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VARIATIONS SUR UN THEME DE ALDAMA ET SHELAH

CEDRIC MILLIET

ABSTRACT. We consider a group G that does not have the independence property and study
the definability of certain subgroups of G, using parameters from a fixed elementary extension
G of G. If X is a definable subset of G, its trace on G is called an externally definable subset.
If H is a definable subgroup of G, we call its trace on G an external subgroup. We show the
following. For any subset A of G and any external subgroup H of G, the centraliser of A,
the A-core of H and the iterated centres of H are external subgroups. The normaliser of H
and the iterated centralisers of A are externally definable. A soluble subgroup S of derived
length ¢ is contained in an S-invariant externally definable soluble subgroup of G of derived
length £. The subgroup S is also contained in an externally definable subgroup X NG of G
such that X generates a soluble subgroup of G of derived length ¢. Analogue results are
discussed when G is merely a type definable group in a structure that does not have the
independence property.
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Given a group G, a subset X C G is definable in G if there exist a first-order formula p(z, )
and parameters a from G such that X consists of all ¢ € G such that ¢(g,a) holds in G.

A subset X C G is externally definable if there is an elementary extension G of G and

parameters a in G such that X consists of all ¢ € G such that ¢(g,a) holds in G. We write

(G, a) for such a set X if we want to stress on the defining formula ¢, otherwise we write
X NG where X stands for (G, a). Definable subsets and externally definable ones coincide
for the field R of real numbers (L. Van den Dries [vdD86]), for the field Q, of p-adic numbers
(F. Delon [Del89]), for an algebraically closed field and more generally for stable structures
(it follows from the definability of types).

2010 Mathematics Subject Classification. 03C45, 03C60.
Key words and phrases. Model theory; independence property; shattering type; VC-dimension; abelian,

nilpotent, and soluble subgroups; nice subgroup; definable and type definable envelope.
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They do not coincide in general: in the ordered abelian group (Q,+,< ), the interval
}\/i, +oo[ is not definable in Q, but externally definable using the irrational parameter /2.
Externally definable sets play an important role in structures that do not have the indepen-
dence property, such as (Q, +, <). They correspond to finite unions of convex subsets in the
particular case of o-minimal and weakly o-minimal structures. Expanding the language of a
weakly o-minimal structure by unary predicates interpreting finite unions of convex subsets
preserves weak o-minimality (B. Baizhanov [Bai0l]). Expanding the language of a structure
that does not have the independence property by predicates interpreting externally definable
subsets preserves the absence of the independence property (S. Shelah [She09]).

A group G does not have the independence property if for every first order formula ¢(x, 3), the
Vapnik-Chervonenkis dimension of the family {¢(G, g) : g € G} is finite. We shall also use
the short hand NIP group. S. Shelah [She09] and R. de Aldama [dA13] began investigating
definable subgroups of G using ezternal parameters lying in a fixed |G| *-saturated elementary
extension G of G. S. Shelah showed that if G has an infinite abelian subgroup A, there exists a
definable abelian subgroup of G that contains infinitely many elements of A. R. de Aldama
went on showing that for any nilpotent subgroup N C G, there is a definable nilpotent
subgroup of G that contains N and has the same nilpotency class as IV, and that for any
soluble subgroup S C G that is normal in G, there is a definable soluble subgroup of G
that contains S and has the same derived length as S. As we were further investigating
the soluble case trying to get rid of the strong normality assumption, we had to cope with
subgroups closely related to the infinitesimal numbers, in the following way: in a non-principal
ultrapower RY of the field of real numbers, the subgroup J of infinitesimal numbers is not
definable in RY. There is an external parameter ¢ in an elementary extension R of R such
that J = |—¢, [, so that J is externally definable as a set. J is not the trace of a definable
subgroup of R, however it is the conjunction of the uniform filtering family of symmetric

-1 1
definable sets }—, — { that defines a group both in R¥ and fR.
n'n

We call a subgroup H C G discernible if there is a subgroup H C G that is the intersection
of a uniform filtering family of symmetric definable subsets of G such that H = HN G (we
call H a nice subgroup of G). Discernible subgroups are examples of externally definable
subsets, and in the particular case when G is a stable group, they coincide with definable
subgroups (see Lemma 3.6). We call the subgroup H C G external if there is a definable
subgroup of H C G such that H = HN G. Our main results are the following.

Theorem 0.1 (finding external subgroups). Let G be a NIP group, G a |G|*-saturated
elementary extension of G and H =HN G an external subgroup of G.

(1) There is n € w such that for every A C G, there are ai,...,a, in G such that
Ce(A) = Cg(ay, ..., a,).
(2) For every n € w, there is a definable subgroup K C G such that
H=KnNG and Z,(H)=2,K)NG.
(3) There is n € w such that for every A C G, there are ay, .. .,a, in G such that
(| H*=H*N---NnH*NG.

a€A
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Theorem 0.2 (finding discernible subgroups). Let G be a NIP group, G a |G|*-saturated,
|G| T-homogeneous elementary extension of G and H =H NG a discernible subgroup of G.

(1) For every n € w, there are nice subgroups K, Z, C G such that
H=KnQaG, Zy(H)=2,NG and Z,C Z,(K).

(2) There are n € w and a nice subgroup K C G such that for every A C G, there are
ai,...,a, in G with

H=Knd and ﬂH:Ka1ﬂ~-~ﬂKa”ﬂG.

a€A

(3) There are nice subgroups K C H and N C Ng(K) of G such that
H=KnG and Ne(H) =NNG.

(4) There are n € w and a nice subgroup K C G such that for every A C G and
A C Aut(G/A), there are o1, . ..,0, in Aut(G/A) with

H=KNG and (JH =K"nN---NK"NG.

oe

(5) For everyn € w and A C G, the nth-centraliser CZ(A) is a discernible subgroup of G.

Theorem 0.3 (soluble envelopes). Let G be a NIP group, S C G a soluble subgroup of
derived length £ and G a |G|T-saturated elementary extension of G.

(1) There is a nice subgroup H C G with S C H such that H is soluble of derived length ¢,
H NG is S-invariant and normalised by N (S).

(2) There is a definable subset X C G with S C X such that X NG is a subgroup of G
and X generates a soluble subgroup of G of derived length £.

(3) If S is in addition normal in G, there is a normal, soluble of derived length ¢, definable
subgroup H C G with S C H.

NIP groups include finite groups, abelian groups in the pure language of groups (W. Szmielew
[Szmb55]), abelian ordered groups (Y. Gurevich and P. Schmitt [GS84]), groups definable in a
stable structure (e.g. linear algebraic groups over separably closed fields, C. Wood [Wo079))
and groups definable in an o-minimal structure (e.g. linear algebraic groups over the field of
real numbers). These are trivial ones for most of the considerations of this paper, as both
stable and o-minimal groups satisfy strong descending chain conditions, either on uniformly
definable subgroups [BS76] or on all definable subgroups [Pil88]: in such a group G, for every
A C G, the centraliser C;(A) and the A-core ﬂae A a~'Ha of a definable subgroup H C G are
definable, and these properties remain true in quotients of G by normal definable subgroups.

Other examples include linear algebraic groups over a field k£ that does not have the indepen-
dence property, and more generally groups interpretable therein, e.g. quotients Hy/H, where
Hjy < Hy are definable subgroups (not necessarily Zariski-closed) of the general linear group
GL, (k) in a field structure (k, L) where L is an expansion of the field language such that the
structure (k, L) is NIP. This holds in particular with & equal to (a finite algebraic extension
of) the pure field Q,, of p-adic numbers (L. Matthews [Mat93], see also [Bél12]) and more
generally to a Henselian valued field of characteristic 0 whose residue field is NIP (F. Delon
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[Del81]). Other examples of NIP fields: the valued field UW . ngg ((tY/™)) of Puisieux series

over Fglg and more generally any valued field of charactersitic p > 0 with perfect NIP residue
field, with p-divisible value group and with no proper algebraic valuated extension having
ramification index 1 and residue degree 1 (I. Kaplan, T. Scanlon and F. Wagner [KSW11]).
In a linear algebraic group G(k) over a field k, every descending chain of Zariski-closed sub-
groups has finite length. In particular, for any subset A C G(k), the centraliser Cg(A)
is definable, and the A-core of a Zariski-closed subgroup H C G(k) is Zariski-closed (hence
definable), but the A-core of a definable subgroup may not be definable.

NIP groups also include general linear groups GL,(R) over a NIP ring R, which may be a
domain (such as valuation rings of the valued fields cited above) or not (such as any non-
principal ultraproduct Hu Z/p"Z for a fixed prime number p).

Two examples of a less algebraic nature. The universal covering group G of a definably
connected group G that is interpretable in an o-minimal expansion M of the field R is a NIP
group: G is interpretable in the two sorted structure ((m(G),+), M) (E. Hrushovski et al.
[HPP11]) hence NIP (A. Conversano and A. Pillay [CP12]). An ultraproduct of groups that
are uniformly interpretable in a NIP structure is NIP (D. Macpherson and K. Tent [MT12]).

1. PRELIMINARIES ON THE INDEPENDENCE PROPERTY

Before discussing the particular case of groups, we consider an arbitrary first-order language
L, a complete theory T, one of its models M and a subset A C M. Let x and y be disjoint
tuples of variables of respective length p > 1 and ¢ > 1. Given a formula ¢(Z) and a partial
type p(Z) with parameters in M, i.e. a set of formulas consistent with the L U M-theory of
M, we write ¢(A) for the subset {(z1,...,2,) € AP : ¢(x1,...,2,) holds in M} of MP and
p(A) for the intersection ﬂ¢>6p o(A).

