ∩X

1/3n
n+1 ⊂ X1 ∩ · · · ∩Xn+1.

Proof. Otherwise, there are elements b1, . . . , bn+1 in G such that for all j ∈ {1, . . . , n+ 1},

(1) bj ∈
(
X

1/3n
1 ∩ · · · ∩X

1/3n
n+1

)
\Xj.

Let J be any finite subset of {1, . . . , n + 1} with elements j1 < · · · < jk. We write bJ for

the ordered product bj1
bj2

· · · bjk
. If j belongs to {1, . . . , n + 1} \ J , then J has at most

n elements, and bJ belongs to
(
X

1/3n
j

)n ⊂ X
1/3
j . On the other hand, if J has elements

j1 < · · · < ji−1 < j < ji+1 < · · · < jk, then bJ does not belong to X
1/3
j , for otherwise, we

would have

bj = (b−1
ji−1

· · · b−1
j1

)bJ(b−1
jm

· · · b−1
ji+1

)

and thus bj ∈ Xj, a contradiction with (1). This shows that the formula ϕ∗(x, y) has

VC-dimension at least n+ 1, contradicting the hypothesis. �

Remark 2.3. In the particular case where the sets Xi are subgroups of G, Lemma 2.2 is the

usual Baldwin-Saxl Descending chain condition.

2.2. Nice groups. Let H be a subgroup of G and π a partial 1-type with parameters in

A ⊂ G. H is called a π-definable subgroup of G if H is a π-definable set in G, and for any

structure G elementary equivalent to G over A, the set
⋂
π(G) is a subgroup of G. H is a

type definable subgroup of G if there is a partial type π such that H is a π-definable subgroup

of G.

Definition 2.4 (nice subgroup). Let H 6 G. We say that H is a nice subgroup of G if there

is a nice partial type π such that H is a π-definable subgroup of G.

Example 2.5. A definable subgroup H of G is nice. By the Baldwin Saxl chain condition,

any intersection of uniformly definable subgroups of G is nice. In particular, for any subset

A of G and subgroup A 6 Aut(G), the subgroups
⋂

a∈A H
a, CG(A) and

⋂
σ∈A σ(H) are nice.

Counter example 2.6 (A centraliser that is not nice). In an infinite extraspecial 3-group K,

which is supersimple of rank 1 (see [MS08]) and whose conjugacy classes are all finite, choose

(an)n>1 such that the chain of centralisers CK(a1) > CK(a1, a2) > CK(a1, a2, a3) > . . . is

strictly decreasing. The partial type
⋂

n>1 CK(an) is not nice as [K : CK(an)] 6 3 for every n.



VARIATIONS SUR UN THÈME DE ALDAMA ET SHELAH 10

Nor is it equivalent to a nice partial type, for otherwise, by the Compactness theorem, one

could find a definable infinite subset X ⊂ K with infinitely many pairwise disjoint left

translates, contradicting the fact that K has rank 1.

Example 2.7. In an ℵ0-saturated elementary extension R of the field R, the subgroup of

infinitesimal numbers is nicely defined in the language (+,6). In the language of fields, the

intersection of the Euclidian balls {x ∈ Rn : ‖x‖2 < 1/k} is a nice subgroup of Rn. It is also

the intersection of the family H of half hyperplanes of equations a1x1+· · ·+anxn 6 an+1 where

a1, . . . , an+1 range over Q with an+1 > 0. In GLn(R) (considered as a group interpretable in

the ring Mn(R)) the subgroup of elements that are infinitesimally close to 1 is nice, being

the intersection of the neighbourhoods {1 + x : ‖x‖2 < 1/k}.

Example 2.8. Let Zp be an ℵ0-saturated elementary extension of the ring Zp of p-adics inte-

gers. The infinitesimal numbers form a nice subgroup of Zp, defined by the intersection of

the subgroups pkZp. In GLn(Zp) (viewed as a group interpretable in the ring Mn(Zp)), the

intersection of the congruence subgroups 1 + pkMn(Zp) is a nice subgroup.

Counter example 2.9. One (semi)group that is not a filter but uniformly defined, in a theory

that does not have the independence property ?

For any two subgroups H and K of G, let us write

HK =
⋂

g∈K

Hg

for the K-core of H. When G is stable, if H is definable, then HK is definable, and hence

NG

(
HK

)
. The situation is far less straightforward when G does not have the independence

property; HK is merely a type definable subgroup over |K| parameters, and its normaliser

has no obvious reason to be even type definable.

Theorem 2.10 (normalising a nice envelope). Let us assume that G is κ-saturated for some

uncountable cardinal κ and let H be a nice subgroup of G. Let A be a subgroup of H and NA

a subgroup of NG(A) such that |A| < κ and |NA| < κ hold. Then there is a nice subgroups K

of H and a nice subgroup NK of NG(K) such that K contains A and NK contains NA (the

types defining K and N are countable).

Proof. Assume that H is the intersection of a family F of uniformly definable sets {ϕ(G, b) :

b ∈ B}, such that {ϕ(G, b) : b ∈ B} is a filter. We may replace ϕ(x, y) by the formula

ϕ(x, y) ∧ ϕ(x−1, y) and assume that ϕ(G, b) is a symmetric subset of G for every b. As

H3 ⊂ H, by the Compactness theorem, for every element X of F, there are finitely many

X1, . . . , Xm in F such that (X1 ∩ · · · ∩ Xm)3 ⊂ X. As F is a filter, there is an element of F,

which we write X1/3, such that X1/3 ⊂ X1 ∩ · · · ∩ Xm. Similarly, for every natural number

n > 1, there is an element X1/3n of F such that (X1/3n)n ⊂ X1/3 ⊂ X. Iterating Lemma 2.2,

for every b in B, there is a natural number n > 1 such that for all finite subset J of G, there

exists a finite subset Jn of J of size n and a parameter cJ in B such that

(2)
⋂

g∈Jn

ϕ(G, cJ)g ⊂
⋂

g∈J

ϕ(G, b)g and ϕ(G, cJ) ⊂ ϕ(G, b)1/3.
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Claim 1. For any b in B, there are elements a1, . . . , an in G, a countable subset B ⊂ G and c

in B such that
⋂{ϕ(G, b) : b ∈ B} is a nice subgroup of G containing A, the set

⋂n
i=1 ϕ(G, c)ai

contains A and for all element g of NA, one has

( n⋂

i=1

ϕ(G, c)ai

)g ⊂ ϕ(G, b) and ϕ(G, c)3 ⊂ ϕ(G, b).

Proof of Claim 1. Let us consider the following partial type π(x1, . . . , xn, y) with parameters

in A ∪NA ∪ {b}, defined by
{

n⋂

i=1

ϕ(G, y)xi ⊂ ϕ(G, b)g, a ∈
n⋂

i=1

ϕ(G, y)xi , ϕ(G, y)3 ⊂ ϕ(G, b) : g ∈ NA, a ∈ A

}
.

