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Abstract 

Off-line robot dynamic identification methods are based on the use of the Inverse Dynamic 

Identification Model (IDIM), which calculates the joint forces/torques that are linear in relation to 

the dynamic parameters, and on the use of linear least squares technique to calculate the 

parameters (IDIM-LS technique). The joint forces/torques are calculated as the product of the 

known control signal (the input reference of the motor current loop) by the joint drive gains. 

Then it is essential to get accurate values of joint drive gains to get accurate estimation of the 

motor torques and accurate identification of dynamic parameters. The previous works proposed 

to identify the gain of one joint at a time using data of each joint separately. This is a sequential 

procedure which accumulates errors from step to step. To overcome this drawback, this paper 

proposes a global identification of the drive gains of all joints and the dynamic parameters of all 

links. They are calculated altogether in a single step using all the data of all joints at the same 

time. The method is based on the total least squares solution of an over-determined linear system 

obtained with the inverse dynamic model calculated with available input reference of the motor 

current loop and joint position sampled data while the robot is tracking some reference 

trajectories without load on the robot and some trajectories with a known payload fixed on the 

robot. The method is experimentally validated on an industrial Stäubli TX-40 robot. 

 

Keywords: Industrial robots, Drive gains, Dynamic parameters identification 

 

 

I. INTRODUCTION 

Several schemes have been proposed in the literature to identify the dynamic parameters of 
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robots [1]–[8]. Most of the dynamic off-line identification methods: 

- use an Inverse Dynamic Identification Model (IDIM) that gives the linear relations between the 

joint forces/torques and the dynamic parameters, 

- build an over-determined linear system of equations obtained by sampling the IDIM while the 

robot is tracking some trajectories in position closed-loop control, 

- estimate the parameter values using least squares techniques (LS). This procedure is called the 

IDIM-LS technique. 

Good experimental results can be obtained if: 

- a well-tuned derivative band-pass filtering of joint position is used to calculate the joint 

velocities and accelerations, 

- accurate values for joint drive gains are known to calculate the joint force/torque as the product 

of the input references of the motor current loop by the joint drive gains [9], [10].  

This requires the calibration of the drive train constituted by a current controlled voltage source 

amplifier with gain tG  which supplies a permanent magnet DC or a brushless motor with torque 

constant tK  coupled to the link through direct drive or gear train with gear ratio N . Because of 

large values of the gear ratio for industrial robots, (N>50), the total joint drive gain, t tg NG K  , 

is very sensitive to errors in iG  and tK  which must be accurately measured from special, time 

consuming, heavy tests on amplifiers and motors, which require opening the drive chain of each 

joint [9], [10]. This sensitivity to errors directly affects the accuracy of the force/torque 

computation as well as the interaction force between the robot and its environment or payload 

estimations that are required in many modern robotic applications.  

More recent works [11], [12] have proposed to apply sequential procedures to identify the total 

joint drive gains jg  for each actuated joint separately by using a known payload fixed on the 



 

M. Gautier, S. Briot 4 Paper DS-13-1373 
 

end-effector. In both methods, the estimation of the drive gain of one joint was done using only 

data coming from the corresponding joint equation which implies the loss of information about 

the coupled data on the other joints. With these sequential approaches, leading to error 

accumulation, good results were obtained only for the first four robot joints. 

In this paper, a new method is proposed for the global identification of all robot dynamic 

parameters, including joint drive gains, using the input reference of the motor current loop and 

the joint position sampled data while the robot is tracking one reference trajectory without 

load fixed on the robot and one trajectory with a known payload fixed on the robot. Inertial 

payload parameters are measured or calculated with a CAD software. Contrary to the previous 

works, all dynamic parameters and drive gains are calculated in one step as the Total LS solution 

(TLS) of an over-determined system that takes into account the coupling between the robot axes. 

Such a method avoids the cumulative errors of the previous sequential procedures. In order to 

show the method efficiency, it is experimentally validated on an industrial robot manufactured by 

Stäubli: the TX-40. 

It should be mentioned that this method is easy to implement, versatile and suitable for the 

automatic calibration of the drive gains of any industrial robots. 