1.1. Shattering formulas. Let ¢(Z,%) be a formula in p+ g variables with possible param-
eters in M. Given a non-zero n € w, we say that the formula ¢(z,y) shatters n in T if there
are parameters ai, ..., a, in M? and (by)jcq,..np in M7 such that

(M | @lai,by)) <= i€

In other words, ¢(z,y) shatters n in T if there is a finite subset A C MP with n elements
whose subsets are all of the form A N (M, b) for some b varying in M?. As shattering n
is a first order property, it does not depend on the model M of T' chosen. We call Vapnik-
Chervonenkis dimension of p(z,y) in T, sometimes omitting to specify T when the ambient
theory is obvious, the maximal n € w that is shattered by (%, ) in T if such a number exists,
or oo otherwise. We write it VC(¢). Note that VC(p) equals VC(—¢). In these definitions,
the tuples of variables z and y do not play the same role. We write ¢*(Z,y) for the dual
formula of ¢(Z,7), obtained by interchanging the role of ¥ and y. We say that ¢(x,y) has
the independence property in T, if it! has infinite VC-dimension in 7. The structure M or

TAccording to Shelah’s definition in [She90, Definition 4.2], ¢(Z, %) has the independence property if the
dual formula ¢*(z,y) has infinite VC-dimension. The two statements are equivalent as VC(y¢) < n implies
VC(p*) < 2™ by [Poi85, Lemme 12.16].
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its theory T do not have the independence property (i.e. are NIP) if no formula has the
independence property in 7', i.e. if every formula has a finite VC-dimension.

The relation between Shelah’s independence property in [She90] and Vapnik-Chervonenkis’
dimension in [VCT71] is pointed out in [Las92]. We refer to [She90] and [Ad114] for more about
NIP structures.

1.2. Shattering types. We extend the previous definitions to partial types. Let A and pu
be two cardinal numbers, with u < A*. If 7(Z, y) is a partial type in p 4 ¢ variables, we say
that m(Z,y) shatters A\ up to p in T if there is an elementary extension M of M, a subset
A C MP with |A| = X such that for every B C A with |B| < pu there is b € M¢ such
that B = AN 7(M,b). Equivalently, there is an elementary extension M of M, a family
{@; : i < A} of elements of MP, and a family {b; : J C A, and |J| < u} of elements of M4
such that

(M |z 7(@i, b)) <> i€ J.
We say that 7(z,y) co-shatters X in T up to p if there is an elementary extension M of M
and families {a; : i < A} and {b; : J C A, and |J| < p} whose elements lie respectively
in M? and MY, such that

(M |z m(@i, b)) < i¢J,
or equivalently if there is A C MP of cardinal A such that for all B C A with |[A\ B| < u
there is b € MY with B = AN (M,b).
If 7(Z,y) shatters A up to AT, then it shatters and co-shatters A up to every pu < A*. In this
case, we simply say that 7(z,y) shatters .

If a formula ¢(z, y) shatters every n € w in T, by the Compactness Theorem, ¢(Z, y) shatters
A for every cardinal number \. If a partial type 7(z,y) shatters every n € w in T, by the
Compactness Theorem, for every n € w, there is a finite conjunction of formulas in 7(z, )
that has VC-dimension at least n. However, it is possible that 7" be NIP.

Ezample 1.1 (The Cantor ternary set in R). The Cantor ternary set € is the intersection of
the closed sets C), defined by
C 2
Cy = [0,1 dalzluQ+J)
0=[0.1] rand - Chy = 2U (54 3
¢ consists of the elements of [0,1] having at least one ternary representation whose digits
belong to {0,2}. The partial type {x +yeC,:ne€ w} shatters w. For every i € w and
subset J C w, we define
1 1 1 2
alz<§+§)><@ and bJ:%m’
so that we have 1 5
e o —"_ Z Ao
322-1—2 ey, 32]+2
On the one hand, if i € w\ J, then a;+b; has occurrences of 1 in every ternary representation.
On the other hand, if i € J, then

ai—l—bJ: +

32i+1

2 2
a; + by = 32i+1 + 32j+2°
JEJ\ {3}
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Ezample 1.2 (The Cantor ternary set in Qs). The 3-adic ternary Cantor set €3 is the inter-
section of the closed subsets C),, C Q3 defined by

C(] = Zg and Cn+1 = 3Cn U (2 + 3Cn)

€3 consists of the 3-adic integers whose canonical expansion have coefficients in {0,2} (M.
Lapidus and H. La [LLO08]). The ring of 3-adic integers is defined by the formula (Jy)(y* =
1+ 32%) and €3 is a type definable subset of Q3. The type z + y € €3 shatters w in Qs,
which can be seen taking a; = 3% 4 3%+ and b; = ZJ_EJ 2-3%. Note that the field Q3 does

not have the independence property by [Mat93] (see also [Bél12, Section 4.2]).

Given a cardinal A, here is an example of a language Ly, an Ly-structure M and partial type
ma(x,y) that shatters X in M. Let I' be an ordered abelian divisible group containing a copy
of A. Consider the Hahn field Qs3((I')) of generalised power series with 3-adic coefficients.
Consider the structure (Qg((f‘)),—l—,O,P}j S HENNE w) where P* is a unary predicate

interpreting the subgroup of Q3((I')) whose elements are of the form Zie . a;t" with a, €
3"Zs. In this language, Qs((I")) is an abelian structure in the sense of E. Fisher (see [Fis77],
or [Wag97, Example 0.3.1]). Any definable subset of the Cartesian product Qsz((I'))" is a
Boolean combination of cosets of acl())-definable subgroups of Qz((I'))"™ by [Wei93] (see also
[Wag97, Theorem 4.2.8]): the structure (Qg((F)), +,0,PF:pel ne w) is stable.

Let €3 denote the partial type defined by
&= ()C¥ where C)l=P) and C , =3C"U(2+3CH).

LENNEW

The realisations of €3 in Q3((I')) are the elements of the form Zie ; a;t" where a, € €3 for
each cardinal number ;i < X belonging to I. The families a; = 4t* and b; = Zje 5 2t/ witness
that the type z +y € €3 shatters A in Q3((I)).

Ezample 1.3 (A type that shatters every n € w, but not w up to 4). In (R, +, <), here is a
sequence of definable subsets A,, C [0, 1] such that the partial type m(x,y) = {:c —yeA,:

n e w} shatters every n € w but does not shatter w up to 4. Define for all n € w, a definable
subset B,, C [n,n + 1] of the form

B, =n,n+ 1]\ {cn1,...,Cnon} Wwith n<c,1 <+ <cpam <n+1

such that, for all ¢« € {1,...,n} and J C {1,...,n} there are a,; € R and b, ; € R such
that (an; — b,,7) € In,n+ 1] and

(@ni—bny) € B, <= i€ J.

We put C' = {Ci,j 11, ] € w}, and we may build each B,, so that the map mapping a 2 element
subset {z,y} of C to |z —y| has finite (unbounded) fibres (using a Q-basis of R for instance).
We put for all n € w,

A, =] —00,00UByUB U---UB,U[n+1,+00]
It follows that, for every n € w and finite J C w,
(R m(ani,bny)) < i€
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so m(x,y) shatters every n € w. If X is an infinite set shattered by m(x,y), then there is a real
number ¢ and infinitely many 3 elements subsets Y of X with the property that |x — y| = ¢
for some z and y in Y. This shows that m(z,y) does not shatter w up to 4.

1.3. Nice sets. The previous examples show that shattering types can occur in a NIP theory.
We go on by giving one elementary condition under which a shattering type yields a formula
with the independence property.

A partial type p(Z) with parameters in M is uniform if there is a formula ¢(z, 7) and a subset
A C M? such that

p(z) = {o(z,a) € A},
A family § of subsets of MP is uniformly definable if there is a uniform p-type p(x), such that
§={¢(M): ¢ € p}.
$ is a filter if for every X and Y in §, there is Z in § such that Z C X NY. We say that

p(z) is a filter if the family {¢(M) : ¢ € p} is a filter, in other words if for every ¢; and ¢
in p, there exists ¢ in p such that

p = VE(B(E) = 61(F) A 6a(T)).

Definition 1.4 (nice subset). A partial type p(z) with parameters in M is nice if p(Z) is a
uniform filter. A subset X C MP? is nice (in M) if there is a nice partial type p(Z) such that
X = p(M).

Definition 1.5 (externally definable subset). A subset X C M™ is externally definable
if there is an elementary extension M of M and a definable subset X C M"™ such that
X =X N M". Equivalently, there is a formula ¢(Z, %) and a tuple ¢ in M such that

X={zeM": Mgy}
Lemma 1.6. A nice set is externally definable.
Proof. Let X = p(M) with p(z) = {¢(z,a) : a € A} a uniform filter. The partial type
m(7) = {#(0,9), Yi(p(3,9) = ¢(z,a)) : b € X,a € A)}
is finitely satisfiable in A. It follows that X = p(M,a) for any realisation a of . O

Corollary 1.7. If there is a nice partial type that shatters every natural number n in T, then
T has the independence property.

Proof. If m(z,y) = {¢(Z,y,a) : a € A} is a nice partial type that shatters every n, there are

an elementary extension M; of M and tuples {a} : i < n}, {0 : J C n} in M; such that
(My = (@ a)) < icJ

for all n. By Lemma 1.6, there are an elementary extension My of M; and a € Mj such that

m(M;) = (M, a), so ¢(Z,y,a) has the independence property in M. O

Remark 1.8. In Corollary 1.7, one can neither drop the assumption that the partial type is
uniformly definable, nor drop the assumption that the partial type is a filter: the type of
Example 1.3 is equivalent to a uniform type, to a filter also, but not to a uniform filter.
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Corollary 1.9. Let M be a NIP L-structure, with = being the only relation symbol in L.
Let N C M and E C N? be nice subsets (in M) such that N is a substructure of M and E
is an equivalence relation on N that preserves L. Then N/E is NIP when equipped with its
natural L-structure.