By (2), the type π(x1, . . . , xn, y) is finitely satisfiable in (NA)×n ×B. The conclusion follows

from the fact that the condition ‘{ϕ(G, b) : b ∈ B} is a nice subgroup of G’ is expressible by

a partial type in B. �

We fix an element b in B and apply the previous Claim. We put a0 = 1 and

X1 = ϕ(G, b) and X2 =
n⋂

i=0

ϕ(G, c)ai .

One has Xg
2 ⊂ X1 for any g in NA. Note that X2 ⊂ ϕ(G, c) so that X2X2 ⊂ X1. Applying

inductively the Claim, one can find an infinite decreasing chain of definable subsets X1 ⊃
X2 ⊃ X3 ⊃ · · · of G such that for all natural number i > 1, and all element g of NA, one has

Xg
i+1 ⊂ Xi, A ⊂ Xi and Xi+1Xi+1 ⊂ Xi.

Note that, because F consists of uniformly definable sets, by Lemma 2.2, the number n does

not depend on b, but only on the formula ϕ(x, y) defining F. It follows that every Xi is

uniformly defined by the formula

ψ(x, y0, . . . , yn+1) =
∧

06i6n

ϕ(yixy
−1
i , yn+1),

where y0, . . . , yn+1 are replaced by parameters. By compactness, there is family (Yi)i∈Q of

uniformly definable subsets of G, defined by the formula ψ(x, y0, . . . , yn+1), such that for all

rational numbers p < q, all element g of NA, and all element X of F, one has

Y g
p ⊂ Yq, A ⊂ Yp ⊂ X, and YpYp ⊂ Yq.

We put Yp = ψ(G, bp) for some tuple bp. By compactness and Ramsey’s Theorem, we may

assume that the sequence (bp)p∈Q is indiscernible over the empty set. We define

K =
⋂

p∈Q

Yp and NK =
⋂

(p,q)∈Q2

p<q

{
x ∈ G : Y x

p ⊂ Yq and Y x−1

p ⊂ Yq

}
.

It is straightforward that K is a nice subgroup contained in ϕ(G, b), that the elements of NK

normalise K, that NK contains NA, and that if x belongs to NK , then so does x−1. If p < q

are two rational numbers, then for any r such that p < r < q, one has
({
x ∈ G : Y x

p ⊂ Yr

}
∩

{
x ∈ G : Y x

r ⊂ Yq

})2 ⊂
{
x ∈ G : Y x

p ⊂ Yq

}
.
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It follows that NK is a subgroup of G. To finish the proof of Theorem 2.10, we only need to

show that NK is a nice subgroup. For any p < q, we define {p, q} putting

{p, q} =
{
x ∈ G : Y x

p ⊂ Yq and Y x−1

p ⊂ Yq

}
,

and for any r0 < r1 < · · · < rm, we define {r0, . . . , rm} by

{r0, . . . , rm} = {r0, r1} ∩ {r1, r2} · · · ∩ {rm−1, rm}.

Note that {r0, . . . , rm}m ⊂ {r0, rm}. Let ψ(x, y) be the formula defining uniformly the sets

{p, q}, and let m be the VC-dimension of g∗(x, y). Let r0 < r1 < · · · < r2m+1 be an ordered

sequence of 2m+ 2 rational numbers. By Lemma 2.2, there is i 6 2m+ 1 such that

{r0, r1}1/3m ∩ · · · ∩ {ri−2, ri−1}1/3m ∩ {ri+2, ri+3}1/3m ∩ · · · ∩ {r2m, r2m+1}1/3m

⊂ {r0, r1} ∩ {r2, r3} ∩ · · · ∩ {r2m, r2m+1}.

To simply notations, let us assume that i = 2. The equation bellow yields in particular

{r0, r1}1/3m ∩ {r4, r5}1/3m ∩ · · · ∩ {r2m, r2m+1}1/3m ⊂ {r2, r3}

By indiscernability of (bp)p∈Q, it follows that for any rational numbers p0 < p1 < · · · < p2m+1,

and any pi = pi,i+1
0 < pi,i+1

1 < · · · < pi,i+1
3m−1 < pi,i+1

3m = pi+1, one has

{p0,1
0 , . . . , p0,1

3m} ∩ {p4,5
0 , . . . , p4,5

3m} ∩ · · · ∩ {p2m,2m+1
0 , . . . , p2m,2m+1

3m } ⊂ {p2, p3}

In particular, any finite intersection of subsets of the form {p, q} for p < q contains an

intersection of 3m2 sets of the same form, so that if F denotes the family
{

{p, q} : p < q
}

,

then the family
{ ⋂

Fm : Fm ⊂ F and |Fm| 6 3m2

}
is a uniform filter defining NK as well. �

Remark 2.11. In Theorem 2.10, if H is definable, or merely the intersection of uniformly

definable groups (hence nice), then the above proof provides that K is the intersection of

uniformly definable groups. However, we do not see any obvious reason why NK would be

the intersection of uniformly definable groups.

With a similar proof, we get the stronger result:

Theorem 2.12. Let us assume that G is κ-saturated for some uncountable cardinal κ and

let H be a nice subgroup of G. Let A be a subgroup of H and NA a subgroup of NG(A) such

that A is the reunion of a uniform family of definable subsets {α(G, ai) : i < κ} of G and

NA is the reunion of a uniform family of definable subsets {ν(G, bi) : i < κ} of G. Then

there is a πα-definable subgroups K of H and a πν-definable subgroup NK of NG(K) for some

countable nice types πα and πν such that for al i < κ,

α(x, ai) ⊢ πα(x) and ν(x, bi) ⊢ πν(x).

3. External sets, discernible groups

Let M be any first order structure, and G a group definable in M .
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Definition 3.1 (external set [She09]). A subset X of Mn is externally definable or external

for short if X equals X ∩ Mn for some set X definable (with parameters) in an elementary

extension M of M . Equivalently, there is a formula ϕ(x, y) and parameters c in M such that

X equals {x ∈ Mn : ϕ(x, c) holds in M}.

Definition 3.2 (discernible set). A subset X of Mn is externally nice or discernible for short

if X equals
⋂
π(M) ∩M for some elementary extension M of M and some nice type π in M.

Note from [Pil07] that if ϕ(M, c) is an external subset of M , then every b sharing the same

ϕ∗-type as c over M satisfies ϕ(M, c) = ϕ(M,b). In particular, any external subset of M

is definable with parameters in a fixed |M |+-saturated extension M of M . External subsets

of M are discernible. Conversely,

Lemma 3.3. A discernible subset of M is external.