A first condensed version of this work has been proposed in [13]. The present paper contains 

detailed explanations on the TLS procedure to enlighten the theoretical understanding of the 

method, especially in terms of statistical properties, and gives additional experimental results that 

show the interest of the method in terms of force/torque estimation and parameter identification. 
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II. USUAL IDENTIFICATION PROCEDURE WITH INVERSE DYNAMIC MODEL AND LEAST SQUARES 

(IDIM-LS)  

A. Inverse Dynamic Identification Model (IDIM) 

It is known that, using the modified Denavit-Hartenberg description of moving multibody 

systems [6], the dynamic model of any serial manipulator composed of n links and n actuators 

can be linearly written in term of a  1stn   vector of standard parameters stχ  [5], [6]: 

( , ) ( )idm st st st, , , ,   τ q q q χ IDM q q q χ  (1)   

where idmτ  is the motor torque vector, q , q  and q  are respectively the  1n  vectors of 

generalized joint positions, velocities and accelerations, stIDM  is the  stn n  Jacobian matrix 

of idmτ  with respect to (w.r.t.) the vector stχ  of the standard parameters given by 

1 2  ... T T T n T
st st st st   χ χ χ χ . 

For a rigid robot, the link j and joint j can be parameterized by 14 standard parameters 

regrouped into the vector j
stχ  such that 

j

T
j
st j j j j j j j j j j j j j offXX XY XZ YY YZ ZZ MX MY MZ M Ia Fv Fs    χ , where: 

 ,  ,  ,  ,  ,  j j j j j jXX XY XZ YY YZ ZZ  are the six components of the inertia matrix jI  of link j  w.r.t. 

frame j at its origin, i.e. 

j j j

j j j j

j j j

XX XY XZ

XY YY YZ

XZ YZ ZZ

 
   
  

I  

 jM  is the mass of link j , jIa  is a total inertia moment for rotor of actuator j and gears of the 

joint j drive chain, 
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 ,  ,   j j jMX MY MZ  are the 3 components of the first moment of link j , i.e. 

Tj
j j j j j jM O S MX MY MZ   


 

where j
j jO S


 is the position of the center of mass of the link j expressed in the frame attached at 

the origin of the considered link [6] 

 jFv , jFs  are the viscous and Coulomb friction coefficients of the drive chain, respectively, 

and 
joff  is an offset parameter which regroups the amplifier offset and the asymmetrical 

Coulomb friction coefficient [14]. 

 

The identifiable parameters are the base parameters, which are the minimal number of dynamic 

parameters from which the dynamic model can be calculated. They are obtained from the 

standard parameters by eliminating those which have no effect in (1) and by regrouping some of 

the others by means of linear relations [15], using simple closed-form rules [6], [16], or by 

numerical method based on the QR decomposition [17].  

The minimal dynamic model can be written using the bn  base dynamic parameters denoted as 

χ  as follows: 

( )idm , ,  τ IDM q q q χ  (2)  

where IDM is a subset of independent columns of stIDM  which defines the identifiable 

parameters. 

Because of perturbations due to noise measurement and modeling errors, the actual 

force/torque τ  differs from idmτ  by an error, e , such that: 
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( )idm , ,    τ τ e IDM q q q χ e  (3) 

where τ  is calculated with the drive chain relations: 

1 10

0 n n

v g

v g

 

 

 

   
        
      


   


τ v g  (4) 

v  is the ( )n n  matrix of the actual motor current references of the current amplifiers ( jv  

corresponds to actuator j) and g  is the ( 1)n  vector of the joint drive gains (
j j

j
j t tg N G K   

corresponds to actuator j, where 
jtG is the gain of the current controlled voltage source amplifier 

of the motor j which supplies a permanent magnet DC or a brushless motor with torque constant 

jtK  coupled to the link through direct drive or gear train with gear ratio jN ) that is given by a 

priori manufacturer’s data or measured with special time-consuming heavy tests on amplifiers 

and motors separately [9], [10].  

Equation (3) represents the Inverse Dynamic Identification Model (IDIM).   

 

B. IDIM with a payload 

The payload is considered as a link 1n   fixed to the link n  of the robot [18]. Only kLn  among its 

ten inertial parameters are considered to be known (i.e. there is 10uL kLn n   unknown 

parameters). The model (3) becomes: 

 uL kL uL tot tot

kL

 
     
  

χ

τ IDM IDM IDM χ e IDM χ e

χ

 (5) 

where aLχ  (a = u or k) is a ( 1)aLn   vector containing the unknown ( uLχ ) or known ( kLχ ) inertial 
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parameters of the payload; aLIDM  is the ( )aLn n  Jacobian matrix of idmτ , w.r.t. the vector aLχ . 

