
HAL Id: hal-00980369
https://hal.science/hal-00980369v1

Submitted on 17 Apr 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Undecidability of the Surjectivity of the Subshift
Associated to a Turing Machine

Rodrigo Torres, Nicolas Ollinger, Anahi Gajardo

To cite this version:
Rodrigo Torres, Nicolas Ollinger, Anahi Gajardo. Undecidability of the Surjectivity of the Subshift
Associated to a Turing Machine. RC 2012, Jul 2012, Copenhague, Denmark. pp.44-56, �10.1007/978-
3-642-36315-3_4�. �hal-00980369�

https://hal.science/hal-00980369v1
https://hal.archives-ouvertes.fr

Undecidability of the surjectivity of the subshift

associated to a Turing machine

Rodrigo Torres1, Nicolas Ollinger2, and Anah́ı Gajardo1⋆

1 Departamento de Ingenieŕıa Matemática, Centro de Investigación en Ingenieŕıa
Matemática, Centro de Modelamiento Matemático, Universidad de Concepción,

Casilla 160-C, Concepción, Chile
rtorres, anahi@ing-mat.udec.cl

2 LIFO, Université d’Orléans
BP 6759, F-45067 Orléans Cedex 2, France

Nicolas.Ollinger@univ-orleans.fr

Abstract. We consider Turing machines (TM) from a dynamical sys-
tem point of view, and in this context, we associate a subshift by taking
the sequence of symbols and states that the head has at each instant.
Taking a subshift that select only a part of the state of a system is a
classical technic in dynamical systems that plays a central role in their
analysis. Surjectivity of Turing machines is equivalent to their reversibil-
ity and it can be simply identified from the machine rule. Nevertheless,
the associated subshift can be surjective even if the machine is not, and
the property results to be undecidable in the symbolic system.

Key words: Turing machines, discrete-time dynamical systems, sub-
shifts, formal languages.

Relations between dynamics and computation has been looked for in several
works [1–4]. In a first approach, these two concepts are very different things,
roughly speaking, one can say that computation consists in obtaining an output
starting from an input by means of a dynamics. The dynamics itself is not
relevant, several dynamics can produce the same result. On the other hand, a
complex computation cannot be obtained through a too simple dynamics. Some
–weak– relations exists.

A direct way to tackle this topic consists in looking at Turing machines
with the tools of dynamical systems theory. A first paper by Kürka has taken
this viewpoint [4] and several others have followed [5, 6, 1, 3, 2]. There, notions
such as equicontinuity, entropy and periodicity have been studied, and putted in
relation with more natural properties of the machines. Some of these properties
were proved to be undecidable, as is the case of periodicity of Turing machines
in [3].

Here we continue in the line of [1, 2] that focus on a particular symbolic sys-
tem (a subshift) associated with the Turing machine, that is called t-shift. It

⋆ This work has been supported by CONICYT FONDECYT #1090568 and BASAL
project CMM, Universidad de Chile, and CI2MA, Universidad de Concepción.

consists in taking the linear sequence of states and symbols that the machine
reads during its evolution over a given initial configuration, and to consider
afterwards the set of infinite sequences produced by all the possible initial con-
figurations. Subshifts are key tools in the study of general dynamical systems,
they give crucial information about the system (see for example [7]). In this ap-
proach, the complexity of the subshift has been related with the complexity of
the machine.

In this paper, we study the surjectivity of the t-shift. A function T is surjective
if for every y, there exists an x such that T (x) = y. If T is the function that
defines the evolution of a Turing machine, it results to be equivalent to the
reversibility of the machine and it can be characterized in a very simple way from
the machine’s transition rule. If the machine is surjective, so it is its associated
t-shift, but the converse is not true. Thus we look for a characterization of the
surjectivity of the t-shift in terms of some property of the machine.

