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Abstract

This paper presents a linear programming approach for the optimal control of
nonlinear switched systems where the control is the switching sequence. This is
done by introducing modal occupation measures, which allow to relax the problem
as a primal linear programming (LP) problem. Its dual linear program of Hamilton-
Jacobi-Bellman inequalities is also characterized. The LPs are then solved numer-
ically with a converging hierarchy of primal-dual moment-sum-of-squares (SOS)
linear matrix inequalities (LMI). Because of the special structure of switched sys-
tems, we obtain a much more efficient method than could be achieved by applying
standard moment/SOS LMI hierarchies for general optimal control problems.

1 Introduction

A switched system is a particular class of a hybrid system that consists of a set of dynam-
ical subsystems, one of which is active at any instant of time, and a policy for activating
and deactivating the subsystems. These dynamical systems are encountered in a wide
variety of application domains such as automotive industry, power systems, aircraft and
traffic control, and more generally the area of embedded systems. Switched systems have
been the concern of much research, and many results are available for stability analysis
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and control design. They put in evidence the importance of orchestrating the subsystems
through an adequate switching strategy, in order to impose global stability and/or perfor-
mance. Interested readers may refer to the survey papers [15, 30, 42, 32] and the books
[31, 43] and the references therein.

In this context, these systems are generally controlled by intrinsically discontinuous con-
trol signals, whose switching rule must be carefully designed to guarantee stability and
performance properties. As far as optimality is concerned, several results are available in
two main different contexts:

e The first category of methods exploits necessary optimality conditions, in the form
of Pontryagin’s maximum principle (the so-called indirect approaches), or through a
large nonlinear discretization of the problem (the so-called direct approaches). The
first contributions can be found in [7, 22, 33] where the problem has been formulated
and partial solutions provided through generalized Hamilton-Jacobi-Bellman (HJB)
equations or inequalities and convex optimization. In [35, 40, 41], the maximum
principle is generalized to the case of general hybrid systems with nonlinear dynam-
ics. The case of switched systems, switched piecewise affine systems and hybrid
systems motivated from manufacturing environments is discussed in [4, 38, 10]. For
general nonlinear problems and hence for switched systems, only local optimality
can be guaranteed , even when discretization can be properly controlled [46]. The
subject is still largely open and we are far from a complete and numericaly tractable
solution to the switched optimal control problem.

e The second category collects extensions of the performance indexes H, and H.,
originally developed for linear time invariant systems without switching, and use the
flexibility of Lyapunov’s approach, see for instance [20, 14] and references therein.
Even for linear switched systems, the proposed results are based on nonconvex
optimization problems (e.g. bilinear matrix inequality conditions) difficult to solve
directly. Sufficient convex Linear Matrix Inequality (LMI) design conditions may be
obtained, yielding computed solutions which are suboptimal, but at the price of
introducing a conservatism (pessimism) and a gap to optimality which is hard, if not
impossible, to evaluate. Since the computation of this optimal strategy is a difficult
task, a suboptimal solution is of interest only when it is proved to be consistent,
meaning that it imposes to the switched system a performance not worse than the
one produced by each isolated subsystem [21].

Despite the interest of these existing approaches, the optimal control problem is not glob-
ally solved for switched systems, and new strategies are more than welcome, as computa-
tionally viable design techniques are missing. The present paper aims at complementing
this rich literature on switched systems with convex programming techniques from the
optimal control literature. Indeed, it is a well-known fact [44, 45] that optimal control
problems can be relaxed as linear programming (LP) problems over measure spaces. De-
spite some early numerical results [36], this approach was merely of theoretic interest,
before the advent of tractable primal-dual moment-sum-of-squares (SOS) LMI hierar-
chies, also now called Lasserre hierarchies, see [28] for an introduction to the subject.
Most notably, [27] explores in depth the application of such a numerical method for general



polynomial optimal control problems, where the control is bounded. By modeling control
and trajectory functions as occupation measures, one obtains a convex LP formulation of
the optimal control problem. This infinite-dimensional LP can be solved numerically and
approximately with a hierarchy of convex finite-dimensional LMIs.

In this paper, we consider the problem of designing optimal switching rules in the case
of polynomial switched dynamical systems. Classically, we formulate the optimal control
switching problem as an optimal control problem with controls being functions of time
valued in the discrete set {0,1}, and we relax it into a control problem with controls
being functions of time valued in the interval [0, 1]. In contrast with existing approaches
following this relaxation strategy, see e.g. [4, 34], relying on the local Pontryagin maximum
principle, our aim is to apply the global approach of [27]. We show that by specializing
the convex objects for switched systems, one obtains a numerical method for which the
number of modes driving the system enters linearly into the complexity of the problem,
instead of exponentially. On the one hand, our approach follows the optimal control
modeling framework. On the other hand, it exploits the flexibility and computational
efficiency of the convex LMI framework. In contrast with most of the existing work on
LMI methods, we have a guarantee of global optimality, in the sense that we obtain
an asympotically converging (i.e. with vanishing conservatism) hierarchy of lower bounds
on the achievable performance.

Organization of the paper

The paper is organized as follows. §2 constructs the generalized moment problem associ-
ated to the optimal control of switched systems, and details some conic duality results.
Theses results are used in §3 to obtain an efficient numerical method based on the mo-
ment/SOS LMI hierarchy. §4 then outlines a simple sufficient optimality condition that
is easy to check numerically. §5 gathers several useful extensions to the problem, kept
separate from the main body of the article so as to ease exposition and notations. Finally,
§6 illustrates the method on several examples.

Contributions

The contributions of this paper are as follows. On a theoretical level, a novel way of
relaxing optimal control problems of switched systems is proposed, following [23]. The
equivalence of this convex program with existing results in the literature [44, 45] is now
rigorously proven. In addition, a full characterization of the dual conic problem as a
system of relaxed HJB inequalities is given.

On a practical level, we present an easy to implement numerical method to solve the
control problem, based on the LMI relaxations for optimal control [27]. The specialized
measure LP formulation allows for substantial computational gains over generic formu-
lations, which we now characterize. Up to our knowledge, this is one of the only results
(along with [12] and [13]) exploiting problem structure for more efficient LMI relaxations
of control problems.



Preliminaries

Let M(X) denote the vector space of finite, signed, Borel measures supported on an
Euclidean subset X C R", equipped with the weak-* topology, see e.g. [25] for background
material. Let M™(X) denote the cone of non-negative measures in M (X). The support of
p € MT(X), the closed set of all points x such that p(A) > 0 for every open neighborhood
A of z, is denoted by spt . For p € M(X), spt v is the union of the supports of the Jordan
decomposition of p. For a continuous function f € C(X), we denote by [, f(x)p(dz)
the integral of f w.r.t. the measure p € M(X). When no confusion may arise, we
note (f,u) = [ fu for the integral to simplify exposition and to insist on the duality
relationship between C(X) and M(X). The Dirac measure supported at z*, denoted by
0+, is the measure for which (f,d,+) = f(z*) for all f € C(X). The indicator function
of set A, denoted by I4(x), is equal to one if © € A, and zero otherwise. The space of
probability measures on X, viz. the subset of M™(X) with mass (1, ) = 1, is denoted
by P(X).

