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Exponential mixing for the white - forced damped

nonlinear wave equation

Davit Martirosyan∗

April 17, 2014

Abstract

The paper is devoted to studying the stochastic nonlinear wave (NLW)
equation

∂
2

t u+ γ∂tu−∆u+ f(u) = h(x) + η(t, x)

in a bounded domain D ⊂ R
3. The equation is supplemented with the

Dirichlet boundary condition. Here f is a nonlinear term, h(x) is a func-
tion in H1

0 (D) and η(t, x) is a non-degenerate white noise. We show that
the Markov process associated with the flow ξu(t) = [u(t), u̇(t)] has a
unique stationary measure µ, and the law of any solution converges to µ

with exponential rate in the dual-Lipschitz norm.
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1 Introduction

We consider the stochastic NLW equation

∂2t u+ γ∂tu−∆u+ f(u) = h(x) + η(t, x), [u(0), u̇(0)] = [u0, u1] (1.1)

in a bounded domain D ⊂ R3 with a smooth boundary. The equation is supple-
mented with the Dirichlet boundary condition. The nonlinear term f satisfies
the dissipativity and growth conditions that are given in the next section (see
(2.1)-(2.3)). Here we only mention that they hold for functions f(u) = sinu
and f(u) = |u|ρu − λu, where λ and ρ ∈ (0, 2) are some constants. These
functions correspond to the damped sine-Gordon and Klein-Gordon equations,
respectively. The force η(t) is a white noise of the form

η(t, x) =
∞
∑

j=1

bjβ̇j(t)ej(x). (1.2)

Here {βj(t)} is a sequence of independent standard Brownian motions, {ej} is
an orthonormal basis in L2(D) composed of the eigenfunctions of the Dirichlet
Laplacian, and {bj} is a sequence of positive numbers that goes to zero suf-
ficiently fast (see (2.4)). The initial point [u0, u1] belongs to the phase space
H = H1

0 (D) × L2(D). Finally, h(x) is a function in H1
0 (D). The following

theorem is the main result of this paper.
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Main Theorem. Under the above hypotheses, the Markov process associated
with the flow y(t) = [u(t), u̇(t)] of equation (1.1) possesses a unique stationary
measure µ ∈ P(H). Moreover, there are positive constants C and κ such that

|Eψ(y(t)) −
∫

H

ψ(z)µ(dz)| ≤ Ce−κt exp(κ|y|4H), t ≥ 0, (1.3)

for any 1-Lipschitz function ψ : H → R, and any initial point y ∈ H.

Thus, the limit of the average of ψ(y(t)) is a quantity that does not depend on
the initial point.

Before outlining the main ideas of the proof of this result, let us discuss some
of the earlier works concerning the ergodicity of the stochastic nonlinear PDE’s
and the main difficulties that occur in our case. In the context of stochastic
PDE’s, the initial value problem and existence of a stationary measure was
studied by Vishik–Fursikov–Komech [28] for the stochastic Navier–Stokes sys-
tem and later developed for many other problems (see the references in [7]). The
uniqueness of stationary measure and its ergodicity are much more delicate ques-
tions. First results in this direction were obtained in the papers [15, 21, 13, 4]
devoted to the Navier–Stokes system and other PDE’s arising in mathematical
physics (see also [24, 16] and Part III in [8] for some 1D parabolic equations).
They were later extended to equations with multiplicative and very degenerate
noises [25, 17]. We refer the reader to the recent book [22] and the review paper
[9] for a detailed account of the main results obtained so far.

We now discuss in more details the case of dispersive equations, for which
fewer results are known. One of the first results on the ergodicity of disper-
sive PDE’s was stablished in the paper of E, Khanin, Mazel and Sinai [14],
where the authors prove the existence and uniqueness of stationary measure for
the one dimensional inviscid Burgers equation perturbed by a space-periodic
white noise. The qualitative study of stationary solutions is also carried out,
and the analysis relies on the Lax-Oleinik variational principle. The ergodic-
ity of a white-forced NLW equation was studied by Barbu and Da Prato [3],
where the authors prove the existence of stationary distribution for a non-
linearity which is a non-decreasing function satisfying the growth restriction
|f ′′(u)| ≤ C(|u|+1), and some standard dissipativity conditions. Uniqueness is
established under the additional hypotheses, that f satisfies (2.1) with ρ < 2,
and sup{|f ′(u)| · |u|−ρ, u ∈ R} is sufficiently small. In the paper by Debussche
and Odasso [10], the authors establish the convergence to the equilibrium with
polynomial speed at any order (polynomial mixing) for weakly damped nonlinear
Schrödinger equation. The proof of this result relies on the coupling argument.
The main difficulty in establishing the exponential rate of convergence is due
to the complicated Lyapunov structure and the fact that the Foaş-Prodi esti-
mates hold in average and not path-wise. In [12], Dirr and Souganidis study the
Hamilton-Jacobi equations perturbed by additive noise. They show, in particu-
lar, that under suitable assumptions on the Hamiltonian, the stochastic equation
has a unique up to constants space-periodic global attracting solution, provided
the unperturbed equation possesses such solution. In the recent paper by De-
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bussche and Vovelle [11] the existence and uniqueness of stationary measure
is studied for scalar periodic first-order conservation laws with additive noise
in any space dimension. It generalizes to higher dimensions the results estab-
lished in [14] (see also [19]). In another recent paper [2] by Bakhtin, Cator and
Khanin, the authors study the ergodicity of the Burgers equation perturbed by
a space-time stationary random force. It is proved, in particular, that the equa-
tion possesses space-time stationary global solutions, and that they attract all
other solutions. The proof uses the Aubry-Mather theory for action-minimizing
trajectories, and weak KAM theory for the Hamilton-Jacobi equations.

In the present paper we extend the results established in [3], proving that
the hypotheses f ′ ≥ 0 and sup{|f ′(u)| · |u|−ρ, u ∈ R} is small are not needed,
and that the convergence to the equilibrium has exponential rate. We also show
that the conclusion of the Main Theorem remains true for a force that is non-
degenerate only in the low Fourier modes (see Theorem 5.3). The proof mainly
relies on the coupling argument.

Of course, one of the main difficulties when dealing with dispersive PDE’s
comes from the lack of the regularizing property, and with it, of some well-
known compactness arguments. As a consequence, this changes the approach
when showing the stability of solutions. In particular, this is the case, when
establishing the Foiaş-Prodi estimate for NLW (Proposition 4.1). Moreover, this
estimate (which shows that the large time behavior of solutions is determined
by finitely many modes and enables one to use the Girsanov theorem) differs
from the classical one, since the growth of the intermediate process should be
controlled (see inequality (4.4)). Due to the last fact, the coupling constructed
through the projections of solutions (cf. [27, 25]) does not ensure exponential
rate of convergence. We therefore introduce a new type of coupling constructed
via the intermediate process (see (2.9)-(2.14)). The same difficulty occurs when
showing the recurrence of solutions, i.e. that the trajectory of the solution enters
arbitrarily small ball with positive probability in a finite time (Proposition 4.4).
The standard argument to show this property is the use of the portmanteau
theorem. However, due to the lack of the smoothing effect, the portmanteau
technique is not applicable, and another approach is proposed.

Without going into details, we give an informal description of our approach.
The proof of the existence of stationary measure is rather standard and relies
on the Bogolyubov-Krylov argument, which ensures the existence, provided the
process y(t) = [u(t), u̇(t)] has a uniformly bounded moment in some H-compact
space. To obtain such a bound, we follow a well-known argument coming from
the theory of attractors (e.g., see [1, 18]). Namely, we split the function u to
the sum u = v + z, where, roughly speaking, v takes the Brownian of equation,
and z-nonlinearity. We then show that the corresponding flows have uniformly
bounded moments in Hs = H1+s(D) × Hs(D) for s > 0 sufficiently small
(Proposition 3.4). The bound for |[v(t), v̇(t)]|Hs follows from the Itô formula,
while that of |[z(t), ż(t)]|Hs is based on the argument similar to the one used
in [29]. The proof of exponential mixing relies on Theorem 3.1.7 in [22], which
gives a general criterion that ensures the convergence to the equilibrium with
exponential rate. Construction of a coupling that satisfies the hypotheses of the
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mentioned theorem is based on four key ingredients: the Foiaş-Prodi estimate
for NLW, the Girsanov theorem, the recurrence property of solutions, and the
stopping time technique.

Finally, we make some comments on the hypotheses imposed on the nonlinear
term f and the coefficients bj entering the definition of the force η. Inequalities
(2.2)-(2.3) are standard in the study of NLW equation, they ensure that the
Cauchy problem is well-posed (e.g., see [6] and [23] for deterministic cases). The
hypothesis ρ < 2 is needed to prove the stability of solutions. The fact that the
coefficients bj are not zero ensures that η is non-degenerate in all Fourier modes,
which is used to establish the recurrence of solutions and exponential squeezing.
As was mentioned above, we show that this condition could be relaxed.

The paper is organized as follows. In Section 2 we announce the main result
and outline the scheme of its proof. Next, the large time behavior and stability
of solutions are studied in Sections 3 and 4, respectively. Finally, the complete
proof of the main result is presented in Section 5.