When a subshift is surjective, every sequence can be extended by the left, in
such a way that the subshift itself can be considered as a set of bi-infinite se-
quences, i.e., sequences running over Z. In this case, the shift action is reversible,
and other properties can be considered.

Another reason to study this property is that surjectivity is a necessary
condition for transitivity, which is a relevant property in the area of dynamical
systems.

The following section provides definitions and concepts about symbolic dy-
namics and Turing machines. Section 2 gives a characterization of the t-shift
surjectivity. In section 3, we establish the undecidability of some preliminary
problems, to conclude with the undecidability of the property in the last sec-
tion.

1 Definitions

1.1 Turing Machine

Turing machine written in quadruples. Following Morita [8], a Turing machine
(TM) M is a tuple (Q, Σ, δ), where Q is a finite set of states, Σ is a finite
set of symbols and δ ⊆ Q × Σ × Σ × Q ∪ Q × {/} × {−1, 0, +1} × Q is the
writing/moving relation of the machine. The machine works on a tape, usually
bi-infinite, full of symbols from Σ. A configuration is an element (w, i, q) of
ΣZ × Z × Q. A writing instruction is a quadruple (q, s, s′, q′); it can be applied
to a configuration (w, i, q′′) if wi = s and q = q′′, leading to the configuration
(w′, i, q′), where w′

i = s′ and w′
k = wk for all k 6= i. A moving instruction is a

quadruple (q, /, d, q′); it can be applied to a configuration (w, i, q′′) if q = q′′,
leading to the configuration (w, i + d, q′).

Turing machine written in quintuples. A Turing machine M can also be written
in quintuples by having the writing/moving relation δ considered as δ ⊆ Q ×
Σ × Q × Σ × {−1, 0, +1}. A quintuple instruction (q, s, q′, s′, d) can be applied

to a configuration (w, i, q′′) if wi = s and q = q′′, leading to the configuration
(w′, i + d, q′), where w′

i = s′ and w′
k = wk for all k 6= i.

Turing machines, when viewed as computing model, have a particular start-
ing state q0, and a particular symbol called blank symbol; the computation is
intended to start over a configuration (w, 0, q0), where w represents the input,
a word with a finite number of non-blank symbols. The computation process
stops when the machine reaches another particular state: the halting state qF .
In this paper, we are omitting these three parameters, since we do not want the
machine to halt and we will study its dynamics for arbitrary initial configura-
tions. In any case, the halting problem can be translated to the present context
as the problem of deciding whether the machine reaches a particular state when
starting in another particular state with an homogeneous configuration except
for a finite number of cells.

We also remark that the quintuples model is the traditional one, while the
quadruples model is used for reversible Turing machines. One can translate any
machine written in quadruples into a machine written in quintuples in a simple
way because writing instructions are just quintuples instructions that do not
cause any movement, and moving instructions are those that do not modify the
tape. The converse transformation is also possible but a quintuple instruction
will need to be replaced by a writing instruction followed by a moving instruction,
thus the set of states needs to be duplicated and the time is also multiplied by
two. Therefore, both models are equivalent as computing system, but not as
dynamical system.

Deterministic Turing machine. A Turing machine M is deterministic if, for any
configuration (w, i, q) ∈ X, at most one instruction can be applied (regardless
the machine is written in quadruples or quintuples). In terms of quintuples,
this is equivalent to give δ as a (possibly partial) function δ : Q × Σ → Q ×
Σ × {−1, 0, +1}. This function δ can be projected into three components δQ :
Q × Σ → Q, δS : Q × Σ → Σ and δD : Q × Σ → {−1, 0, +1}.

Complete Turing machine. In any of the two models, if no instruction can be
applied, the machine halts. A Turing machine M is complete if for each config-
uration (w, i, q), at least one instruction can be applied, i.e., it never halts.

Analogous notions can be defined when going backward in time.

Backward deterministic Turing machine. A Turing machine M is backward de-
terministic if each configuration comes from at most one previous configuration.