 

C. Least Squares Identification of the Dynamic Parameters with IDIM 

The off-line identification of the robot base dynamic parameters χ  can be achieved given 

measured or estimated off-line data for τ  and  , , q q q , collected while the robot is tracking 

some trajectories. The model (3) is sampled, low-pass filtered and decimated (parallel decimation 

of Y  and each column of W ) in order to get an over-determined linear system of ( )n r  

equations and nb unknowns: 

   ˆ ˆˆ  Y τ W q,q,q χ ρ  (6)  

where ˆ ˆˆ(   ) q, q, q  is an estimation of (   ) q, q, q , obtained by sampling, band-pass filtering the 

measure of q with zero-phase non causal butterworth filter and central difference algorithm [5], ρ 

is the ( 1)r  vector of errors, and  ˆ ˆˆ   W q, q, q  is the ( )br n  observation matrix.  

In [2], [19], practical rules for tuning these filters and for avoiding a biased estimation of the 

velocities and accelerations [20] are given, taking advantage of non-causal off-line pass-band 

filtering.  

Using the base parameters and tracking “exciting” reference trajectories, i.e. optimized 

trajectories that can be computed by nonlinear minimization of a criterion function of the 

condition number of the W matrix [21], [22] a well-conditioned matrix W can be obtained. In 

this work, the motion generator of the industrial controller which is a point-to-point trapezoidal 

acceleration generator is used. Some trajectories are tested covering the whole robot workspace 
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until a good criterion is obtained [22], which is an easy and fast procedure that gives good 

identification results. The LS solution χ̂  of (6) is given by: 

  ˆ
  

1T Tχ W W W Y W Y  (7) 

It is computed using the QR factorization of W . 

Standard deviations ˆi
 , are estimated assuming that W  is a deterministic matrix  and , is a 

zero-mean additive independent Gaussian noise, with a covariance matrix C , such that [2]: 

T 2( ) rE  C ρρ I
 

(8)
 

E is the expectation operator and Ir, the ( )r r  identity matrix.  An unbiased estimation of the 

standard deviation   is: 

22 ( )bˆ ˆ r n   Y Wχ
 

(9)
 

The covariance matrix of the estimation error is given by [2]:  

T 2 T 1[( )( ) ] ( )ˆ ˆ ˆ ˆ ˆE 
   C χ χ χ χ W W

 
(10)

 

2 ( )
iˆ ˆ ˆ i,i  C

 
is the ith diagonal coefficient of ˆ ˆC   

The relative standard deviation 
riˆ%   is given by: 

100
ri iˆ ˆ i

ˆ%    
 

(11)
 

for 0î  . 

The ordinary LS can be improved by a weighted LS procedure (IDIM-WLS) where data in Y  

and W  are sorted w.r.t. each joint j equation and weighted with the inverse of the standard 

deviation of the error calculated from ordinary LS solution of the equations of joint j  [19]. 
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D. Identification with a payload 

In order to identify both the robot and the payload dynamic parameters, it is necessary that the 

robot carried out two types of trajectories: (a) trajectories without the payload and (b) trajectories 

with the payload fixed to the end-effector [18]. The sampling and filtering of the IDIM (5) is then 

written as: 

a a
uL

b b uL kL
kL

 
                  

χ
Y W 0 0

Y χ ρ
Y W W W

χ

  (12) 

where aY  ( bY , resp.) is the vector of sampled input torques of the robot in the unloaded (loaded, 

resp.) case, aW  ( bW , resp.) is the observation matrix of the robot in the unloaded (loaded, resp.) 

case and uLW  ( kLW , resp.) is the observation matrix of the robot corresponding to the unknown 

(known, resp.) payload inertial parameters. 

 

III. GLOBAL IDENTIFICATION OF THE ROBOT DYNAMIC PARAMETERS AND THE DRIVE GAINS 

A. Least Square Identification of the Robot Dynamic Parameters and the Joint Drive Gains 

In the usual IDIM-WLS, accurate values of the drive gains are necessary to compute vector Y. 

However, the manufacturer’s data give drive gains parameters g  with an uncertainty of about 

10%, thus leading to parameter identification and torque estimation errors. Therefore, it is 

preferable to introduce the drive gains into the base parameters. 