Proof. Let ¢ be a constant symbol and f an n-ary function symbol. By E preserving the
language, we mean that for every (ai,...,a,) in N, whenever a;p = b;p holds for every
i€ {l,...,n} one has

(FNM(ar, @), = (b ba)) L

This way, the quotient space N/FE has a natural L-structure defined by putting

MNE=cNp and  fNF(ap,. .. an0) = (fN(a1>""a"))E'

Since nice sets are externally definable, by a theorem of S. Shelah [She09], the structure
(M,LM N, E) in the language L expanded by predicates for N and E is NIP. The domain
and functions of the L-structure N/E are interpretable in (M, L™ N, E), thus N/E is also
NIP.

As we shall only use this result in Theorem 4.4 for a quantifier-free formula ry = yz, we
give a direct proof for that particular case: by induction on the complexity of an L-term
t(x1,...,x,), for any (a1,...,a,) € N™ one has

N arg, ) = (Mar, . an)

Let E = ¢(M,b) and N = v(M,¢) for some L-formulas ¢(z,y, 2), v(z, 2) and tuples b, c
in M. For any quantifier-free L U {N, E'}-formula ¢(x), one defines the L-formula ¢g(Z) by
replacing any atomic subformula ¢(z) = u(z) by ¢(t,u,b) Av(zy,¢) A--- Av(x,,c). For any
(a1,...,a,) € N, one has

N/E = ¢(a1g, ..., ang) <= M E ¢p(ai, ..., a,).

It follows that, if the quantifier-free formula ¢ (z, y) has the independence property in M/E,
then the formula ¢ g(z,y) has the independence property in M. O

2. PRELIMINARIES ON NIP GROUPS

We now consider a NIP L-structure M and a group G definable in M.

2.1. Descending chain conditions.

Baldwin-Saxl chain condition 2.1 (see [BS76] or [Poi87]). Let {H; : i € I} be a family
of uniformly definable subgroups of G. There is n € w such that for all finite subsets J C I,
there exists a finite subset J, C J of size at most n such that

M H;= () Hj.

J€EIn JjeJ
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We shall need the following stronger version. Given a subset X C G and n € w, we write
X% = {1} and X" for the set of products x125---x, of n elements of X, and X*™ for the
Cartesian product X x ---x X. We call X symmetricif X~! = X and 1 € X. Given a pure
set Y, when there is no ambiguity, we go on writing Y for the Cartesian product ¥ x---xY.

Lemma 2.2 (a Baldwin Saxl chain condition for subsets). Let X be a family of subsets of G.
For every X € X, let XY3 C G be definable with (X1/3)3 C X. Let {X'3: X € X} be
uniformly definable by a formula ¢(x,y) with VC(Q@*(x,gj)) =n. For every X € X, let
X130 @ be symmetric (not necessarily definable) such that (Xl/?’”)n C X3, Then, for
every X, ..., Xp41 € X, thereis j € {1,...,n+ 1} with

XX XA N N XY XN N X

j_

Proof. Otherwise, there are by,...,b,,1 in G and X;,...,X,, 11 in X such that for all j in
{1,...,n+ 1}, one has

(1) bje (X n X\ X

Let J C {1,...,n + 1} have elements j; < --- < j; and let b; be the ordered product
bisby, -+ +bj,- 5 € {1,...,n+1}\ J, then by € (X;/*")" and so by € X}”°. On the other
hand, if J has elements

g1 < <Jie1 <J<Jix1 < < Jk,
then b; ¢ X ]1 / 3, for otherwise, we would have

b = (05,1, b ba by b7,

Ji+1

and thus b; € X, a contradiction with (1). This shows that VC (cp*(a:, yj)) > n + 1, contra-
dicting the hypothesis. O

2.2. Nice subgroups. Let H C G be a subgroup. H is a type definable subgroup of G if
there is a partial type m(z) with parameters in G such that H = 7(G) and, for any elementary
extension G of G, the set 7(G) is a subgroup of G. We call 7 a defining type for H.

Definition 2.3 (nice subgroup). We say that H is a nice subgroup of G if H is a type
definable subgroup of G having a defining type 7(z) = {¢(z,a) : @ € A} that is nice in G
and such that ¢(G, a) is symmetric for all a in A.

By Lemma 1.6, a nice subgroup is externally definable.

Example 2.4. A definable subgroup H C G is nice. By the Baldwin Saxl chain condition,
any intersection of uniformly definable subgroups of G is nice. In particular, for any subset
A C G and subgroup A C Aut(G), the subgroups ﬂaeA H?® Cg(A) and ﬂaem H? are nice.

Counterezample 2.5 (A centraliser that is not nice). In an infinite extraspecial 3-group K,
which is supersimple of rank 1 (see [MS08]) and whose conjugacy classes are all finite, choose
(an)n>1 such that the chain of centralisers Ck(a;) D Ck(ai,az2) DO Ck(ay,as,a3) O -+ is
strictly decreasing. The partial type ﬂ@l Ck(ay) is not nice as [K : Ck(a,)] < 3 for
every n. Nor is it equivalent to a nice partial type, for otherwise, by the Compactness



VARIATIONS SUR UN THEME DE ALDAMA ET SHELAH 10

theorem, one could find a definable infinite subset X C K with infinitely many pairwise
disjoint left translates, contradicting the fact that K has rank 1.

Example 2.6. In an w-saturated elementary extension R of the field R, the subgroup of
infinitesimal numbers is nicely defined in the language (4, <). In the language of fields, the
intersection of the Euclidian balls {x e Rzl < 1/ l{:} is a nice subgroup of R". It is also
the intersection of the family $ of half hyperplanes of equations a;z1+- - -+a,x, < a,y1 where
ai,...,a,4+1 range over Q with a,4; > 0. In GL,(fR), considered as a group interpretable in
the ring M, (R), the subgroup of elements that are infinitesimally close to 1 is nice, being the
intersection of the neighbourhoods {1 +x |zl < 1/]{:}

Ezxample 2.7. Let 3, be an w-saturated elementary extension of the ring Z, of p-adics integers.
The infinitesimal numbers form a nice subgroup of 3,, defined by the intersection of the
subgroups p*3,. In GL,(3,), as a group interpretable in the ring M, (3,), the intersection of
the congruence subgroups 1+ p*M,(3,) is a nice subgroup.

2.3. Normaliser. For any two subgroups H, K C GG, we write

HY = (N HY

geK

for the K-core of H. When G is stable, if H is definable, then H* is definable, and hence so
is Ng (H K ) When G is NIP, the situation is far less straightforward. H¥ is merely K-type
definable and its normaliser has no obvious reason to be even type definable.

Lemma 2.8. Let H C G be a nice subgroup with defining type {(p(xj)) b€ B} and let
n = VC’((p*(m, yj)) For any subset A C G, the subgroup H* C G is nice, with defining type
{/\Ki@w(x“i,lg) beB, a,...,a, € A}.

Proof. Let § be the family of uniformly definable sets {p(G,b) : b € B}. As n(G)? C 7(G)
for every elementary extension G of GG, by the Compactness Theorem, for every element X
of §, there are finitely many X1, ..., X,, in § such that (X;N---NX,,)> C X. As § is a filter,
there is an element of §, which we write X'/3, such that X'/ ¢ X; N ---N X,,. Similarly,
for every non-zero n € w, there is X/?" € § such that

(XV3mn c X113 ¢ X.
Let ¥(x; §, yr+1) be the formula p(a¥+1, §) and n = VO (" (2, Yis1) ) where § = (v, y).
By Lemma 2.2 applied to the family & = {X*:a € A, X € §}, for every Xy, ..., X,,41 in B,
there are Y7, ..., Y, in & such that

Yin---NY,CX;N--NXpu.

It follows that the family {X; N---N X, : X; € B} is a filter. O
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We adopt the following conventions for writing down formulas. For every non-zero k € w
and formulas ¢(x,u), ¢(x,v), we write

k for g .. Fxg(p(z, u) A Ap(xg, @) AN e = z129 -+ - T),

p(x,u)
p(z,0)”  for  Jyle(y,v) Ao =y7),
o(z,u) C, ¢z, v) for Va(o(z,u) = ¢(x,v)).
Lemma 2.9. Let G be k-saturated with k > Rg. Let A, N C G two subgroups with |A| < k
and |[N| < k. Let H C G be a nice subgroup with a countable defining type {@(aj,l_)) b€ B}.
Let n = VC’( *(x, _)) Assume that A C H and AN C A. For anyb € B and ay,. .., a, in
G such that A C ﬂ1< <n

type {gp( x,C):CE C}, some c € C and aq,...,a, in G such that, for every g € N,

(G, b)%, there are a nice subgroup K C G with countable defining

(ﬂ (G,c)” )Cﬂap and ACKNK"N---NK*™.
i=1

Proof. Let (b;)ico be an enumeration of B such that ¢(G, biy1)? C ¢(G, b;) for all i € w. We
consider the partial type over A

P(@i)i@;) = {@(Iaﬂiﬂ)z Ce o(x,9:), pla,y;) i €Ew, a € A}.

Note that for all m € w, the sequence (bm4;)ico satisfies p. We consider the partial type
(21, ..., Ty, Yo) with parameters in AU N U{ay,...,a,,b}, defined by

{/Kgp(x,yjo)xicx(;\ o(x,b)* ) /n\ (a,90)" N p(a,yo): g €N, aEA}

=1 i=1 i=1

By Lemma 2.8, the type m(x1,...,2,,%o) is finitely satisfiable in (N)*™ x B. It follows
that 7(z1,..., 20, Yo) U p((ﬂi)iew) is satisfiable. As G is k-saturated, m U p has a realisation

(a1, ..., 0, (¢)iew) in G. We put C' = {Ei 1€ w}. O

Theorem 2.10 (normalising a nice envelope). Let G be k-saturated with k > Xy and H C G
a nice subgroup defined by a partial type of size < k. Let A C H and Ny C Ng(A) any
subgroups with |A| < k and |Na| < k. There are nice subgroups K, Nx C G defined by
countable partial types such that

ACKCH and N4 C Nig C Ng(K).