A Turing machine written in quadruples is backward deterministic (as seen in
[8]) if and only if for any two different quadruples (q, s, s′, q′) and (q′′, s′′, s′′′, q′)
in δ, it holds:

s 6= / ∧ s′′ 6= / ∧ s′ 6= s′′′

Backward complete Turing machine. A Turing machine M is backward complete
if each configuration comes from at least one preimage.

Reversible Turing machine. A Turing machine is reversible if it is determinis-
tic forward and backward. For a machine written in quadruples, reversing the
quadruples gives the reverse machine. The reverse instruction of a writing in-
struction (q, s, s′, q′) is (q′, s′, s, q). The reverse instruction of a movement in-
struction (q, /, d, q′) is (q′, /, −d, q). It is not difficult to see that a reversible
Turing machine is complete if and only if its reverse is complete.

All of these last properties are local, and they can be checked in a finite
number of steps.

1.2 Dynamical System

A dynamical system is a pair (X, T), where X is called phase space and
T : X → X is called global transition function. In this paper, we consider
X = ΣZ × Z × Q. ΣZ is called the two-sided full shift and its elements are
called bi-infinite words, the symbol ′ will be used to mark the position 0; for
example, . . . 2333′233124 . . . indicates that 2 is set in the position 0. ΣN is the
one-sided full shif t and its elements are called infinite words.

Subshifts. The shift function σ, is defined both in ΣZ and ΣN either by
σ(. . . w−2w′

−1w0w1w2 . . .) = . . . w−1w′
0w1w2w3 . . . or σ(w1w2w3 . . .) = w2w3 . . .;

it is a bijective function in the first case. Σ∗ denotes the set of finite sequences
of elements of Σ, called finite words. Two words z = z0...zn and y = y0...ym can
be concatenated by just putting them one after the other: zy = z0...zny0...ym.
A word x can also be concatenated with a semi-infinite word w = w0w1w2...:
xw = x0...xnw0w1 . . . A finite word z is said to be a subword of another (finite
or infinite) word v, if there exists two indices i and j, such that z = vivi+1...vj .
In this case we write: z ⊑ v. Subsets of Σ∗ are called formal languages. Given a
subset of the full shift S, a formal language is defined:

L(S) = {z ∈ Σ∗ | (∃w ∈ S) z ⊑ w} .

Reciprocally, given a formal language L, a set of infinite sequences can be defined:

SL = {w ∈ ΣM | (∀z ⊑ w) z ∈ L} .

When S satisfies SL(S) = S, it is called a subshift.

The t-shift. A complete and deterministic Turing machine M = (Q, Σ, δ) can be
associated with a dynamical system (X, T), where X is the set of configurations
ΣZ × Z × Q, and the global transition function T : X → X consists into apply
one transition of the Turing machine. We define π : X → Q × Σ by π(w, i, q) =
(q, wi). The t-shift associated to T , denoted by ST ⊆ (Q × Σ)N, is the set of
orbits τ(x) = (π(T n(x)))n∈N

, for x ∈ X. It is not difficult to see that ST is in
fact a subshift [1].

2 Surjectivity

As we have said, when M is deterministic and complete, T is a function. In this
context, backward determinism is equivalent to injectivity of T and backward
completeness corresponds to surjectivity. Through a cardinality argument, it is
possible to show that, when the machine is deterministic and complete, surjec-
tivity is equivalent to injectivity and both are easy to check from the machine’s
transition rule. From now on, we will work only with deterministic and complete
Turing machines.

Remark 1. A Turing machine M = (Q, Σ, δ) written in quintuples is surjective
if and only if, for every q′ ∈ Q and s′, r′, t′ ∈ Σ, there is at least one q ∈ Q and
s ∈ Σ such that δ(q, s) = (q′, s′, +1) or δ(q, s) = (q′, r′, −1) or δ(q, s) = (q′, t′, 0).