For multi-index o € N” and vector x € R", we use the notation z* := [["_, zi"". We denote

by NI the set of vectors & € N™ such that > )  «; < m. The moment of multi-index
a € N" of measure p € M*(X) is then defined as the real y, = (%, u).

A multi-indexed sequence of reals (Y, )aen is said to have a representing measure on X
if there exists yp € M™(X) such that y, = (z%, ) for all @ € N™.

Let R[x] denote the ring of polynomials in the variables x € R", and let degp denote the
(total) degree of polynomial p.

A subset of R” is basic semi-algebraic if it is defined as the intersection of finitely many
polynomial inequalities, namely {x € R": g;(x) >0, 1 =1...nx} with ¢g;(z) € R[z], i =
1... nx.

Finally, we use the same notation z to denote indifferently trajectories x(¢) and state-
space parameters, to simplify exposition. In particular, it is understood throughout the
paper that a measure p(dz), even if associated to a trajectory x(t), is supported on an
finite-dimensional Fuclidean space and is not, say, a measure supported on an infinite-
dimensional functional space.

2 Weak linear program

2.1 Problem statement

Consider the optimal control problem

T
inf / lg(t)(t, x(t)) dt

st b{(t) = fo(t2(0). o(t) € {1.2,....m}, e
z(0) = xg, x(T) =z, (t,2(t)) € [0 T] x X

where the infimum is w.r.t. sequence o. The state x is a vector of n elements and the
control consists in choosing, for almost all times, which of the m possible dynamics drives
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the system. Throughout this section, the following assumptions hold:

Assumption 1 Terminal time T is given. State constraint set X is given and compact.
Let K :=[0,T] x X. Functions f; : K — R™ (dynamics), and l; : K - R, j=1,...,m
(Lagrangians) are given, continuous in all their variables, and Lipschitz continuous with
respect to the state variable.

Note that the above assumptions can be significantly weakened. For instance, mere mea-
surability of the dynamics w.r.t. time, lower semi-continuity of the Lagrangian or un-
bounded state spaces when the Lagrangian is coercive are often considered in the calculus
of variation literature. However, as §3 explores in depth, the question of the numeri-
cal representation of problem data is essential for rigorous global optimization. Up to
our knowledge, only polynomials can offer such guarantees, and Assumption 1 is general
enough to cover such an essential case.

Obviously, optimal control problem (1) can be equivalently written as

inf /0 S kit ()

st. 4= Z £t x(t)) u;(t)
2(0) = 29, 2(T) = 27, (t,2(1)) € K, u(t) € U

where the infimum is with respect to a time-varying vector u(t) which belongs for all
t € [0, T] to the (nonconvex) discrete set

U= {(1,0,...,0),(0,1,...,0),...,(0,0,...,1)} C R™ (3)

The next sections explore the various ways this problem can be lifted /relaxed as a linear
program over so-called occupation measures.

Remark 1 Section 5 gathers several extensions to problem (1) for which the presented
approach is applicable mutatis mutandis. This section is relegated at the end of the paper
to ease exposition.

2.2 Occupation measures

Simple examples (see for instance at the end of the paper) show that when measurable
functions of time are considered for controls such as in (2), optimal solutions might not
exist. This section summarizes several well-known concepts to regain compactness in the
control. These tools will then be specialized in the next section for switched systems.

Definition 1 (Young measure) A Young measure is a time-parametrized family of
probability measures w(dult) € P(U) defined almost everywhere, such that for all test
functions v € C(U), the function t — (v,w) is Lebesque measurable.



Young measures are also called generalized controls or relaxed controls, see for instance
[19]. Note that classical controls u(t), functions of time with values in U, are a particular
case of Young measures for the choice w(du|t) = d,¢)(du). Following the terminology of

[45], it is natural to relax (2) into the following “strong form”!:

ps = inf /0 >4t a0y o) e

m 4
st. @ = <Z £t (), w(du|t)> @
z(0) :J;O, 2(T) = xr, (t,2(t) € K

where the infimum is w.r.t. a Young measure w(dult) € P(U). Note that there might
be a strict relaxation gap, viz. p% is strictly less than the infimum in problem (1), for
ill-posed instances. It is not the purpose of this article to explore such a non-generic
case, and we refer to the discussion in e.g. [24, App. C] and the references therein on
such occurrences. There are sufficient conditions guaranteeing the absence of such a gap,
referred to as inward-pointing conditions, see for instance [18].

An equivalent way of relaxing (2) is to relax the controls to belong, for all ¢t € [0,77], to
the (convex) simplex

conVU:{ue]Rm:Zujzl, u; >0, j=1,...,m}. (5)

J=1

In other words, problem (4) on Young measures is equivalent to replacing U with conv U
in problem (2). In [4], problem (4) is called the embedding of problem (1), and it is
proved that the set of trajectories of problem (1) is dense (w.r.t. the uniform norm in the
space of continuous functions of time) in the set of trajectories of embedded problem (4).
Note however that these authors consider the more general problem of switching design
in the presence of additional bounded controls in each individual dynamics. To cope with
chattering effects due to the simultaneous presence of controls and (initial and terminal)
state constraints, they have to introduce a further relaxation of the embedded control
problem. In this paper, we do not have controls in the dynamics, and the only design
parameter is the switching sequence.

Notice that once a Young measure w(du|t) is given in problem (4), the corresponding
state trajectory is uniquely determined by

z(t) = xg —l—/o <Z fi(s,z(s))u;, w(du|s)> ds

and hence the following definition makes sense.

Definition 2 (Relaxed arc) An admissible pair (z,w) for problem (4) is called a relaxed
arc.

1“Strong” is opposed here to the “weak” problem to be defined shortly after.
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For optimization, strong problem (2) presents an essential first step, as sequential-compactness
is regained, guaranteeing the existence of optimal solutions under the sole existence of a
relaxed arc [45, Th. 1.2]. For global optimization though, the nonlinear dependence of (4)

on trajectories x(t) is problematic, and an additional generalization of Young measures
must be introduced, capturing both controls and trajectories:

Definition 3 (Occupation measure) Given a relazed arc (x,w), its corresponding oc-
cupation measure is defined by

(A x BxC):= /[B(x(t))w(0|t) dt
A
for all Borel subsets A, B,C" of [0,T], X and U, resp.

That is, occupation measures assign to each set A x B x C' the total time “spent” on it
by a relaxed arc (z,w). An alternative definition could be

p(dt, dz, du) = dy@ (do)w(dult)dt.

By construction, an occupation measure satisfies

(v, ) = /OT (/Uv(t,x(t),u)w(du|t)> dt (6)

for all continuous test functions v € C([0, 7] x X x U). Indeed, by the Riesz representation
theorem (see e.g. [25, §21.5]), an occupation measure could alternatively be defined as
the unique measure satisfying (6) for all continuous test functions (recall the hypothesis
of compact supports).