Proof. Let {(p(x,l_y) b e B} be a defining type for H. Note that H is the intersection of

nice subgroups H; C G having a countable defining type. We fix some 3 € B. There is some
index ¢ and some b € B such that

H; C p(G,b) C o(G,b)? C ¢(G, B).

We apply the previous lemma with a; = --- = a,, = 1 and put

—o(G.B) and Xy =[)e(G, )"

i=1
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One has X{ C X, for any g € Ny and X, X; C Xj. Let 5 be an element of C' such that
n o )
(ﬂ SO(va) l) C X1>
i=1

and put Y; = ﬂ:;l o(G, 7). As A C Y}, and as the countable type {QO(I,E) i C € C’}
provided by Lemma 2.9 defines a nice subgroup H; C G with A C Hy, one can apply
Lemma 2.9 again to H; and Y;. By induction, one finds an infinite decreasing chain of
definable subsets Xg D X7 D X5, D --- of G such that for every i € w and g € N4, one has

X/, CX;, ACX; and X7, CX.

7

As n depends on ¢(z,y) only, the family {Xi NS w} is uniformly defined by the formula

w(xuylv”’uyn-l-l): /\ (p(xyivyn-l-l)v

1<i<n

where y1,...,yns1 are replaced by parameters. By compactness, there is a family (Y,) <Q

of uniformly definable subsets of G_ defined by ¥(x,y1,...,Yns1), such that for all rational
numbers p < ¢, all g € Ny and all § € B, one has

YICY, ACY,C¢(G,pB), and Y,Y,CY,

We put Y, = (G, Bp) for some tuple Bp. By compactness and Ramsey’s Theorem, we may
assume that the sequence (b,)yeq is indiscernible over the empty set. We define

K=Y, and Ng= |) {xEG:%wCﬂand%flCﬂ}.

peQ (p,q)€Q?
p<q

It is straightforward that K is a nice subgroup, that K C H, that Ny C Ng C Ng(K) and
that Ng is symmetric. For any rational numbers p < r < ¢, one has

2
({xeG:Y;c}ﬁ}ﬂ{xeG:}ﬁchqD clreq: vy}
It follows that N is a subgroup of G. To finish the proof of Theorem 2.10, we only need to
show that N is a nice subgroup. For any p < ¢, we define (p, q) putting
(pg) ={r G Y CY,and Yy CY,},
and for any rg < ry < - <1y, we define (rq,...,7,) by
(1o, oy ) = (ro, r1) N (r1,m) <« NP1, T )-
Note that (rg,...,rm)™ C (ro,Tm). Let ¢(x,y) be the formula defining uniformly the sets
(p,q), and let m = VC(Cb*(%?jl) A @™ (x, ¥a) A Cb*(l",??s))- Let ro <7y < -+ < Topq1 be an
ordered sequence of 2m + 2 rational numbers. By Lemma 2.2, there is ¢ < 2m such that
<7”0,7’1>1/3m NN (rieg, 7”2'—1>1/3m N <7“i+2,7’i+3>1/3m NN (rom, 7”2m+1>1/3m
C (1o, 71) N (2, 73) N+ - N T2, Tomy1)-

To simplify notations, let us assume that ¢ = 2. The above equation yields in particular

<7’0,7“1>1/3m N (7“4,7“5>1/3m M---N <T2mar2m+1>1/3m C (ra,73)
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As the sequence (Bp)pEQ is indiscernible, for any rational numbers py < p1 < -+ < Pomii,
and any p; = pg'" < pi"" <o <pyaty < phy | = pit1, one has

<p871a s apg#L> N <pé75a s >p§772> M---N <p(2)m72m+17 s ’p§2,2m+1> C <p2’p3>'

In particular, by density of Q, any finite intersection of subsets of the form (p, q) for p < ¢

contains an intersection of 3m? sets of the same form, so that if § denotes the family < (p, ¢) :

p < q}, then the family {ﬂ&m : 8 C §and |Fn| < 3m2} is a uniform filter defining Ny

as well. 0

Remark 2.11. If H is the intersection of uniformly definable groups, then K is the intersection
of uniformly definable subgroups, but we do not see any obvious reason why N would be
the intersection of uniformly definable subgroups.

With a similar proof, we get:

Theorem 2.12. Let G be k-saturated with k > Ny and H C G a nice subgroup defined by a
partial type of size < k. Let A C H and Ny C Ng(A) two subgroups that are the reunion of
two families of cardinality < k of uniformly definable subsets of G. There are nice subgroups
K, Nx C G defined by countable types such that

ACKCH and N4 C Nig C Ng(K).

3. EXTERNAL AND DISCERNIBLE SUBGROUPS

Let G be an infinite group, H = ¢(G, ¢) an externally definable subgroup of G and G a fixed
|G| *-saturated elementary extension of G. Every b realising the p*-type of ¢ over G satisfies
©(G,¢) = ¢(G,b), so H is externally definable with parameters in G. The group H need
not be the trace on GG of a definable subgroup of G though: consider the example of a convex
proper additive subgroup of an elementary extension of R.

Definition 3.1 (external subgroup). A subgroup H C G is external if there is a definable
subgroup H C G such that H = HNG. If the elements of H satisfy a set P of quantifier-free
formulas with parameters in G, we say that H is external as a P-group.

Definition 3.2 (discernible subgroup). A subgroup H C G is discernible if there is an
elementary extension G of G and a nice subgroup H C G such that H = HN G. If the
elements of H satisfy a set P of quantifier-free formulas with parameters in GG, we say that
H is discernible as a P-group.

Lemma 3.3. A discernible subgroup of G is externally definable.

Proof. Let H = HNG be discernible. By Lemma 1.6, H is externally definable, so H also. [

Lemma 3.4. A discernible subgroup H = H N G is the trace over G of a nice subgroup
K C H defined by a countable partial type.
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Proof. Let (x) = {p(z,b) : b € B} be a defining type for H. Let G; be a |G|"-saturated
elementary extension of G. Let bin B. As 7(G1)? C ¢(Gq,b), by the Compactness Theorem,
there are by, ...,b, in B such that

_ _ 2 _
(#(G1,b1) NN (G, b)) C p(Go, D).
As 7(Gy) is nice, there is ¢ in B such that
(p(Gl, 6) C ()O(Gl,i?l) n---N @(Gl,i)n>

Thus, the following partial type p(4o, U1, - - -, Yn,--.) over H UB

{@(muyi+l)2 Ce (p(xvgz)v QO(I,Q0> Ca @(Iul_))u (p(hvgz) S W, h € H7 B € B}

is finitely satisfiable in B, hence realised by some sequence (ag, ay, . . . ) of elements of G; >~ G.
Putting 7(z) = {go(m,éi) i€ w}, one has H = 7(G;) NG. O

If H is discernible as a P-subgroup of G and defined by the countable partial type 7(x) =
{go(m, a;) 1€ w}, then replacing (a;);c, by parameters (b;);e, sharing the same type over
G changes neither H nor the first order consequences (with parameters in G) of 7(z). In
particular, H is the trace on G of a nice subgroup H C G whose elements satisfy P.

An external subgroup of G is a discernible subgroup of GG. The subgroup of infinitesimal
numbers of an elementary extension R of R is a discernible subgroup, an externally definable
subset, but not an external subgroup of ‘R.

Lemma 3.5. Let H C G be the intersection of a family of uniformly external subgroups of G
with defining formula ¢(x,y). Then H is an external subgroup of G with defining formula

Proof. By the Baldwin Saxl condition, H is a discernible subgroup of G. We can thus apply
the proof of Lemma 3.3, adding to the partial type m(y) a formula ¢ (y) saying that ¢(z,y)
defines a subgroup of G. O

Lemma 3.6. If G is stable, a discernible subgroup H C G is definable. If H is the trace over
G of a group H defined by the nice type {¢(x,a) : a € A}, there are ay,...,a, in G such
that o(G,a1) N ---N (G, ay) is a subgroup of H of finite index.

Proof. As G does not have the order property, there is a in A such that H = ¢(G,a). Let
¥ (y) be a formula stating that p(G,y) is a subgroup of G. The ¢* A Y-type of a over G is
definable by a positive Boolean combination of formulas of the form ¢(z, g) A(g) for g in G
by [HH84, Corollary 2.8], hence covered by a finite union of subgroups of G. By Neumann’s
Lemma [Neub4], one of these subgroups must have finite index in H. O

Theorem 3.7 (finding external subgroups). Let G a NIP group, G a |G| -saturated elemen-
tary extension of G and H =HN G an external subgroup of G.

(1) There is n € w such that for every A C G, there are ay, .. .,a, in G such that
Cg(A) =Cql(ay, ..., a,).
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(2) There is an abelian definable subgroup Z C G such that,
Z(H)=7ZNnQaG.
(3) For every n € w, there is a definable subgroup K of G such that
H=KnNnG and Z,(H)=7,K)NG.
(4) There is n € w such that for every A C G, there are ay, .. .,a, in G such that
HA=H"N---NnH™NG.

Proof. (1) By Baldwin Saxl’s chain condition, Cg(A) is defined by a nice partial type con-
sisting of uniformly definable subgroups. It is thus an external subgroup by Lemma 3.5.

(2) By the Baldwin Saxl condition, there is n € w such that the centraliser of any finite
subset of G is the centraliser of n elements. By the Compactness theorem and the saturation
assumption, there is an n-tuple h in G such that Z(H) C Cy(h) C Cu(H). It follows that

Z(Cu(h)) contains Z(H ), hence Z(H) = GN Z(Cu(h)).
(3) The following Claim is inspired by [dA13, Lemma 2.1]:

Claim 1. Let A, B C G be two subgroups and D C G a definable subgroup normalised by
both A and B such that [A, B] C D. There are two definable subgroups A, B C G containing
A and B respectively such that [A,B] C D.

