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Neighborhood graphs and image processing
Frangois Angot, Régis Clouard, Abderrahim Elmoataz, Marinette Revenu
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ABSTRACT

Many image processing and image ségmentation problems, in two or three dimensions, can be addressed and solved
by methods and tools developed within the graph theory. Two types of graphs are studied: neighborhood graphs (with the
duails Voronol diagram and Delaunay éfaph) and adjacency graphs. In this paper, we propose an image representation based
on graphs: the graph object, together Gnth mcthods for attributing and weighting the graph, and methods to merge nodes, is
defined within an object-oriented hbrary of i image processing operators, In order to demonstrate the interest of the approach,
several applications dealing with 2D i nnages are briefly described and discussed: we show that this change of representation
can greatly simplify the tuning of i 1mage processing plans and how to replace complex sequences of image operators by one
single basic operation on graphs, As results are promising, our library of graph operators is being extended to 3D images.
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.1+ 1. INTRODUCTION

Many image processing and image analysis problems, in two or three dimensions, can be addressed and solved by
methods and tools developed within the neighborhood graph theory.

This is particularly the case when dealing with images showing populations of objects, or over-segmented images. In
several situations, it is not enough to work with points (pixels or voxels); more global objects must be considered: visual
primitives such as regions or boundszy; eléments. Also when objects of the scene are not connected to each other, more
general neighborhood relations than th Bigitalization grid of the image must be considered.

In some cases, rather than the nelghboxhood structure, it is the information about objects and neighborhood relations
that must be manipuiated: i

¥» When the image contaihs several categories of objects, different characteristics have to be associated to
the objects to distinguish then‘.l Each object can be represented as a node of a graph, which stores these
characteristics, This is the case, \when trymg to quantify the distribution of an object population within another
larger population. ‘

> Bottom-up segmentation 'pftenfi'esults in over-segmented images. In order to improve the segmentation,
neighboring regions can be merged according to some criteria and information must be associated to pairs of
objects, i.e. to the neighborhood relations between objects.

Our objective is to design an image representation based on graphs. For that purpose, we have to define a data
structure which allows to manipulate relatlonshlps between image primitives (i.e. proximity, connexity, similarity, etc.). The
image concept can then be generalized in order to define specific methods and operators on graphs,

This approach has mainly been .\_rahdated on 2D histological section images. This biological material shows cellular
nuclei, organized in vartous architectures. Thanks to neighborhood graphs we could easily delimit clusters of nuclei, which
classical methods have difficulties to deal with.

]
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2. GRAPH THEORY

2.1. Definitions

A graph, G is a mathematical object defined by two inter-connected sets: a set of points, V, and a subset, E, of Vv,
The elements of V are called the vertices or the nodes of the graph, the elements of E the edges:

; G=(V,E) with ECV?, (1)
L andkeE e eV k=(pg). @

This can also be written as: . '
v..{ pi} and E=(k;;} with k; =(pi,p). 3

Generally, edges are oriented, In the previous example, p is the origin of the arc , ¢ is its end, A graph can have loops
if the origin and the end of an edge are the same point;

kisaloop & FpeV [ k=(pp). (4)

In our case, an edge represents a ne1ghborhood relation. Because this relation is symmetrical and anti-reflexive, only
non-oriented graphs, without loop will be used In that case, edges verify:

_ f YkeE, Ap,qe V | p#q and k=(p,q), (5)
. YpgeV, paEE & @)k (©)

In a graph G=(V,E), the neighb%:lilooa relation N is defined by:
VpgEV, g€ N®) & p.a)EE, (7)

For non-oriented graphs, this nelghborhood relation is an equivalence relation, on which all graph processing related
to connexity is based, It is also the source of the definition of trees, which are connected graphs, without cycle.

5

According to these deﬁmtlons a graph can be considered as an image with an irregular grid. An image is a set of
points associated to a digitalization grld The nodes of a graph are then analogous to the points and the edges take place of the
grid. Following the same analogy, conuected components of a graph can be associated to regions in an image.