Evaluating now a continuously differentiable test function along a trajectory and making
use of (6) reveals the following lemma:

Lemma 1 Given a relazed arc (x,w), its corresponding occupation measure satisfies the
following linear constraints on its moments for any test function v € C*(R x R"):

o O &
<a—: + % : ; g uj7u> = v(T,27) — v(0, 7). (7)

Note the use of a scalar product, denoted by a dot, between the gradient vector g—z and

the controlled dynamics. Rubio (see [36] and the references therein) proposed then to
relax strong problem (4) by optimizing over all Borel measures satisfying (7) instead of
simply occupation measures, yielding the following “weak” problem:

p*W - Hl}f <le(t7$(t))uj(t)mu>

o O 1
s.t. <§ + e ]Z:; f uj,u> =v(T,zr) —v(0,20), VveC(K),

we MHK xU).
Weak problem (8) is rigorously justified by the following essential result [44]:

(8)
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Theorem 1 There is no relazation gap between optimal control problem (4) and measure
LP (8), viz.
Ps = Div- (9)

Obviously, direction pg > pjy, is a simple consequence of Lemma 1 and the continuity of the
cost. The other direction, more involved, is the core of [44, 45]. Synthetically, the authors
use specialized Hahn-Banach type separation arguments to show that the admissible set
for weak problem (8) is the closure of the convex hull of the set of occupation measures
of the admissible solutions of (4). That is, one could interpret those results as a Krein-
Milman theorem for optimal control problems.

Note that the use of relaxations and LP formulations of optimal control problems (on
ordinary differential equations and partial differential equations) is classical, and can be
traced back to the work by L. C. Young, Filippov, as well as Warga and Gamkrelidze,
amongst many others. For more details and a historical survey, see e.g. [17, Part III].

2.3 Modal occupation measures and primal LP

Occupation measures defined in §2.2 are supported on a subset of Euclidian space of
dimension n + m + 1. As such, they prove to be challenging for practical numerical
resolution when the size of the problem increases, a phenomenon known colloquially in
the (dual) dynamic programming literature as the “curse of dimensionality”.

For instance, the numerical approach of [36] proposes to consider a finite subset of
the countably many linear constraints on p given by (7). Then, as a consequence of
Tchakaloff’s theorem [28, Th. B.12], there exists an atomic measure with support in-
cluded in that of u, and satisfying the truncated linear constraints exactly. By gridding
the support of u with Dirac measures of unknown masses, one can then approach weakly-
* this atomic measure as the spatial resolution of the grid gets finer. This results in a
finite-dimensional LP to solve, with a number O (1/A™"™*1) of unknowns, with A the
grid resolution. Therefore, for a fixed resolution, the size of the LP grows exponentially
in the size of the state and control spaces.

Another example suffering a similar fate are LMI relaxations as presented later on in §3,
which the authors prefer over LP approximations for their greater rigor — most noticeably
the guarantee of obtaining lower bounds and their better convergence properties, see [28,
Section 5.4.2]. Indeed, as shown in §3.4, for a given relaxation order, the size of the semi-
definite blocks in the LMIs also grows exponentially with the dimension of the underlying
space.

For finite-dimensional optimization problems, structural properties of the problem can
be exploited to define equivalent LPs using more measures, but of smaller dimensions,
see [29]. This allows for much faster numerical resolution. Motivated by these savings,
we now introduce specialized occupation measures to satisfy much the same goal for the
optimal control of switched systems:

Definition 4 (Modal occupation measures) The j-th modal occupation measure j1;(dt,dx) €



MT(K) associated with occupation measure jv as in Def. 3, is defined as

pi(Ax B) = / / / w; p(dt, do, du), (10)
aJsJu
for all Borel subsets A, B of [0,T], X, resp.

In words, modal occupation measures are the projections on K = [0,T] x X of the first
moments of the occupation measure defined in §2.2 w.r.t. the controls. For each Borel
subset of K, each modal occupation measure therefore specifies the time spent by the pair
(t,z(t)) on each mode. As a consequence, Def. 4 implies the following specialization of
Lem. 1 for switched systems:

Corollary 1 Given a relaxed arc (x,w), its corresponding modal occupation measures
satisfy the following linear constraints:

<@+%f]7u]> :U(T,.IT)—U(O,$0) (11)

for all test functions v € C*(K).

Proof: Notice that by definition of U, the occupation measure satisfies

v W &
— =( =" ; : 12
<at’“> <at jzlug,u> (12)
The corollary is then the immediate application of Def. 4 and Fubini’s theorem. O

Corollary 1 naturally points to the following alternative weak problem for switched sys-
tems:

(115005 Hm)

j=1
" /ov v (13)
s.t. ;<a+%.f]aﬂj> :U(T7xT)_v(0a$0>7 VUGCI(‘Z():
pj € MH(K), j=1,....m
where the minimization is w.r.t. the vector of modal occupation measures (p1, . . ., fim)-

This is rigorously justified by the following:

Theorem 2 There is no relaxation gap between measure LP (8) and measure LP (13),
V1Z.

Proof: We first show p* < pj;,. Consider an admissible measure p for (13). Then, by

Cor. 1, there exists an admissible vector (u1, ... ) satisfying (11). As the cost can be
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treated in an analogous fashion, this shows that any admissible solution for (13) is also
admissible for (8) with the same cost, hence p* < pj, .

For the reverse inequality, consider now a vector (i1, . . ., i, ) admissible for (8), and define
A= p (14)
j=1

By construction, each p; is absolutely continuous with respect to fi, such that by the
Radon-Nikodym Theorem [25, §18.4], there exists a non-negative, measurable function
u;(t, v) such that yi; = u; fi. Injecting this back in (14) shows that, in addition, > 7", @; =
1, p-almost everywhere. Define now p € M*(K x U), with U as in (3), such that

p(dt, dz, du) == (Z ﬂj(t,x)51(duj|t,x)> a(dt, dz), (15)

J=1

such that by definition:

/U wy p(dt, der, du) = 1 (t, ) (dt, der), (16)

where the last two equations are understood in a weak sense. Working out the weak
dynamics of (13) leads then to:

N /Ov . Ov - ov v o
Z<a+%'fj,ﬂj>:Z<(E+%'fj)uj>u>

Jj=1 Jj=1

ov ™ v
— [ == R S Yy 1

= @+m@fu
“N\o T Lo )

As the cost can be treated in a similar manner, this concludes p* > pj,, hence the proof.
O

Theorem (2) fulfills the objective laid at the beginning of this section. Indeed structured
LP (13) involves m modal occupation measures supported on spaces of dimension n + 1,
instead of a single occupation measure on a space of dimension n+m+1 as in unstructured
LP (8).

2.4 HJB inequalities and dual LP

Before investigating the practical implications on LMI relaxations of structured measure
LP (13), we explore its conic dual. This is an interesting result in its own right for so-
called “verification theorems” which supply necessary and sufficient conditions in the form
of more traditional HJB inequalities. In addition, practical numerical resolution of the
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LMI relaxations by primal/dual interior-point methods [39] implies that a strengthening
of this dual will be solved as well, as shown later on in §3.3.