Taking into account that parameters kLχ  are known, (12) can be written as: 
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1

a a
uL

b b uL kL kL






 
                  

χ
V W 0 0

Y g χ ρ
V W W W χ

 (13) 

where aV  ( bV , resp.) is the block-diagonal matrix of v  samples in the unloaded (loaded, resp.) 

case, 

1
,1

,
n

,

,

j

j
a b

j
r

v

v

 

 

 

   
       
      


   



V 0

V V

0 V

,  (14) 

,
j

kv  is the k-th sample of current reference for actuator j, and j
V  regroups all the current 

reference samples for actuator j. 

A simple approach to identify the drive gains is to take into account that the vector kL kLW χ  is 

known. Then (13) can be rewritten as: 

a a
L r r

kL kL b b uL
uL






 
                     

g
0 V W 0

Y χ ρ W χ ρ
W χ V W W

χ

  (15) 

with rχ  the vector of the unknown inertial parameters of the robot and the payload plus the drive 

gain parameters. 

As a result, the LS solution ˆ rχ  of (15) is given by: 

  1
ˆ T T

r r r r kL kL r L

  χ W W W W χ W Y   (16) 

Because LY  and rW  depend on the same data containing perturbations ˆ ˆˆ(   ) q, q, q  (due to the 

use of kLW  in LY  and of uLW  in rW ), the noises in LY  and rW  are correlated which may 

introduce a bias. This is shown in our case study (Table VII). 

A technique to calculate the LS solution when both LY  and rW  contain perturbations is to use 
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Total Least Squares Identification (IDIM-TLS) procedure. This procedure is detailed below. 

 

B. Total Least Square Identification of the Robot Dynamic Parameters and the Joint Drive 

Gains (IDIM-TLS) 

Details on the TLS identification method can be found in [23], [24] and many other papers (see 

also [25]–[27]). Eq. (13) can be rewritten as: 

tot tot W χ ρ , (17) 

where a a
tot

b b uL kL kL





 
     

V W 0 0
W

V W W W χ
 is a ( )r c  matrix (with + 1b uLc n n n   ), and 

1T T T T
tot uL   χ g χ χ is a  1c  vector. 

Without perturbation, ρ 0  and totW  must be rank deficient to get the non-null solutions  

ˆ ˆ n
tot tot χ χ 0  (where ˆ n

totχ  is a vector of unit norm, i.e. ˆ 1n
tot χ ) depending on a scale 

coefficient  . However because of the measurement perturbations, totW  is a full rank matrix. 

Therefore, the system (17) is changed to the compatible system closest to (17) w.r.t. the 

Frobenius norm: 

ˆ ˆtot tot W χ 0 , ˆˆ ˆ ˆ 1T T T T
tot uL   χ g χ χ   (18) 

where ˆ
totW  is the ( )r c  rank deficient matrix, closest to totW  w.r.t. the Frobenius norm, i.e. 

ˆ
totW  minimizes the Frobenius norm  ˆ

tot tot
F

W W  and ˆˆ ˆ ˆ 1T T T T
tot uL   χ g χ χ  is the solution 

of the compatible system (18) closest to (17). 

ˆ
totW  can be computed thanks to the “economy size” Singular Value Decomposition (SVD) of 

totW  [28]: 
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T
tot W US V ,  (19) 

where U  and V are ( )r r  and ( )c c  orthonormal matrices, respectively, and ( )idiag sS  is a 

( )c c  diagonal matrix with singular values is  of totW  sorted in decreasing order. ˆ
totW  is given 

by: 

ˆ T
tot tot c c cs W W U V ,  (20) 

where cs  is the smallest singular value of totW  and cU  ( cV , resp.) the last columns of U (V, 

resp.) corresponding to cs . Then, the normalized optimal solution ˆ n
totχ  is given by the last column 

Vc of V, ˆ n
tot cχ V , which belongs to the kernel of ˆ

totW . 

There is infinity of vectors ˆ ˆ n
tot totχ χ  which are solutions of (18) depending on a scale factor 

 . The unique solution * ˆˆ ˆ n
tot totχ χ  for the robot can be found by taking into account that the last 

value *ˆ
ctot  of *ˆ totχ  must be equal to 1 according to (18), i.e. ˆ ˆ1/

c

n
tot  , with ˆ

c

n
tot  the last value 

of ˆ n
totχ . 

