
HAL Id: hal-00980366
https://hal.science/hal-00980366

Preprint submitted on 18 Apr 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Sparse polynomial interpolation in practice
Joris van der Hoeven, Grégoire Lecerf

To cite this version:
Joris van der Hoeven, Grégoire Lecerf. Sparse polynomial interpolation in practice. 2014. �hal-
00980366�

https://hal.science/hal-00980366
https://hal.archives-ouvertes.fr


Sparse polynomial interpolation in practice

by Joris van der Hoeven and Grégoire Lecerf

Laboratoire d’informatique de l’École polytechnique (LIX, UMR 7161 CNRS)
Campus de l’École polytechnique, Route de Saclay, 91128 Palaiseau Cedex, France

Email: {vdhoeven,lecerf}@lix.polytechnique.fr

1 Introduction

Sparse polynomial interpolation consists in recovering of a sparse representation of a polynomial P given by
a blackbox program which computes values of P at as many points as necessary. In practice P is typically
represented by DAGs (Directed Acyclic Graphs) or SPLs (Straight Line Programs). For polynomials with
at most t terms over a field K, this task typically involves O(t) evaluations of P , operations on integers for
discovering the exponents of the nonzero terms of P , and an additional number of operations in K that can
be bounded by Õ(t) for recovering the coefficients [3].

However, the latter complexity analysis does not take into account the sizes of coefficients in K and the
expression swell that might occur when evaluating at points with high height [9]. For practical implemen-
tations, it is important to perform most of the computations over a prime finite field Fp, where p fits into
a single machine register. On modern architectures, this typically means that p < 264. There mainly are
two approaches which can be used over finite fields: the “prime number” approach [9] and the “Kronecker
substitution” approach [8]. For more references and practical point of views on known algorithms we refer the
reader to [1, 2, 7] (see also [5] in a more restricted context). We recall these approaches in Section 2. In Section 3,
we present new techniques which may be used to further enhance and combine these classical approaches.

We report on our implementations in the multimix C++ library of the Mathemagix system [6]. For
the sake of conciseness some discussions on the probabilistic aspects will be informal. The interested reader
might consult [2, 10] on this topic. Of course, once a candidate for the sparse representation is found, then
the Schwartz-Zippel lemma can be used to verify it with a low level of failure [4].

2 Previously known approaches

Throughout this paper, we will use vector notation for n-tuples: given variables x1, ..., xn, we write K[x] :=
K[x1, ..., xn]. If α is a vector of n elements in K or the sequence of the variables x1, ..., xn, and if a∈Nn, then
we write αa := α1

a1 ··· αn
an and |a| := a1 + ···+ an. If P =

∑

i=1

t
ci x

ei with all the exponents ei ∈Nn pairwise
distinct and ci=/ 0, then for all α∈Kn we have

f(z) :=
∑

i>0

P (α1
i , ..., αn

i ) zi =
∑

16i6t

ci
1−αei z

. (1)

If the values αei are pairwise distinct, then it is classical that c1, αe1, ..., ct, α
et∈K can be computed efficiently

from the first 2 t terms of the power series f(z) [3]. One may further recover the ei from the αei with suitable
values of α. If no bound for t is known in advance, then we try to interpolate for successive upper bounds t
in geometric progression.

Over many common fields such as K=Q, the numbers αei can become quite large. For efficiency reasons,
it is better to work over a finite field Fp as much as possible. Moreover, we wish to take a p which fits into
a single machine register, so that computations in Fp can be done very efficiently. When using modular
reduction, the problems of computing the ei and computing the ci are actually quite distinct, and are best
treated separately. The ei do not mostly depend on p (except for a finite number of bad values) and only
need to be computed for one p. The ci are potentially large numbers in Q, so we may need to compute their
reductions modulo several p and then recover them using rational number reconstruction [4]. From now on,
we focus on the computation of the support of P written suppP := {ei | 16 i6 t}. Let di represent the partial
degree of P in xi, and let Di := di+1.