It must be noticed that the dmienslon of an image is given by the digitalization grid: 2D, 3D. In a graph however, the
nodes can be member of a space of any dimension. This dimension has no influence on the neighborhood structure of the
graph. Thus, a graph considered as an image simplifies the generalization from two to three dimensions, which often causes

2
problems”.

ITER

2.2. Attributed and weighted graphs ng

Until now, the analogy between graphs and images only concerns the neighborhood notion., But it can also be
extended to the information associated to points (gray level, labels, etc.). A numerical attribute can thus be associated to each
node of V. The graph and vertices are hen attributed by A:

A V—oR

p—rap)
This function is a genczahzatlo)i of the function used by L. Vincent® in his study about mathematical morphology
operators, We will see that most imageprocessing operators can thus be extended to graphs,

In the case of 2D images, the grid introduces the 4-neighborhood, the hexagonal neighborhood, the 8-neighborhood,
or even larger ones, In the case of grdphs however, the neighborhood relations are not fixed in the 2D space. In addition to
the attributing function, extra mformat;on about the neighborhood relation can be given by the means of a weighting function
defined on the edges of E as: :~
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W: E—R
_ k= wik)

The weight of an edge is often”définéd as the difference between the attributes of its extremities. It is called canonical

weighting: ! :
- Vki=(pip), wiki=l a(p)-a(p) |. (8
In some cases, the set V is in‘cljuded‘.intO a meiric space. The distance defined on vertices then corresponds to the

weight of edges: E

qu;ev d(p,p)=0, d(p,q)=0, d(p,q)+d(q,r2d(p,r), ©)
- Vik=(p.g), w(ty=d(p,q). (10)
So, attributes of a graph are af:,uflean.s to quantify nodes, whereas weights can correspond to a distance between the

ends of edges. This distance can be 4 geometric distance defined in the space of nodes. But it can also correspond to a
difference between objects (i.e. edge length).

Thanks to that weighting function, an important structure can be deduced from a graph: the minimum spanning tree
(MST). The MST of a graph is the spanning tree where the sum of the edge weights is minimum, Two efficient algorithms
build the MST: the Prim algorithm proceeds by making the node set grow, whereas the Kruskal algorithm proceeds by
making the edge set grow. o

1.b
Figure 1}_;.‘:'§xample of a graph (a) and one of its spanning trees (b).

The attributing and weighting};fﬁnctions give the possibility to manipulate a graph as a numerical image with an
irregular grid. We are now going to describe some image processing operators based on the graph theory.

3. IMPLEMENTATION

Our work on neighborhood graphs has been developed within the environment of the Horus library. HOrus® is a
library of image processing operators. Operators can manipulate different kinds of 2D objects: images of points (gray levels),
images of labels, region maps, etc. In fact , any authorized data type can be considered as an image. It is particularly true for
graphs, and we accordingly enrichecl{thb library with graph processing operators’, HORUS operators exhibit the following
special characteristics: E—

» An operator can work on various kinds of images. As the library development has been made with an
object-oriented language (C++); the operator chooses the function to apply, according to its entries. For
instance, a thresholding operator:cani be applied either to a graph or to an image. This is convenient for users
who do not need to have a complete knowledge of the structure, but only have to link simple operators to
perform complex tasks. “

» Each operator corresponds to an “atomic” operation and a complex “molecular” operation is made by
the linking of several simple operators. It is thus rather easy to extend simple operators to graphs, whereas
complex image processing progjfamq are almost impossible to transform and extend them to graph structures.
An operator takes the form of a run-time program with input and output parameters. These parameters can be
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image files or numerical valué.syiso as to adjust the operator’s behavior to the context. The UNIX operating
system offers a pioglammmg lauguage (SHELL) which allows to link programs, and redirect parameters
thanks to pipes.

; :::;
3.1. The graph structure l

There are two classical ways to leplesent graphs, adjacency matrices and adjacency lists. In both cases, nodes must be
numbered, ‘

¥ Adjacency matrices offéf direct access to an edge, given the numbers of two vertices. However, even if
the number of arcs is very low§ the matrix size is still v*, where v is the number of vertices: v=Card(V). In the

case of non-oriented graphs, the number of values can be reduced to (v—1).v/2.