It must be mentioned that the TLS method has been applied in [29] for the identification of the 

drive gains and the dynamic parameters on a two degrees of freedom (dof) robot but gave 

arguable results due to the lack of accurate reference parameters (in [29], the reference parameter 

was the drive gain of actuator 1 that was not accurately known). As a result, the authors were not 

able to correctly identify payload masses added on the end-effector. In this paper, a major 

improvement is to scale the parameters using the accurate weighed value of an additional 

payload mass. 
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C. Statistical analysis 

Standard deviations ˆi
  on the dynamic and drive gains parameters, are estimated assuming that 

all errors in data matrix totW  are independently and identically distributed with zero mean and 

common covariance matrix WWC  such that 

2ˆ
WWW W rC I ,  (21) 

where 
Wr

I is the identity matrix of dimension ( ) ( )r c r c   . 

An unbiased estimation of the standard deviation ˆW  is [24]: 

ˆ /W cs r c    (22) 

The covariance matrix of the estimation error is approximated by [24]:  

  
1: 1 1: 1

122
ˆ ˆ 1: 1 2

ˆ ˆˆ ˆ1
c c

T
W c tot tot 

 



 C χ W W  (23) 

with 1: 1ˆ cχ  the vector containing the 1c   first coefficients of  *ˆ totχ  and 
1: 1

ˆ
ctot 

W  a matrix composed 

of the 1c   first columns of ˆ
totW . Finally, 2

ˆ ˆ ˆ ( , )
i

C i i  
 
is the ith diagonal coefficient of ˆ ˆC  

and the relative standard deviation ˆ%
ri  is given by: ˆ ˆ ˆ% 100

ri i i    , for ˆi ≠ 0. 

In order to improve the estimation of *ˆ totχ , the rows of totW  are weighted taking into account 

the confidence on the measures. As proposed in IDIM-WLS (Section II.B), to improve the TLS 

solution, each row corresponding to joint j equation is weighted by the inverse of ˆ j
W , i.e. the 

standard deviation corresponding to the data of the joint j equations. 
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IV. CASE STUDY 

A. The Stäubli TX-40 Robot 

The Stäubli TX-40 robot (Fig. 1) has a serial structure with six rotational joints. Details on its 

kinematics can be found in [13]. It is to be noted that the payload is numbered as the link 7, 

rigidly fixed on the last robot joint numbered as the link 6. 

 

 

Fig. 1. TX-40 robot and its calibrated payload of 4.59 Kg. 

 

 

The TX-40 robot is characterized by a coupling between the joints 5 and 6 such that: 

5 5 5

6 6 6 6

45 0

32 32

qr N q

qr N N q

     
           

 
 

, 5 5

6 6

5 6

60

c r

c r

N N

N

 

 
    

    
        

 (24) 

where jqr  is the velocity of the rotor of motor j, jq  is the velocity of joint j, Nj is the 

transmission gain ratio of axis j, τcj is the motor torque of joint j, taking into account the coupling 

effect on the motor side, τrj is the electro-magnetic torque of motor j.  

The model for the coupled geared drive chain of joints 5 and 6 adds 3 supplementary inertia, 

viscous and Coulomb friction parameters 6mIa ,  6mFv and 6mFs  to both τc5 and τc6:  
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65

6

5 6 66 6

6 6 6

5 6

6 5 5 5 6

( ),+

( )

m m m

m

c

mc m

Ia q q q q

Ia q q q q

Fv Fs sign

Fv Fs sign

 

  

   

   

   
   

 (25) 

where τj already contains the terms of the uncoupled joints (    ( ) )
jj j j j j j offIa q Fv q Fc sign q      . 

The TX-40 IDIM is automatically computed using the software Symoro+ [30] which applies a 

recursive and optimized Newton-Euler algorithm that gives the model expression with the 

minimal number of operations [6].  

 

B. Identification Results 

To validate the proposed method, a calibrated payload is used (Fig. 1). Its mass has been 

measured with an accurate weighing machine (M7 = 4.59 kg ± 0.005 kg). The other parameters 

have been calculated using CAD software. Their values are set in bold font in Table I.  