In this section, it is first shown that the solution of (13) is attained whenever an admissible
solution exists. Then, the dual problem of (13), in the sense of conic duality, is presented.
This leads directly to a system of subsolutions of HJB equations. Although, the cost
of this problem might not be attained, it is however shown that there is no duality gap
between the conic programs.

First of all, we establish that whenever the optimal cost of (13) is finite, there exists a
vector of measures attaining the value of the problem:

Lemma 2 [f p* is finite in problem (13),

there exists an admissible (u5, ..., uk,) attaining the infimum, viz. such that
> )y =" (18)
j=1

Proof: We first show that the mass of each measure is bounded. This is true for each
j1j, since test function v(t,x) = t imposes » " (1, ;) = T. Then, following Alaoglu’s
theorem [25, §15.1], the unit ball in the vector space of compactly supported measures is
compact in the weak-* topology. Therefore, any sequence of admissible solutions for (13)
possesses a converging subsequence. Since this must be true for any sequence, this is true
for any minimizing sequence, which concludes the proof. O

Now, remark that (13) can be seen as an instance of a conic program, called hereafter the
primal, in standard form (see for instance [2]):

p* = inf (z,,¢),
st. Az, =0, (19)
T, € E]‘f

where

e decision variable z, := (1, . .., ftm) belongs to vector space £, := M(K)™ equipped
with the weak-* topology;

m

e the cost ¢ := (ly,...,l,) belongs to vector space F, := C(K)™ equipped with the

strong topology;

o (-,-),: E, x F, — R is the duality bracket given by the integration of continuous
functions with respect to Borel measures, since £, = F), with the prime denoting
the topological dual;

e the cone E;“ is the non-negative orthant of Ej;

e the linear operator A : E, — C'(K)' is given by
Tp = Aty = Z Ljp; (20)
j=1

11



where £; is the adjoint operator of £ : C*(K) — C(K) defined by

ov  Ov
+ - fi (21)

v»—)ﬁjvzza o

e right hand side b := (5, (dt,dx) — 6(0,20)(dt, dz) belongs to vector space FEy :=
CHK).

Lemma 3 The conic dual of LP problem (13) is given by

d* = sup o(T,z7)—v(0,x0)

st Ltw) = Lo(t,e) >0, V(to) €K, j=1..m, (22)
v e CHK).

Proof: Following standard results of conic duality (see [1] or [2]), the conic dual of (19)
is given by
d* = sup (b,zq)q

T4
st. c— Awg € CHE)™, (23)
Tq € Fy

where

e decision variable z,4 := v belongs to vector space Fy := C'(K);
e the (pre-)dual cone is C*(K)™, i.e. EF is dual to CT(K)™;

o (- -)g: E4x Fy— R is the appropriate duality pairing between E; and Fj.

The lemma just details this dual problem. U

Once the duality relationship established, the question arises of whether a duality gap
occur between linear problems (13) and (22). The following theorem discards such a
possibility:

Theorem 3 There is no duality gap between primal LP (13) and dual LP (22): if there
is an admissible vector for (13), then

pt=d". (24)

Proof: One can show, following [1, Th. 3.10] (see also the exposition in [2, §4]), that the
closure of the cone

R := {((xp,c)p,Axp) D x, € E;} (25)

belongs to R x Ej;. Note that the weak-*x topology is implicit in the definition of E,;, and
the closure of R should be understood in such a weak sense.

To prove closure, one may show that, for any sequence of admissible solutions (xé"))neN, all
accumulation points of ((xén), C)p, Aa:z(,n))neN belong to R. Note that Lemma 2 establishes

12



that any sequence (:Ez(;n))neN has a converging subsequence. Therefore, all that is left to

show is the weak-* continuity of A, hence of each £;. Following [27], this can be shown
by noticing that each £ is continuous for the strong topology of CY(K), hence for its
associated weak topologies Operators E;-, hence A, are therefore weakly-* continuous,

and each sequence ((xp . C)ps Axp )neN converges in R, which concludes the proof. O

Note that what is not asserted in Th. 3 is the existence of a continuous function for which
the optimal cost is attained in dual problem (22). Indeed, it is a well-known fact that
value functions of optimal control problems, to which v is closely related, may not be
continuous, let alone continuously differentiable. However, there does exist an admissible
vector of measures for which the optimal cost of primal (13) is attained (whenever there
exists an admissible solution), following Lemma 2. This gives practical motivations for
working in a purely primal approach on measures, as the dual problem will be solved
anyway as a side product, see in the later sections of this article.

We close this section by detailing how dual problem (22) can nonetheless be used ana-
lytically as a “verification theorem”, following the discussion of [44] for the unstructured
case, that is following the dual of (13) instead.

Denote by 7; the time subset for which the j-th mode is “active”:

T; = Sptmp;, (26)

where mp1; is the projection, or marginal of y; on the time axis, viz. the unique measure
such that

(00 ms) = [ o0yt o) 27)

for all continuous test functions v and j = 1,...,m. If an admissible control wu(t) is
piecewise-continuous, then obviously 7; := fOT] {e;}(u(t)) dt, where e; is the j-th unit vector
of R™. Note however that the intersection of several of the 7; might be of positive Lebesgue
measure. In this case, relaxed controls can only be weakly approximated by fast oscillating
sequences of classical controls. In the language of differential inclusions, this consists of

realizing a control in the convexified vector field but not belonging to the original vector
field.

Corollary 2 Let (z,w) be a relaxed are,

and let the intervals T; be computed as in (26) from their occupation measures. Then there
ezists a sequence (vy)nen € CH(K) admissible for (22), such that

hm/ (tx(t) — Lot z(t))dt =0, j=1,...,m, (28)

Tj

if and only if (x,w) is a globally optimal solution of optimal control problem (4).

Proof: This corollary explicits weak duality (via the complementarity condition (7, c —
A'zy), = 0) if 2 and zj; are optimal for their respective problems, and exploits Lem. 2
guaranteeing the existence of an optimal z;. O

The advantage of such specialized optimality certificates for switched systems over the
general case is that the test needs only to be checked on a mode-by-mode basis. This is
particularly true if mode-dependent constraints are introduced, see §5.2.
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3 LMI relaxations

This section outlines the numerical method to solve (13) in practice, by means of primal-
dual moment-SOS LMI relaxations. This is done by restricting the problem data to
be polynomial, so that occupation measures can be equivalently manipulated by their
moments for the problem at hand, see §3.1. Then, this new infinite-dimensional problem
is truncated so as to obtain in §3.2 a convex, finite-dimensional relaxation, with dual
described in §3.3. Finally, §3.4 shows how the structural properties of (13) improves the
computational load of each of these relaxations in comparison to unstructured relaxations,
as could be derived from (8).