»  Adjacency lists are lmked 11sts1 associated to each vertex, They only represent existing edges, but imply
a list search to access a parucular edge For non-oriented graphs, each edge is stored twice.

We have chosen the latter Iepre,_sentatl‘kon in order to minimize the size of data,
i i

Figure 2 gives an idea of the da‘ta'_ structure used to represent graphs. This data structure contains information for graph
visualization: the position of each vertex, and the size of the corresponding image to localize nodes in the 2D space.

Graph. Additional
tnode | size | nrow | ncol lmformation
l Gk 2
1 Hnode Lnode 3
2 —»{ neighbors |—w| index | value | next
3 id__ - —
attribute. L——p| index | value | next |—ma
Ségzd
size-1
size n

Figure 2: graph structure.

The fields of the structure have‘_'th;e foflowing meaning:

» For the graph, nrow and: ncol glve the dimensions of the corresponding 2D image, size is the number of
nodes. \

» Bach element of the array inode is a pointer on a structure containing the list of neighbors (neighbors),
the vertex identifier (id), the at‘t‘ributje of the vertex (attribute), and the position of the vertex in the image
(seed), stored as a point, The only fields to change for manipulating a 3D graph are nrow, ncol and seed.

» In the adjacency list of a ﬁode,:.each cell contains the node number in the array tnode (index), the weight
of the edge (value) and a pomter to the rest of the list (next).

The identifier of the nodes (1([) 1s the oniy useful field to access additional information,

3.2, Constructing the graph

Depending on the application:‘(hiemrclﬁcal segmentation, characterization of an object population, etc.), and the
related classes of images, either adjacency graphs or neighborhood graphs can be considered:

A
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» In an image segmented into regions, boundaries correspond to the neighborhood relations between
regions and the adjacency graph corresponds to the connexity between regions (figure 3). The values of nodes
can be used to store a great range of characteristics of the regions such as the mean gray level or shape
parameters (direction, elongation, area, etc.). The weights of edges represent properties of the boundaries such
as the difference between attributes of the regions or the contrast on the boundary. Segmentation methods
based on region merging according.to various criteria, are greatly simplificd when manipulating the image
through its associated adjacency graph.

»1;,4

t3a 3b
Figure 3: segmented image (a) and its corresponding adjacency graph (b).

¥ In the case of an object populatlon neighborhood relations come from the Voronof diagram (figures 4a
and 4b) This diagram is a tessellanon of the space according to an object collection {o;}, possibly reduced to

points®, Each object o; is assoaated to a region vor(f) which contains the points closer to object o; than to any
other object: i '

pE vor(i) &> Vj#i, d(p,o)=d(p,0). (in

The dual graph of the Voxono1 diagram is called the Delaunay graph (DG). In this graph, each edge
corresponds to a boundary of the Voronoi tessellation and represents a neighborhood relation between two
objects; this is a neighborhood graph,'It is also called the Delaunay triangulation, as edges only draw triangles
in a 21D space (figure 4c¢). The attrlbutes of the graph store information about the objects of the population, and
weights characterize the nc{ghBOlhOOd relations,

Q o
° L]
o
[+]
[+] 4]
L]
o [s] 1
Q
=]
o ]

<

<]

4.a S 4.b 4.c

Figure 4: object populatlon (a), Voronoi diagram (b) and Delaunay graph {c).

The construction of the adjaccncy graph or the DG from the Voronoi diagram can be done in one video scan of the
image only. Each boundary between regions gives rise to an edge. For the construction of the Voronoi diagram in a discrete
space, several methods exist and some are of great interest for generalization to higher dimensional spaces. With 2D masks,

o
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two scans of the image will make the regions grow in the two opposite directions. However, the use of masks becomes heavy
for higher dimensional spaces (313).

A priority-based growing around the ‘objects is then used to simultaneously build all Voronoi regions, This can be
done using Euclidean distance or other metrics according to applications, This growing method can be used for other
purposes; when encountering the first contact between two growing regions, the corresponding edge of the DG can be
created. In addition, the edge can be weighted with the minimum distance between the two corresponding objects.