Acknowledgments. I am grateful to my supervisor Armen Shirikyan, for
attracting my attention to this problem, and for many fruitful discussions. This
research was carried out within the MME-DII Center of Excellence (ANR 11
LABX 0023 01) and partially supported by the ANR grant STOSYMAP (ANR
2011 BS01 015 01).

Notation

For an open set D of a Euclidean space and separable Banach spaces X and Y ,
we introduce the following function spaces:
Lp = Lp(D) is the Lebesgue space of measurable functions whose pth power is
integrable. In the case p = 2 the corresponding norm is denoted by ‖ · ‖.
Hs = Hs(D) is the Sobolev space of order s with the usual norm ‖ · ‖s.
Hs

0 = Hs
0(D) is the closure in Hs of infinitely smooth functions with compact

support.
H1,p = H1,p(D) is the Sobolev space of order 1 with exponent p, that is, the
space of Lp functions whose first order derivatives remain in Lp.
L(X,Y ) stands for the space of linear continuous operators from X to Y en-
dowed with the natural norm.
Cb(X) is the space of continuous bounded functions ψ : X → R endowed with
the norm of uniform convergence:

|ψ|∞ = sup
x∈X

|ψ(x)|.

Lb(X) is the space of bounded Lipschitz functions, i.e. of functions ψ ∈ Cb(X)
such that

|ψ|L := |ψ|∞ + sup
x 6=y

|ψ(x)− ψ(y)|
|x− y|X

<∞.

BX(R) stands for the ball in X of radius R and centered at the origin.
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B(X) is the Borel σ-algebra of subsets of X .
P(X) denotes the space of probability Borel measures on X . Two metrics are
defined on the space P(X): the metric of total variation

|µ1 − µ2|var = sup
Γ∈B(X)

|µ1(Γ)− µ2(Γ)|,

and the dual Lipschitz metric

|µ1 − µ2|∗L = sup
|ψ|L≤1

|(f, µ1)− (f, µ2)|,

where (ψ, µ) denotes the integral of ψ over X with respect to µ.
Finally, by C1, C2, . . ., we shall denote unessential positive constants.

2 Exponential mixing

We start this section by a short discussion of the well-posedness of the Cauchy
problem for equation (1.1). We then state the main result and outline the
scheme of its proof.

2.1 Existence and uniqueness of solutions

Before giving the definition of a solution of equation (1.1), let us make the precise
hypotheses on the nonlinearity and the coefficients entering the definition of η(t).
We suppose that the function f satisfies the growth restriction

|f ′′(u)| ≤ C(|u|ρ−1 + 1), u ∈ R, (2.1)

where C and ρ < 2 are positive constants, and the dissipativity conditions

F (u) ≥ −νu2 − C, u ∈ R, (2.2)

f(u)u− F (u) ≥ −νu2 − C, u ∈ R, (2.3)

where F is the primitive of f , ν ≤ (λ1 ∧ γ)/8 is a positive constant, and λj
stands for the eigenvalue corresponding to ej . The coefficients bj are supposed
to be positive numbers satisfying

B =
∞
∑

j=1

b2j <∞, B1 =
∞
∑

j=1

λjb
2
j <∞. (2.4)

Let us introduce the functions

gj = [0, bjej ], ζ̂(t) =
∞
∑

j=1

βj(t)gj .
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Definition 2.1. Let y0 = [u0, u1] be a H-valued random variable defined on

a complete probability space (Ω,F ,P) that is independent of ζ̂(t). A random
process y(t) = [u(t), u̇(t)] defined on (Ω,F ,P) is called a solution (or a flow) of
equation (1.1) if the following two conditions hold:

• Almost every trajectory of y(t) belongs to the space C(R+;H), and the

process y(t) is adapted to the filtration Ft generated by y0 and ζ̂(t).

• Equation (1.1) is satisfied in the sense that, with probability 1,

y(t) = y0 +

∫ t

0

g(s) ds+ ζ̂(t), t ≥ 0, (2.5)

where we set
g(t) = [u̇,−γu̇+∆u− f(u) + h(x)],

and relation (2.5) holds in L2 ×H−1.

Let us endow the space H with the norm

|y|2H = ‖∇y1‖2 + ‖y2 + αy1‖2 for y = [y1, y2] ∈ H,

where α > 0 is a small parameter. Introduce the energy functional

E(y) = |y|2H + 2

∫

D

F (y1) dx, y = [y1, y2] ∈ H, (2.6)

and let Eu(t) = E(y(t)). We have the following theorem.

Theorem 2.2. Under the above hypotheses, let y0 be an H−valued random
variable that is independent of ζ̂ and satisfies EE(y0) < ∞. Then equation
(1.1) possesses a solution in the sense of Definition 2.1. Moreover, it is unique,
in the sense that if ỹ(t) is another solution, then with P-probability 1 we have
y(t) = ỹ(t) for all t ≥ 0. In addition, we have the a priori estimate

EEu(t) ≤ EEu(0)e−αt + C(γ,B, ‖h‖). (2.7)

We refer the reader to the book [7] for proofs of similar results. We confine
ourselves to the formal derivation of inequality (2.7) in the next section.

2.2 Main result and scheme of its proof

Let us denote by St(y, ·) the flow of equation (1.1) issued from the initial point
y ∈ H. A standard argument shows that St(y, ·) defines a Markov process in
H (e.g., see [7, 22]). We shall denote by (y(t),Py) the corresponding Markov
family. In this case, the Markov operators have the form

Ptψ(y) =

∫

H

ψ(z)Pt(y, dz) for any ψ ∈ Cb(H),

P∗
tλ(Γ) =

∫

H

Pt(y,Γ)λ(dy) for any λ ∈ P(H),
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where Pt(y,Γ) = Py(St(y, ·) ∈ Γ) is the transition function. The following
theorem on exponential mixing is the main result of this paper.

Theorem 2.3. Under the hypotheses of Theorem 2.2, the Markov process asso-
ciated with the flow of equation (1.1) has a unique stationary measure µ ∈ P(H).
Moreover, there exist positive constants C and κ such that for any λ ∈ P(H)
we have

|P∗
tλ− µ|∗L ≤ Ce−κt

∫

H

exp(κ|y|4H)λ(dy). (2.8)

Scheme of the proof. We shall construct an extension for the family (y(t),Py)
that satisfies the hypotheses of Theorem 3.1.7 in [22], providing a general crite-
rion for exponential mixing. To this end, let us fix an initial point y = (y, y′)
in H = H ×H, and let ξu = [u, ∂tu] and ξu′ = [u′, ∂tu

′] be the flows of equa-
tion (1.1) that are issued from y and y′, respectively. Consider an intermediate
process v, which is the solution of

∂2t v+ γ∂tv−∆v+ f(v) +PN [f(u)− f(v)] = h(x) + η(t, x), ξv(0) = y′. (2.9)

Let us denote by λ(y, y′) and λ′(y, y′) the laws of the processes {ξv}T and {ξu′}T ,
respectively, where {z}T stands for the restriction of {z(t); t ≥ 0} to [0, T ]. Thus,
λ and λ′ are probability measures on C(0, T ;H). Let (V(y, y′),V ′(y, y′)) be a
maximal coupling for (λ(y, y′), λ′(y, y′)). By Proposition 1.2.28 in [22], such a
pair exists and can be chosen to be a measurable function of its arguments. For
any s ∈ [0, T ], we shall denote by Vs and V ′

s the restrictions of V and V ′ to the
time s. Denote by [ṽ, ∂tṽ] and [ũ′, ∂tũ

′] the corresponding flows. Then we have

∂2t ṽ + γ∂tṽ −∆ṽ + f(ṽ)− PNf(ṽ) = h(x) + ψ(t), ξṽ(0) = y′, (2.10)

where ψ satisfies

D{
∫ t

0

ψ(s) ds}T = D{ζ(t)−
∫ t

0

PNf(u) ds}T . (2.11)

Introduce an auxiliary process ũ, which is the solution of

∂2t ũ+ γ∂tũ−∆ũ+ f(ũ)− PNf(ũ) = h(x) + ψ(t), ξũ(0) = y. (2.12)

Let us note that u satisfies the same equation, where ψ should be replaced by
η(t)− PNf(u). In view of (2.11), we have (see the appendix for the proof)

D{ξũ}T = D{ξu}T . (2.13)

Introduce

Rt(y, y
′) = ξũ(t), R′

t(y, y
′) = ξũ′(t) for t ∈ [0, T ]. (2.14)

It is clear that Rt = (Rt,R′
t) is an extension of St(y) on the interval [0, T ].