In the remainder of the paper, the standing Assumption 1 is therefore strengthened as
follows:

Assumption 2 All functions are polynomial in their arguments:
L, fjeRlt,z], j=1,....,m. (29)
In addition,
set K =[0,T] x X is basic semi-algebraic, viz. it is defined as the conjunction
of finitely many polynomial inequalities
K={(t,x) e RxR": gi(t,x) >0,i=1,...,ng} (30)

with g; € R[t, x|, i =1,... ,ng. Let go(t,x) denote the polynomial identically equal to one.
In addition, it is assumed that one of the g; enforces a ball constraint on all variables,
which is possible w.l.g. since K is assumed compact (see [28, Th. 2.15] for slightly weaker
conditions).

3.1 Moment LP
Given a sequence y = (Yo )aenn, let Ly : R[z] — R be the Riesz linear functional

f(.l") - Zfaxa € R[x] = Ly(f) = Zfaya' (31)

Define the localizing matriz of order d associated with sequence y and polynomial g(z) =
>, 927 € R[z] as the real symmetric matrix My(gy) whose entry (o, ) reads

[Ma(g9))ap = Ly (g(z) 2277 (32)
= Zg7 Yatpiy, Va,B €Ny (33)

In the particular case that g(z) = 1, the localizing matrix is called the moment matriz.

The construction of the LMI associated with problem (13) can now be stated. Its de-

cision variable is the aggregate sequence of moments y = (y1,%2,...,¥Yn) Where each
Yj = (Yj3)penn+1 is the moment sequence of measure p;(dt,dz) for j =1,2,...,m, ie.
Yi.p = <Uﬁ<t7 33), :uj> (34)
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for the particular choice of test function

’Uﬁ(t,&?) = tﬁox?lx? T mgna pe N+ (35)

As each term of the cost of (13) is polynomial by assumption, they can be rewritten as

DD cisvis= Z Ly, (15). (36)

j=1 BeNn+1

That is, vector (c; g)s contains the coefficients of polynomials [; expressed in the monomial
basis. Similarly, the weak dynamics constraints of (13) need only be satisfied for countably
many polynomial test functions, since the measures are supported on compact subsets of
R™*!1. Hence the weak dynamics defines a linear constraint between moments of the form

Z Z @j.0.5Y5.8 = ba = Vo (T, 27) — 0,(0, o) (37)

J:l ﬁeNn+1

where coefficients a; . 3 can be deduced by identification from

Z j0,8Y5,8 = Ly, (Liva), a € N+ (38)

ﬁgN'nAJ

Finally, the only nonlinear constraints are the convex LMI constraints for measure repre-
sentativeness, i.e. constraints on y such that (34) holds for all j = 1,...,m and 8 € N**1,
Indeed, it follows from Putinar’s theorem [28, Theorem 3.8] that the sequence of mo-
ments y has a representing measure defined on a set satisfying Assumption 2 if and only
if My(g;y) > 0 for all d € N and for all polynomials g; defining the set, i = 0, 1,..., ng,
and where A > 0 stands for matrix A positive semidefinite, i.e. with nonnegative real
eigenvalues.

This leads to the problem:

Pro = inf DD eyis

j:l ﬁeNn-&-l

m
S.t. Z Z aj,e,8Y5,8 = ba, a € Nn+17

Md(glyj)i(), i:(),l,...,nK, j:1,...,m, d e N.

(39)

Theorem 4 Measure LP (13) and infinite-dimensional LMI problem (39) share the same
optimum:
P =D (40)

For the rest of the paper, we will therefore use p* to denote the cost of measure LP (13)
or LMI problem (39) indifferently.
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3.2 Moment LMI hierarchy

The final step to reach a tractable problem is relatively obvious: infinite-dimensional LMI
problem (39) is truncated to its first few moments.

To streamline exposition, first notice in LMI (39) that Mgy1(-) = 0 implies My(-) = 0, such
that when truncated, only the constraints of highest order must be taken into account.
Now, let dy € N be the smallest integer such that all Lagrangians, dynamics and constraint
monomials belong to Ng;lgl. This is the degree of the so-called first relaxzation. For any
relaxation order d > dy, the decision variable is now the vector (y;q)o With o € NI

made of the first ("2, ) moments of each measure ;. Then, define the index set

Noti={a e N""': degLivg, <2d,j=1,...,m},

viz. the set of monomials for which test functions of the form (35) lead to linear constraints
of appropriate degree. By assumption, this set is finite and not empty — the constant
monomial always being a member.

Then, the LMI relaxation of order d is given by

pa = inf > D cisuis
J=1 genp !
m ~ 41
s.t. Z Z aj,aﬂyjﬁ:ba,aeNgjl (41)

=1 gl
Mq(giy;) = 0,i=0,1,....,ng, j=1,...,m.

Notice that for each relaxation, we get a standard LMI problem that can be solved nu-
merically by off-the-shelf software. In addition, the relaxations converge asymptotically
to the cost of the moment LP:

Theorem 5
Py < Do < o <pho =" (42)

Proof: By construction, observe that j > ¢ implies pj . > pj ., viz. the sequence pj; is
monotonically non-decreasing. Asymptotic convergence to p* follows from [28, Theorem
3.8] as in the proof of Theorem 4. O

Therefore, by solving the truncated problem for ever greater relaxation orders, we obtain
a monotonically non-decreasing sequence of lower bounds to the true optimal cost.

3.3 SOS LMI hierarchy

As for the measure LP of §2, the moment LMI relaxations detailed in the previous section
possess a conic dual. In this section, we show that this dual problem can be interpreted as
a polynomial SOS strengthening of the dual outlined in §2.4. The exact form of the dual

16



problem is an essential aspect of the numerical method, since it will be solved implicitly
whenever primal-dual interior-point algorithms are used for solving the moment LMI
hierarchy of §3.2.

Let S™ be the space of symmetric n x n real matrices. One can show (see e.g. [28, §C])
that, for A, B € S, (A, B) := trace AB is a duality bracket S* x §" — R, and that
{A €S": A > 0} defines a convex cone of S". In problem (41), let us define the matrices

() e : :
A; 3 € S\ ntl J satisfying the identity

Ma(giy) =Y Aipys (43)
B
for every sequence (ys)p and i = 0,1,...,ngk.

Proposition 1 The conic dual of moment LMI problem (41) is given by the SOS LMI
problem

sup Z boza

2,7

aENgjl
<« 44)
8.3. Z j,er,p 0+ Z<Ai,ﬁ’ Zi7j> =GB pe Ngjl, (
aeNg ! =0

Zi;>=0, i=0,1,...,ng, j=1,...,m.

Proof: Replacing the equality constraints in (41) as two inequalities, it is easy to see
that the moment relaxation can be written as an instance of LP (23), whose dual is
given symbolically by (19). Working out the details leads to the desired result, using for
semi-definite constraints the duality bracket as explained earlier. U

The relationship between (44) and (22) might not be obvious at a first glance. Denote by
Y[z] the subset of R[z] that can be expressed as a finite sum of squares of polynomials.
Then a standard interpretation (see e.g. [28]) of (44) in terms of such objects is given by
the next proposition.