From the DG, several other interesting graphs can be deduced. When nodes are attributed by the nearest-neighbor
distance, the influence graph can be cynsidered, In the case of weighted graphs, families of more or less dense graphs can be
constructed: o-graphs’ which give mfommtwn on the external distribution of edges, and f-graphs, describing the internal
organization of nodes.

4. IMAGE PROCESSING BASED ON GRAPHS

Relying on the previously intt‘Qauced analogy between images and graphs, we will show that most image processing
operators can be extended to graphs, We will also see that some special additional operators must be developed,

In the case of an image, as a'{ifa}ue 1s already associated to each point, image processing operators can be applied
directly. In the case of a graph however; the only information associated to a point is the neighborhood structure. So, before
applying image processing operators, a graph must be attributed and weighted by special operators,

The use of graphs implies two kinds of data examinations:

» A sequential examination considers each point in a pre-defined order. This can be the order of the array
tnode of the structure, It is the case with operators such as thresholding, and it can be likened to applying masks
to images. A point can be modified according to its value or according to its neighbors (in the mathematical
morphology operators for mstance)

> The examination of the nmghbms of a point occurs in growing-based operators. It implies the use of a
queue structure, The principle is the same as with an image: nodes are examined in an order that depends on
their neighborhood and their values This examination can be used to label groups of nodes, to calculate
distance graphs, etc.

For graph visualization, severg{lf:operfators have been developed that must take into account both the neighborhood
structure, the values of nodes, as well :a§§the values of edges.

4.1. Attributing and weighting glaphs

In order to put values on node\s' ‘and edges of a graph, a series of operators have been developed. One of their input
parameters in a graph giving the nelghbmhood or adjacency structure. The output parameter is a graph with the same
structure, where the elements (nodes. and edges) are now attributed or weighted, The other input parameters are gray level
images or region maps. Here are some examples of such operators:

» To compute the area of ~Objects, the operator needs a region map where the numbers refer to the
identifiers of the nodes (id). The munber of points of each identifier is measured and stored into the
corresponding node,

» To get the mean gray level of objects, the operator needs a region map {which is used as a mask and to
measure the area) and a gray level image, The sum of the gray levels, divided by the area is stored into the
node.

¥» To calculate the length of boundaries, a region map is required. The number of points of label « and
neighbor to a point of label v is measuled and stored into edge (i1,v).
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4.2, Mathematical morphology

All classical image transforms by mathematical morphology (MM) can be extended to graphs, thanks to two basic
operators; morphological erosion g, and dilation 9, at the order #. The order correspond to the size of the neighborhood, i.e.

the length of the path between vertices. .

- E,(G)(py=min{ v(q) for g€ N,(p} }. (12)
- 8,(G)(py=max{ v(q) for gE N,(p) }. (13)

These two operators can manipulate graphs where v(p) can represent area, orientation of objects, mean distance to the

neighbors of a noede, ete.

Erosion and dilation, like imagé filferiug, make local transformations on graphs, They can be applied ecither to
numerical or binary graphs. .

5.a : ¢
Figure 5: erosion (b) and dilation {c} of a binary graph {a) shown on a Voronoi diagram,

T

From these two basic operators; many other morphological operators can be deduced:

» morphological opening *y,, and closing ¢,

i

V=0,08, and ¢,=€,08,. (14)
» morphological gradient
N 8(G)=01(G)-&1(G) (15}
» peodesic erosion and dilatfon with respect to another function &
L g(GL0p=max { £(G)Gr ), (16)
L 8(GuG=min { 6,06 ). a”

» geodesic reconstruction by erosion or dilation
E:‘,,O...OE,,OE"(Gl,GQ), (1 8)

8,0...08,06,(C1,G2). (19)
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i 6a . 6.
Figure 6: 6ﬁenilig (a) and closing (b) applied to the graph of figure 5.

Thanks to the MM theory, a whoIe range of morphological operators can thus be used to work on graph attributes,

4.3, Characterizing a population of vahles

In certain situations, an image can be considered as a set of values. So, we sometimes have to characterize this
population of values. It is the same w1th graphs it is possible to describe the distribution of the attributes and weights of a
graph. o

To that purpose, one can consic.'le';':. the first-order histogram of the values of nodes or the weights of edges. Mean value,
variance, cumulated histogram, can be computed.