If for some q′, the condition of TM surjectivity is not satisfied, we say that q′

is defective. Thus a machine is surjective if and only if it has no defective state.

Definition 1. A state q′ ∈ Q of a Turing machine M = (Q, Σ, δ) is said to be
defective if:

1. (Quintuple model) There exist symbols s′, r′, t′ ∈ Σ such that no instruction
gives: (q′, s′, +1), (q′, r′, −1) or (q′, t′, 0).

2. (Quadruple model) There exist s′ ∈ Σ such that there exist no instruction
(q, /, d, q′) nor (q, s, s′, q′), for no q ∈ Q, s ∈ Σ, and d ∈ {−1, 0, +1}.

Notice that an unreachable state is indeed defective, but we will assume that
every state is reachable. If not, the subshift ST will not be surjective in any case.

Surjectivity of T is inherited by the subshift ST , however, if T is not sur-
jective, the subshift can still be surjective. For example, let M be the Turing
machine that simply moves to the right by always writing a 0. This machine is
not surjective, but the associated subshift does.

Remark 2. A t-shift is surjective if and only if: (∀u ∈ ST)(∃a ∈ Q × Σ) au ∈ ST

If u = (q1 q2 ...
s1 s2 ...) ∈ ST and a = (q, s), condition au ∈ ST says that

δQ(q, s) = q1 and that the configuration that produces u has the symbol s
at position −δD(q, s). If the machine does not visit position −δD(q, s), s can be
any symbol, otherwise it is restricted to the constraint δS(q, s) = si+1, where

i = min{j |
∑j

k=1 δD(uk) = −δD(q, s)}.
In the example, the unique state of the machine is defective, it does not

admit the symbol ‘1’ at the left of the head, but position −1 is never revisited,
that is why any symbol can be appended at the beginnig of u. If the state q1

is defective and it does not admits the symbol si+1 at position −δ(q, s), then
au 6∈ ST . Surjectivity will be possible when defective states avoid the head from
going in to the “conflictive” positions, we develop this in the next section.

It is important to note that in the quadruples model, the surjectivity of T
is held by the subshift ST and vice versa. If we have a defective state q1, then
there exist no moving instruction leading to q1. From the previous assertion, if
q1 is defective, then ST is not surjective. We are interested in surjectivity only
within the quintuples model.

2.1 Blocking States

We say that a state q is a blocking state to the left (right) if:

(∀u ∈ ST)(∀s ∈ Σ) u1 = (s, q) ⇒

[

(∀j ∈ N)

j
∑

k=1

δD(uk) 6= −1(+1)

]

.

We also say that q is an s-blocking state to the left (right) for a given s ∈ Σ,
if:

(∀u ∈ ST) u1 = (s, q) ⇒

[

(∀j ∈ N)

j
∑

k=1

δD(uk) 6= −1(+1)

]

.

Finally we say that q is just a blocking state, if for every s ∈ Σ, q is an
s-blocking state either to the left or right.

A state q is said to be reachable from the left (right) if there exists a state q′

and symbols s, s′ such that δ(s′, q′) = (s, q, +1) (resp. −1).
The surjectivity on ST can be characterized through these notions, in fact,

ST is surjective if and only if for each q′ ∈ Q at least one of the following holds:

1. q′ is not defective: If q′ is not defective, then, independently on the context,
it can be reached from some configuration.

2. q′ is blocking to the left (right) and it is reachable from the left (right):
If q′ happens to be a blocking state to the left (right), no configuration
producing u ∈ ST , with u1 = (q′, s1), is able to revisit the position −1 (+1)
(with respect to the initial head position), so any (q, s) ∈ Q × Σ, such that
δQ(q, s) = q′ and δD(q, s) = +1(−1), can be appended at the beginning of
u.