Proposition 2 LMI problem (44) can be stated as the following polynomial SOS strength-
ening of problem (22):

sup (T, 1) — (0, 79)

ng
s.t. lj—E;v:Zgisi,j, j=1....m (45)
i=0

where the maximization is w.r.t. the vector of coefficients z of polynomaial

v(t,z) = Z ZoUa(t, )

aENgjl
and the vectors of coefficients of polynomials

Si.j S E[t,.’ﬂ], deggisiyj < 2d, iZO,...,nK, j: 1,...,m.
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Proof: By (37), the cost of (45) is equivalent to (44). Then multiply each scalar constraint
(indexed by a) by v, as given by (35), and sum them up. By definition, ) ¢java = 1j,
and similarly, > 5 4j,a,B%aVa = E;va. The conversion from the semi-definite terms to SOS
exploits their well-known relationship (e.g. [28, §4.2]) to obtain the desired result, by
definition (32) of the localizing matrices. O

Prop. 2 specifies in which sense “polynomial SOS strengthenings” must be understood:
positivity constraints of (22) are enforced by SOS certificates, and the decision variable
of (22) is now limited to polynomials of appropriate degrees.

Finally, the following result states that no numerical troubles are expected when using
classical interior-point algorithms on the primal-dual LMI pair (41-44).

Proposition 3 The infimum in primal LMI problem (41) is equal to the supremum in
dual LMI problem (44), i.e. there is no duality gap.

Proof: By Assumption 2, one of the polynomials g; in the description of set K enforces
a ball constraint. The corresponding localizing constraint My(g; y;) > 0 then implies that
the vector of moments y is bounded in LMI problem (41). Then to prove the absence of
duality gap, we use the same arguments as in the proof of Theorem 4 in Appendix D of
[24]. O

3.4 Computational complexity

This section details rough estimates on the numerical gains expected by employing modal
occupation measures in LMI relaxations as opposed to the more generic method developed
in [27].

Following the standing assumptions, the computational complexity of solving an LMI
relaxation of order d with p occupation measures supported on a space of dimension
n 4+ m + 1 (time, states, controls) is dominated by p LMI constraints of size m (the
moment matrices of the occupation measures) in 7 variables (the moment vectors of the
occupation measures), with

= (46)

_ (n+m+2d+1 _— n+m-+d+1
n+m+1 ’ N n+m+1

A standard primal-dual interior-point algorithm to solve this LMI at given relative accu-
racy € > 0 (duality gap threshold) requires a number of iterations (Newton steps) growing
as O(pzmz) loge, see e.g. [5, Section 6.6.3]. In the real model of computation (for which
each addition, subtraction, multiplication, division of real numbers has unit cost), each
Newton iteration requires no more than O(n?) + O(pn*m?) + O(pnm?) operations. When
solving a hierarchy of simple LMI relaxations as described above, the accuracy € is fixed,
the number of states n and controls m are fixed the number p of measures is fixed, and
the relaxation order d varies, such that O(n) = O(m) = O(d*™*™*1) and the dominating
term in the complexity estimate grows in (’)(}5% d%(””"“)), which clearly shows a strong
dependence on the number of state and control variables.

18



Therefore, an LMI relaxation of an optimal switching control problem with n states
and m controls will be solved in (’)(d% (n+m+1)) operations when solved with the general
formulation of [27] and O(m2 dz ("+1) when solved with structured formulation (13). That
is a nf:;ﬂrl reduction of the polynomial rate at which the CPU time grows with relaxation
orders. This back-of-the-envelope estimation is slightly conservative in practice, as shown
in Ex. 6.2. Note that the same analysis as performed with the reported computation times
of [6] or [37] reveals a similar underestimation of actual computation gains by applying
the method described in this paper. As seen in these examples, those gains are substantial

and justify the practical use of the modal occupation measures for switched systems.

4 Simple sufficient optimality conditions

As much as the necessary and sufficient conditions of §2.4 may be useful on small analytic
examples, they are not exploitable numerically. We therefore present here a procedure for
extracting piecewise constant controls, which are frequently observed in applications, see
e.g. the examples of §6.

Indeed, suppose that the relaxed optimal control w*(dult) is unique and has piecewise
constant density:

N
/ w(dult) dt = w(t)dt ==Y ugly, 4 (t)dt
u k=1

where this equation is understood in the weak sense. Assume w.l.g. (since controls need
only to be defined almost everywhere) that the boundary conditions u*(0) = v*(7T") = 0
hold. The Radon-Nikodym derivative of this piecewise constant control is then a train of
Dirac impulses located at the switching times:

N

du(t) = 3 (uper — )8y, (1)

k=1

where ¢;, denotes the Dirac measure at ¢ = t;, and the equation is understood in the weak
sense. As such atomic measures can be detected easily numerically, this motivates the
following necessary conditions.

Proposition 4 Let

Yja ' = <ta7,uj>> yj,a = <ta7/‘jlj>7 aeN
denote the moments of modal occupation measure [v; and the moments of its weak deriva-
tie [1;, for j =1,...,m. Then by construction

yj,a = —Oéyj@,l, o€ N. (47)

Let M, 4 be the truncated moment matrix — as defined in (32) for g equal to one —
constructed from moment vector (¥ja)a=o,1,.2(d—1) as given by (47), with d > 2 and
j =1,...,m. The following result by Curto and Fialkow (see e.g. [28]) allows to detect
those weak derivatives which can be written as train of impulses:
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Theorem 6 (Flat extensions) Let r = rank Mj,dfl = rank Mj,d,g. Then, there exists
anr atomic measure supported on [0, T| whose first moments match the vector (j,.a)a=o,1,..2(d-1)-

Note that the linear algebra routine presented in [28, §4.3] allows for the actual recon-
struction of the times ¢, (support) and jumps u (weigth) represented by such a measure.

Corollary 3 (Simple sufficient optimality conditions) For a given relazation, let
the rank condition of Th. 6 be satisfied, and let the reconstructed piecewise constant control
strategy be admissible for (4), with cost matching that of the relazation. Then the strategy
s globally optimal.

More generally, the reader interested in numerical methods for reconstructing a measure
from the knowledge of its moments is referred to [26] and references therein, as well as
to the recent works [16, 3, 9] which deal with the problem of reconstructing a piecewise-
smooth function from its Fourier coefficients. To make the connection between moments
and Fourier coefficients, let us just mention that the moments y, = [ t*u(t)d¢ of a smooth
density u(t) are (up to scaling) the Taylor coefficients of the Fourier transform 4(s) :=
[e sty (t)dt =Y, (72:!”& Yas®. If the y, are given, then 4(s) is given by its Taylor series,
and the density u(t) is recovered with the inverse Fourier transform u(t) = [ e*™'a(s)ds.
Numerically, an approximate density can be obtained by applying the inverse fast Fourier

transform to the (suitably scaled) vector (¥4)a=o0.1....24 Of moments.

by

5 Extensions

Several standard extensions of our results are now presented.