Proof of Claim 1. For any subset C' C G, we define the subgroups A(C),B(C) C G by
A(C)= () {z€Na(D):[x.dcD}

ceC
[A,c]CcD

B(C)= () {yeNa(D): eyl c D},
ceC
[e,B]ICD

and claim that there is a finite C' C G such that [A(AU BUC),B(AU BUC(C)] C D.
Otherwise, by induction, one could build two sequences (a,)new and (by)new such that for
every n € w, a, € A(AUB U {ag, b, : k <n})and b, € B(AU BU{a, b, : £ < n}) but
[an,b,] ¢ D. It would follow that [a;,b;] € D if and only if ¢ # j, so that the sequence
(Cg(anD)),c,, would not satisfy the Baldwin Saxl chain condition since for every j < n,

bje( N CG(a,-D)>\( N CG(a,-D)>.

I<icn 1<i<n
i#]

By the Compactness Theorem, there is a finite tuple ¢ such that [A(¢),B(¢)] € D. We
consider A = A(c) and B = B(¢). O

We prove (3) by induction on n. For n = 0, there is nothing to show. If there is a definable
subgroup H C G such that H = HN G and Z,(H) = Z,(H) NG, as [Z,11(H),H] C
Z,(H), by Claim 1, there are two definable subgroups Z, 1, H,y1 C G containing Z,1(H)
and H respectively such that [Z,.1,H,1] € Z,(H). Replacing H,,; by H,;; N H and
Z,.1 by Z,,1 "H, 1, we may assume that H,,; C H and Z,,.; C H,,.;. It follows that
Z+1,H, 1) C Z,(H,41), so that Z, 1 (H,41) contains Z,1, hence Z,,.1(H). One thus has

H == Hn_;’_l N G and Zn+1(H) = Zn+1(Hn+1) N G
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(4) Follows from Baldwin Saxl’s chain condition and Lemma 3.5. O

Theorem 3.8 (finding discernible subgroups). Let G be a NIP group, G a |G|"-saturated,
|G| T-homogeneous elementary extension of G and H = HN G a discernible subgroup of G.

(1) There are n € w and a nice subgroup K C G such that for every A C G, there are
ai,...,a, in G with

H=KnNG and HA*=K*n.---NnK*»NG.

(2) There are n € w and a nice subgroup K C G such that for every A C G and
A C Aut(G/A), there are o1, ...,0, in Aut(G/A) with

H=KNG and (JH =K"n---NK"NG.

oe

(3) There are nice subgroups K C H and N C Ng(K) of G such that
H=KNG and Ng(H)=NNG.

Proof. (1) Let {<p(a:,5) c b€ B} be a defining type for H and n = VC’((p*(m,gj)). By
Lemma 2.8, the type w4 (yl, e YUy (mi)iew) defined by

{@(qui+l)2 - (p(xvjl)u 90(%@) - ()0(']:7[;)7 (p<h7jz)7 /\ @(kvji)ij

1<jsn

( A go(x,:zi)yj) Ceo(z,0)*:he H, ke H* ac€ A, beB, iew}

1<y<n

is finitely satisfiable in A" x B“. Let (al, LA, (ci)iew) be a realisation of m4 in G. The
type v(x) = {p(z,¢;) : i € w} is nice, and one has

H=v(G)NG and H*=v(G)*N---Nv(G)*NG.

By another compactness argument, considering the union of the types w4 (yL As - Un As (mi)i@,)
when A ranges among all subsets of GG, one can find a group v(G) that does not depend on
the set A.

(2) By Lemma 3.4, we may change H and assume that it is defined by a countable type
{go(m,l_)i) (i€ w}. Without loss of generality, we may assume (G, b;y1)? C ¢(G,b;) for
every i € w. Let A be a subset of Aut(G/A) containing exactly one extension of every o € 2.
Let n = VC’(go*(:c,g)), let TA(@QP, Ylps- - - ,gjn,p)pew) be a partial type over A stating that
the sequences (i p)pew have the same type over A for every k € {0,...,n} and let

Pm((ﬂo,p, Ytps- - - >§n,p)pew) = TA((??O,;n Yipy-- - agn,p)pEw)U
{0l 50 A n ol Gu) o (.00, ol Gro) A A (k. ),
o(2, Yop) Ca (2, 05), (2, Yops1)® o 2(2, Yo ),
o(h,yop) i €w, pEw, he H, k€ H, aem}.
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We claim that pg is finitely satisfiable. For every m > 1, every 4y,...,1,, € w and every
o1,...,0, in A, putting i = max{iy,...,i,} + 1, one has

©(G,o1b;)N---N(G,o,b;) C p(G,o1b;,)N - Ne(G,o.,b;,).
By Lemma 2.2, there are j > i and ji,...,J, € {i1,..., iy} with

QO(G, O'jll_)j) n---N (,O(G, o-jnBj) C (P(G, 0'11_)2) n---N (p(G, O'ml_)l)

Putting (C1p,...,6np) = (0;,Djtp, ..., 0;,bjy,) for every p, one has

(k.05 Chts - - > Chp) = T4, (b, big1, ... by, for every k € {1,...,n}.
It follows that pg is consistent. Let ((éo,p, Cip,--- aémp)pEw) be a realisation of py. As the
sequences (Cp)pe, have the same type over A for every k € {0,...,n}, there are o4, ...,0,

in Aut(G/A) such that ox(Cop)pew = (Cip)pew for every k € {1,...,n}. Putting K =
ﬂp@ ©(G,€p,), one has H = KNG and ﬂaem H? =K N---NK?" NG. Considering the
union of the types pgl((yjom, Y1 pas - - - ,gjnm’m)pew) when A and 2 vary, one can find a group K
that depends neither on A nor on 2.

(3) By Lemma 3.4, we may assume that H is defined by a countable type. By Theorem 2.10
applied in G to H C H and Ng(H), there are two nice subgroups K,N C G such that
HcK CcHand Ng(H) C N C Ng(K). One thus has H = KNG and Ng(H) = NNG. O

4. ENVELOPES IN A DEFINABLE GROUP

Let us recall the following results from [She09] and [dA13].

Theorem 4.1. Let € be a monster model of a NIP theory and G a group definable in €.

(1) (S. Shelah) If G has an infinite abelian subgroup A, then it has a definable abelian
subgroup that contains infinitely many elements of A.

(2) (R. de Aldama) If G has a nilpotent subgroup N of class n with |N| < |€|, then it has
a definable nilpotent subgroup of class n that contains N.

(3) (R.de Aldama) If G has a normal soluble subgroup S of derived length ¢ with |S| < |€&]|,
then it has a definable soluble subgroup of derived length ¢ that contains S.

Throughout the section, we consider a NIP group G and G a |G|*-saturated elementary
extension.

Theorem 4.2 (abelian envelope). Let A C G be an abelian subgroup. There is an external
subgroup H = HN G with A C H such that H is abelian, H is A-invariant and normalised

First proof (Adapted from [dA13, Lemma 2.1]). For any subset B C G, we put
C(B)= (] Ca.
beB
[b,A]=1
We claim that there is a finite subset B C G such that C'(A U B) is abelian. Otherwise we

construct by induction on n two sequences (a,),>1 and (b,),>1 such that for every n, both
a, and b, belong to C(AU {ax, by : k < n}) and [a,,b,] # 1. It follows that [a;,b;] = 1 if
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and only if ¢ # j, so that the family (C’G(ai))>1 does not satisfy the Baldwin-Saxl chain

condition, a contradiction. As G is |A|"-saturated, by the Compactness Theorem, there are

1. .., Cq in B such that Cg(cy, ..., ¢,) is abelian, and contains A. By Lemma 3.5, the group
m m CG(O-(CS{)V : ’70-(0%))7

gENG(A) o Aut(G/A)

is external. O

Second proof. Z(Cg(A)) is external (as an abelian group) by Theorem 3.7.1 and 3.7.2. It is
also A-invariant and normalised by Ng(A). O

Remark 4.3. The simpler second proof provides an abelian envelope defined by the formula
Z(Cq(xy,...,x,)), whereas the first proof provides an envelope defined by the simpler formula
C(;(Zlfl, e ,:L'n).

Theorem 4.4 (soluble envelope 1). Let S C G be a soluble subgroup of derived length (.
There is a discernible subgroup H = HN G with S C H such that H is soluble of derived
length ¢, H is S-invariant and normalised by Ng(S).

Proof. By induction on ¢, we show that there are two nice subgroups H, N C G defined by
countable partial types, such that H is soluble of derived length ¢,

S C H, Ng(S) C N, and H«N.

If ¢ = 0, there is nothing to show. If the result holds for every ¢-soluble subgroup of G' and if
S is soluble of derived length £+ 1, there are nice subgroups K, M C G defined by countable
partial types, such that K is soluble of derived length ¢, S’ C K, Ng(S') € M and K <M.
As Ng(S) C Ng(5'), one has Ng(S) € M. We thus have

SK /K ¢ M/K.

As sK = Ks holds for every s in S, one has [SK, SK] ¢ 'K C K, hence (SK)' C K, so
the group SK/K is abelian.

By Corollary 1.9, the pure group M/K is a NIP structure, so the formula yx = zy does not
have the independence property in M /K. As K and M are defined by countable types and
as G is |S|*-saturated, M /K is also |S|"-saturated. By Theorem 4.2, there are ay, ..., a, in
M such that Cy/k(aiK, . .., a,K) is abelian and contains SK/K. It follows that the group

L:ﬁ{xeM:[x,ai]CK}

i=1
is nice, soluble of derived length ¢ + 1 and contains S. By Theorem 2.10 applied in G to

S C L and Ng(95), there are nice subgroups H,N C G with S € H C L, Ng(S) € N and
H < N. This ends the induction.