Proof. Let B =
⋂
ρ(M) be a discernible subset of M with ρ(x) = {ϕ(x, a) : a ∈ A} a uniform

filter. Then the partial type

π(y) =
{
ϕ(b, y),∀x (ϕ(x, y) → ϕ(x, a)) : b ∈ B, a ∈ A

}

is finitely satisfiable in A hence realised by some b belonging to a saturated extension of M .

It follows that B = ϕ(M,b). �

Note that the first order properties of an external set X = X ∩ M have no reasons to be

lifted up to X, but may be lifted up to a partial type.

Definition 3.4 (external subgroup). An external subgroup of G is a subgroup H of G of the

form H ∩ G where G is an elementary extension of G and H a definable subgroup of G. If

both H and H share a set P of first order properties (with parameters in M), we say that H

is external as a P-group.

Definition 3.5 (discernible subgroup). A discernible subgroup of G is a subgroup H of G of

the form H ∩ G where G is an elementary extension of G and H a nice subgroup of G. If

H and H share a set P of first order properties (with parameters in M), we say that H is

discernible as a P-group.

IfH is a discernible P-subgroup ofG defined by the type π(x) = {ϕ(x, ai) : i ∈ N} over count-

ably many external parameters a1, a2, . . . , then replacing a1, a2, . . . by parameters b1,b2, . . .

sharing the same type over M changes neither H nor the first order consequences (with pa-

rameters in M) of π(x). In particular, a discernible P-subgroup of G is the trace over G of

a nice P-subgroup of a |M |+-saturated extension G of G. An external subgroup of G is a

discernible subgroup of G. The converse fails ; the subgroup of infinitesimal numbers in an

elementary extension R of the field R is discernible as a group, external as a set, but not

external as a group.

Lemma 3.6. A discernible subgroup of G is external as a group provided that it be the

conjunction of uniformly external subgroups of G.

Proof. Same proof as Lemma 3.3, adding to the partial type π(y) a formula ψ(y) saying that

ϕ(x, y) defines a subgroup of G. �
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Lemma 3.7. Let the structure M be stable. Any discernible subgroup H of G is definable

(if H is the trace over G of a group H defined by the nice type {ϕ(x, a) : a ∈ A}, there are

a1, . . . , an in M such that ϕ(G, a1) ∩ · · · ∩ ϕ(G, an) is a subgroup of H of finite index).

Proof. As G does not have the order property, there is a in A such that H = ϕ(G, a). Let

ψ(y) be a formula stating that ϕ(G, y) is a subgroup of G. The ϕ∗ ∧ ψ-type of a over G

is definable by a positive Boolean combination of formulas of the form ϕ(x,m) ∧ ψ(m) for

m in M by [HH84, Corollary 2.8], hence covered by a finite union of subgroups of G. By

Neumann’s Lemma [Neu54], one of these subgroups must have finite index in H. �

Theorem 3.8 (finding discernible subgroups). Let G be a group definable in a structure M

that dos not have the independence property, and G a |G|+-saturated elementary extension

of G.

(1) The centralisers of subsets of G are (uniformly) external (as groups). There is a

natural number n > 1 such that for every A ⊂ G, there are a1, . . . , an in G such that

CG(A) = CG(a1, . . . , an).

(2) The centre of an external group is external (as an Abelian group),

(3) The iterated centers of an external group H are external (as iterated centres). For

every natural number n, there is a definable subgroup H of G such that

H = H ∩G and Zn(H) = Zn(H) ∩G.

(4) The cores of an external subgroup H = H ∩ G are (uniformly) external (as groups).

There is a natural number n > 1 such that for every A ⊂ G, there are a1, . . . , an in

G such that

HA = Ha1 ∩ · · · ∩ Han ∩G.

(5) The core of a discernible subgroup is discernible (as a group).

(6) The normaliser of a discernible subgroup is discernible (as a group).

(7) The iterated centralisers of subsets of G are discernible (as groups).

Proof. (1) By the Baldwin Saxl descending chain condition, the centraliser of a subset of G

is defined by a nice partial type consisting of uniformly definable subgroups. It is thus an

external subgroup by Lemma 3.6.

(2) Let H = H∩G be an external subgroup of G where G is |G|+-saturated. Its centre Z(H)

equals G∩CH(H), hence is external as a group by (1). By the Baldwin Saxl condition, there

is a natural number n such that the centraliser of any finite subset of G is the centraliser

of n elements. By the Compactness theorem and the saturation assumption, there is a finite

n-tupple h in G such that Z(H) ⊂ CH(h) ⊂ CH(H). It follows that Z(CH(h)) contains

Z(H), hence Z(H) = G ∩ Z(CH(h)) hold, so Z(H) is external as an Abelian group.

(3) The following Claim is inspired by [dA13, Lemma 2.1]:

Claim 2. Let A and B be two subgroups of G with |A| < |G| and |B| < |G|. Let D be

a definable subgroup of G normalised by both A and B such that [A,B] ⊂ D. Then there

are two definable subgroups A and B of G containing A and B respectively and such that

[A,B] ⊂ D.
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Proof of Claim 2. For any parameter subset C ⊂ G, we define the subgroups A(C) and

B(C) of G by

A(C) =
⋂

c∈C
[A,c]⊂D

{
x ∈ NG(D) : [x, c] ⊂ D

}
,

B(C) =
⋂

c∈C
[c,B]⊂D

{
y ∈ NG(D) : [c, y] ⊂ D

}
,

and claim that there is a finite set C such that [A(A∪B∪C),B(A∪B∪C)] ⊂ D. Otherwise,

one could inductively build two sequences (an)n>1 and (bn)n>1 such that for every n > 1,

an ∈ A(A ∪ B ∪ {ak, bk : k < n}) and bn ∈ B(A ∪ B ∪ {ak, bk : k < n}) but [an, bn] /∈ D.

It would follow that [ai, bj] ∈ D if and only if i 6= j, so that the chain (CG(anD))n>1 would

not the Baldwin Saxl chain condition. By the Compactness theorem, there is a finite tuple

c sucht that [A(c),B(c)] ⊂ D. We consider A = A(c) and B = B(c). �

We prove (3) inductively on n. For n = 1, by Claim 2, there are definable subgroups H1 and

Z1 of G containing H and Z(H) respectively such that [H1,Z1] = 1. We may assume that

Z1 6 H1 replacing Z1 by H1 ∩ Z1 if need be. As Z(H) is an external Abelian group by (1),

we may also assume that Z1 is Abelian. It follows that CG(Z1) contains H, and Z(CG(Z1))

contains Z(H). In particular, one has

H = G ∩ CH(Z1) and Z(H) = G ∩ Z (CH(Z1)) .