3. q′ is blocking and it is reachable from the left and from the right: If q′

happens to be a blocking state, u ∈ ST starts with u1 = (q′, s1) and q′ is
s1-blocking to the left (right), then no configuration producing u is able to
revisit the position −1 (+1) (with respect to the initial head position), so
any (q, s) ∈ Q × Σ, satisfying δQ(q, s) = q′ and δD(q, s) = +1(−1) can be
appended at the beginning of u.

If we could decide when a state is blocking, we could decide surjectivity. In
the next section, however, we see that checking the blocking property is not
possible.

3 Undecidability of preliminary problems

In this section, we show the undecidability of several problems related with the
blocking property of a state, that will serve as intermediate to finally prove the
undecidability of the surjectivity on ST in section 4.

Let us remark that the following proofs are equivalent in quadruples and
quintuples model, one only has to use the usual transformation described in
the section 1. The last is possible because the following problems are related to
movement abilities of the head.

3.1 Undecidability of the blocking state problem

Let us consider the next three problems.

(BSl) Given a Turing machine M and a state q, decide whether q is a blocking
state to the left.

(BSr) Given a Turing machine M and a state q, decide whether q is a blocking
state to the right.

(BS) Given a Turing machine M and a state q, decide whether q is a blocking
state.

Let us remark that (BSl) and (BSr) are Turing equivalent, i.e., (BSl) reduces
to (BSr) and vice versa. To see this it is enough to see that switching the move-
ment direction on every instruction of a given machine M produces a machine
M ′ whose states are blocking to the left if and only if the respective states of M
are blocking to the right.

We prove the undecidability of these three problems by reduction from the
emptiness problem, which is known to be undecidable for machines written either
in quadruples or quintulples and also for machines restricted to work on a semi
infinite tape. The definition of the emptiness problem is adapted to the present
context as follows.

(E) Given a Turing machine M , and two states q0 and qF , decide whether there
is an input configuration (w, 0, q0) that makes the machine to reach the state
qF in finite time.

Lemma 1. (BSl) is undecidable.

Proof. We prove undecidability by reduction from the emptiness problem. Let
M = (Q, Σ, δ) be a Turing machine, and let q0, qF ∈ Q be two states. We will
assume, without loss of generality, that M is written in quintuples, and that
starting with q0 the head never goes to the left of position 0 (this is equivalent
to say that the machine works only on the right side of the tape). Let us define
M ′ just like M but with an additional state qaux, and some small differences in
its transition function δ:

δ(qF , s) = (qaux, s, −1), and

δ(qaux, s) = (qaux, s, −1), for every s ∈ Σ .

Thus, M reaches qF for some input (w, 0, q0) if and only if the state q0 is not
a blocking state to the left for M ′. �

Theorem 1. (BS) is undecidable.

Proof. Let M = (Q, Σ, δ) be a Turing machine, and let q0, qF ∈ Q be two states.
Let M ′ be a machine defined as in the last proof. Since M works only on the
right side, we have that δD(q0, s) = +1 for every s, thus q0 is not s-blocking to
the right for any symbol s. Therefore, q0 is blocking to the left for M ′ if and
only if q0 is a blocking state for M ′.

It results that the emptiness problem is satisfied for (M, q0, qF) if and only
if the blocking problem is satisfied for (M ′, q0). �

3.2 Undecidability of the blocking state problem in complete RTMs

With the results of the last section, we discard the possibility of solving the
problem of surjectivity via blocking states. However, knowing about the surjec-
tivity of ST for a given machine M does not help to solve the blocking problem
for a particular state q of M . Thus surjectivity can still be decidable. We want
to reduce the blocking state problem to the surjectivity problem, but to do so
we need to produce a machine whose surjectivity depends only on the blocking
property of one of its states. This can be achieved by working with reversible
machines, which are modified to make one of its states defective. That is why
we introduce a new problem.

(BSLrtm) Given a complete and reversible Turing machine M and a state q
that is reachable from the left, decide whether q is a blocking state to the
left.