However, in some cases, this ﬂ[§t-01ider distribution is not sufficient to distinguish between different populations and
a second-order histogram must then ba E:onsidered It is defined by the following matrix:

m, J—Card{ k=(p,q)E E | a(p)=i and alq)=j }. 20)

The normalized matrices F or P d1v1d1ng m;; by Card(E) or max{m;;} are often used. Some classical features® can
then be computed, to describe the second ordel distribution:

2
» second-order moment Z‘.E Pij :g

> contrast LL (f—J) Pij
» entropy -LL p; ;v log(PrJ)

It is important to mention that thcse values, or other more complex features - providing that they are independent of
the size of the population” - can be measured from the graph,

4.4. Merging vertices L
In some image segmentation pr:oblem"s, using a bottom-up analysis strategy often results in an over-segmented image.
On this kind of images, some primitives have then to be merged to improve the segmentation. With the use of a graph, this

processing is made by merging vertices.

One first has to choose a conventlon when merging vertices « and v of a graph G. After the fusion, we can consider
that the two nodes belong to an equwalbnce class. We then choose to keep the node of lower identifier to represent the class.
For example, if u<v, the identifier of node nqmber v in the array /node will be set to 1.

Then the neighborhood relatlons of the two nodes that have been merged must be modified. When merging # and v,

edge (1,v) disappears and all the neighbors of v must become neighbors of «. This is done by the two methods Link and
Unlink of the class Grapir in the HORUS hbrary

A general function has been wntten to perfonn the merging of two vertices of a graph. It must be mentioned that this
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T
function can be called in various contexts accordmg to the application. In general, two vertices are merged if the weight of

the edge is between two selected valuék,?f‘he fusion of the nodes of a graph can be done in different ways:

# During the examination; of each node of the graph: every possible merging is stored. Then all possible
fusions are done.

¥ Another strategy 001131sts in merging the best nodes at some paruculal step of the processing. Then, one
can compute new attributes and welghts for the graph and start a new merging phase,

In both cases, the attributes aud we1ghts need to be changed. Various methods exist and the choice must be made
according to each specific apphcatmn

'!

An example of merging is glveu figure 7.

id ghbors id  neighbors

1 1 4,5 1 1 23,4

2 2 +5,6,7 2 2 1,3,4,6,7,9
3 3 7 3 3 1,2,7

4 4 8,9 4 4 1,2,8,9

5 5 . 4,6,9 5 2

6 6 7,9,10, 11 6 6 2,7,910

7 7 ¢ ;6,11 7 7 2,3,6

8 8 . ‘1 8 8 4,910

9 9 .6, 8,10 9 9 2,4,6,8,10
10 10 - 9,11 10 10 6,8,9
11 11 . ‘10 11 6

Flgure 7: merging nodes 2-5 and 6-11.

5. APPLICATIONS

In this paragraph, we are gomg to gwe an idea of some applications in which operations on graphs can bring
significant improvements. These apphcatlons are dealing with biomedical images (histology and cytology) and aerial images,

5.1, Cluster detection

In a study on immunohistochemical images (figure 8a), pathologists try to quantify the presence of an immunostaining
on microscopic sections, in order to nieasure the proportion of labelled tumoral nuclei. On the corresponding color images,
the labelled nuclei (twinmoral ceils, but’ also undesirable isolated cells) appear in brown and non-labelled counterstained nuclei
are blue. The ratio of labelled tumo1al'nucle1 and non-labelled tumoral ones must be measured on selected regions of interest
(i.e. cancer cell nests). The problem is’ that the undesirable isolated cells intervene in this ratio whereas only nuclei of tumoral
cells should be taken into account, |

A characteristic of these hjstologlcal images is that tumoral cells are gathered in clusters. Neighborhood graphs are a
powerful tool to delimit these clusters and eliminate isolated cells,
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During a first stage, nuclei are segmented following a classical image processing method; we are working on the green
color component of the color image and the 'fo]]owing image processing plan is applied:

¥ Blimination of the background by thresholding the image after a smoothing operation,

¥ Watershed mmphologmal operatxon taking the minima of the image as germs, in order to get regions
corresponding to nuclei. ot

% Elimination of small regious (afea lower to 40 pixels) (figure 8b).