Let St = (St(y), S
′
t(y)) be the extension of St(y) constructed by iteration of

Rt = (Rt,R′
t) on the half-line t ≥ 0 (we do not recall here the procedure
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of construction, see the paper [27] for the details). With a slight abuse of
notation, we shall keep writing [ũ, ∂tũ] and [ũ′, ∂tũ

′] for the extensions of these
two processes, and write ξṽ(t) = Vs(SkT (y)) for t = s+ kT, 0 ≤ s < T . This
will not lead to a confusion.
For any continuous process y(t) with range in H, we introduce the functional

Fy(t) = |E(y(t))|+ α

∫ t

0

|E(y(s))| ds, (2.15)

and the stopping time

τy = inf{t ≥ 0 : Fy(t) ≥ Fy(0) + (L +M)t+ r}, (2.16)

where L,M and r are some positive constants to be chosen later. In the case
when y is a process of the form y = [z, ż], we shall write, Fz and τz instead of
F[z,ż] and τ[z,ż], respectively. Introduce the stopping times:

̺ = inf{t = s+ kT : Vs(SkT (y)) 6= V ′
s(SkT (y))} ≡ inf{t ≥ 0 : ξṽ(t) 6= ξũ′ (t)},

τ = τ ũ ∧ τ ũ′

, σ = ̺ ∧ τ.

Suppose that we are able to prove the following.

Theorem 2.4. Under the hypotheses of Theorem 2.3, there are positive con-
stants α, δ,κ, d and C such that the following properties hold.
(Recurrence): For any y = (y, y′) ∈ H, we have

Ey exp(κE(y(t)) ≤ Ey exp(κE(y(0))e−αt + C(γ,B, ‖h‖), (2.17)

Ey exp(κτd) ≤ C(1 + |y|4H), (2.18)

where τd stands for the first hitting time of the set BH(d).
(Exponential squeezing): For any y ∈ BH(d), we have

|St(y) − S′
t(y)|2H ≤ Ce−αt|y − y′|2H for 0 ≤ t ≤ σ, (2.19)

Py{σ = ∞} ≥ δ, (2.20)

Ey[1{σ<∞} exp(δσ)] ≤ C, (2.21)

Ey[1{σ<∞}|y(σ)|8H] ≤ C. (2.22)

In view of Theorem 3.1.7 in [22], this will imply Theorem 2.3. We establish
Theorem 2.4 in Section 5. The proof of recurrence relies on the Lyapunov
function technique, while the proof of exponential squeezing is based on the
Foiaş-Prodi type estimate for equation (1.1), the Girsanov theorem and the
stopping time argument.

2.3 Law of large numbers and central limit theorem

Theorem 2.3 implies the following result, which follows from inequality (2.8)
and some results established in Section 2 of [26].
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Theorem 2.5. Under the hypotheses of Theorem 2.3, for any Lipschitz bounded
functional ψ : H → R and any solution y(t) = [u(t), u̇(t)] of equation (1.1) issued
from a non-random point y0 ∈ H, the following statements hold.
Strong law of large numbers. For any ε > 0 there is an almost surely finite
random constant l ≥ 1 such that

|t−1

∫ t

0

ψ(y(s)) ds− (ψ, µ)| ≤ C(y0, ψ)t
− 1

2+ε for t ≥ l. (2.23)

Central limit theorem. If (ψ, µ) = 0, there is a constant a ≥ 0 depending only
on ψ, such that for any ε > 0, we have

sup
z∈R

(θa(z) · |P{t−
1
2

∫ t

0

ψ(y(s)) ds ≤ z} − Φa(z)|) ≤ C(y0, ψ)t
− 1

4+ε, (2.24)

where we set

θa(z) ≡ 1, Φa(z) =
1

a
√
2π

∫ z

−∞

e−
s2

2a2 ds for a > 0,

and
θ0(z) = 1 ∧ |z|, Φ0(z) = 1R+(z).

The proof of inequalities (2.23) and (2.24) follow, respectively, from Corollary
3.4 and Theorem 2.8 in [26], combined with inequalities (1.3) and (2.17).

3 Large time estimates of solutions

The goal of this section is to analyze the dynamics of solutions and to obtain
some a priori estimates for them.

3.1 Proof of inequality (2.7)

Let us apply the Itô formula to the function G(y) = |y|2H. Recall that for the
process of the form (2.5), the Itô formula gives

G(y(t)) = G(y(0)) +

∫ t

0

A(s) ds+

∞
∑

j=1

∫ t

0

Bj(s)dβj(s), (3.1)

where we set

A(t) = (∂yG)(y(t); g(t)) +
1

2

∞
∑

j=1

(∂2yG)(y(t); gj , gj), Bj(t) = (∂yG)(y(t); gj).

Here (∂yG)(y; v) and (∂2yG)(y; v, v) stand for the values of the first- and second-
order derivatives of G on the vector v. Since for G(y) = |y|2H we have

∂yG(y; ȳ) = 2(y, ȳ)H, ∂2yG(y; ȳ, ȳ) = 2|ȳ|2H,
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relation (3.1) takes the form

|y(t)|2H = |y(0)|2H+2

∫ t

0

(y, g)H ds+ t ·
∞
∑

j=1

|gj |2H+2

∞
∑

j=1

∫ t

0

(y, gj)H dβj(s). (3.2)

Let us note that

(y, g)H = (∇u,∇u̇) + (u̇+ αu,−γu̇+∆u − f(u) + h(x) + αu̇)

= −α‖∇u‖2 − (γ − α)‖u̇‖2 + (α2 − αγ)(u, u̇) + (u̇+ αu, h)

− (u̇ + αu, f(u)). (3.3)

By the Young and Poincaré inequalities, we have

|(α2 − αγ)(u, u̇)| ≤ α

16
‖∇u‖2 + 4α(γ − α)2

λ1
‖u̇‖2, (3.4)

|(αu, h)| ≤ α

16
‖∇u‖2 + 4α

λ1
‖h‖2, (3.5)

|(u̇, h)| ≤ γ − α

4
‖u̇‖2 + (γ − α)−1‖h‖2. (3.6)

Note also that, thanks to inequality (2.3), we have

− αf(u)u ≤ −αF (u) + ανu2 + αC ≤ −αF (u) + αλ1
8
u2 + αC, (3.7)

so that

− (αu, f(u)) ≤ −α
∫

D

F (u) +
α

8
‖∇u‖2 + αC · Vol(D) (3.8)

Now, by substituting (3.3) into (3.2), using inequalities (3.4)-(3.8), and noting
that

∫ t

0

(u̇, f(u)) ds =

∫ t

0

d

ds
F (u(s)) ds = F (u(t))− F (u(0)),

we obtain that for α > 0 sufficiently small

Eu(t) ≤ Eu(0) +
∫ t

0

(−αEu(s) +K) ds− α

2

∫ t

0

|y(s)|2H ds+M(t), (3.9)

where K > 0 depends only on γ,B and ‖h‖, and M(t) is the stochastic integral

M(t) = 2
∞
∑

j=1

bj

∫ t

0

(u̇+ αu, ej) dβj(s). (3.10)

Taking the mean value in inequality (3.9) and using the Gronwall comparison
principle, we arrive at (2.7).
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3.2 Exponential moment of the flow

In the following proposition we establish the uniform boundedness of exponential
moment of |ξu(t)|H.

Proposition 3.1. Under the hypotheses of Theorem 2.2, there exists κ > 0
such that if the random variable Eu(0) satisfies

E exp(κEu(0)) <∞,

then
E exp(κEu(t)) ≤ E exp(κEu(0))e−αt + C(γ,B, ‖h‖). (3.11)

Proof. We represent ξu(t) in the form (2.5), and apply the Itô formula (3.1) to
the function

G(y) = exp(κE(y)).
Since

∂yG(y, ȳ) = 2κG(y)((y, ȳ)H + (f(y1), ȳ1)),

∂2yG(y; ȳ, ȳ) = 2κG(y)(2κ ((y, ȳ)H + (f(y1), ȳ1)
2 + |ȳ|2H + (f ′(y1), ȳ

2
1),

we have

∂yG(y; g) = 2κG(y)((y, g)H + (f(u), u̇)),

∂2yG(y; gj, gj) = 2κG(y)(2κ(y, gj)
2
H + |gj |2H).

Hence, relation (3.1), after taking the mean value, takes the form

EG(y(t)) = EG(y(0)) + κ E

∫ t

0

G(y(s))M(s) ds,

where

M(t) = 2((y, g)H + (f(u), u̇)) + 2κ
∞
∑

j=1

(y, gj)
2
H +

∞
∑

j=1

|gj |2H.

Now note that by developing the expression (y, g)H+(f(u), u̇), the term (f(u), u̇)
will disappear (see (3.3)). There remains another term containing f , namely
the term (−αu, f(u)), but this can be estimated using inequality (3.8). Let us
choose κ > 0 so small that κB ≤ α/2. It follows that G(y) satisfies

EG(y(t)) ≤ EG(y(0)) + κ E

∫ t

0

G(y(s))(−αE(y(s)) + C(γ,B, ‖h‖) ds.

It remains to use the inequality

κev(−αv + C1) ≤ −αev + C2 for all v ≥ −C,

and the Gronwall lemma, to conclude.
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3.3 Exponential supermartingale-type inequality

The following result provides an estimate for the rate of growth of solutions.