Putting H = HN G, the subgroup

N o(H)

oce€Aut(G/S)

is discernible by Theorem 3.8.2, S-invariant and normalised by Ng(.S). O
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Corollary 4.5 (soluble envelope 2). Let S C G be a soluble subgroup of derived length (.
There is an externally definable subgroup X = X NG of G such that S C X and (X) is a
soluble subgroup of G of derived length (.

Proof. By Zorn’s Lemma, we may assume that S is a maximal soluble subgroup of G of
derived length ¢. By Theorem 4.4, there is a formula ¢(x,y) and a subset A C G such that
(H¢(G,a) : a € A} defines a nice soluble subgroup of G containing S. We write ¢(G,a)"
for the set of products of n elements of p(G,a). We say that a subset X C G is soluble
of derived length ¢ if X satisfies all the commutator identities satisfied by a soluble group
of derived length ¢. For a definable set X, being soluble of derived length ¢ is a first order
property. The partial type over S

m(x) = {QO(S,I), ©(G, )" is soluble of derived length ¢: s € S;n € w}

is finitely satisfiable in A. Let s € G be a realisation of m and let X = ¢(G,s). The set
X NG is a subgroup by maximality of S. O

Remark 4.6. In an arbitrary group G, if a subset X C G satisfies all the commutator identities
satisfied by a nilpotent group of class n, we call X a nilpotent subset of class n. If a X is
nilpotent of class n, then X generates a nilpotent subgroup of class n. If X is in addition
definable, then it is contained in a definable nilpotent subgroup of class n. This can be
shown taking Z (C’G(X )) forn =1, and Z,(E,) for arbitrary n, with E,, defined by induction
putting £y = G and Fy, = {x € By : [2,C5 (X)) C CEg, (X)} (see [AB14]). However, if
X is merely soluble of derived length 2, then X may not even generate a soluble subgroup.
Consider for instance two generators a and b of the alternating group As. The set {a,b}
obviously satisfies the equation [[:c, yl, [z, t]} =1, but Ajs is not solvable.

Theorem 4.7 (normal soluble envelope). Let S C G be a normal soluble subgroup of derived
length £. There is a normal, soluble of derived length ¢, definable subgroup H C G such that
S C H.

Proof. Note that S need not be normal in G, so Theorem 4.1.3 does not apply. The following
proof is due to F. Wagner. We show that the result holds for every G and every /¢-soluble
subgroup of G by induction on ¢. For ¢ = 1, the group S is abelian and normal. For any

elementary extension G of G and s1,...,s, in S, the conjugacy classes s&,...,sS generate

e n

an abelian subgroup of G. By the Baldwin Saxl chain condition, there is a natural number
n such that the partial type over S

(w1, a) = {s € Coaf, ... 25), Coaf,... a§) C Cals): s € S}

rn rn

is finitely satisfiable in S. As G is |S|T-saturated, there are ay, ..., a, in G such that
S C Cc,(alG, N aG) - Cg(S)

It follows that Z(Cg(af,...,a%)) is normal in G, abelian and contains S. If S is soluble of

P 1

derived length ¢+ 1, by induction hypothesis, S’ is contained in a normal, soluble of derived
length ¢, definable subgroup K of G. SK / K is a normal abelian subgroup of G/K. As G/K

is interpretable in M, it is a NIP pure group. As G/K is |S|-saturated, SK / K is contained
in a normal abelian interpretable subgroup H / K of G / K, and H is as desired. O]
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5. FURTHER CHAIN CONDITIONS d la BALDWIN SAXL

We consider a NIP structure M and a type definable group G C M™. Two new difficulties
appear: G need not be the intersection of definable groups, and if H C G is a type definable
normal subgroup, the pure group G/H might have the independence property unless the
formulas defining H relatively to G are controlled.

5.1. Relatively nice subgroups. We say that G C M™ is a type definable group in M if
there is a definable map * from M?*™ to M™, a partial m-type n(Z) with parameters in M
such that G = w(M) and, for every elementary extension M of M, the subset 7(M) C M™
is a group for *M. We call m a defining type of G. Assuming * to be definable rather than
type definable is no restriction by a compactness argument (see [Poi85, page 170]).

By the Compactness Theorem, there exists a sequence [ of definable subsets 8; C M™ that
contain G, and a definable involution ~! from £y to f; with the following properties: for
every T € Sy, one has 7!
and B,41 * Bhye1 C By for every xy,...,Ton in (3,, the element T1%y - - Ton is well-defined,
independently of the order of the 2" — 1 computations. We call g a base of G.

=77'7=1and 71 = 17 = 7; for every n € w one has 3, = f3,

For any subset X C 3, and k < 27, we write X* for the subset of 3, consisting of products
21T - - - Ty of any k elements 1, . .., x5, of X, and X *¥ for the Cartesian product X x ---x X.
For a set Y, when there is no ambiguity, we go on writing Y* for the Cartesian product
Y x---xY. Asubset X C 3 such that 1 € X and X! = X is called symmetric.

Throughout the section, we consider G = w(M) a type definable group in M of base 5. A
type definable subgroup H C G is called relatively definable in G if there is a formula ()
such that mU{¢} is a defining type of H. We call ¢ a defining formula of H. More generally:

Definition 5.1 (relatively nice subgroup). A type definable subgroup H C G is relatively
nice in G if there is a formula (7, 7) and a subset A C M* such that 7(Z)U{p(Z,a) : a € A}
is a defining type of H, the family {W(M) Ne(M,a):a € A} is a filter for every elementary
extension M of M and the sets p(G,a) C [y are symmetric for every a € A. We call o(z, )
a defining formula of H.

A family $ of relatively nice subgroups of G is called uniform if its members have a common
defining formula.

Lemma 5.2 (Baldwin Saxl chain condition for relatively nice subgroups). If $) is a uniform
family of relatively nice subgroups of G, there is n € w such that any finite intersection of
members of $ is the intersection of at most n of them.

Proof. Otherwise, by the usual Baldwin Saxl argument, for every n € w one would find
Hy, ..., H, in $ and tuples (bs)jcq,....ny of elements in G such that b; € H; <= i€ J. Let
©(Z,y) be a common defining formula for the members of §, and let 7(Z)U{p(Z, a;) : a; € A;}
a defining type for H;. Let B; and B; be the finite sets

By={by:Jc{l,..n}}, Bi={b,eB:icJ}
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As the family {gp(BJ, a;) :a; € Ai} is a filter for every i € {1,...,n}, by the Compactness
Theorem, there are (ai,...,a,) in G such that B; C ¢(By,a;) C ¢(By,a;) for every ¢ and
every a; € A;, so that M | ¢(by,a;) if and only if i € J, a contradiction. O

Corollary 5.3. If $ is a uniform family of relatively nice subgroups of G, then ﬂHeﬁ H is
relatively nice and the family {ﬂHeRH R C 55} is uniform.

Proof. Let n be the natural number provided by Lemma 5.2 and for every H in $, let
{p(z,a) :a € Ay} be a type defining H relatively to G. Let A be the set UHG& Ap. Calling
Y(z,y) the formula o(Z,41) A -+ A (&, yn), the type {¥(Z,a) : a € A"} defines the group
ﬂHesﬁ H and the family {7(M)N¥(M,a) :a € A"} is a filter by Lemma 5.2. O

5.2. Uniform definability. A third difficulty arises. If H C G is a relatively nice subgroup
with defining type {¢(Z,a;) : i € w} and |a;| = k, it is not clear whether there is a uni-
form partial type p((gi)i@,) such that for every countable B C M* M k= p(B) implies that

ﬂBE B ©(G,b) is a relatively nice subgroup of G. This prevents applying compactness argu-
ments. We introduce therefore a strengthening of the preceding notions. The Compactness
Theorem ensures that for all 7 € w, there is 7 € w and a definable set X; with G C X; C
and

(2) (XN (M, a)))" € (M, a).

Definition 5.4 (nice subgroup). We say that H C G is nice (in G) if it is relatively nice
with defining type {¢(z,a) : a € A} and there is a definable set X with G C X C ; such
that for all a € A, there is b € A such that

—\2
(X N(M,b))" C @(M,a).

We call X a second base for N.

If HC G isnicein G and K C H is nice in H, then K is nice in G.

Definition 5.5 (uniform family of nice subgroups). A family $) of nice subgroups of G is
uniform if its members have the same defining formula and share a common second base.

Lemma 5.6 (a uniform family is closed under intersections). If $ is a uniform family of nice
subgroups of G, then ﬂHey) H is nice in G, and the family {ﬂHeﬁH R C 55} s uniform.

Proof. By Corollary 5.2, the subgroup ﬂ e H is relatively nice in GG, and it is easy to see that

a common second base for §) is a common second base for the family {ﬂ es H:R8C 55}. O

Ezample 5.7. A relatively definable subgroup H = ¢(G) is nice. As (G Np(M))? C p(M),
by the Compactness theorem, H has a second base.

Ezample 5.8. For any g € G, the centraliser Cz(g) is relatively definable in GG, and the family
{Cs(g) : g € G} is uniform, sharing (3 as a second base if one puts 51 = ¢1(M) and chooses
¢1(Z) A 2y = yx as a defining formula. In particular, Cz(A) is nice for any A C G.
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Ezxample 5.9. If G is type definable over A C M, if 2 C Aut(M/A) and H C G is nice with
an A-definable second base X, then {H? : 0 € 2} shares X as a second base, and ﬂaem H?
is nice.

Example 5.10. Let G be type definable over A, and H C G a relatively nice subgroup with
defining type {¢(x,a;) : i € I} where [ is a linearly ordered set. If (a;);cs is indiscernible
over A, the set X; provided by (2) does not depend on a;, so H is nice.

Lemma 5.11. If H C G is a nice subgroup and g € G, then HY is nice and the family
{HY : g € GY} is uniform. In particular H* is nice for any A C G.