1



For the determination of suitable α ∈ Fp
n such that the ei can be reconstructed from the αei, the “prime

number” approach is to take α= q mod p, where q = (q1, ..., qn) and qi is the i-th prime number. As long as
qei < p, we may then recover ei from qei by repeated divisions. If d :=maxi6t |ei| is the total degree of P ,

then it suffices that qn
d< p. We recall that qn asymptotically grows as Õ(n), so that p can be taken of bit-size

in Õ(d log n). This approach is therefore efficient when d is sufficiently small.
If K = Fp, the “Kronecker substitution” approach is to take α = (ω, ωD1, ωD1D2, ..., ωD1···Dn−1), where ω

is a primitive root of the multiplicative group Fp
∗. Assuming that D1 ···Dn 6 p − 1, we can compute all the

value αei = ωei,1+ei,2D1+···+ei,nD1···Dn−1. Moreover, assuming that the prime number p is “smooth”, meaning
that p− 1 has only small prime factors, the discrete logarithm problem can be solved efficiently in Fp

∗: given
a∈Fp

∗ there exists a relatively efficient algorithm to compute l∈{0, ..., p− 2} with ωl= a [11]. In this way we
deduce all the ei. This approach is efficient when the partial degrees are small. More specifically, we prefer it
over the prime number approach if D1 ···Dn< qn

d.
We notice that bounds for d, d1, ..., dn are sometimes known in advance (e.g. from a syntactic expression for

P ) and sometimes have to be guessed themselves. The total degree can be guessed efficiently by using sparse
interpolation for the univariate polynomial P (α1 t, ..., αn t), where α=(α1, ..., αn) is a random point in (Fp

∗)n.
Similarly, the partial degrees di are obtained by interpolating P (α1, ..., αi−1, t, αi+1, ..., αn).

Remark. It often occurs that the expression for P involves division even though the end result is a polynomial;
this happens for instance when computing a symbolic determinant using Gaussian elimination. When division
is allowed in the prime number approach, then some care is required in order to avoid systematic divisions by
zero. For instance, 1/(x1− 1) cannot be evaluated at α0 and 1/(3 x1− 2 x2) cannot be evaluated at α1 when
α = q = (2, 3, ..., qn). The first problem can be avoided by taking f :=

∑

i>1
P (αi) zi. The nuisance of the

second problem can be reduced by replacing the qi by small random and pairwise distinct primes.

3 New incremental approaches

In this section we carry on with the same notation, and K is the finite field Fp. We aim at decomposing the
interpolation problem into several ones with less variables in order to interpolate more polynomials than with
the previously known techniques. For all our algorithms, we assume that the support suppQ= {f1, ..., fs}⊆
Nn−m of Q(xm+1, ..., xn) :=P (α1, ...,αm, xm+1, ...,xn) is known for some 1<m<n and random α1, ...,αm∈Fp

∗.
We will write d6m and d>m for the total degrees of P in x1, ..., xm resp. xm+1, ..., xn. Let η > 0 and assume
that p> η d t. By the Schwartz-Zippel lemma, taking random αi in {0, ..., η s d6m − 1} ensures that supp Q

coincides with the projection of suppP on Nn−m with probability at least 1− 1/η.

Separating forms. Assume that 1<m<n− 1 and let u∈Nn−m be such that u · f1, ..., u · fs are pairwise
distinct. Such a vector u, seen as a linear form acting on the exponents, is said to separate the exponents
of Q. A random vector in {0, ..., η s2/2}n−m separates exponents with probability at least 1− 1/η. Since one
can quickly verify that u is a separating form, it is worth spending time to search for u with small entries.

Now consider a new variable y and R(x1, ..., xm, y) :=P (x1, ..., xm, yu1, ..., yun−m). The partial degree of R
in y is O(η s2 d>m), hence its total degree is O(η d t2). If h is in the support of R then there exists a unique
exponent e of P such that e=(h1, ..., hm, u · (em+1, ..., en)). We can compute e efficiently after sorting the fi
accordingly to the values u · fi. We have thus shown how to reduce the sparse interpolation problem for P to
the “smaller” sparse interpolation problem for Q. If p≫ d t2, then the method succeeds with high probability.

Coefficient ratios. Let α=(q1, ..., qn) and let f(z) be the generating series associated to P and α as in (1).
In a similar way, we may associate a generating series f̃ (z) to P̃ (x) =P (q1x1, ..., qmxm, xm+1, ..., xn). Using
sparse interpolation, we find ci and αei such that (1) holds, as well as the analogous numbers c̃i=ci q1

ei,1 ··· qm
ei,m

and αei for f̃ (z). If qm
d6m < p, then these data allow us to recover the vectors ei,6m = (ei,1, ..., ei,m)

from the ratios c̃i/ci. We may next compute the complete ei from αei−ei,6m, since we assumed supp Q

to be known. This strategy also applies to the “Kronecker substitution” approach. In that case, we take
P̃ (x)=P (ω x1, ..., ω

D1···Dm−1 xm, xm+1, ..., xn), and we require that D1 ···Dm6 p−1. If none of the conditions

qm
d6m< p or D1 ···Dm< p− 1 holds, then we let m̃ be maximal such that either qm

d6m < p or D1 ···Dm6 p− 1,
and we recursively apply the strategy to P (α1, ..., αm , xm+1, ..., xn) and then to P itself.