Proposition 3.2. Under the hypotheses of Theorem 2.2, the following a priori
estimate holds for solutions of equation (1.1)

P

{

sup
t≥0

(Eu(t)+
∫ t

0

(αEu(s)−K) ds) ≥ Eu(0)+r
}

≤ e−βr for any r > 0, (3.12)

where K is the constant from inequality (3.9), and β = α/8 · (sup b2j)−1.

Proof. Let us first note that

E

∞
∑

j=1

b2j

∫ t

0

(u̇+ αu, ej)
2 ds ≤ (sup

j≥1
b2j)

∫ t

0

E‖u̇+ αu‖2 ds <∞, t ≥ 0.

It follows that the stochastic integralM(t) defined in (3.10) is a martingale, and
its quadratic variation 〈M〉(t) equals

〈M〉(t) = 4
∞
∑

j=1

b2j

∫ t

0

(u̇+ αu, ej)
2 ds ≤ 4 sup

j
b2j

∫ t

0

‖u̇+ αu‖2 ds.

Combining this with inequality inequality (3.9), we obtain

Eu(t) +
∫ t

0

(αEu(s)−K) ds ≤ Eu(0) +
(

M(t)− 1

2
β〈M〉(t)

)

.

We conclude that

P

{

sup
t≥0

(Eu(t) +
∫ t

0

(αEu(s)−K) ds) ≥ Eu(0) + r)
}

≤ P

{

sup
t≥0

(M(t)− 1

2
β〈M〉(t)) ≥ r

}

= P

{

sup
t≥0

exp(βM(t)− 1

2
〈βM〉(t)) ≥ eβr

}

≤ e−βr,

where we used the exponential supermartingale inequality.

We recall that for a process of the form y(t) = [u(t), u̇(t)], Fu ≡ Fy stands
for the functional defined by (2.15), and τu ≡ τy stands for the stopping time
defined by (2.16).

Corollary 3.3. Suppose that the hypotheses of Theorem 2.2 are fulfilled. Then
for any solution u(t) of equation (1.1), we have

P

{

sup
t≥0

(Fu(t)− Lt) ≥ Fu(0) + r
}

≤ exp(4βC − βr) for any r > 0,

P{l ≤ τu <∞} ≤ exp(4βC − βr − βlM) for any l ≥ 0,

where L = K + 4αC, K and β are the constants from the previous proposition
and C is the constant from inequalities (2.2)-(2.3).
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This result follows from Proposition 3.2 and the fact that, due to inequality
(2.2), we have

Eu(t) ≤ |Eu(t)| ≤ Eu(t) + 4C.

3.4 Existence of stationary measure

In this subsection we show that the process y(t) = [u(t), u̇(t)] has a bounded
second moment in the more regular space Hs = Hs+1(D) × Hs(D), with
s = s(ρ) > 0 sufficiently small. By the Bogolyubov-Krylov argument, this im-
mediately implies the existence of stationary distribution for the corresponding
Markov process.

Proposition 3.4. Under the hypotheses of Theorem 2.2, there is an increasing
function Q such that, for any s ∈ (0, 1 − ρ/2), and any solution of equation
(1.1), we have

E|y(t)|2Hs ≤ Q(|y(0)|H) + |y(0)|2Hse−αt.

Proof. Let us split u to the sum u = v + z, where v solves

∂2t v + γ∂tv −∆v = h(x) + η(t), ξv(0) = ξu(0). (3.13)

The standard argument shows that for any s ∈ [0, 1], we have

E|ξv(t)|2Hs ≤ C(γ, ‖h‖1) + |y(0)|2Hse−αt, (3.14)

so that it remains to bound the average of |ξz(t)|2Hs . In view of (1.1) and (3.13),
z(t) is the solution of

∂2t z + γ∂tz −∆z + f(u) = 0, ξz(0) = 0. (3.15)

We now follow the argument used in [29]. Let us differentiate (3.15) in time,
and set θ = ∂tz. Then θ solves

∂2t θ + γ∂tθ −∆θ + f ′(u)∂tu = 0, [θ(0), θ̇(0)] = [0,−f(u(0))]. (3.16)

Let us fix s ∈ (0, 1 − ρ/2), multiply this equation by (−∆)s−1(θ̇ + αθ) and
integrate over D. We obtain

d

dt
Ẽθ(t) +

3α

2
Ẽθ(t) ≤ 2

∫

D

|f ′(u)u̇||(−∆)s−1(θ̇ + αθ)| dx =: L, (3.17)

where we set
Ẽθ(t) = |ξθ|2Hs−1 + αγ|θ|2Hs−1 + 2α(θ, θ̇)Hs−1 .

By the Hölder and Sobolev inequalities

L ≤ C1

∫

D

(|u|ρ + 1)|u̇||(−∆)s−1(θ̇ + αθ)| dx

≤ C1(|u|ρL6 + 1)|u̇|L2 |(−∆)s−1(θ̇ + αθ)|L6/(3−ρ)

≤ C2(|u|2L6 + 1)|u̇|L2 |(−∆)s−1(θ̇ + αθ)|H1−s

≤ C3(‖∇u‖2 + 1)‖u̇‖|θ̇ + αθ|H1−s ≤ α

2
Ẽθ(t) + C4(‖∇u‖4 + 1)‖u̇‖2,
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where we used the embedding H1−s →֒ L6/(3−ρ). Substituting this estimate in
(3.17) and taking the mean value we obtain

d

dt
EẼθ(t) ≤ −αEẼθ(t) + C4E(‖∇u‖4 + 1)‖u̇‖2.

Applying the Gronwall lemma and using Proposition 3.1, we see that

EẼθ(t) ≤ EẼθ(0) + C5,

where the constant C5 depends only on α and |y(0)|H. Moreover, by (3.16) we
have

Ẽθ(0) = |f(u(0))|2Hs−1 ≤ |f(u(0))|2L2 ≤ C(1 + |y(0)|6H),

so that
EẼθ(t) ≤ Q1(|y(0)|H). (3.18)

In view of (3.15)

|z|Hs+1 = |∆z|Hs−1 = |z̈ + γż + f(u)|Hs−1 ≤ |z̈ + γż|Hs−1 + |f(u)|L2

≤ |θ̇ + γθ|Hs−1 + C(1 + |y(0)|3H),

whence
|z|2Hs+1 ≤ 2Ẽθ(t) + C6(1 + |y(0)|6H).

Taking the mean value in this inequality and using (3.18), we obtain

E|ξz(t)|2Hs ≤ Q2(|y(0)|H).

This completes the proof of Proposition 3.4.

4 Stability of solutions

In this section we establish the stability and the recurrence property of solutions
of equation (1.1).

4.1 The Foiaş-Prodi estimate

Here we establish an estimate which will allow us to use the Girsanov theorem.
Let us consider the following two equations:

∂2t u+ γ∂tu−∆u+ f(u) = h(x) + ∂tg(t, x), (4.1)

∂2t v + γ∂tv −∆v + f(v) + PN [f(u)− f(v)] = h(x) + ∂tg(t, x), (4.2)

where g(t) is a function in C(R+;H
1
0 (D)), and PN stands for the orthogonal

projection from L2(D) to its N -dimensional subspace spanned by the functions
e1, e2, . . . , eN .
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Proposition 4.1. Suppose that for some non-negative constants K, l, s and T
the inequality

∫ t

s

‖∇z‖2 dτ ≤ l+K(t− s) for s ≤ t ≤ s+ T, (4.3)

holds for z = u and z = v, where u and v are solutions of (4.1) and (4.2),
respectively. Then, for any ε > 0 there is an integer N∗ ≥ 1 depending only on
ε and K such that for all N ≥ N∗ we have

|ξv(t)− ξu(t)|2H ≤ e−α(t−s)+εl|ξv(s)− ξu(s)|2H for s ≤ t ≤ s+ T. (4.4)

Proof. Let us set w = v − u. Then w(t) solves

∂2tw + γ∂tw −∆w + (I − PN )[f(v)− f(u)] = 0, (4.5)

and we need to show that the flow y(t) = ξw(t) satisfies

|y(t)|2H ≤ e−α(t−s)+εl|y(s)|2H for s ≤ t ≤ s+ T. (4.6)

The function y(t) satisfies

∂t|y|2H = 2[(∇w,∇ẇ) + (−γẇ +∆w − (I − PN )[f(v) − f(u)] + αẇ, ẇ + αw)]

≤ 2[(∇w,∇ẇ) + (−γẇ +∆w + αẇ, ẇ + αw)]

+ 2‖(I − PN )[f(v)− f(u)]‖(‖ẇ‖+ α‖w‖)

≤ −3α

2
|y|2H + 4‖(I − PN )[f(v)− f(u)]‖|y|H. (4.7)

We first note that

‖(I − PN )[f(v)− f(u)]‖ ≤ |I − PN |L(H1,p→L2)|f(v)− f(u)|H1,p , (4.8)

and that

|f(v)− f(u)|H1,p ≤ C

3
∑

j=1

|∂j [f(v)− f(u)]|Lp , (4.9)

where p ∈ (6/5, 2) will be chosen later. Further,

|∂j [f(v)− f(u)]|Lp = |f ′(v)∂jv − f ′(u)∂ju|Lp

≤ |(f ′(v) − f ′(u))∂jv|Lp + |f ′(u)(∂jv − ∂ju)|Lp = J1 + J2.
(4.10)