We assume now that there is a definable subgroup H 6 G such that H = H ∩ G and

Zn(H) = Zn(H) ∩ G. As [Zn+1(H), H] ⊂ Zn(H), according to Claim 2, there are two

definable subgroups Zn+1 and Hn+1 of G containing Zn+1(H) and H respectively such that

[Zn+1,Hn+1] ⊂ Zn(H). Replacing Hn+1 by Hn+1 ∩ H and Zn+1 by Zn+1 ∩ Hn+1, we may

assume that Hn+1 6 H and Zn+1 6 Hn+1. It follows that [Zn+1,Hn+1] ⊂ Zn(Hn+1),

so that Zn+1(Hn+1) contains Zn+1, hence Zn+1(H). One has thus H = Hn+1 ∩ G and

Zn+1(H) = Zn+1(Hn+1) ∩G.

(4) Follows from the Baldwin Saxl descending chain condition and Lemma 3.6.

(5) If H is a discernible subgroup of G and S any subgroup of G, by Theorem 2.10, HS

is contained in a discernible subgroup K of H such that KS = K. From the inclusion

HS 6 K 6 H, it follows that K = HS, so that HS is discernible.

(6) Let H be a discernible subgroup of G. By Theorem 2.10, there is a discernible subgroup

N of G that contains NG(H) and normalises H, so that N = NG(H).

(7) Recall that the nth centraliser Cn
G(A) of A is defined inductively putting C0

G(A) = {1}
and Cn+1

G (A) =
⋂

k<n+1 NG(Ck
G(A)) ∩ {g ∈ G : [g, A] ⊂ Cn

G(A)}, so (7) follows inductively

from (1), Theorem 2.10, and (6). �

4. Envelopes in a definable group

In this section, G stands for a group that does not have the independence property.

Theorem 4.1 (Abelian envelope). Any Abelian subgroup A of G is contained in an A-

invariant external Abelian subgroup that is normalised by NG(A).
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First proof (Adapted from [dA13, Lemma 2.1]). Assume that A is infinite and let G be an

|A|+-saturated elementary extension of G. For any parameter set B ⊂ G, we put

C(B) =
⋂

b∈B
[b,A]=1

CG(b).

We claim that there is a finite subset B ⊂ G such that C(A ∪ B) is Abelian, for otherwise

we could construct inductively two sequences (an)n>1 and (bn)n>1 such that for every n, both

an and bn belong to C(A ∪ {ak, bk : k < n}) and [an, bn] 6= 1. It would follow that [ai, bj] = 1

if and only if i 6= j, so that the family
(
CG(ai)

)

i>1
would not satisfy the Baldwin-Saxl chain

condition 2.1. By the Compactness Theorem, there is a finite tuple c1, . . . , cn in B such

that CG(c1, . . . , cn) is Abelian, and contains A. By Lemma 3.6, one can even assume that

CG(c1, . . . , cn) is A-invariant and normalised by NG(A). �

Second proof. Z(CG(A)) is external (as an Abelian group) by Theorem 3.8.1 and 3.8.2 that

is A-invariant and normalised by NG(A). �

Remark 4.2. The second proof provides an Abelian envelope that is externally defined by

the formula Z(CG(x1, . . . , xn)). The first proof provides an envelope defined by the simpler

formula CG(x1, . . . , xn). Note that in a stable group G, an Abelian subgroup A 6 G is

contained in an Abelian centraliser: Z(CG(A)) is Abelian and equals CG(CG(A)), hence is

the centraliser of a finite tuple by the descending chain condition.

Theorem 4.3 (nilpotent envelope). Any nilpotent subgroup N of class n of G is contained

in an N-invariant external nilpotent subgroup of class n.

Proof. By [dA13, Theorem 2.2], there is a external nilpotent envelope H of N of nilpotency

class n. By Lemma 3.6,
⋂

σ∈Aut(G/{N}) σ(H) is an N -invariant external one. �

Theorem 4.4 (soluble envelope 1). Let S be a soluble subgroup of G of derived length ℓ.

There is an S-invariant discernible subgroup N of G that contains NG(S), and an exter-

nal normal soluble subgroup of N of derived length ℓ that contains S, is S-invariant and

normalised by NG(S).

Proof. Let G ≻ G be a |G|+-saturated elementary extension of G. We show more precisely

that there is a nice subgroup N of G containing NG(S) and a relatively definable subgroup

H of N that is soluble of derived length ℓ and contains S. When ℓ is 1 we apply Theorem 4.1

and Theorem 2.10. If the result holds for every ℓ-soluble subgroups of G and if S is soluble

of derived length ℓ+ 1, there is a nice subgroup N of G that contains NG(S) and a relatively

definable ℓ-soluble subgroup H of N that contains S ′. We thus have

SH
/

H 6 N/H.

As (SH)′
6 H holds, the group SH/H is Abelian. By Corollary 1.7, the formula yx = xy

does not have the independence property in the group N/H. As N/H is |S|+-saturated,

according to Theorem 4.1 there are a1, . . . , an in N such that CN/H(a1H, . . . , anH) is Abelian

and contains SH/H. It follows that the group

K =
n⋂

i=1

{x ∈ N : [x, ai] ⊂ H}
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is relatively definable in N, soluble of derived length ℓ+1 and contains S. Puting K = K∩G
the subgroup ⋂

g∈NG(S)

⋂

σ∈Aut(G/{S})

σ(Kg)

of K is in addition S-invariant and normalised by NG(S), and its normaliser is discernible

by Theorem 2.10. �

Corollary 4.5 (soluble envelope 2). Let S a soluble subgroup of G of derived length ℓ. There

is an external subset X = X ∩ G that is a subgroup of G containing S, and such that X
generates a soluble subgroup of derived length ℓ.

Proof. By Zorn’s Lemma, we may asssume that S is a maximal soluble subgroup of G of

derived length ℓ. By Theorem 4.4, there is a formula ϕ(x, y) and a parameter set A such

that
⋂{ϕ(G, a) : a ∈ A} defines a nice soluble subgroup containing S in an elementary

|S|+-saturated extension G of G. We write ϕ(G, a)n for the set of products of n elements

of ϕ(G, a). We say that a subset X of G is soluble of derived length ℓ if X satisfies all the

commutator identies satisfied by a soluble group of derived length ℓ. For a definable set X,

being soluble of derived length is a first order property. Thus, the following partial type

over S

πS(x) =
{
ϕ(s, x), ϕ(G, x)n is soluble of derived length ℓ : s ∈ S, n > 1

}

is finitely satisfiable in A, hence consistent. For any of its realisation s in G, take X =

ϕ(G, s). The set X ∩G is a subgroup by maximality of S. �

Remark 4.6. In an arbitrary group G, if a subset X satisfies all the commutator identity

satisfied by a nilpotent group of class n, we call X a nilpotent subset of class n. If a subset X

is nilpotent of class n, then X generates a nilpotent subgroup of class n. If X is in addition

definable, then it is contained in a definable nilpotent subgroup of class n. This can be

shown taking Z
(
CG(X)

)
for n = 1, and Zn(En) for arbitrary n, with En defined inductively

by E0 = G and Ek+1 =
{
x ∈ Ek : [x,Ck+1

Ek
(X)] ⊂ Ck

Ek
(X)

}
(see [AB14]). However, if X

is merely soluble of derived length 2, then X may not even generate a soluble subgroup.