Before presenting the identification result, it is to be noticed that during the identification 

process, some small base parameters remain poorly identifiable because they have no significant 

contribution in the joint torques [18]. These essential parameters, which are a subset of the base 

parameters, can be cancelled in order to simplify the dynamic model. They are calculated using 

an iterative procedure starting from the base parameters estimation. At each step the base 

parameter which has the largest relative standard deviation is cancelled. A new TLS parameter 

estimation of the simplified model is carried out with new relative error standard deviation 

ˆ%
ri . The procedure ends when ˆ ˆmax(% ) / min(% )

ri ri
r     , where r  is a ratio ideally 

chosen between 10 and 30 depending on the level of perturbation in Y and W. 

 

The robot joint drive gains and dynamic parameters are identified using four different methods: 

 Case 1: with the IDIM-WLS method introduced in Section III.A, taking advantage of the 
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knowledge of the ten payload parameters, to calculate the vector LY  of (15), 

 Case 2: similar to Case 1, but considering the knowledge of the payload mass only, 

 Case 3: with the IDIM-TLS method introduced in Section III.B, taking advantage of the 

knowledge of the ten payload parameters, 

 Case 4: similar to Case 3, but considering the knowledge of the payload mass only. 

 

The obtained results are shown in Tables I to IV. The parameters with the subscript R stand for 

the regrouped parameters [6]. The results show in all cases that the error on the identified drive 

gains grows up to 30%! In the case where the payload mass is used only, some identified payload 

parameters are far from the a priori CAD values. These results could be explained by the fact 

that parameters extracted from CAD data are not accurate due to differences between CAD and 

reality (errors on material properties, payload shape, etc.). It can also be noticed in Tables I and 

III that the relative difference between the identified parameters is generally small with a mean 

value less than 10%.  
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TABLE I 

THE ESSENTIAL DYNAMIC PARAMETERS OF THE TX-40 IDENTIFIED WITH IDIM-WLS.  

 with 10 cad param. with 1 weighed mass m7 
parameter id.val. ˆ%

ri  id.val. ˆ%
ri  %ei 

ZZ1R 1,17e+0 2,28 1,14e+0 2,66 2,56 
Fv1 6,35e+0 2,37 6,21e+0 2,70 2,20 
Fs1 5,18e+0 3,80 4,98e+0 4,10 3,86 
XX2R -4,54e-1 3,53 -4,43e-1 3,81 2,42 
XZ2R -1,43e-1 5,85 -1,43e-1 5,88 0,00 
ZZ2R 9,85e-1 1,36 9,60e-1 1,92 2,54 
MX2R 1,97e+0 1,57 1,92e+0 2,21 2,54 
Fv2 4,17e+0 2,09 4,09e+0 2,52 1,92 
Fs2 7,28e+0 2,60 7,09e+0 2,91 2,61 
XX3R 9,56e-2 13,42 9,14e-2 13,84 4,39 
ZZ3R 1,19e-1 5,50 1,16e-1 5,75 2,52 
MX3 3,63e-2 24,39 3,77e-2 23,00 3,86 
MY3R -5,19e-1 2,69 -5,02e-1 3,30 3,28 
Ia3 7,52e-2 7,29 7,39e-2 7,44 1,73 
Fv3 1,46e+0 3,22 1,42e+0 3,60 2,74 
Fs3 5,81e+0 2,87 5,64e+0 3,29 2,93 
XY4 - - -5,27e-3 35,04 - 
MX4 -1,53e-2 18,62 -1,34e-2 21,25 12,42 
Ia4 2,50e-2 4,63 2,36e-2 5,55 5,60 
Fv4 6,54e-1 2,49 6,37e-1 3,76 2,60 
Fs4 1,72e+0 3,11 1,68e+0 4,26 2,33 
MY5R -2,40e-2 14,60 -2,26e-2 15,67 5,83 
Ia5 4,69e-2 8,11 4,24e-2 9,28 9,59 
Fv5 1,24e+0 3,63 1,21e+0 4,56 2,42 
Fs5 2,81e+0 3,87 2,71e+0 4,83 3,56 
Ia6 9,80e-3 6,29 8,33e-3 7,77 15,00 
Iam6 8,49e-3 19,92 8,95e-3 18,72 5,42 
Fv6 4,57e-1 2,07 4,34e-1 3,51 5,03 
Fvm6 4,30e-1 3,21 4,11e-1 4,31 4,42 
Fsm6 1,52e+0 2,95 1,53e+0 4,11 0,66 
off6 - - 7,91e-2 24,72 - 
XX7 0.64e-1 - 8,39e-2 5,79 31,09 
XY7 -1.80e-2 - -1,19e-2 17,55 33,89 
XZ7 2.60e-2 - 2,22e-2 9,69 14,62 
YY7 0.64e-1 - 8,20e-2 5,82 28,13 
YZ7 2.60e-2 - 3,18e-2 5,33 22,31 
ZZ7 4.40e-2 - 5,21e-2 3,92 18,41 
MX7 -2.90e-1 - -2,43e-1 3,29 16,21 
MY7 -2.90e-1 - -2,54e-1 3,41 12,41 
MZ7 4.10e-1 - 3,91e-1 3,90 4,63 
M7=4.59±0.005  M7=4.59±0.005 - 