For J1 we have

J1 =

(
∫

D

|(f ′(v)− f ′(u))∂jv|p dx
)

1
p

≤ C4

(
∫

D

|w|p|∂jv|p(|v|p(ρ−1) + |u|p(ρ−1) + 1) dx

)
1
p

≤ C5|w|L6 |∇v|L2(|v|ρ−1
L6 + |u|ρ−1

L6 + 1) ≤ C6‖w‖1(‖v‖21 + ‖u‖21 + 1), (4.11)
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where we used the Hölder and Sobolev inequalities and chose p = 6(3 + ρ)−1.
And finally, for J2 we have

J2 =

(
∫

|f ′(u)|p|∂jv − ∂ju|p dx
)

1
p

≤ C7

(
∫

|∂jw|p(|u|pρ + 1) dx

)
1
p

≤ C8‖w‖1(‖v‖21 + ‖u‖21 + 1), (4.12)

where we once again used the Hölder inequality. Combining inequalities (4.8)-
(4.12) together, we obtain

‖(I − PN )[f(v)− f(u)]‖ ≤ C′
1|I −PN |L(H1,p→L2)(‖v‖21 + ‖u‖21 + 1)|y|H. (4.13)

Substituting this inequality in (4.7), we see that

∂t|y|2H ≤ (−3α/2 + C|I − PN |L(H1,p→L2)(‖v‖21 + ‖u‖21 + 1))|y|2H. (4.14)

By the Sobolev embedding theorem, the space H1,p(D) is compactly embedded
in L2(D) for p > 6/5. This implies that the sequence |I − PN |L(H1,p→L2) goes
to zero as N goes to infinity. Combining this fact with the Gronwall lemma
applied to (4.14) and using (4.3), we arrive at (4.6).

4.2 Controlling the growth of intermediate process

The goal of this subsection is to show that inequality (4.3) (and therefore (4.4))
holds with high probability, for g(t) = ζ(t).
For any H-valued continuous process y(t), let τy be the stopping time defined in
(2.16), where L is the constant constructed in Corollary 3.3, and M, r are some
positive constants. We recall that for the process of the form y = [z, ż] we shall
write τz instead of τ[z,ż].

Proposition 4.2. Let u and v be solutions of (4.1) and (4.2) where g(t) = ζ(t),
that are issued from initial points y, y′ ∈ B1, respectively. Then

P{τv <∞} ≤ 3 exp(4βC − βr) + CM,r|y − y′|H, (4.15)

where β is the constant from Proposition 3.2.

Proof. To prove this result, we follow the arguments presented in Section 3.3 of
[22] and Section 4 of [20]. First, note that since inequality (4.15) concerns only
the law of v and not the solution itself, we are free to choose the underlying
probability space (Ω,F ,P). We assume that it coincides with the canonical space

of the Wiener process {ζ̂(t)}t≥0. More precisely, Ω is the space of continuous
functions ω : R+ → H endowed with the metric of uniform convergence on
bounded intervals, P is the law of ζ̂ and F is the completion of the Borel σ-
algebra with respect to P.
Let us define vectors êj = [0, ej] and their vector span

HN = span{ê1, ê2, . . . , êN},
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which is an N -dimensional subspace of H. The space Ω = C(R+,H) can be
represented in the form

Ω = ΩN +̇Ω⊥
N ,

where ΩN = C(R+,HN ) and Ω⊥
N = C(R+,H⊥

N ). We shall write ω = (ω(1), ω(2))
for ω = ω(1)+̇ω(2).

Let u′ be a solution of equation (4.1) that has the same initial data as v.
Introduce the stopping time

τ̃ = τu ∧ τu′ ∧ τv, (4.16)

and a transformation Φ : Ω → Ω given by

Φ(ω)(t) = ω(t)−
∫ t

0

a(s) ds, a(t) = 1t≤τ̃PN (0, [f(u)− f(v)]), (4.17)

where PN is the orthogonal projection from H to HN .

Lemma 4.3. For any initial points y and y′ in B1, we have

|P− Φ∗P|var ≤ CM,r|y − y′|H, (4.18)

where Φ∗P stands for the image of P under Φ.

Proof of lemma 4.3.
Step 1. Let us note that by the definition of τ̃ we have

Fu(t) ≤ Fu(0) + (L +M)t+ r, Fv(t) ≤ Fu′

(0) + (L+M)t+ r, (4.19)

for all t ≤ τ̃ . We claim that there is an integer N = N(α,L,M) such that for
all t ≤ τ̃ we have

|ξv(t)− ξu(t)|2H ≤ e−αt+θ|ξu(0)− ξu′(0)|2H, (4.20)

where θ = |Eu(0)| ∨ |Eu′(0)| + r. Indeed, in view of inequality (2.2), for any
y = [y1, y2] in H, we have

|y(t)|2H ≤ |y(t)|2H + 2

∫

D

F (y1) dx| − 2

∫

D

F (y1) dx ≤ |E(y)|+ 2ν‖y1‖2 + 2C

≤ |E(y)|+ λ1
2
‖y1‖2 + 2C ≤ |E(y)|+ 1

2
|y|2H + 2C,

so that
|y|2H ≤ 2|E(y)|+ 4C. (4.21)

Combining this inequality with (4.19), we see that for all t ≤ τ̃

α

∫ t

0

‖∇z(s)‖2 ds ≤ 2(|Eu(0)| ∨ |E ′
u(0)|+ r) + 2(L+M + 2C)t,

for z = u and z = v. Using this inequality and applying Proposition 4.1 with
ε = α/2 we arrive at (4.20).
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Step 2. Let us note that the transformation Φ can be represented in the form

Φ(ω) = (Ψ(ω), ω(2)),

where Ψ : Ω → ΩN is given by

Ψ(ω)(t) = ω(1)(t) +

∫ t

0

a(s;ω) ds.

It is straightforward to see that

|P− Φ∗P|var ≤
∫

Ω⊥

N

|Ψ∗(PN , ω
(2))− PN |varP⊥

N(dω
(2)), (4.22)

where PN and P⊥
N are the images of P under the natural projections PN : Ω →

ΩN and QN : Ω → Ω⊥
N , respectively. Define the processes

z(t) = ω(1)(t), z̃(t) = ω(1)(t) +

∫ t

0

a(s;ω) ds.

It follows that PN = Dz and Ψ∗(P, ω
(2)) = Dz̃. By Theorem A.10.1 in [22], we

have

|Dz −Dz̃|var ≤
1

2

(

(

E exp

[

6 max
1≤j≤N

b−1
j

∫ ∞

0

|a(t)|2 dt
])

1
2

− 1

)
1
2

, (4.23)

provided the Novikov condition

E exp

(

C

∫ ∞

0

|a(t)|2 dt
)

<∞, for any C > 0,

holds. In view of inequalities (4.19) and (4.20) we have

E exp(C

∫ ∞

0

|a(t)|2 dt) = E exp(C

∫ τ̃

0

|a(t)|2 dt)

≤ E exp(C

∫ τ̃

0

‖f(v)− f(u)‖2 dt) ≤ E exp(C1

∫ τ̃

0

‖v − u‖21(1 + ‖u‖41 + ‖v‖41) dt)

≤ E exp(C2|ξu(0)− ξu′(0)|2H
∫ ∞

0

e−αt+θK(t) dt),

where
K(t) = (1 + |Eu(0)| ∨ |Eu′(0)|+ (L+M)t+ r)2.

So not only the Novikov condition holds, but also there is a positive constant
CM,r = C(α,L,M, r) such that the term on the right-hand side of inequality
(4.23) does not exceed CM,r|y − y′|H. Combining this with inequality (4.22),
we arrive at (4.18).
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Now we are ready to establish (4.15). Introduce auxiliary H-continuous pro-
cesses yu, yu

′

and yv defined as follows: for t ≤ τ̃ they coincide with processes
ξu, ξu′ and ξv, respectively, while for t ≥ τ̃ they solve

∂ty = −λy,

where λ > 0 is a large parameter. By construction, with probability 1, we have

yv(t, ω) = yu
′

(t,Φ(ω)) for all t ≥ 0. (4.24)

Let us note that

P(τv <∞) = P(τv <∞, τu ∧ τu′

<∞) + P(τv <∞, τu ∧ τu′

= ∞)

≤ P(τu <∞) + P(τu
′

<∞) + P(τv <∞, τu ∧ τu′

= ∞). (4.25)

Moreover, in view of (4.24)

P(τv <∞, τu ∧ τu′

= ∞) ≤ P(τyv <∞) = Φ∗P(τyu′ <∞)

≤ P(τyu′ <∞) + |P− Φ∗P|var ≤ P(τu
′

<∞) + |P− Φ∗P|var, (4.26)

where we used the fact that for t ≥ τ̃ the norms of auxiliary processes decay
exponentially. Combining these two inequalities we obtain

P(τv <∞) ≤ P(τu <∞) + 2P(τu
′

<∞) + |P− Φ∗(P)|var. (4.27)

It remains to use Corollary 3.3 and Lemma 4.3 to conclude.