Proof. By Lemma 5.6, we need only find a common second base for {HY : g € G}. Let
X C By be a second base for H and {¢(Z,a) : a € A} a defining type. For all a € A there is
b € A such that
— N2
(X Ne(M,b))" C (M, a).

By the Compactness theorem, there is a definable Y C 35 such that G C Y? C X. It follows
that for every g € GG, one has

(Y no(,b)7) C p(M,a). O

Lemma 5.12 (Baldwin Saxl chain condition for subsets). Let X be a family of subsets of 3.
For all X € X, let X3 C By be symmetric with (X/?)* C X and let X/ = {X1/3 X € %}
be uniformly definable by a formula o(z,y). Let n = VC(p*(z,y)). For every X € X, let
X3 < B4 be symmetric with (X1/3”)n C XY3. For all Xi,...,Xn41 € X, there is
jell,...,n+1} with

X X N XT A N X C XN 0 X

J
Proof. Similar to the proof of Lemma 2.2. O

Corollary 5.13 (uniform definability of niceness). Let H C G be a type definable subgroup
with defining type {p(Z,a) : a € A}. H is nice if and only if there is a definable X with
G C X C By such that for all a € A there is b € A with

(X ne(M,5)" € p(M,a).

Proof. Without loss of generality, we put Sy = ¢(M), replace ¢(z,y) by ¢o(Z) A p(Z,y) A
©(z71, ) and assume that X = 3;. Let X = {gp(M, a):ae A} and X1/% = {6j+1ﬂap(M, a:

a e A} for any non-zero j € w. Let @ € A. By assumption, there are @ = by, b1, . . ., b; such
that for all £ € {0,..., 7},

(51 N (M, [_?z+1))2 C (M, by).

It follows that
27 2i—1

(Bi41 MM, Bj))j C (BN b)) C (B,Ne(M,b;1))" C -+ C Binp(M, o).

Putting n = VC(p*(z, 7)), the families X, X'/3 and X'/3" satisfy the assumptions of Lemma 5.12,
so the family {Bn+2 N ﬂaeB o(M,a):a€ B, |B| <n+ 1} is a filter. O
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5.3. Normaliser. Let H C G be a nice subgroup with defining type {¢(z,a) : a € A} and
N C G a type definable subgroup that normalises H. By the Compactness Theorem, for all
a € A, there are b € A, definable sets X5, K; with G € X5 C By and N € K; C (o such that
for all g € K3,

(Xan(M,b))" € p(M,a).

Definition 5.14 (uniformly normal subgroup). If H C G is nice and normalised by a type
definable subgroup N C G, we say that H is uniformly normalised by N if there are definable
sets X, K with G € X C , and N C K C [, such that for all a € A, there is b € A such
that for all g € K,

(X ne(M, b))’ € (M, a).
Theorem 5.15 (normalising a nice envelope). Let M be k-saturated for k > Ry and let
H C G be a nice subgroup (resp. relatively definable) defined by a partial type of size < k.
Let A C H and Ny C Ng(A) be subgroups of cardinality < k. There are a nice (resp. a

conjunction of a uniform family of relatively definable) subgroup E C G, and a type definable
subgroup Ng C G such that

ACECH and N4 C Ng C Ng(E).

Moreover, Ng normalises E uniformly.

Proof. Let {¢(x,b) : b € B} be a defining type for H. There is a definable X; C f; containing
G such that for all b € B, there is ¢ € B with

3) ($(M.0) N Xo)" © (M),

There are also definable symmetric X,, C 3,41 such that X2 g CX,foralnecw AsG
is the intersection of type definable groups defined by such countable types, we may assume
without loss of generality that G = ﬂ%w X,. By Lemma 5.12 and (3), replacing ¢(Z,y) by

a finite conjunction of ¢(z,y;), one may also assume that {(p(M, NXg:be B} is a filter.

Claim 2. There is n € w such that for allb € B and ay, ..., a, € G with A C (),_._ (G, b)",
there are a nice subgroup K C G with countable defining type {p(z,c) : ¢ € C}, some
ag, ..., € G and ¢ € C such that for all g € Ny

n g n n
<ﬂ @(Mj)aiﬂXn) C () (M, )", (@(M>5)QX0)2 Cp(M,b) and AC()K“NK.
i=1

i=1 =1
Proof of Claim 2. Fix b € B. By the Compactness Theorem, there is an upper bound n € w
for {VC’((p(gj, b)f) :he M} By Lemma 5.11, the family {HY : g € G} is uniform, of second
base X}, say, so there exists b; € B such that for all g € G,

(4) (M. 51)7 N Xoir) ™" € o(M,B) and (o(M, b)) N Xo)” C (M, D).

By Lemma 5.12, for every g1, ...,gn+1 € G, thereisi € {1,...,n+ 1} with

n+1

N (M, b))% N Xyip, C () ©(M,b)%.

Je{l,.on+13\{i} J=1
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By induction on |J|, for all finite J C G, there are J,, C J with |J,| < n+1 and by € B with

(5) N e(M,5)7 N Xy © V(M5 and  (p(M,52) N Xo) C (M, D).

g€Jn geJ

We put X; = ¢;(M) for every i € w and consider the partial type

p<x1,...,xm<zi>@>={(so<x F) A 6o(®)” o 0l@ ), 9(a,7),

(6(2.70) 7 60(@)’ € (/\ (5, 20) A duia(3 >) Cs (/_’ilw<f,6>“j) ,

ola, z;)™, ..., vla,z)", 21 €G, ..., T, € G:g € Ng(A), a € A, iew}.

By (5), the type p is finitely satisfiable in Ng(A)*™ x B¥. Let (a4, ..., ay, C) be a realisation
of p. By Corollary 5.13, the type {go(i, ¢):ce C} defines a nice subgroup of G. O

Let n € w provided by Claim 2. We may assume that n > 6. We call ¥(Z,9;...,Yns1) the
formula ©(Z, Pp+1)" A~ A @(T, Ynir)?".

Claim 3. There are (¢;)jen € (MEN” and (%)) ;e € (G™) such that for all g € Na, j € w
and b € B,
(M, 7;,¢;) N Xo C (M, b),
_ _ _ _ _ 2 _
AC (M A, 60)NXa)  COM,5,65)  and (M, Fj11,601) N X,) - C (M, 5;,6).

Proof of Claim 3. We fix b € B and first build two families (¢;)jc., (7;)jew depending on b.
We take ¢y = b and 7 = (1,...,1). As H is nice, there is d; € B such that

- 2
(6) (SO(M, di) N Xo) C p(M, ).
By Claim 2, there are ¢; and 7; such that for all g € Ny,
AC (¢(M7 J1,€1) N Xn)g C (M, 7o, dy).
By (6), , i
(6(M, 7, 6) N X, )" C (M, o, di) N Xy C (M, Fo, )
One also has
2 - 2
(WM, Y1,¢1) N Xn) C (@D(M, Yo, d1) N X3) C (M, Yo, Co).

We go on inductively using Claim 2. As the family {¢@(M,b) N X, : i € I} is a filter, the
conclusion follows from the Compactness Theorem and the saturation assumption. ([

Claim 4. There is an indiscernible sequence (¢,),eq € (G™) such that for all g € Ny
rational numbers p < q and b € B,

¢(M= Ep) N XO C QO(Mv B),
Ac (b(Me)NX,) CoMe) and ($(M,e)NX,) Co(M,ze,).

Proof of Claim 4. From Claim 3 by the Compactness Theorem and Ramsey’s. O
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We may now finish the proof of Theorem 5.15. For every m > n define N}", C X,, by
m - _\9 _
N = {g € Xt (X N9(M.5,))" C w(M, cq)}.

Note that (X;f’“) is an increasing sequence so (N;"”q) is decreasing. Define

m>n m>n

N= (NN, and E=(]¢(Mc)NG.
m>n p<q qeQ
As (X;f’")g C XXm+1 for all g € X,,,11 and m > n, for every rational numbers p < r < ¢ and
natural number m > n, one has

2
m-+1 m+1 m
(NP7T N Nﬁq ) - NIM]'

It follows that N C G is a subgroup. For all m > n+1 one has G C XX so N normalises F.
By Lemma 5.12 and indiscernibility of (¢,),eq, for any fixed m > n, there is k(m) € w
such that every finite intersection of N7 contains an intersection of at most 3k? sets of

the form Ns’ff?’k . By the Compactness theorem, one can find a countable descending chain
N1 D Ny--- D Ny D --- of definable subsets of X such that for all ¢ > 1,

Ny C N, C (YN and NP, C N,
p<q
It follows that ﬂ . Ny is a type definable subgroup of G that uniformly normalises E. The
group E is nice by Remark 5.10. U

5.4. External and discernible subgroups. G still stands for a type definable group of
type m and base 3 in the NIP structure M. We fix M a |G|"-saturated elementary extension
of M and we write G for 7(M).

Definition 5.16 (external subgroup). A subgroup H C G is external if there is a relatively
definable subgroup H C G (a witness) with H = HN G. A family of external subgroups is
uniform if there is a corresponding family of relatively definable witnesses having a common
defining formula and sharing a common second base.

Lemma 5.17. The conjunction of a uniform family $ of external subgroups of G is an
external subgroup of G, and the family {ﬂHeﬁH R C .6} is uniform.

Proof. Let A C M a subset and X C G a definable subset such that p(G,a) C G is a
subgroup with second base X for all a € A. Let H be the intersection of (G, a) over A. By
Lemma 5.12, we may replace the formula ¢(z,y) by ¢(z,91) A+ -+ Ap(Z, y,), the set X by an
nth root containing G, and assume that {¢p(G,a) N X :a € A} is a filter. The type

p(5) = {((#,9) N (@) Cs 0(,0)), @(h,§), (2(2,9) N(@)° = p(@,7):ac A, heH|

is finitely satisfiable in A. Let a be a realisation in M. The subgroup ¢(G,a) C G is
relatively definable, X is a second base and H = ¢(G, a). O

Definition 5.18 (discernible subgroup). A subgroup H C G is discernible if there is a nice
subgroup H C G (a witness) such that H = HN G. A family of discernible subgroups of G
is uniform if there is a corresponding family of nice witnesses that is uniform.
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Lemma 5.19. The conjunction of a uniform family $ of discernible subgroups of G is a
discernible subgroup, and the family {ﬂHeﬁH R C 55} s uniform.