rel. err. norm ||ρ||/||Y|| =12.40% rel. err. norm ||ρ||/||Y||=12.43% 

,
ˆ(% ) : 7.86%,i a bmean e  Y V g

, 
1 2 1ˆ ˆ ˆ% / %i i i ie     ., where 1ˆi  is the i-th parameter of IDIM-WLS using the knowledge of the ten payload 

parameters and 2ˆi  is the i-th parameter of IDIM-WLS using the knowledge of the payload mass only. 
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TABLE II 

THE DRIVE GAINS OF THE TX-40: A PRIORI STAÜBLI’S DATA AND IDENTIFIED VALUES WITH IDIM-

WLS.  

 A priori with 10 CAD parameters with 1 weighed mass M7 

i 
0i

g  ˆ
i

g  ˆ%
ri  %ei ˆ

i
g  ˆ%

ri  %ei 

1 32.96 30,20 2,41 8,37 31,10 2,02 5,64 

2 32.96 29,80 1,72 9,59 30,50 1,09 7,46 

3 25.65 21,80 2,36 15,01 22,40 1,74 12,67 

4 -11.52 -8,06 3,33 30,03 -8,27 1,76 28,21 

5 18.48 14,00 3,10 24,24 14,40 1,36 22,08 

6 7.68 5,88 3,15 23,44 6,08 1,44 20,83 

  (% ) :18.45%imean e  (% ) :16..5%imean e  

ˆ%
ri : relative standard deviation. 

0 0
ˆ% / %

i i iie g g g    . 

 

C. Cross-Validations 

To validate the methods used in Cases 1 to 4, obtained results are cross-validated. Three 

trajectories, different from each other and from the one used for identification (condition number 

of the corresponding observation matrices is given in Table V), are performed with the robot on 

which is fixed the payload of 4.59 kg. The positions and current measured are recorded during 

the robot displacements. Then, the observation matrix is computed for each trajectory.  

First, the actuator torques calculated with the relation (4) ˆ τ v g  (where v  is the measured 

motor current reference and ˆg  the vector of the identified drive gains) are compared with 
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torques computed using the IDIM (2) ˆτ IDMχ  ( χ̂  are the identified dynamic parameters). Five 

sets of parameters are chosen: 

1. drive gains given by the manufacturer and robot and payload dynamic parameters identified 

using a classical IDIM-WLS procedure [18], 

2. drive gains and robot/payload dynamic parameters identified with the IDIM-WLS method 

introduced in Section III.A, with the knowledge of the ten payload parameters (Case 1, 

Section IV.B, Tables I and II), 

3. drive gains and robot/payload dynamic parameters identified with the same IDIM-WLS 

method, with the knowledge of the payload mass only (Case 2, Section IV.B, Tables I and 

II), 

4. drive gains and robot/payload dynamic parameters identified with the IDIM-TLS method 

introduced in Section III.B, with the knowledge of the ten payload parameters (Case 3, 

Section IV.B, Tables III and IV), 

5. drive gains and robot/payload dynamic parameters identified with the same IDIM-TLS 

method, with the knowledge of the payload mass only (Case 4, Section IV.B, Tables III and 

IV), 
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TABLE III 
THE ESSENTIAL DYNAMIC PARAMETERS OF THE TX-40 IDENTIFIED WITH IDIM-TLS.  

 with 10 cad param. with 1 weighed mass m7 
par. id.val. 

ˆ%
ri  id.val. 