Sparse polynomial interpolation in practice

2



Closest points. Let α=(ω,ωD1, ..., ωD1···Dn−1) be as in the “Kronecker substitution” approach. For each fi
in the support of Q, let ϕi∈ {0, ..., p− 2} be such that ωϕi =αfi, and let δ be the smallest distance between
any two distinct points of

⋃

i=0

s
(ϕi+(p− 1)Z). If d>m is large and the exponents of P are random, then δ is

expected to be of the order p/s2 (this follows from the birthday problem: taking s random points out of p/δ,
the probability of a collision is >1/2 as soon as s≍ p/δ

√

). Now assume that D1 ···Dm6 δ. Performing sparse
interpolation on P , we obtain numbers ωe1, ..., ωet, as well as the corresponding εi∈{0, ..., p−2} with ωεi=αei.
For each i∈ {1, ..., t}, there is unique j ∈ {1, ..., s} and k ∈ {0, 1} with 06 εi− ϕj + k (p− 1)<D1 ···Dm6 δ.
We may thus recover ei from fj and εi− ϕj + k (p− 1). In order to improve the randomness of the numbers
ϕi modulo p− 1, it is recommended to replace Dm by a random larger number.

4 Implementation and timings

The Mathemagix platform divides into three main components: low level structuring and efficient
C++ libraries for classical mathematical objects, a compiler and an interpreter of the eponym lan-
guage, and interfaces to external libraries. Mathemagix is an open source academic project hosted at
http://gforge.inria.fr/projects/mmx/. The Internet home page concerning installation and documentation is
http://www.mathemagix.org.

Multivariate polynomials, power series, jets, and related algorithms are integrated in the multimix C++

library of Mathemagix. Algorithms for sparse and dense representations have been previously reported
in our article [5], in which we focused on fast polynomial products assuming given an overset of the sup-
port. This short note reports on the implementation of DAGs, SLPs, and sparse interpolation. At the C++

level, a DAG with coefficients in C has type dag_polynomial<C>. Arithmetic operations, evaluation, substitu-
tion, and also construction from a polynomial in sparse representation are available. For efficiency purposes,
the evaluation of one or several DAGs on several points can be speeded up by building a SLP from it,
whose type is slp_polynomial<C>. These classes are available from multimix/dag_polynomial.hpp and
multimix/slp_polynomial.hpp. An overview of the main features in multimix together with examples
and useful links to browsable C++ source code is available from http://www.mathemagix.org/www/mul-
timix/doc/html/index.en.html.

Sparse interpolation is implemented in multimix/sparse_interpolation.hpp. Complete examples of use
can be found in multimix/test/sparse_interpolation_test.cpp. If f :Qn→Q represents the polynomial
function that we want to interpolate as a polynomial in Q[x1, ..., xn], then our main routines take as input
a function f̄ :Qn×N→N such that f̄ ((a1, ..., an), p) is the preimage of f(a1, ..., an) computed modulo a prime
number p. If computing f modulo p involves a division by zero, then an error is raised. For efficiency reasons,
such a function f̄ can be essentially a pointer to a compiled function. Of course DAGs over Z or Q can be
converted to such functions via SLPs.

In the next examples, which can be found in multimix/bench/sparse_interpolation_bench.cpp,
we illustrate the behaviours of the aforementioned algorithms on an Intel(R) Core(TM) i7-3720QM
CPU @ 2.60GHz platform with 8 GB of 1600 MHz DDR3 .

Example 1. Our first family of examples concerns products of random polynomials given in sparse representa-
tion: we pick up m polynomials with t terms, in n variables, and with partial degrees at most d, and compute
the support of their product. With m=8, n=20, d=40, t=3, then a direct use of the “Kronecker substitution”
involves computing with GMP based modular integers of bit size about 160: the total time amounts to 171 s
(91 s are spent in the Cantor-Zassenhaus stage for root finding). With the “coefficient ratios” approach, the
set of variables is split into 3 blocks and all the computations can be done with 64-bit integers for a total
time of 31 s (most of the time is still spent in the Cantor-Zassenhaus stages, but relatively less in the discrete
logarithm computations). With the “closest points” technique the set of variables is split into 5 blocks and all
the computations are also done with 64-bit integers for a total time of 47 s. The “separating form” approach is
not competitive here, since it does not manage to keep the computations on 64 bits integers only. Nevertheless,
in a “lacunary polynomials” context, namely when d becomes very large, the computation of a very large smooth
prime number becomes very expensive, and the “separating form” point of view becomes useful.