Then a second stage occurs to detect clusters of nuclei, and now, instead of images, graphs are manipulated, the nodes
of which correspond to clusters: ;

> Construction of the DG through the Voronot diagram. The graph is weighted by the minimal distance
between clusters.

¥ Elimination of long edgés in drdcr to separate clusters (nore than 10 pixels between nodes) (figure 8c).

As we asswmne that tumoral clusgels have a minimal area, by attributing the nodes of the graph by the area of clusters,
clusters of small size can finally be ehmmated (figure 8d).

F‘jgure 8: example of cluster detection.

Another interesting aspect of this kind of image is related to the distribution of the labeling over the image. A
scattered distribution or a focalized one can result in the same final ratio. Graphs can bring some answer to that problem,
Labelled and non-labelled nuclei are attributed with two different values and a distance on the graph is calculated. A
distribution of distances is thus obtamed and the first-order or second-order histograms can help distinguish between
scattered and focalized distributions,
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5.2. Hierarchical segmentation

For the segmentation of aerial i*mages';(ﬂgure 9a), any method based on the gray levels of the image results in an over-
segmentation (figure 9b). To improve 'tfx‘e segmentation in a significant way, a very simple method consists in working on the
adjacency graph of the over-segmented image and weighting edges by the difference of region areas. A first merging step, on
regions of similar areas (low weight) reduces segmentation errors (figure 9c). Then a second merging step, on regions of very
different areas (high weight), removes small regions (figure 9d).

9¢ - 9.d

Figure Q:._aerial image (a) and segmentation using gray levels (a).
Merging }‘egioﬁs of similar areas {¢) and of very different areas (d).

This problem of over-segmentation also occurs with another biomedical application dealing with cytological images.
These images are characterized by nuclei that biologists must classify, Nuclei must thus be segmented in order to identify
them, Here also, over-segmentation can be greatly improved by merging regions of similar size and mean gray level.

5.3. Segmentation based on textme

Graphs are also pariicularly useful when dealing with textured images. Whereas microscopic texture depends on the
gray levels of neighboring points, macroscopic texture is linked to the proximity of broader primitives. The need of
manipulating texels has been shown]0 and glaphs are an excellent means to represent and mampuIate relations between
texels.

Once extracted, texels, which consutute the nodes of the graph, can be attributed by the mean gray level and classical
characteristics of texture can be ca]culated The major advantage of graphs stems here in the possible attribution of nodes by
any other function (the texel area for mstan_ce) so0 as to calculate other additional characteristics. The segmentation of the
textured image can then be based on the canonical weighting of edges related to any of those characteristics.
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' 6. CONCLUSIONS
After studying graphs and theif p’ossiﬁle use in image processing, the following points must be emphasized:

» When dealing with pre: segmented images, two types of graphs play a prevailing part: neighborhood
graphs (the duals Voronot dlagram and Delaunay graph) and adjacency graphs.

» Thanks to the atomicity’ of opcrators in our object-oriented library HORUS, we could easily introduce a
new graph object, together with methods for attributing and weighting the graph, or methods to merge nodes,
HORUS operators greatly sunphfy the tuning of image processing plans, This is the case in our application
dealing with histological i 1mages T,;

» Sometimes complex sequences of image operators can be replaced by one single operation on graphs.
When dealing with hierarchical segmentation, we demonstrated that a basic operator on the adjacency graph
such as thresholding could advantageously replace long series of image operators,

3
34

As our results on 2D images are qulte promising, and thanks to the fact that graph processing can be generalized to
higher dimensional spaces, we are now developmg a 3D library of operators including graphs (HORUS-3D), This library will
enable us to tackle new apphcatlons_sAs new acquisition devices are available (confocal microscopy, positron emission
tomography, Magnetic Resonance Imagmg, etc.) there is a greater need for efficient graph-based tools and techniques for 3D
image processing.

irl
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