We prove the undecidability of this problem by reduction from the halting prob-
lem of reversible two counter machines, which is proved undecidable in [9].

Definition 2. A k-counter machine (k-CM) is a triple (S, k, R), where S is a
finite set, k ∈ N is the number of counters, and R ⊆ S × {0, +}k × {1, .., k} ×
{−1, 0, +1}×S is the transition relation. A configuration of the machine is a pair
(s, ν), where s is the current state and ν ∈ N

k is the content of the k counters.
By considering the function sign: Nk → {0, +}k defined by sign(ν)j = 0 if νj = 0
and + otherwise, an instruction (s, u, i, d, t) ∈ R can be applied to a configuration
(s, ν) if sign(ν) = u, and the new configuration is (t, ν′) where ν′

j = νj for every
j 6= i and ν′

i = νi + d. R cannot contain the instruction (s, u, i, −1, t) if ui = 0.

Just like Turing machines, a k-counter machine is said to be deterministic
(k-DCM) if at most one instruction can be applied to each configuration. In
addition, a k-CM C is said to be reversible (k-RCM) if it is forward and backward
deterministic.

The halting problem consists in determining, given an initial configuration
(s, ν), whether the machine reaches a given halting state t. It is undecidable for
k = 2, even if the initial configuration is fixed to (s0, (0, 0)).

Theorem 2. (BSLrtm) is undecidable.

Proof. We prove undecidability by reduction from the halting problem of 2-
RCM.

Let C = (S, 2, R) be a 2-RCM, with initial configuration (s0, (0, 0)) and final
state t ∈ S. For this proof we need a Turing machine M and a state q = q0

meeting the following:

1. it simulates C on the right side of the tape,
2. it is reversible,
3. it reaches the position −1 starting at 0 from q0 if and only if C halts (reaches

t) starting from (s0, (0, 0)),

4. it is complete, and

5. q0 is reachable from the left.

If the machine meets the above objectives, q0 will not be blocking to the left
if and only if, starting from (s0, (0, 0)), C halts.

The first 3 objectives can be viewed in detail in the appendix; however,
here we sketch them briefly. For simplicity, we define M in the quadruple form.
For the first objective, we make a traditional simulation. Let M = (Q, Σ, δ)
be a Turing machine. Starting with q0, the machine writes “< | >” into the
tape, and goes to state s0 (as seen in appendix, Part 1). This corresponds to
the initial configuration (s0, (0, 0)) of the counter machine. The simulation will
correctly work if the tape initially contains only 1s. In general, each configuration
(s, (n, m)) of the counter machine will be represented in the Turing machine by
the configuration (...′ < 1n|1m > ..., 0, s). This will be achieved by simulating
each instructions of C, as seen in the appendix, Part 2. In this way, M simulates
C. It is noteworthy that, throughout the simulation, the machine does not reach
the left side of the tape.

Providing simple safeguards, each counter machine instruction can be simu-
lated by M in a reversible way. However, when reaching a state s ∈ S, while the
counter machine knows whether each of its register is empty or not, the Turing
machine does not, thus it may not be reversible in such situations. In order to
solve this, the symbols of the form (d, d′) are added to Σ, for each d, d′ ∈ {0, +};
and we better represent C configurations by (...′(d, d′)1n|1m > ..., 0, s).

Now, for the third goal, when M reaches the halting state t of C, we add an
extra transition to move to the left: (t, /, −1, taux). Thus M is able to reach the
−1 starting from q0 if and only if C halts when it starts from (s, (0, 0)).

Next, for the fourth objective, we use an idea from [3]. Create a new machine
M ′ = (Q′, Σ, δ′), with Q′ = Q∪{+, −}. States of the form (q, +) act in the same
way that in the M machine, and states of the form (q, −) makes the reverse
transitions. Each transition not defined for M , switch + by −; analogously,
transitions not defined in the reverse makes − to become +. This makes M ′

complete.