4.3 Hitting a non-degenerate ball

Here we show that the trajectory of the process y(t) = [u(t), u̇(t)] issued from
arbitrarily large ball hits any non-degenerate ball centered at the origin, with
positive probability, at a finite non-random time. We denote by Bd the ball of
radius d in H, centered at the origin.

Proposition 4.4. For any R > 0 and d > 0 there is T∗ = T∗(R, d) > 0 such
that for all T ≥ T∗, we have

inf
y∈BR

PT (y,Bd) > 0, (4.28)

where Pt(y,Γ) = Py(St(y, ·) ∈ Γ) is the transition function of the Markov process
corresponding to (1.1).

Proof. Let us first split u to the sum ũ+ ū, where ū is the solution of

∂2t ū+ γ∂tū−∆ū = 0, ξū(0) = ξu(0). (4.29)

Then the corresponding flow ȳ(t) satisfies the exponential decay estimate

|ȳ(t)|2H ≤ e−αt|y(0)|2H. (4.30)
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Let us fix T∗ = T∗(R, d) such that for all T ≥ T∗ and any initial point y in BR,
we have

|ȳ(T )|H ≤ d/2. (4.31)

We claim that (4.28) holds with this time T∗. Indeed, if this is not true, then
there is T ≥ T∗ such that

inf
y∈BR

PT (y,Bd) = 0. (4.32)

In view of (4.29), ũ solves

∂2t ũ+ γ∂tũ−∆ũ+ f(ũ+ ū) = h(x) + η(t, x), ξũ(0) = 0. (4.33)

Now note that this equation is equivalent to

ỹ(t) =

∫ t

0

g(s) ds+ ζ̂(t), (4.34)

where

ỹ = [ũ, ∂tũ], g = [∂tũ,−γ∂tũ+∆ũ− f(ũ+ ū) + h(x)], ζ̂ = [0, ζ],

and therefore ỹ(T ) continuously depends on ζ̂ (in the sense that the small per-

turbation of ζ̂ in C(0, T ;H) will result in a small perturbation of ỹ(T ) in H).
Let us consider equation (4.33) with the right-hand side

ζ̃y =

∫ t

0

f(ū) ds− th, (4.35)

which is a non-random force (the notation ζ̃y is justified by the fact that it is
uniquely determined by the initial point y). Then the function ũ ≡ 0 solves
that equation. It follows that there exists ε = ε(d) > 0 such that

|ỹ(T )|H ≤ d/2,

provided
|ζ − ζ̃y|C(0,T ;L2) ≤ ε. (4.36)

Combining this with inequality (4.31) we obtain

|y(T )|H ≤ d. (4.37)

Therefore
PT (y,Bd) ≥ P(|ζ − ζ̃y|C(0,T ;L2) ≤ ε). (4.38)

We need the following lemma. It is established in the appendix.

Lemma 4.5. For any ρ < 2 there exists s = s(ρ) > 0 such that if

|f ′(u)| ≤ C(|u|ρ + 1), (4.39)

then
|f(u)− f(v)|L2 ≤ C1(|u|ρH1−s + |v|ρH1−s + 1)|u− v|H1−s , (4.40)

where C1 > 0 depends only on C > 0.
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Let us suppose that we have (4.32), and let yj(0) = [uj(0), u̇j(0)] be a
minimizing sequence. This sequence is bounded in H1×L2, so it has a converg-
ing subsequence in H1−s × H−s (s is the constant from the previous lemma).
Moreover, a standard argument coming from theory of m-dissipative operators
shows that the resolving operator of (4.29) generates a continuous semigroup
in H1−s × H−s (e.g., see [5]). It follows that for all t ≥ 0 the corresponding
sequence of solutions ȳj(t) issued from yj(0) converges in that space. In partic-
ular ūj(t) converges in H

1−s. Denoting by û(t) its limit and using Lemma 4.5
together with inequality

|
∫ t

0

ψ(s) ds|C(0,T ;L2) ≤ T 1/2|ψ|L2(0,T ;L2),

we see that ζ̃j = ζ̃yj(0) → ζ̃ in C(0, T ;L2), where

ζ̃ =

∫ t

0

f(û) ds− th.

Inequality (4.38) implies that

P(|ζ − ζ̃j |C(0,T ;L2) ≤ ε) → 0 as j → ∞. (4.41)

Let us fix j0 ≥ 1 so large that for all j ≥ j0

|ζ̃j − ζ̃|C(0,T ;L2) ≤ ε/2.

Then by the triangle inequality, for all j ≥ j0

P(|ζ − ζ̃|C(0,T ;L2) ≤ ε/2) = P(|ζ − ζ̃j + ζ̃j − ζ̃|C(0,T ;L2) ≤ ε/2)

≤ P(|ζ − ζ̃j |C(0,T ;L2) ≤ |ζ̃j − ζ̃|C(0,T ;L2) + ε/2)

≤ P(|ζ − ζ̃j |C(0,T ;L2) ≤ ε).

Letting j go to ∞ and using inequality (4.41), we obtain

P(|ζ − ζ̃|C(0,T ;L2) ≤ ε/2) = 0,

which is impossible, since the support of ζ restricted to [0, T ] coincides with
C(0, T ;L2). The proof of Proposition 4.4 is complete.

5 Proof of Theorem 2.4

In this section we establish Theorem 2.4. As it was already mentioned, this will
imply Theorem 2.3. We then show that the non-degeneracy condition imposed
on the force can be relaxed to allow forces that are non-degenerate only in the
low Fourier modes (see Theorem 5.3).
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5.1 Recurrence: verification of (2.17)-(2.18)

In view of Proposition 3.1, it is sufficient to establish inequality (2.18). To
this end, we shall use the existence of a Lyapunov function, combined with an
auxiliary result established in [27].

Let St(y, ω) be a Markov process in a separable Banach space H and let
Rt(y, ω) be its extension on an interval [0, T ]. Consider a continuous functional
G(y) ≥ 1 on H such that

lim
|y|H→∞

G(y) = ∞.

Suppose that there are positive constants d,R, t∗, C∗ and a < 1, such that

EyG(St∗) ≤ aG(y) for |y|H ≥ R, (5.1)

EyG(St) ≤ C∗ for |y|H ≤ R, t ≥ 0, (5.2)

inf
y,y′∈BR

Py{|RT (y, y
′, ·)|H ∨ |R′

T (y, y
′, ·)|H ≤ d} > 0. (5.3)

We shall denote by τd the first hitting time of the set BH(d). The following
proposition is a weaker version of the result proved in [27] (see Proposition 3.3).

Proposition 5.1. Under the above hypotheses there are positive constants C
and κ such that the inequality

Ey exp(κτd) ≤ C(G(y) + G(y′)), for any y = (y, y′) ∈ H, (5.4)

holds for the extension St constructed by iteration of Rt on the half-line t ≥ 0.

It follows from estimate (2.7) that inequalities (5.1) and (5.2) are satisfied for
the functional

G(y) = 1 + |E(y)|.
We now show that for any d > 0 we can find an integer k ≥ 1 and T∗ ≥ 1
sufficiently large, such that we have (5.3) for any T ∈ {kT∗, (k + 1)T∗, . . .}. In
what follows, we shall drop the subscript and write |y| instead of |y|H. So let
us fix any d > 0, and consider the events

Gd = {|RT (y, y
′)| ≤ d}, G′

d = {|R′
T (y, y

′)| ≤ d},
Er = {FR(t) ≤ FR(0) + Lt+ r} ∩ {F ′

R(t) ≤ F ′
R(0) + Lt+ r},

where Fy(t) is defined in (2.15), and L is the constant from Corollary 3.3.
Step 1. First, let us note that by Proposition 4.4, there is T∗ = T∗(R, d) ≥ 1,
such that

Py{|ST∗
(y, ·)| ≤ d/2} ≥ cd for any y ∈ BR, (5.5)

where cd is a positive constant depending on d,R and T∗. We claim that this
implies

Py{|SkT∗
(y, ·)| ≤ d/2} ≥ cd for all k ≥ 1 and y ∈ BR. (5.6)
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Indeed, let us fix any integer k ≥ 1 and introduce the stopping times

τ̄(y) = min{nT∗, n ≥ 1 : |SnT∗
(y, ·)| > d/2}, σ̄ = τ̄ ∧ kT∗.