Consider for instance two generators a and b of the alternating group A5. The set {a, b}
obviously satisfies the equation

[
[x, y], [z, t]

]
= 1, but A5 is not solvable.

Theorem 4.7 (normal soluble envelope). Let S be a normal soluble subgroup of G of derived

length ℓ. There is an external normal, soluble of derived length ℓ subgroup of G that contains S

and is S-invariant.

Proof. The following proof is due to Frank Wagner. For ℓ = 1, the group S is Abelian and

normal. For any elementary extension G of G and s1, . . . , sn in S, the conjugacy classes

sG
1 , . . . , s

G
n generate an Abelian subgroup of G. By the Compactness Theorem, there are

a1, . . . , an in a |S|+-saturated elementary extension G of G such that S ⊂ CG(aG
1 , . . . , a

G
n ) ⊂

CG(S). It follows that Z(CG(aG
1 , . . . , a

G
n )) is normal in G, Abelian and contains S. We go

on inductively. �

Remark 4.8. Not only is the external envelope normal in G, it is also the trace over G of a

definable normal subgroup of G.
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5. Further chain conditions à la Baldwin Saxl

We now consider a group G ⊂ Mn defined by a conjunction of infinitely many formulas, in

a structure M that does not have the independence property. Two new difficulties appear :

G need not be the intersection of definable groups, and the quotient G/H by an infinitely

definabe normal subgroup H might have the independence property unless the formulas

defining H relatively to G are not controlled.

5.1. Relatively nice subgroups. Given a structure M , a subset B of some finite Cartesian

product Mn that is definable by a formula ϕ, and a partial n-type π(x1, . . . , xn), we say that

G ⊂ Mn is a π-definable group in M of base B if there is a definable function × from B2 to

Mn such that G equals
⋂
π(M), and for every structure M that is an elementary extension

of M , the set
⋂
π(M) is contained in ϕ(M) and is a group for the law induced by ×. We

say that G is a type definable group of base B if there is a partial type π such that G is

π-definable of base B. Assuming the group law × to be definable rather than type definable

is no restriction by a compactness argument (see [Poi85, page 170]).

Throughout the section, we consider a fixed structure M that does not have the independence

property, G a π-definable group of base B in M for some partial type π. If H is a type

definable subgroup of G, we say that H is relatively definable in G if there is a formula ϕ(x)

such that H is π ∪ {ϕ}-definable subgroup of G. We call ϕ the defining formula of H. More

generally:

Definition 5.1 (relatively nice subgroup). A type definable subgroup H of G is relatively

nice in G if there is a formula ϕ(x, y) and tuples (ai)∈I of parameters in M such that H is a

π(x) ∪ {ϕ(x, ai) : i ∈ I}-definable subgroup of G and the family
{ ⋂

π(M) ∩ϕ(M, ai) : i ∈ I
}

is a filter for every elementary extension M of M . We call ϕ(x, y) the defining formula of H.

Definition 5.2 (uniform family of rel. nice subgroups). A family H of relatively nice sub-

groups of G is uniform if its members have the same defining formula.

Lemma 5.3 (Baldwin Saxl chain condition for relatively nice subgroups). If H is a uniform

family of relatively nice subgroups of G, then there is a natural number n such that any finite

intersection of members of H is the intersection of at most n of them.

Proof. Otherwise, by the usual Baldwin-Saxl argument, for every natural number n one

would find H1, . . . , Hn in H and tuples (bJ)J⊂{1,...,n} of elements in G such that bJ ∈ Hi if

and only if i ∈ J . Let ϕ(x, y) be the common defining formula of the members of H. By

the Compactness Theorem, there are (a1, . . . , an) in G such that ϕ(bJ , ai) holds if and only

if i ∈ J , a contradiction. �

Corollary 5.4. Let H be a family of relatively nice subgroups of G and {aH : H ∈ H} a

family of elements from G such that aH belongs to K if and only if K 6= H. Then H is not a

uniform family.

Proof. For any natural number n > 1, the intersection of n members of H does not contain

any proper subintersection. �
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Corollary 5.5 (uniform families are closed under intersections). If H is a uniform family of

relatively nice subgroups of G, then
⋂

H∈HH is relatively nice and the family {⋂
H∈HH : K ⊂ H}

is uniform.

Proof. Let n be the natural number provided by Lemma 5.3 and for every H in H, let

{ϕ(x, aH
i ) : i ∈ I} be a type defining H relatively to G. Let A be the set {aH

i : H ∈ H, i ∈ i}.

Calling ψ(x, y) the formula ϕ(x, y1)∧· · ·∧ϕ(x, yn), the group
⋂

H∈HH is π∪{ψ(x, b) : b ∈ An}-

definable and the family {⋂
π(M) ∩ ψ(x, b) : b ∈ An} is a filter by Lemma 5.3. �

5.2. Uniformity. A third difficulty arises. It is not obvious to us that being a relativey nice

subgroup with parameters A is expressible by a partial type in A, which prevents applying

Compactness arguments. We introduce therefor a strengthening of the preceeding notions.

If N is relatively nice in G, the Compactness Theorem ensures that for all i in I, there is

some j in I and some definable set Xi containing G such that
(
Xi ∩ ϕ(M,aj)

)2 ⊂ ϕ(M,ai).

Definition 5.6 (uniformly relatively nice subgroup). We say that N is uniformly relatively

nice in G if it is relatively nice in G and there is a definable set X containing G such that

for all i in I, there is j in I such that
(
X ∩ ϕ(M,aj)

)2 ⊂ ϕ(M,ai).

We call this set X a second base for N .

Definition 5.7 (uniform family of unif. rel. nice subgroups). A family H of uniformly

relatively nice subgroups of G is uniform if its members have the same defining formula and

share a common second base.

Lemma 5.8. If H is a uniform family of uniformly relatively nice subgroups of G, then
⋂

H∈HH is uniformly relatively nice, and the family {⋂
H∈HH : K ⊂ H} is uniform.

Example 5.9. A relatively definable subgroup of G is uniformly relatively nice in G. For any

g ∈ G, the centraliser CG(g) is relatively definable in G, and the family {CG(g) : g ∈ G} is

uniform. In particular, CG(A) is uniformly relatively nice in G for any A ⊂ G.