5.1 Free/distributed initial state

The approach can easily take into account a free initial state and/or time, by introducing
an initial occupation measure py € MT ({0} x Xy), with Xy C R™ a given compact set,
such that for an admissible starting point (o, (to)),

(v, po) = v(to, 2(to)), (48)

for all continuous test functions v(¢,x) of time and space. That is, in weak problem
(13), one replaces some of the boundary conditions by injecting (48) and making o an
additional decision variable. In dual (22), this adds a constraint on the initial value and
modifies the cost.

Similarly, a terminal occupation measure pr can be introduced for free terminal states
and/or time. Note that injecting both (48) and its terminal counterpart in (13) re-
quires the introduction of an additional affine constraint to exclude trivial solutions, e.g.
(1, o) = 1 so that pg is a probability measure. In dual problem (22), this introduces an
additional decision variable.
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More interestingly, the initial time may be fixed w.l.g. to ty = 0, but only the spatial
probabilistic distribution of initial states is known. Let &y(dx) € P(Xp) be the measure
whose law describes such a distribution. Then, the additional constraints for (13) are

(vosa) = [ 0(0.2) () (49)
Xo
As remarked in [27], this changes the interpretation of LP (13) to the minimization of
the expected value of the cost given the initial distribution. See also [24] for the Liouville
interpretation of the LP as transporting measure &, along the optimal flow.

5.2 Additional constraints

In measure LP (13), each modal occupation measure is supported on the same set K.
This simply translates the fact that state constraints are mode-independent. However,
nothing prevents the use of specific mode constraints by defining m sets {K;};=1, _m-
In unstructured LP (8), these would be specified by constraining the support of p to
H;nzl{ej} x K, where e; is the unit vector in R™ whose j-th entry is 1. Then, in the
proof of Th. 2, for direction p* < pjy, it is easy to see that this implies that each p; is
supported on K. For the reverse direction, one can define w.l.g. the support of zi to be
K := U} K; by extending that of each yi; to K and setting p1;(K \ K;) = 0. Then y has
the expected support.

5.3 Wider class of dynamical systems

First note that additional drift terms, viz. dynamics of the form & = fy + Z;n:l fjuj,
fit easily within the framework of problem (1) by adding the drift term to each mode
dynamics.

Secondly, in a related fashion, affine-in-the-control problems with polytopic control sets
more general that the box described in (5) can also be handled by the formalism presented
in this paper. Indeed, the problem is equivalent to controlling (with relaxed objects — see
section §2) the system with modes associated to vertices of the control polytope.

Finally, dynamics of the form f;(¢,z(¢),u;(t)), parametrized by a mode-dependent mea-
surable control w;(t), can be incorporated into the presented formalism by combining
the approach in this paper with that of [27]. However, mode-dependent states, where
the size of the state-space varies for each given mode change and/or whose meaning is
mode-dependent, must be incorporated by extending those states to all modes with a null
vector field. It is an open question whether a more elegant approach can be incorporated
into the framework of this paper.

5.4 Open-loop versus closed-loop

In problem (1), the control signal is the switching sequence o(t) which is a function of
time: this is an open-loop control, similarly to what was proposed in [12] for impulsive
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control design. One could also want to constrain the switching sequence to be an explicit
or implicit function of the state, i.e. o(x(t)), a closed-loop control signal. In this case, each
occupation measure, explicitly depending on time, state and control, may be disintegrated
as pu(dt,dxr,du) = &(dt | t,u)w(du | t)dt, and we should follow the framework described
originally in [27].

5.5 Switching and impulsive control

We may also combine switching control and impulsive control if we extend the system
dynamics to

m p
dz(t) =) fulw(®) ult)dt + Y g;(t)v;(dt),

k=1 Jj=1
which must be understood in a weak sense. Here, g; are given continuous vector functions
of time and v; are signed measures to be found, jointly with the switching signal u(?).
Whereas modal occupation measures are restricted to be absolutely continuous w.r.t. the
Lebesgue measure of time, impulsive control measures v; can concentrate in time. For
example, for a dynamical system dz(t) = g(t)v(dt), a Dirac measure v(dt) = 0, enforces
at time ¢ = s a state jump x*(s) = 7 (s)+g(s). In this case, to avoid trivial solutions, the

objective function should penalize the total variation of the impulsive control measures,
see [12].

6 Examples

6.1 Chattering

Consider the scalar (n = 1) optimal control problem (1):

p* = inf fl 2(t)dt
s.t. z(t

In Table 1 we report the lower bounds p}; on the optimal value p* obtained by solving LMI
relaxations (41) of increasing orders d, rounded to 5 significant digits. We also indicate the
number of variables 7 (i.e. total number of moments) of each LMI problem, as well as the
zeroth order moment of each occupation measure (recall that these are approximations of
the time spent on each mode). We observe that the values of the lower bounds and the
masses stabilize quickly.

In this simple case, it is easy to obtain analytically the optimal switching sequence:
it consists of driving the state from z(0) = % to z(3) = 0 with the first mode, i.e.
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J2 n Y10 Y2,0
—5.9672-107° | 18 | 0.74056 0.25944
4.1001 - 1072 45 | 0.75170 0.24830
4.1649 - 1072 84 | 0.74632 0.25368
4.1666 - 10~2 | 135 | 0.74918 0.25082
4.1667 -1072 | 198 | 0.74974 0.25026
4.1667-1072 | 273 | 0.74990 0.25010
4.1667-1072 | 360 | 0.74996 0.25004

N O O = W N

Table 1: Lower bounds p); on the optimal value p* obtained by solving LMI relaxations
of increasing orders d; 7 is the number of variables in the LMI problem; ;o is the
approximate time spent on each mode j =1, 2.

uy(t) = 1,us(t) = 0 for t € [0, 5[, and then chattering between the first and second mode

with equal proportion so as to keep z(t) = 0, i.e. uyi(t) = %,Ug(t) = % for ¢ E]%, 1. Tt

follows that the infimum is equal to

12 11 2 1 )
* ~_t) dt = — ~4.1667-1072
r=f (5 e

Because of chattering, the infimum in problem (1) is not attained by an admissible switch-
ing sequence. It is however attained in the convexified problem (4).

The optimal moments can be obtained analytically

1

2 1 1 2 + 2—0(
o= [ trdt+= [ t*dt = ,
YL /0 * 2 /% 4 + 4o

Tt 227«
3/2,04:5/% tdt =

4+ 4o

and they can be compared with the following moment vectors obtained numerically at
the 7th LMI relaxation:

computed y; = (0.74996 0.31246 0.18746 0.13277 0.10308---),
exacty; = (0.75000 0.31250 0.18750 0.13281 0.10313---)

computed y, = (0.25004 0.18754 0.14588 0.11723 0.096919---),
exact yo = (0.25000 0.18750 0.14583 0.11719 0.096875---).