Proof. By Lemma 5.6. U

Theorem 5.20 (on external subgroups). Let M be a NIP structure, M = M an |M|*-
saturated elementary extension, G = w(M) a type definable group, G = (M) and H = HNG
an external subgroup of G.

(1) There is n € w such that for every A C G, there are ay, ..., a, in G with
Ca(A) = Cqgl(ay, ..., a,).
(2) For every n € w, there are relatively definable subgroups K, Z,, C G such that
H=KnQaG, Zn(H)=2Z,N"G and Z,C Z,(K).
(3) There is n € w such that for every A C G, there are ay, ..., a, in G with
HY=H*nN.-..-NnH>NG.

(4) For every A C G containing the parameters of w, for every A C Aut(M/A), the group
H* is external.

Proof. (1) By Example 5.8, the groups Cg(a) form a uniform family of external subgroups.
By Lemma 5.17, C(A) is external, and by the proof of Lemma 5.17, Cs(A) is of the desired
form.

(2) Similar to the proof of Theorem 3.7.3 using the following claim instead of Claim 1.

Claim 5. Let A, B C G be two subgroups, D C G a relatively definable subgroup normalised
by both A and B such that [A, B] C D. Assume that A and B are contained in a relatively
definable subgroup Np of G that normalises D. There are two relatively definable subgroups
A B C G containing A and B respectively and such that [A,B] C D.

Proof of Claim 5. Similar to the proof of Claim 1, defining

A(C)= () {zeNp:[r,dcD}, B(C)= () {yeNp:[ey cD},
[A(fce]gD [c,CBe}gD

O

(3) By Lemma 5.11, the groups H® form a uniform family of external subgroups. By
Lemma 5.17, H# is external. By the proof of Lemma 5.17, H* is of the desired form.

(4) Let M be an | M|"-homogeneous elementary extension of M and G; = 7(M;). For every
o€ let ¢ € Aut(M;/A) be an extension of o and 2 = {7 : ¢ € A}. Putting H = ¢(G)
and H; = ¢(G,), one has H* = H%‘ N G. Since H; has a second base definable over A by
Example 5.7, the family {H? : & € 2} is uniform by Example 5.9. By Lemma 5.17, H* is
external. 0

Theorem 5.21 (on discernible subgroups). Let M be a NIP structure, M = M an |M|*-
saturated elementary extension, G = w(M) a type definable group, G = (M) and H = HNG
a discernible subgroup of G.
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(1) For every n € w, there are nice subgroups K, Z, C G such that
H=KnQaG, Zy(H)=2,NG and Z,C Z,(K).

(2) For every A C G, the group H” is discernible.
(3) For every A C G containing the parameters of a second base of H and w, for every
2 C Aut(M/A), the group H* is discernible.
(4) There are a nice subgroup K C H of G and a type definable subgroup N C Ng(K) of
G such that
H=KnG and Neg(H) =NNG.

Proof. (1) Similar to the proof of Theorem 3.7.3, using the following claim instead of Claim 1.

Claim 6. Let A,B C G two subgroups, D C G a nice subgroup such that [A, B] C D.
Assume that A and B are contained in a nice subgroup Np of G that uniformly normalises
D. There are two nice subgroups A, B C G containing A and B respectively such that

[A,B] C D.
Proof of Claim 6. As in Claim 1, there is a finite C' C Np such that, defining for any S C Np
AS) = N {:E € Np : [z,¢] C D} and B(S)= [) {y € Np : [¢,y] C D},

ceS ceS
[A,c]CD [¢,B]CD
one has [A(AUBUC),B(AUBUC)] C D. Let {¢(z,a;) : i € I} be the type that defines
D relatively to G and let B3 = ¢o(M). Let us show that, for any S C Np, putting
Hi(s) = {g € $2(M) : [g, 5] C (M, a;)},

the family $ = {ﬂiel Np NH;(s) : s € S} is a uniform family of nice subgroups in Np. By
Lemma 5.6, this will show that A(AUBUC') and B(AU BUC) are nice in Np, hence in G.
We need only find a common second base for the members of ). As D is nice in G, there is
a definable set Y with G C Y such that for all i € [ there is j € I with

(Y neM,a))" C oM, a,).

As D is uniformly normal in Np, there is a definable Z with Np C Z C ¢2(M) such that
for all j € I, there is k € I such that for all g € Z,

(Zn M. )’ € o(M,a)).
There are also definable sets Y'/¢ and Z'/* containing Np with
(Y)Y cYy ad  (2V) cz
We put W = ¢3(M) N Y N ZY* and claim that (W N Hk(s))2 C H;(s) for any s € Np.

For all elements g, h € W N Hg(s), one has

[g,5]" € ((Z1/4)4 N (M, ak))h

and [h,s] € (/)" N (M, ),

and so
[97 s]h € QO(M, aj) and [h> S] S QO(M, aj)>
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hence
lgh, s] = [g, 5]" [ 5] € ((Y”ﬁ)G n go(M,aj))z C (M, a;).

This shows that gh belongs to H;(s) and that W is the desired second base. 0J

(2) H4 is discernible by Lemma 5.11 and Lemma 5.19.

(3) Let M; be an |M|*-homogeneous elementary extension of M and G; = w(M;). For
every ¢ € A, let & € Aut(M;/A) be an extension of ¢ and A = {7 : 0 € A}. Putting
H = ¢(G) and H; = ¢(G), one has H* = HY N G, so HY is discernible by Example 5.9
and Lemma 5.19.

(4) By Theorem 5.15. O

Corollary 5.22. Let G be a NIP group, A C G a subset andn € w, then C&(A) is discernible.

Proof. The nth centraliser of A is defined by induction on n putting C2(A) = {1} and

CE(A) = N Na(CEA) n{g € G : g, A] C CE(A)}.

k<n

We proceed by induction on n. For n = 1, this is Theorem 3.7.1. Assume that CZ(A) =
C, N G where C,, C G is nice. One has [CAT(A), A] C C,. As A and C&™(A) normalise
CE(A), by Theorem 3.8.3 applied to C,, NG, there is a nice subgroup N C G that normalises
C,, (hence normalise it uniformly) and contains both A and CZ™(A). By Claim 6, there is
a nice subgroup H C G such that [H, A] C C,, and C&™(A) C H. By induction hypothesis
and Theorem 3.8.3, there is a nice subgroup M of G such that

M NG = () Na(Ch(A)).

k<n

Putting C, .1 = M N H, one has

Cr(A) = CpyyNG. O

6. ENVELOPES IN TYPE DEFINABLE GROUPS

Let M be a NIP structure and G a type definable group. We fix a |G|*-saturated extension
M of M and write G for m(M).

Theorem 6.1 (abelian envelope). Let A C G be an abelian subgroup. There is an external
subgroup H = HN G with A C H such that H is abelian, H is A-invariant and normalised

Proof. The A-invariant subgroup Z(Cg(A)) contains A and is normalised by Ng(A). It is an
external abelian subgroup by Theorem 5.20.1 and 5.20.2. 0

Theorem 6.2 (nilpotent envelope). Let N C G be a nilpotent subgroup of class n. There
is an external subgroup H = HN G with N C H such that H is nilpotent of class n, H is
N-invariant and normalised by Ng(N).
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Proof. By induction on k < n, we build a chain Zy<- - - <Zy, of relatively definable subgroups
of G such that

Zy = {1}, Zk(N) C Z, and [Zk,N] C Zy_;.
If Zj, is built, as one has
[Z]H_l(N),N] C Zk(N) C Zy,

and as N is contained in the subgroup Cqg(Z/Zy_1) which normalises Zj, by Claim 5, there
is a relatively definable subgroup Zj; of G containing Z;.1(/N) such that

[Zk-i-l;N] C Zy,.
For every k < n, the group
Hy = {2 € Z, : [Zy, 2] C Zps}

is external by Lemma 5.17, and the group H; N --- N H,, is a nilpotent group of class n
that contains N. This finishes the induction, and one concludes with Theorem 5.20.3 and
5.20.4. 0

Theorem 6.3 (soluble envelope). Let S C G be a soluble subgroup of derived length (.
There is a type definable subgroup N C G with Ng(S) C N and a nice and uniformly normal
subgroup H C N that contains S and is soluble of derived length . More precisely, H is the
intersection of a uniform family of relatively definable subgroups of N.

Proof. Let us consider the derived series S>SM-- >S5 and let Hy be a relatively definable
abelian subgroup of G that contains S~ and that is normalised by Ng(S). Let N be a
type definable subgroup of G that normalises H; and contains Ng(S). We build by induction
on k < ¢ two families 1<H; <---<Hj and Ny, ..., Ny of subgroups of G such that for every
k < ¢, the group Ny is a type definable subgroup of G that contains Ng(.S) and Hy, is a nice
and uniformly normal subgroup of Ny, that satisfies

SR c Hy and [Hi, Hy] € Hy_,.
If N and Hj, are built, one has
[S(E-h=1 GU=k-1)) = GU=b) — |,
By Claim 6, there is a nice subgroup Kj; of N such that
SEFD c Kiyy and  [Kjpr, K] € Hy.

By Theorem 5.21.4 there is a type definable subgroup N1 of G that contains Ng(S) and
a nice subgroup Hy; of Kj,; that contains S“~*~1 and is uniformly normalised by Ny ;.
We put

N:Nlﬂ-"ﬂNg and H:Hg [
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