Example 5.10. If G is type definable using parameters in A, if A 6 Aut(G/A) and H 6 G is

uniformly relatively nice in G with a second base X that is definable with parameters in A,

then the family {σ(H) : σ ∈ A} shares X has a second base, and
⋂

σ∈A σ(H) is uniformly

relatively nice in G.

Example 5.11. Let G be a type definable group with parameters in A, and H a relatively nice

subgroup of G, type definable by the partial type {ϕ(x, ai) : i ∈ I} relatively to G, where I

is a linearly ordered set. If (ai)i∈I is an indiscernible sequence over A, then H is uniformly

relatively nice in G.

Lemma 5.12. If H is a uniformly relatively nice subgroup of G and g ∈ G, then so is Hg,

and the family {Hg : g ⊂ G} is uniform. In particular HA is uniformly relatively nice in G

for any A ⊂ G.
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Proof. We need only find a common second base for the family {Hg : g ∈ G}. A second base

X ⊂ B for H is such that for all i in I, there is j in I such that
(
X ∩ ϕ(M,aj)

)2 ⊂ ϕ(M,ai).

By the Compactness theorem, there is a definable set X1/3 such that G ⊂ X1/3 ⊂ X and

(X1/3)3 ⊂ X hold. It follows that for every g, g1, . . . , gn in G, one has
(
X1/3 ∩ ϕ(M,aj)

g
)2 ⊂ ϕ(M,ai)

g.

�

Lemma 5.13 (Baldwin Saxl chain condition for subsets). Let X be a family of subsets of B.

Assume that
{
X1/3 : X ∈ X

}
is a corresponding family of symetric cube roots, uniformly

definable by a formula ϕ(x, y), and let n be the VC-dimension of ϕ∗(x, y) in M . For all X

in X, assume that there is a symmetric subset X1/3n of B containing 1 with
(
X1/3n

)n ⊂ X1/3.

Then, for any elements X1, . . . , Xn+1 of X, there is j in {1, . . . , n+ 1} with

X
1/3n
1 ∩ · · · ∩X

1/3n
j−1 ∩X

1/3n
j+1 ∩ · · · ∩X

1/3n
n+1 ⊂ X1 ∩ · · · ∩Xn+1.

Corollary 5.14. If N 6 G is a π ∪ {ϕ(x, ai) : i ∈ I}-definable subgroup and if there is a

definable subset Y ⊂ B such that for all i in I there is j in I with
(
X ∩ ϕ(M,aj)

)2 ⊂ ϕ(M,ai),

then N is uniformly relatively nice in G.

Proof. There are definable sets X1, X2, . . . such that X1 = B and X2
n+1 ⊂ Xn for all n. By

Lemma 5.13, there is an n such that the family {Xn ∩ ⋂
i∈J ϕ(M,ai) : J ⊂ I, |J | 6 n} is a

filter. �

If H 6 G is a type definable subgroup that normalises N , by the Compactness Theorem, for

all i in I, there is some j in I, a definable set Xi ⊃ G and a definable Hi ⊃ H such that for

all g in Hi, (
Xi ∩ ϕ(M,aj)

)g ⊂ ϕ(M,ai).

Definition 5.15 (uniformly normal subgroup). If N is relatively nice in G and normalised

by H, we say that N is uniformly normalised by H if there are definable sets X ⊃ G and

K ⊃ H such that for all i in I, there is some j in I such that for all g in K,
(
Y ∩ ϕ(M,aj)

)g ⊂ ϕ(M,ai).

Theorem 5.16 (normalising a uniformly relatively nice envelope). Assume that M is κ-

saturated for some uncountable cardinal κ. Let A 6 G and NA 6 NG(A) be two subgroups

with |A| < κ and |NA| < κ. Assume that H is a uniformly relatively nice (resp. relatively

definable) subgroup of G enveloping A. Then there is a subgroup E 6 H that is uniformly

relatively nice (resp. a conjunction of a uniform family of relatively definable subgroups)

in G, and a type definable subgroup N 6 NG(E) such that E contains A, N contains NA and

normalises E uniformly.
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Proof. Let H = G ∩ ⋂
π (M, (ai)i∈I) with π(x) = {ϕ(x, ai) : i ∈ I} and I an ordinal. By

assumption, there is a definable set X containing G such that for all i in I, there is a j in I

with (
X ∩ ϕ(M,aj)

)2 ⊂ ϕ(M,ai).

There are also definable sets X = X1 ⊃ · · · ⊃ Xn ⊃ · · · such that X2
n+1 ⊂ Xn for all

n. We may assume without loss of generality that G equals
⋂

n>0 Xn and that the formula

∀y (ϕ(x, y) ↔ ϕ(x−1, y)) holds. By Lemma 5.13, one may also assume that the family {X ∩
ϕ(M,ai) : i ∈ I} is a filter.

Claim 3. There is a natural number n such that for all ai, there exists a sequence (bi)i∈I

in G, a finite subset Gn ⊂ NG(A) of size n and an element j in I such that G∩⋂
π (M, (bi)i∈I)

is uniformly relatively nice in G, contains A and such that

A ⊂ Xn ∩
⋂

g∈Gn

ϕ(M, bj)
g ⊂

⋂

g∈NG(A)

ϕ(M,ai)
g and

(
X ∩ ϕ(M, bj)

)2 ⊂ ϕ(M,ai).

Proof of Claim 3. Fix i in I. By the Compactness Theorem, there is a natural number n

bounding the VC-dimension in M of the formulas {ϕ(yx, a) : a ∈ G}. By Lemma 5.12, the

family {Hg : g ∈ G} is uniform so there exists j in I such that for all g in G,

(3)
(
Xn ∩ ϕ(M,aj)

g
)3n ⊂ ϕ(M,ai)

g and
(
X ∩ ϕ(M,aj)

)2 ⊂ ϕ(M,ai).

By iterating Lemma 5.13 and (3) in turn, for all finite subset J of G, there is a subset Jn ⊂ J

of size n and some k in I such that

(4) Xn ∩
⋂

g∈Jn

ϕ(M,ak)g ⊂
⋂

g∈J

ϕ(M,ai)
g and

(
X ∩ ϕ(M,ak)

)2 ⊂ ϕ(M,ai).

We consider the following partial types over NG(A) ∪ {ai : i ∈ I} ∪ dom(G) defined by

ρ(x1, . . . , xn, (zi)i∈I) = Φ
(
(zi)i∈I

)
∪

{
Xn ∩

n⋂

k=1

ϕ(M, z0)
xk ⊂ ϕ(M,ai)

g,

(
X ∩ ϕ(M, z0)

)2 ⊂ ϕ(M,ai), x1 ∈ G, . . . , xn ∈ G : g ∈ NG(A)
}

where Φ is a set of formulas stating that G ∩ ⋂
π (M, (zi)i∈I) is a subgroup that contains A

and that is uniformly relatively nice in G (of base X). By (4), the type ρ is finitely satisfiable

in NG(A)×n × {ai : i ∈ I}I . �

We call ψ(x, y1 . . . , yn+1) the formula ϕ(y−1
1 xy1, yn+1) ∧ · · · ∧ ϕ(y−1

n xyn, yn+1).