Joris van der Hoeven and Grégoire Lecerf

3



Example 2. As a second family of examples, we consider the determinant of a n × n matrix whose entries
are independent variables. This determinant is a polynomial in n2 variables with n! terms, whose total degree
is n and whose partial degrees are all 1. The following table displays timings for interpolating this polynomial
using the “Kronecker substitution” approach:

n 5 6 7 8
Kronecker substitution 110 ms 915 ms 9.8 s 162 s

Table 1. Timings for interpolating the determinant polynomial of a n×n matrix.

For n=8 computations are performed via 128-bits modular arithmetic. Here we used a fast compiled determi-
nant function, so that most of the time is spent in the Cantor-Zassenhaus stage. We noticed that the “closest
points” strategy is not well suited to this problem. The “coefficient ratios” approach allows to perform all the
computations on 64-bits for n=8 within 223 s, but it is penalized by two calls to Cantor-Zassenhaus.

For a convenient use, our sparse interpolation routine is available inside the mmx-light interpreter. In the
following session, we interpolate the determinant polynomial of a matrix of size n×n for n=5 in 1.3 s, and for
n=6 in 9.6 s. As a comparison, the function sinterp, modulo 231− 1, of Maple 16 (trademark of Waterloo

Maple Inc. http://www.maplesoft.com/products/maple) takes 18 s for n=5, and 1 hour for n=6.

Mmx] use "multimix"; n:= 5;

Mmx] det_mod (v: Vector Integer, p: Integer): Integer == {

w == [ z mod modulus p | z in v ];

M == [ @(w[i * n, (i+1) * n]) || i in 0..n ];

return preimage det M; };

Mmx] coords == coordinates (coordinate (’x[i,j]) | i in 0..n | j in 0..n);

Mmx] #as_mvpolynomial% (det_mod, coords, 1000)

120

Bibliography

[1] A. Arnold, M. Giesbrecht, and D. S. Roche. Faster sparse polynomial interpolation of straight-line programs over finite fields.

Technical report, arXiv:1401.4744, 2014.

[2] A. Arnold and D. S. Roche. Multivariate sparse interpolation using randomized Kronecker substitutions. Technical report,

arXiv:1401.6694, 2014.

[3] M. Ben-Or and P. Tiwari. A deterministic algorithm for sparse multivariate polynomial interpolation. In STOC ’88: Pro-

ceedings of the twentieth annual ACM symposium on Theory of computing, pages 301–309, New York, NY, USA, 1988. ACM

Press.

[4] J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge University Press, 2-nd edition, 2002.

[5] J. van der Hoeven and G. Lecerf. On the bit-complexity of sparse polynomial multiplication. J. Symbolic Comput., 50:227–

254, 2013.

[6] J. van der Hoeven, G. Lecerf, B. Mourrain, et al. Mathemagix, 2002. http://www.mathemagix.org.

[7] M. Javadi andM. Monagan. Parallel sparse polynomial interpolation over finite fields. In Proceedings of the 4th International

Workshop on Parallel and Symbolic Computation, PASCO ’10, pages 160–168. ACM Press, 2010.

[8] E. Kaltofen. Fifteen years after DSC and WLSS2, what parallel computations I do today. Invited lecture at PASCO 2010.

In Proceedings of the 4th International Workshop on Parallel and Symbolic Computation, PASCO ’10, pages 10–17, New

York, NY, USA, 2010. ACM Press.

[9] E. Kaltofen, Y. N. Lakshman, and J.-M. Wiley. Modular rational sparse multivariate polynomial interpolation. In ISSAC ’90:

Proceedings of the international symposium on Symbolic and algebraic computation, pages 135–139, New York, NY, USA,

1990. ACM Press.

[10] E. Kaltofen and Wen-shin Lee. Early termination in sparse interpolation algorithms. J. Symbolic Comput., 36(3–4):365–

400, 2003.

[11] S. C. Pohlig and M. E. Hellman. An improved algorithm for computing logarithms over GF(p) and its cryptographic

significance. IEEE Trans. Inf. Theory, 24(1):106–110, 1978.

Sparse polynomial interpolation in practice

4


	1 Introduction
	2 Previously known approaches
	3 New incremental approaches
	Separating forms.
	Coefficient ratios.
	Closest points.

	4 Implementation and timings
	Bibliography