Let us note that if τ̄ is finite, then we have

|Sτ̄−T∗
(y, ·)| ≤ R and |Sτ̄ (y, ·)| > d/2, (5.7)

where inequalities hold for any y in BR. Moreover

Py{|SkT∗
(y, ·)| > d/2} ≤ Py{τ̄ = σ̄}, (5.8)

where we used that for τ̄ > kT∗, we have |SkT∗
(y, ·)|H ≤ d/2. In view of (5.7)

Py{τ̄ = σ̄} ≤ Py{|Sσ̄−T∗
(y, ·)| ≤ R, |Sσ̄(y, ·)| > d/2} := p. (5.9)

Since σ̄ is a.s. finite, we can use the strong Markov property, and obtain

p = Ey[Ey(1|Sσ̄−T∗
(y,·)|≤R · 1|Sσ̄(y,·)|>d/2|Fσ̄−T∗

)]

= Ey[1|v|≤R · Ev(1|ST∗
(v,·)|>d/2)]

= Ey[1|v|≤R · Pv(|ST∗
(v, ·)| > d/2)] ≤ sup

v̄∈BR

Pv̄(|ST∗
(v̄, ·)| > d/2),

where v = Sσ̄−T∗
(y, ·), and Ft is the filtration generated by St. In view of (5.5),

the last term in this inequality does not exceed 1 − cd. Combining this with
inequalities (5.8) and (5.9), we arrive at (5.6).
Step 2. It follows from the previous step that for any T ∈ {T∗, 2T∗, . . .}

Py(Gd/2) ∧ Py(G
′
d/2) ≥ cd, for any y, y′ ∈ BR, (5.10)

where we used that Rt is an extension of St. Further, by Corollary 3.3 we have

Py(Er) ≥ 1− 2 exp(4βC − βr) := 1− o(r). (5.11)

Let us fix r = r(d,R, T∗) > 0 so large that

o(r) ≤ c2d/8. (5.12)

By the symmetry, we can assume that

Py(G
′
d/2N c) ≤ Py(Gd/2N c), (5.13)

where we set N = {V(y, y′) 6= V ′(y, y′)}. We claim that

Gd/2ErN c ⊂ GdG
′
d, (5.14)

for any T ∈ {kT∗, (k+1)T∗, . . .} with k ≥ 1 sufficiently large. To prove this, let
us fix any ω in Gd/2ErN c, and note that it is sufficient to establish

|RT (y, y
′, ω)−R′

T (y, y
′, ω)| ≤ d/2, for any y, y′ in BR. (5.15)
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Since ω ∈ N c, we have that V = V ′, and therefore, in view of (2.10)-(2.14),
Rt(y, y

′) and R′
t(y, y

′) are, respectively, the flows of equations

∂2t ũ+ γ∂tũ−∆ũ+ f(ũ)− PNf(ũ) = h(x) + ψ(t), ξũ(0) = y, (5.16)

and

∂2t ṽ + γ∂tṽ −∆ṽ + f(ṽ)− PNf(ṽ) = h(x) + ψ(t), ξũ(0) = y′. (5.17)

It follows that their difference w = ṽ − ũ solves

∂2tw + γ∂tw −∆w + (I − PN )[f(ṽ)− f(ũ)] = 0, [w(0), ẇ(0)] = y′ − y.

Using the Foiaş-Prodi estimate established in Proposition 4.1 (see (4.5)-(4.6))
together with the fact that ω ∈ Er, we can find an integer N ≥ 1 depending
only on L such that

|RT (y, y
′, ω)−R′

T (y, y
′, ω)|2 ≤ C(r, R)e−αT |y − y′|2 ≤ 4R2C(r, R)e−αT .

Since r is fixed, we can find k ≥ 1 sufficiently large, such that the right-hand
side of this inequality is less than d2/4 for any T ∈ {kT∗, (k+1)T∗, . . .}, so that
we have (5.14).
Step 3. We now follow the argument presented in [27]. In view of (5.14)

Py(GdG
′
d) = Py(GdG

′
dN c) + Py(GdG

′
dN )

≥ Py(GdG
′
dErN c) + Py(Gd|N )Py(G

′
d|N )Py(N )

≥ Py(Gd/2ErN c) + Py(GdN )Py(G
′
dN ),

where we used the independence of V and V ′ conditioned on the event N .
Combining this inequality with (5.11), we obtain

Py(GdG
′
d) ≥ Py(Gd/2N c) + Py(GdN )Py(G

′
dN )− o(r).

We claim that the right-hand side of this inequality is no less than c2d/8. Indeed,
if Py(Gd/2N c) ≥ c2d/4, then the required result follows from inequality (5.12).
If not, then by inequalities (5.10) and (5.13), we have

c2d ≤ Py(Gd/2)Py(G
′
d/2) ≤ Py(Gd/2N )Py(G

′
d/2N ) + 3c2d/4,

so that
Py(GdN )Py(G

′
dN ) ≥ Py(Gd/2N )Py(G

′
d/2N ) ≥ c2d/4.

We have thus shown that for any y, y′ in BR

Py{|RT (y, y
′, ·)| ∨ |R′

T (y, y
′, ·)| ≤ d} ≡ Py(GdG

′
d) ≥ c2d/8,

and therefore we have (5.3). The hypotheses of Proposition 5.1 are thus satisfied,
so that inequality (2.18) holds.
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5.2 Exponential squeezing: verification of (2.19)-(2.22)

Let u, u′, v, ũ, ũ′, ṽ and ̺, τ, σ be the processes and stopping times constructed
in Subsection 2.2. Consider the following events:

Q′
k = {kT ≤ τ ≤ (k + 1)T, τ ≤ ̺}, Q′′

k = {kT ≤ ̺ ≤ (k + 1)T, ̺ < τ}.

Lemma 5.2. There exist positive constants d, r, L and M such that for any
initial point y ∈ BH(d) and any T ≥ 1 sufficiently large

Py(Q′
k) ∨ Py(Q′′

k) ≤ e−2(k+1) for all k ≥ 0.

Proof.
Step1. (Probability of Q′

k). Let L be the constant from Corollary 3.3. Then
using second inequality of this corollary, we obtain

Py(Q′
k) ≤ Py(kT ≤ τ <∞) ≤ 2 exp(4βC − βr − βkTM) ≤ e−2(k+2), (5.18)

for M ≥ 2β−1, r ≥ 5β−1 + 4C. From now on, the constants L,M and r will be
fixed.

Step2. (Probability of Q′′
k). Let us first note that by the Markov property we

have

Py(Q′′
k) = Py(Q′′

k , σ ≥ kT ) = Ey(1Q′′

k
· 1σ≥kT ) = Ey[Ey(1Q′′

k
· 1σ≥kT |FkT )]

= Ey[1σ≥kT · Ey(1Q′′

k
|FkT )] ≤ Ey[1σ≥kT · Eȳ10≤̺≤T ]

= Ey[1σ≥kT · Pȳ(0 ≤ ̺ ≤ T )], (5.19)

where ȳ(·) = y(kT, ·), and F t stands for the filtration corresponding to the
process St. Moreover, it follows from the definition of maximal coupling, that
for any y in H, we have

Py(0 ≤ ̺ ≤ T ) = |Py{ξv}T − Py{ξu′}T |var.

Combining this with inequality (5.19), we obtain

Py(Q′′
k) ≤ Ey(1σ≥kT · |Pȳ{ξv}T − Pȳ{ξu′}T |var) (5.20)

Further, let us note that

|Pȳ{ξv}T − Pȳ{ξu′}T |var = sup
Γ

|Pȳ({ξv}T ∈ Γ)− Pȳ({ξu′}T ∈ Γ)|

≤ Pȳ(τ̃ <∞) + sup
Γ

|Pȳ({ξv}T ∈ Γ, τ̃ = ∞)− Pȳ({ξu′}T ∈ Γ, τ̃ = ∞)|

:= L1 + L2, (5.21)

where τ̃ = τu ∧ τu′ ∧ τv, and the supremum is taken over all Γ ∈ B(C(0, T ;H)).
In view of (4.24) we have

L2 ≤ |Pȳ − Φ∗Pȳ|var, (5.22)
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where Φ is the transformation constructed in Subsection 4.2, and we used the
fact that for τ̃ = ∞ we have yv ≡ ξv and yu

′ ≡ ξu′ Further, in view (4.26) we
have

L1 ≤ Pȳ(τ
u ∧ τu′

<∞) + Pȳ(τ
u′

<∞) + |Pȳ − Φ∗Pȳ|var. (5.23)

Combining inequalities (5.20)-(5.23), we get

Py(Q′′
k) ≤ 2Ey[1σ≥kT · (Pȳ(τ <∞) + |Pȳ − Φ∗Pȳ|var)]. (5.24)

Let us note that for any ω ∈ {σ ≥ kT } we have

|Eũ(kT )| ∨ |Eũ′(kT )| ≤ |Eũ(0)| ∨ |Eũ′(0)|+ (L+M)kT + r. (5.25)

Moreover, it follows from Proposition 4.1 (see the derivation of (4.20)) that
for any ε > 0 there is N depending only on ε, α, L and M , such that for all
kT ≤ t ≤ τ ∧ τ ṽ, on the set σ ≥ kT , we have

|ξṽ(t)− ξũ(t)|2H ≤ exp(−α(t− kT ) + θ)|ξũ(kT )− ξũ′(kT )|2H
≤ exp(−α(t− kT )/2 + θ)|ξũ(kT )− ξũ′(kT )|2H, (5.26)

where we set
θ = ε · (|Eũ(kT )| ∨ |Eũ′(kT )|+ r).