Claim 4. There exists a sequence (bk)k∈N of n+ 1 tuples in G, such that for all g in NG(a),

all k in N and all i in I,

X ∩ ψ(M,bk) ⊂ ϕ(M,ai),

A ⊂
(
Xn ∩ ψ(M,bk+1)

)g ⊂ ψ(M,bk) and
(
X ∩ ψ(M,bk+1)

)2 ⊂ ψ(M,bk).

Proof of Claim 4. One may first fix some i in I and take ϕ(M,ai) for ψ(M,b1) and iterate

Claim 3 to get a family (bk)k∈N depending on i. As the family {X ∩ ϕ(M,ai) : i ∈ I} is a

filter, the conclusion follows from the Compactness Theorem. �
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Claim 5. There exists an indiscernible sequence (bq)q∈Q of n+ 1 tuples in G, such that for

all g in NG(a), all rational numbers p < q, and all i in I,

X ∩ ψ(M,bp) ⊂ ϕ(M,ai),

A ⊂
(
Xn ∩ ψ(M,bp)

)g ⊂ ψ(M,bq) and
(
X ∩ ψ(M,bp)

)2 ⊂ ψ(M,bq).

Proof of Claim 5. From Claim 4 by the Compactness Theorem and Ramsey’s. �

We may now finish the proof of Theorem 5.16. Note that the sequence
(
XXm

n

)

m>n
is increas-

ing and that XXm

n contains G for all m > n + 1. One also has
(
XXm

n

)g ⊂ XXm+1

n for all g

in Xm+1.

Let Eq stand for ψ(M,bq) and let Nm
p,q be defined by

Nm
p,q =

{
g ∈ Xm :

(
XXm

n ∩ Ep

)g ⊂ Eq

}
,

and let N and E by

N =
⋂

m>n

⋂

p<q

Nm
p,q and E = G ∩

⋂

q∈Q

Eq.

As one has for evey rational numbers p < r < q and natural number m > n,
(
Nm+1

p,r ∩Nm+1
r,q

)2 ⊂ Nm
p,q,

it follows that N is a group. As XXm

n contains G for all m > n+1, the group N normalises E.

Applying Lemma 5.13 and indiscernability of (bq)q∈Q, for any fixed m, there is a natural

number k(m) such that every finite intersection of Nm
p,q contains an intersection of at most 3k2

sets of the form Nm+3k
s,t . By the Compactness theorem, one can find a countable descending

chain N1 ⊃ N2 · · · ⊃ Nℓ ⊃ · · · of definable subsets of X such that for all ℓ > 1,

NG(A) ⊂ Nℓ ⊂
⋂

p<q

Nm+ℓ
p,q and N2

ℓ+1 ⊂ Nℓ

It follows that
⋂

ℓ>1 Nℓ is a type definable subgroup of G that uniformly normalises E. The

group E is uniformly relatively nice by Remark 5.11. �

5.3. External and discernible subgroups. G still stands for a type definable group of

type π and base B in a structure M that does not the independence property. We fix M a

|G|+-saturated elementary extension of M and we write G for
⋂
π(M).

Definition 5.17 (external subgroup). A subgroup H 6 G is an external P -subgroup of G

if there is a relatively definable subgroup H 6 G (a witness) having property P such that

H = H ∩ G. A family of external subgroups is uniform if the corresponding family of

relatively definable witnesses have a common defining formula and share a common second

base.

Lemma 5.18. The conjunction of a uniform family H of external subgroups of G is an

external subgroup of G, and the family {⋂
H∈KH : K ⊂ H} is uniform.
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Proof. Let (ai)i∈I be a family of parameters of M such that the types π ∪ {ϕ(x, ai)} define

a uniform family of relatively definable subgroups of G with second base X = ψ(M). Let

H be the trace over G of their conjunction. Assume that ∀x∀y(ϕ(x, y) ↔ ϕ(x−1, y)) holds.

By Lemma 5.13, we may replace the formula ϕ(x, y) by a finite conjunction of formulas

ϕ(x, y1), . . . , ϕ(x, yn) intersected with a symetric definable nth root of X containing G, and

assume that {ϕ(x, ai) : i ∈ I} is filter. It follows that the type

ρ(y) =
{
∀x(ϕ(x, y) → ϕ(x, ai)), ϕ(h, y),∀x

(
(ϕ(x, y) ∩ ψ(x))2 → ϕ(x, y)

)
: i ∈ I, h ∈ H

}

is finitely satisfiable in {ai : i ∈ I}. For any of its realisations a in M, the type π ∪ {ϕ(x, a)}
defines a relatively definable subgroup of G with ϕ(M, a) ∩G = H. �

Definition 5.19 (discernible subgroup). A subgroup H 6 G is a discernible P -subgroup of G

if there is a uniformly relatively nice P -subgroup H 6 G (a witness) such that H = H ∩G.

A family of discernible subgroups of G is uniform if the corresponding family of uniformly

relatively nice witnesses is uniform.

Lemma 5.20. The conjunction of a uniform family H of discernible subgroups of G is a

discernible subgroup of G, and the family {⋂
H∈KH : K ⊂ H} is uniform.

Proof. By Lemma 5.8. �

Theorem 5.21. Let us assume that M does not have the independence property and that

G ⊂ Mn is a type definable group in M .

(1) The centralisers of subsets of G are (a uniform family of) external subgroups.

(2) The iterated centers of an external subgroup are external nilpotent subgroups.

(3) The iterated centers of a discernible subgroup are discernible nilpotent subgroups.

(4) The cores of an external subgroup are (a uniform family of) external subgroups.

(5) The cores of a discernible subgroup are (a uniform family of) discernible subgroups.

(6) The normaliser of a discernible subgroup is the trace over G of a type definable sub-

group of
⋂
π(M) for some |G|+-saturated elementary extension M ≻ M .

Proof. (1) By Example 5.9 and Lemma 5.18.

(2) Similar to the proof of Theorem 3.8.3 using the following claim instead of Claim 2.

Claim 6. Let A and B be two subgroups of G with |A| < |G| and |B| < |G|. Let D be a

relatively definable subgroup of G normalised by both A and B such that [A,B] ⊂ D. Assume

that A and B are contained in a relatively definable subgroup ND of G that normalises

D. Then there are two relatively definable subgroups A and B of G containing A and B

respectively and such that [A,B] ⊂ D.