We observe that the computed moments closely match the exact optimal moments, so
that the approximate control law extracted from the computed moments will be almost

optimal.
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6.2 Double integrator

We revisit the double integrator example with state constraint studied in [27], formulated
as the following optimal switching problem:

p* = inf T
st x(t) = fat)(x(t))7
2(0) = [L1], 2(T) = [0,0]
ng(t) -1, YVt € [O, T]

where the infimum is w.r.t. to a switching sequence o : [0, 7] — {1, 2} with free terminal
time 7" > 0 and affine dynamics

w=[5] a=1]

We know from [27] that the optimal sequence consists of starting with mode 1, i.e. uy(t) =
1, ug(t) = 0 for ¢t € [0,2], then chattering with equal proportion between mode 1 and 2,
Le. ui(t) = us(t) = 5 for t € [2,2] and then eventually driving the state to the origin
with mode 2, i.e. ui(t) =0, up(t) =1 for ¢ € [5,I]. Here too the infimum p* = I is not

attained for problem (1), whereas it is attained with the above controls for problem (4).

In Table 1 we report the lower bounds p; on the optimal value p* obtained by solving LMI
relaxations (41) of increasing orders d, rounded to 5 significant digits. We also indicate the
number of variables 72 (i.e. total number of moments) of each LMI problem, as well as the
zeroth order moment of each occupation measure (recall that these are approximations of
the time spent on each mode). We observe that the values of the lower bounds and the

masses stabilize quickly to the optimal values p* 2, Y10 = 2, Yo.0 = %.

d| p; n Y1,0 Y2,0

2.5000 | 30 | 1.7500 0.75000
3.2015 | 105 | 2.1008 1.1008
3.4876 | 252 | 2.2438 1.2438
3.4967 | 495 | 2.2484 1.2484
3.4988 | 858 | 2.2494 1.2494
3.4993 | 1365 | 2.2496  1.2497
3.4996 | 2040 | 2.2498 1.2498

~N O Tl = W N

Table 2: Lower bounds p}; on the optimal value p* obtained by solving LMI relaxations
of increasing orders d; n is the number of variables in the LMI problem; ;0 is the
approximate time spent on each mode j =1, 2.

The optimal switching sequence, which corresponds here to control measures wy(dt) with
piecewise constant densities, is obtained numerically as explained in §4, by considering
the moments of the (weak) derivative of control measures.

Finally, Fig. 1 shows a logarithmic plot of the computational times of the unstructured
generic LMI relaxations of [27] versus their structured modal counterpart, for relaxation
orders 1 to 7. The computational gains induced by using modal occupation measures
follow the expected exponential improvement, with an exponent of about 1.7, better than
the % predicted by the asymptotic analysis of §3.4.
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Figure 1: Logarithmic plot of computational times required by generic LMI relaxations
[27] (vertical axis) versus modal LMI relaxations (horizontal axis), for relaxation order
d=1,...,7.
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6.3 Switched linear dynamics

Consider the optimal control problem (1):

pt = inf  [7 [lx(t)l3dt
s.b. a(t) = Agwa(t),

where the infimum is w.r.t. to a switching sequence o : [0, 00) — {1, 2} and

-1 2 -2 =2
e[ ] e[ 2]
Since our framework cannot directly accommodate infinite-horizon problems, we introduce
a terminal condition ||z(T)||3 < 107% so that terminal time 7' is finite. That is, the
switching sequence should drive the state in a small ball centered at the origin.

Pa n Y1,0 Y2,0
0.24294 | 30 | 1.4252 1.4489
0.24340 | 105 | 2.0639 1.9237
0.24347 | 252 | 1.9639 1.8922
0.24347 | 495 | 1.9537 1.8904
0.24347 | 858 | 1.9572 1.8872
0.24347 | 1365 | 1.9677 1.8940
0.24347 | 2040 | 1.9669 1.8928

N O T = W N |

Table 3: Lower bounds p}; on the optimal value p* obtained by solving LMI relaxations
of increasing orders d; n is the number of variables in the LMI problem; ;0 is the
approximate time spent on each mode j =1, 2.

In Table 3, we report the lower bounds p}; on the optimal value p* obtained by solving LMI
relaxations (41) of increasing orders d, rounded to 5 significant digits. We also indicate the
number of variables 7 (i.e. total number of moments) of each LMI problem, as well as the
zeroth order moment of each occupation measure (recall that these are approximations of
the time spent on each mode by (26)). We observe that the values of the lower bounds
stabilize quickly.

In Fig. 2, we plot an almost optimal trajectory inferred from the moments of the occupa-
tion measure via the method of §4, for an LMI relaxation of order d = 8. The trajectory
consists in starting from x = (—1,0) with mode 1 during 0.065 time units, and then
chattering between mode 1 and mode 2 with respective proportions 49.3/50.7 until x
reaches the neighborhood of the origin ||z(T)[|3 < 107% for T' = 3.84. This trajectory is
suboptimal, as it yields a cost of 0.24351, slightly bigger than the guaranteed lower bound
of 0.24347 on the best achievable cost obtained by the LMI relaxation. It follows that
this trajectory is very close to optimality. For comparison with available suboptimal so-
lutions, using [20, Theorem 1], the so-called min switching strategy yields with piecewise
quadratic Lyapunov functions a suboptimal trajectory with a cost of 0.24948.
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Figure 2: Suboptimal trajectory starting at source point # = (—1,0) with mode 1, then
chattering between modes 1 and 2 to reach the target, a neighborhood of the origin.

6.4  Turnpike control

Consider the following problem excerpted from [11, §22.2]:

The optimal solution, a turnpike control policy, is given by:

0, te]0,log2],
u*(t) =<2, te€llog2,2—1log2],
0, te[2—1log2,2].

We now tackle this problem using the method outlined in this paper. The problem is
affine in the control, and as the control set is a simple interval, the problem can be recast
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as

pr = info'(t) f02l0'(t)(l'<t>)dt
st () = fow(2(D)),
20) =0, (t) € [=5,5]

where the infimum is now w.r.t. to a switching sequence o : [0, 7] — {1, 2} with dynamics

and costs
fl :$+17 f2 :_2'];_'_17

ll =, lg =x+3.

That is, the mode o = 1, resp. o = 2 is associated with driving the system with the
control u(t) = 0, resp. u(t) = 3.

Table 4 shows the numerical results obtained by applying our LMI approach. Compare
this with the optimal cost of 3.4548 and the optimal time spent on each mode, resp.
1.5909 and 0.4091.

Pa n Y10 Y2,0
—8.6084 | 18 | 1.6296 0.3704
—1.7507 | 45 | 1.5229 04771

3.3444 | 84 | 1.5713 0.4287
3.4492 | 135 | 1.5885 0.4115
3.4538 | 198 | 1.5904 0.4096
3.4543 | 273 | 1.5906 0.4094
3.4544 | 360 | 1.5907 0.4093

N O Ol W N

Table 4: Lower bounds p}; on the optimal value p* obtained by solving LMI relaxations
of increasing orders d; 7 is the number of variables in the LMI problem; y;, is the
approximate time spent on each mode j =1, 2.
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