The fifth goal is attained by modifying M ′ in only one instruction:

((q0, −), /, 0, (q0, +)) is switched by ((q0, −), /, +1, (q0, +)).

Thus, q0 is a blocking state to the left, reachable from the left, for the com-
plete reversible TM M ′, if and only if C does not halt (reaches the t state) from
(s0, (0, 0)). �

Remark 3. The same machine can be used to proof that the emptiness problem
for reversible and complete TM is undecidable, We simply make q = q0 and
q′ = t.:

(ERCT M) Given a reversible and complete TM M = (Q, Σ, δ) and two states
q, q′ ∈ Q, decide if there exists a configuration (w, 0, q) such that the state
q′ is attained in finite time.

4 Undecidability of the surjectivity of the subshift

associated to a Turing machine

(Surj) Given a deterministic and complete Turing machine written in quintu-
ples, decide whether its t-shift is surjective.

Theorem 3. (Surj) is undecidable.

Proof. We prove the undecidability by reduction from (BSLrtm). Let M =
(Q, Σ, δ) be a complete and reversible Turing machine. Let q′ be a state that is
reachable from the left, and let q, s and s′ be such that δ(q, s) = (q′, s′, +1). We
know that this machine is surjective. We assume that δ is written as a function.

Now let us define M ′ as M , but with an additional state qaux and the fol-
lowing new instructions:

(∀t ∈ Q) δ(qaux, t) = (q′, t, 0) .

and changing δ(q, s) = (q′, s′, +1) by δ(q, s) = (qaux, s′, +1).
M ′ is not surjective, because the configuration (w, i, qaux) has not preimage

if wi−1 6= s′. So qaux is the unique defective state of M ′. In this way, if q′ is a
blocking state to the left for M , then so is qaux and since it is also reachable
from the left, the t-shift of M ′ is surjective. On the other hand, if this t-shift
is surjective, qaux must be blocking. As qaux is only reachable from the left, it
must be blocking to the left. This is possible only if q′ is blocking to the left. �

5 Conclusions

Surjectivity of the t-shift of a Turing machine resulted to be not equivalent to
the surjectivity of the machine it self. The last property was characterized in
terms of another property of the Turing machine, the blocking property of its
states: in the absence of the surjectivity of the Turing machine, some of its states
must be blocking.

But the blocking property resulted to be undecidable as well as the surjec-
tivity of the t-shift. A rather simple problem in Turing machines can not be
decided in t-shift, so we think that others more complicated problems (for ex-
ample, transitivity) can not be decided too, but this will require a more deep
investigation.

References

1. Gajardo, A., Mazoyer, J.: One head machines from a symbolic approach. Theor.
Comput. Sci. 370 (2007) 34–47

2. Gajardo, A., Guillon, P.: Zigzags in Turing machines. In Ablayev, F.M., Mayr,
E.W., eds.: CSR. Volume 6072 of Lecture Notes in Computer Science., Springer
(2010) 109–119

3. Kari, J., Ollinger, N.: Periodicity and immortality in reversible computing. In
Ochmanski, E., Tyszkiewicz, J., eds.: MFCS. Volume 5162 of Lecture Notes in Com-
puter Science., Springer (2008) 419–430

4. Kůrka, P.: On topological dynamics of Turing machines. Theoret. Comput. Sci.
174(1-2) (1997) 203–216

5. Blondel, V.D., Cassaigne, J., Nichitiu, C.: On the presence of periodic configurations
in Turing machines and in counter machines. Theoret. Comput. Sci. 289 (2002)
573–590

6. Oprocha, P.: On entropy and turing machine with moving tape dynamical model.
Nonlinearity 19 (October 2006) 2475–2487

7. Kůrka, P.: Topological and Symbolic Dynamics. Société Mathématique de France,
Paris, France (2003)

8. Morita, K., Shirasaki, A., Gono, Y.: A 1-tape 2-symbol reversible Turing machine.
IEICE TRANSACTIONS E72-E(3) (1989) 223–228