Proof of Claim 6. Similar to the proof of Claim 2, defining

A(C) =
⋂

c∈C
[A,c]⊂D

{
x ∈ ND : [x, c] ⊂ D

}
, B(C) =

⋂

c∈C
[c,B]⊂D

{
y ∈ ND : [c, y] ⊂ D

}
,

and using Corollary 5.4. �

(3) Similar to Theorem 3.8.3, using the following claim instead of Claim 2.
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Claim 7. Let A and B be two subgroups of G with |A| < |G| and |B| < |G|. Let D be a

uniformly relatively nice subgroup of G such that [A,B] ⊂ D. Assume that A and B are

contained in a uniformly relatively nice subgroup ND of G that uniformly normalises D.

Then there are two uniformly relatively nice subgroups A and B of G containing A and B

respectively and such that [A,B] ⊂ D.

Proof of Claim 7. As in Claim 2, there exists a finite parameter set C ⊂ ND such that,

defining for any parameter subset S ⊂ G

A(S) =
⋂

c∈S
[A,c]⊂D

{
x ∈ ND : [x, c] ⊂ D

}
and B(S) =

⋂

c∈S
[c,B]⊂D

{
y ∈ ND : [c, y] ⊂ D

}
,

one has [A(A∪B ∪C),B(A∪B ∪C)] ⊂ D. Let {ϕ(x, ai) : i ∈ I} be the type that defines D
relatively to G and let X be a base for ND. Let us show that, for any subset S ⊂ G, puting

Hi(s) = {g ∈ X : [g, s] ⊂ ϕ(M, ai)} ,
the family H = {⋂

i∈I ND ∩ Hi(s) : s ∈ S} is a uniform family of uniformly relatively nice

subgroups in ND. By Lemma 5.8, this will show that A(A ∪ B ∪ C) and B(A ∪ B ∪ C)

are uniformly relatively nice in ND, hence in G. We need only find a common second base

for the members of H. As D is uniformly relatively nice in G, there is a definable set Y
containing G such that for all i ∈ I there is j ∈ I with

(
Y ∩ ϕ(M, aj)

)2 ⊂ ϕ(M, ai).

As D is uniformly normal in ND, there is a definable subsetset Z ⊂ X containing ND such

that for all j ∈ I, there is k ∈ I such that for all g ∈ Z,
(
Z ∩ ϕ(M, ak)

)g ⊂ ϕ(M, aj).

There are also definable sets X1/2, Y1/6 and Z1/4 containing ND with
(
X1/2

)2 ⊂ X,
(
Y1/6

)6 ⊂ Y and
(
Z1/4

)4 ⊂ Z.

We put W = X1/2 ∩ Y1/6 ∩ Z1/4 and clain that
(
W ∩ Hk(s)

)2 ⊂ Hi(s) holds.

For any g and h in W ∩ Hk(s), we have

[g, s]h ∈
((

Z1/4
)4 ∩ ϕ(M, ak)

)h

and [h, s] ∈
(
Z1/4

)4 ∩ ϕ(M, ak),

so that

[g, s]h ∈ ϕ(M, aj) and [h, s] ∈ ϕ(M, aj),

hence

[gh, s] = [g, s]h[h, s] ∈
((

Y1/6
)6 ∩ ϕ(M, aj)

)2

⊂ ϕ(M, ai).

This shows that gh belongs to Hi(s) and that W is the desired second base. �

(4) By Lemma 5.12 and Lemma 5.18.

(5) By Lemma 5.12 and Lemma 5.8.

(6) By Theorem 5.16 �
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6. Envelopes in type definable groups

We consider a π-definable group G of base D in a structure M that does not have the

independence property, and look for type definable envelopes around an Abelian, nilpotent

or soluble subgroup of G. We fix a |G|+-saturated extension M of M and write G for
⋂
π(M).

Theorem 6.1 (Abelian envelope). Any Abelian subgroup A of G is contained in an A-

invariant external Abelian subgroup of G that is normalised by NG(A)

Proof. The A-invariant subgroup Z(CG(A)) contains A and is normalised by NG(A). It is an

external Abelian subgroup by Theorem 5.21.1 and 5.21.2. �

Theorem 6.2 (nilpotent envelope). Any nilpotent subgroup of G of class n is contained in

an N-invariant external nilpotent of class n subgroup of G that is normalised by NG(N).

Proof. We build inductilvely on k 6 n a chain Z0 ⊳ · · · ⊳ Zk of relatively definable subgroups

of G such that

Z0 = {1}, Zk(N) ⊂ Zk and [Zk, N ] ⊂ Zk−1.

If Zk is built, as one has

[Zk+1(N), N ] ⊂ Zk(N) ⊂ Zk,

and as N is contained in the subgroup CG(Zk/Zk−1) which normalises Zk, by Claim 6, there

is a relatively definable subgroup Zk+1 of G containing Zk+1(N) such that

[Zk+1, N ] ⊂ Zk.

For every k 6 n, the group

Hk =
{
x ∈ Zn : [Zk, x] ⊂ Zk−1

}

is external by Lemma 5.18, and the group H1 ∩ · · · ∩ Hn is a nilpotent group of class n that

contains N . �

Theorem 6.3 (soluble envelope). Let S be a soluble subgroup of G of derived length ℓ. There

is a type definable subgroup N of G containing NG(S) and a uniformly relatively nice and

uniformly normal subgroup H of N that contains S and is soluble of derived length ℓ. More

precisely, H is the intersection of a uniform family of relatively definable subgroups of N.

Proof. We consider the derived series S ⊲ S(1) ⊲ · · · ⊲ S(ℓ), we call H1 a relatively definable

Abelian subgroup of G that contains S(ℓ−1) and that is normalised by NG(S), we write N1

for a type definable subgroup of G that normalises H1 and contains NG(S) and we build

inductively on k 6 ℓ two chains 1⊳H1 ⊳ · · ·⊳Hk and N1, . . . ,Nk of subgroups of G such that

for every k 6 ℓ, the group Nk is a type definable subgroup of G that contains NG(S) and

Hk is a uniformly relatively nice and uniformly normal subgroup of Nk that satisfies

S(ℓ−k) ⊂ Hk and [Hk,Hk] ⊂ Hk−1.

If Nk and Hk are built, one has

[S(ℓ−k−1), S(ℓ−k−1)] ⊂ S(ℓ−k) ⊂ Hk.
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By Claim 7, there is a uniformly relatively nice subgroup Kk+1 of Nk such that

S(ℓ−k−1) ⊂ Kk+1 and [Kk+1,Kk+1] ⊂ Hk.

By Theorem 5.16 there is a type definable subgroup Nk+1 of G that contains NG(S) and

a uniformly relatively nice subgroup Hk+1 of Kk+1 that contains S(ℓ−k−1) and is uniformly

normalised by Nk+1. We put

N = N1 ∩ · · · ∩ Nℓ and H = Hℓ.

�
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