By the same argument as in the derivation of (4.18), we have

Ey(1σ≥kT · |Pȳ − Φ∗Pȳ|var) ≡ Ey(1σ≥kT · |Py(kT ) − Φ∗Py(kT )|var)

≤ 1

2

(

(

Ey exp

[

6 max
1≤j≤N

b−1
j K

] 1σ≥kT) 1
2

− 1

)

1
2

,

(5.27)

where

K = C1

∫ ∞

0

{exp(−α(t− kT )/2 + θ)|ξũ(kT )− ξũ′(kT )|2H
· (1 + |Eũ(kT )| ∨ |Eũ′(kT )|+ (L +M)t+ r)2} dt

≤ C2

∫ ∞

0

{exp(−α(t− kT )/2 + θ)e−αkT |y − y′|2H
· (1 + |Eũ(0)| ∨ |Eũ′(0)|+ (L+M)kT + (L+M)t+ r)2} dt, (5.28)

and we used inequalities (5.25)-(5.26) combined with the fact that the mean
value is taken along the characteristic of the set {σ ≥ kT }. Now let us fix
ε = ε(α,L,M) > 0 such that α/4 ≥ ε · (L +M), and let C(α,L,M) > 0 be so
large that for any k ≥ 0 and any T ≥ 1

exp(−αkT/4)(1 + (L +M)kT )2 ≤ C(α,L,M).
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Combining this inequality with (5.28), we obtain

K ≤ C3 · C(α,L,M)e−
α
4 kT |y − y′|2H

∫ ∞

0

e−αt+εr(1 + (L+M)t+ r)2 dt

= C(α, r, L,M)e−
α
4 kT |y − y′|2H. (5.29)

Now recall that N depends only on ε, L andM , and ε depends on α,L andM . It
follows that N depends only on α,L andM . Let us choose d = d(α, r, L,M) > 0
so small that

6 max
1≤j≤N

b−1
j C(α, r, L,M)d ≤ 1. (5.30)

Then, by inequalities (5.27) and (5.29), we have

Ey(1σ≥kT · |Pȳ − Φ∗Pȳ|var) ≤ e−
α
8 kT |y − y′|H ≤ e−2(k+2), (5.31)

for T ≥ 16α−1 and d ≤ e−4. Further, by the Markov property and inequality
(5.18) we have

e−2(k+2) ≥ Py{kT ≤ τ <∞} = Ey[Ey(1kT≤τ<∞|FkT )] = Ey[Py(kT )(τ <∞)]

≥ Ey[1σ≥kT · Py(kT )(τ <∞)] ≡ Ey[1σ≥kT · Pȳ(τ <∞)].

Combining this inequality with (5.24) and (5.31) we obtain

Py(Q′′
k) ≤ 4e−2(k+2) ≤ e−2(k+1).

Now we are ready to establish (2.20)-(2.22). We have

Py{σ = ∞} ≥ 1−
∞
∑

k=0

Py{kT ≤ σ ≤ (k + 1)T } ≥ 1

2
,

where used Lemma 5.2 to show that

Py{kT ≤ σ ≤ (k + 1)T } = Py{kT ≤ τ ≤ (k + 1)T, τ ≤ ̺}
+ Py{kT ≤ ̺ ≤ (k + 1)T, ̺ < τ} = Py(Q′

k) + Py(Q′′
k) ≤ e−2(k+1).

By the same argument,

Ey[1{σ<∞}e
δσ] = Ey[1{σ<∞,τ≤̺}e

δσ] + Ey[1{σ<∞,̺<τ}e
δσ]

≤ Ey[1{τ<∞,τ≤̺}e
δτ ] + Ey[1{̺<∞,̺<τ}e

δ̺] ≤ 2
∞
∑

k=0

e−2(k+1)eδk(T+1) ≤ 2,

for δ < (1 + T )−1. So, inequalities (2.20) and (2.21) are established. To prove
(2.22), note that in view of (2.16), for σ <∞ we have

|Eũ(σ)| ≤ |Eũ(0)|+ (L+M)σ + r. (5.32)
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Combining this inequality with (4.21) we obtain

|Sσ|8H ≤ (2|Eũ(σ)|+4C)4 ≤ (2(|Eũ(0)|+(L+M)σ+r+2C))4 ≤ C(r, L,M)(1+σ4).

It is clear that the above inequality is satisfied also for S replaced by S′, so that

|Sσ|8H ≤ 2C(r, L,M)(1 + σ4).

Multiplying this inequality by 1{σ<∞}, taking the Ey-mean value, and using
inequality (2.21), we arrive at (2.22). The proof of Theorem 2.4 (and with it of
Theorem 2.3) is complete.

5.3 Relaxed non-degeneracy condition

We finish this section with the following result that allows to relax the non-
degeneracy condition imposed on the force.

Theorem 5.3. There exists N depending only on γ, f, ‖h‖ and B such that the
conclusion of Theorem 2.3 remains true for any random force of the form (1.2),
whose first N coefficients bj are not zero.

Let us fix an integerN1 such that inequality (5.29) holds for anyN ≥ N1 and
let d = d(N1) be so small that we have (5.30), whereN should be replaced byN1.
Theorem 5.3 will be established, if we show that there is an N = N(d) ≥ N1

such that inequality (4.28) holds, provided bj 6= 0 for j = 1, . . . , N . Let the

constants T and ε, together with the process ζ̃y be the same as in the proof
of Proposition 4.4. We need the following lemma, which is established in the
appendix.

Lemma 5.4. There exists N ≥ N1 such that

sup
y∈BR

|(I − PN )ζ̃y |C(0,T ;L2) ≤ ε/4. (5.33)

We claim that Theorem 5.3 holds with this N . Indeed, let us suppose that
inequality (4.28) does not hold, and we have (4.32). Let ζ̃j and ζ̃ be the processes
constructed in Proposition 4.4. Denote C = C(0, T ;L2). Then

P(|ζ − PN ζ̃|C ≤ ε/4) = P(|ζ − PN ζ̃j + PN ζ̃j − PN ζ̃|C ≤ ε/4)

≤ P(|ζ − PN ζ̃j |C ≤ |PN ζ̃j − PN ζ̃|C + ε/4)

≤ P(|ζ − ζ̃j + (I − PN )ζ̃j |C ≤ |ζ̃j − ζ̃|C + ε/4)

≤ P(|ζ − ζ̃j |C ≤ |(I − PN )ζ̃j |C + 3ε/4) ≤ P(|ζ − ζ̃j |C ≤ ε).

Letting j go to infinity, and using inequality (4.41) we obtain

P(|ζ − PN ζ̃|C ≤ ε/4) = 0,

which is impossible, since the support of ζ restricted to [0, T ] containsC(0, T ;PNL
2).

The proof Theorem 5.3 is complete.
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6 Appendix

6.1 Proof of (2.13)

Let us consider the continuous map G from C(0, T ;H1
0 (D)) to C(0, T ;H) defined

by G(ϕ) = ỹ, where ỹ is the flow of equation

∂2t z + γ∂tz −∆z + f(z)− PNf(z) = h(x) + ∂tϕ, [z(0), ż(0)] = y.

Then for any Γ ∈ B(C(0, T ;H)), we have

P{ξũ(t) ∈ Γ} = P{G(
∫ t

0

ψ(s) ds) ∈ Γ} = P{
∫ t

0

ψ(s) ds ∈ G−1(Γ)}

= P{ζ(t)−
∫ t

0

PNf(u) ds ∈ G−1(Γ)}

= P{G(ζ(t) −
∫ t

0

PNf(u) ds) ∈ Γ} = P{ξu(t) ∈ Γ}.

6.2 Proof of lemma 4.5

Let f be a function that satisfies the growth restriction (4.39) with ρ < 2. We
claim that inequality (4.40) holds with s = (2 − ρ)/(2(ρ + 1)). Indeed, by the
Hölder and Sobolev inequalities, we have

|f(u)− f(v)|2L2 =

∫

|f(u)− f(v)|2 ≤ C

∫

(|u|2ρ + |v|2ρ + 1)|u− v|2

≤ C||u|2ρ + |v|2ρ + 1|L3ρ/(1−s) |u− v|2L6/(1+2s)

≤ C′(|u|2ρH1−s + |v|2ρH1−s + 1)|u− v|2H1−s .

6.3 Proof of lemma 5.4

First let us fix N2 ≥ N1 such that for any N ≥ N2

|(I − PN )th|C(0,T ;L2) = T ‖(I − PN )h‖ ≤ ε/8. (6.1)

Notice that

|(I − PN )

∫ t

0

f(ū) ds|C(0,T ;L2) ≤ |I − PN |L(H1,p→L2)T sup
0≤t≤T

|f(ū)|H1,p , (6.2)

where p = 6/(3 + ρ) > 6/5. Using the Hölder and Sobolev inequalities, we
obtain

|f(ū)|H1,p ≤ C1(|f(ū)|L2 +

3
∑

j=1

|∂j ūf ′(ū)|Lp) ≤ C2(1 + ‖ū‖31) ≤ C(R). (6.3)

As was already mentioned, the space H1,p(D) is compactly embedded in L2(D)
for p > 6/5, so that the sequence |I − PN |L(H1,p→L2) goes to zero as N goes to
infinity. Combining this with inequalities (6.1) -(6.3), we arrive at (5.33).
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