9. Morita, K.: Universality of a reversible two-counter machine. Theor. Comput. Sci.
168(2) (1996) 303–320

Appendix

Construction of the Turing machine shown in the proof or Theorem 2. We will
construct a reversible Turing machine M = (Q, Σ, δ) to simulate a 2-reversible
counter machine C = (S, 2, R). Q = S ∪ Q0 ∪ S1 ∪ ... ∪ S|R|, where Q0 is the set
of states required for writing “< | >” on the tape, including q0, and Si the set
of states needed to simulate the instruction i of R.

Σ = {<, |, >, 1}∪{0, +}2. The first set recreates the counters on the machine
and the second contains auxiliary symbols indicating the status of the counters
when reaching a new state.

The transition function is given by a graph, the notation is described in
figure 1. It is noteworthy that this machine simulates arbitrary counter machine,
so we will describe only generic instructions.

In general, each configuration (s, (n, m)) of the counting machine will be
represented in the Turing machine by the configuration (< 1n|1m >, 0, s). The
machine simulates C from configuration (s0, (0, 0)), by writing “< | >” on the
tape. Subsequently, the machine adds and removes 1’s from the tape, accordingly
to the instructions of C. The machine will work as long as the background is
full of 1’s (the new visited cells), if it encounter any other symbol, it stops. It is
important to note that, before reaching any state of C, the machine replaces the
symbol “<” by the pair (d, d′) ∈ {0, +}2, in order to indicate the sign of each
counter at the end of each instruction. In this way, the machine knows which of
the instructions of the counter machine is the next to be applied. And this makes
the reversibility of the counter machine to be inherited by the Turing machine.

Part 1: Initial configuration. The first action is to write “< | >” in the tape, see
figure 2.

s t
+

s t
/a b

(a) (b) (c)

Fig. 1: (a): Instruction (s, /, +, t). (b): Instruction (s, a, b, t). (c): Subroutine.

q0

s0

/1 < + /1 | + /1 >

−

−/< (0, 0)

Fig. 2: The routine that writes the sequence “< | >” in the tape.

Part 2: Executing instructions. Let us suppose that the following instructions are
in R: (s, (0, 0), i, d, t), (s, (0, +), i′, d′, t′), (s, (+, 0), i′′, d′′, t′′) y (s, (+, +), i′′′, d′′′, t′′′).
They are simulated with the routine depicted in figure 3.

s

t t′ t′′ t′′′

(s, (0, 0), i, d, t) (s, (0,+), i′, d′, t′) (s, (+, 0), i′′, d′′, t′′) (s, (+,+), i′′′, d′′′, t′′′)

(0, 0)/ <
(0,+)/ < (+, 0)/ <

(+,+)/ <

0 0 0 0

Fig. 3: Depending on the sign of the counters, the machine performs
the instruction (s, (0, 0), i, d, t), (s, (0, +), i′, d′, t′), (s, (+, 0), i′′, d′′, t′′) or
(s, (+, +), i′′′, d′′′, t′′′).

Part 3: Addition/Subtraction. Each sub-routine uses an exclusive set of states.
There are several cases, depending on the sign of each counter, but they are all
similar, thus we present only two examples in figures 4 and 5.

+

/1 1

/| 1 + /1 | +

/1 1

/> 1

+/1 >−

/1 1

/< (+,+)

/| |

Fig. 4: Sub-routine corresponding to instruction (s, (+, +), 1, +, t′′′), it adds one
unit to counter 1, assuming counter 2 non empty.

+ /| | +

/1 1

/> 1 − /1 >

−

/1 1−

/1 1

/| |−/< (0,+)

/| |

−/< (0, 0)

Fig. 5: Sub-routine corresponding to instruction (s, (0, +), 2, −, t′), it subtracts
from counter 2, assuming counter 1 empty.