ˆ%
ri  %ei 

ZZ1R 1,28e+0 2,00 1,28e+0 2,04 0,00 
Fv1 6,93e+0 2,08 7,01e+0 2,07 1,15 
Fs1 5,61e+0 3,18 5,46e+0 3,20 2,67 
off1 - - 3,01e-1 27,13 - 
XX2R -4,95e-1 2,91 -5,01e-1 2,84 1,21 
XZ2R -1,54e-1 4,86 -1,58e-1 4,42 2,60 
ZZ2R 1,02e+0 1,34 1,05e+0 1,51 2,94 
MX2R 2,04e+0 1,55 2,11e+0 1,73 3,43 
Fv2 4,29e+0 2,10 4,45e+0 2,02 3,73 
Fs2 7,56e+0 2,48 7,72e+0 2,28 2,12 
XX3R 1,07e-1 9,79 1,05e-1 9,80 1,87 
ZZ3R 1,24e-1 5,25 1,27e-1 4,53 2,42 
MX3 4,02e-2 18,36 4,14e-2 16,79 2,99 
MY3R -5,53e-1 2,39 -5,71e-1 2,55 3,25 
Ia3 8,03e-2 6,77 8,31e-2 6,14 3,49 
Fv3 1,52e+0 3,14 1,57e+0 2,93 3,29 
Fs3 6,12e+0 2,72 6,28e+0 2,62 2,61 
XY4 - - -5,61e-3 26,20 - 
MX4 -1,53e-2 21,74 -1,50e-2 19,45 1,96 
Ia4 2,51e-2 5,48 2,71e-2 5,02 7,97 
Fv4 6,58e-1 2,87 7,27e-1 3,22 10,49 
Fs4 1,73e+0 3,62 1,92e+0 3,74 10,98 
MY5R -2,52e-2 18,08 -2,37e-2 17,29 5,95 
Ia5 4,73e-2 11,60 4,90e-2 8,67 3,59 
Fv5 1,24e+0 4,65 1,41e+0 3,88 13,71 
Fs5 2,84e+0 4,87 3,15e+0 3,93 10,92 
Ia6 9,92e-3 9,38 9,69e-3 6,79 2,32 
Iam6 8,51e-3 20,93 1,04e-2 17,29 22,21 
Fv6 4,61e-1 2,73 5,02e-1 2,78 8,89 
Fvm6 4,32e-1 2,87 4,75e-1 2,88 9,95 
Fsm6 - - 1,77e+0 3,07 - 
off6 - - 9,33e-2 17,46 - 
XX7 0.64e-1 - 9,59e-2 5,13 49,84 
XY7 -1.80e-2 - -1,43e-2 21,79 20,56 
XZ7 2.60e-2 - 2,46e-2 7,88 5,38 
YY7 0.64e-1 - 9,29e-2 4,92 45,16 
YZ7 2.60e-2 - 3,73e-2 4,48 43,46 
ZZ7 4.40e-2 - 6,03e-2 3,41 37,05 
MX7 -2.90e-1 - -2,75e-1 2,65 5,17 
MY7 -2.90e-1 - -2,84e-1 2,75 2,07 
MZ7 4.10e-1 - 4,48e-1 3,11 9,27 
M7=4.59±0.005  M7=4.59±0.005 - 
rel. err. norm ||ρ||/||Y|| =11.95% rel. err. norm 

||ρ||/||Y||=11.15% 

,
ˆ(% ) : 8.28%,i a bmean e  Y V g

 
1 2 1ˆ ˆ ˆ% / %i i i ie     ., where 1ˆ

i  is the i-th parameter of IDIM-TLS using the knowledge of the ten payload 

parameters and 2ˆ
i  is the i-th parameter of IDIM-TLS using the knowledge of the payload mass only. 
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TABLE IV 

THE DRIVE GAINS OF THE TX-40: A PRIORI STAÜBLI’S DATA AND IDENTIFIED VALUES WITH IDIM-

TLS.  

 A priori with 10 CAD parameters with 1 weighed mass M7 

i 
0i

g  ˆ
i

g  ˆ%
ri %ei ˆ

i
g  ˆ%

ri %ei 

1 32.96 33,8

0 1,83 2,55 33,90 1,87 2,85 

2 32.96 31,5

0 1,10 4,43 32,40 1,36 1,70 

3 25.65 23,5

0 1,70 8,38 24,20 1,87 5,65 

4 -11.52 -8,31 1,99 27,86 -9,21 2,75 20,05 

5 18.48 14,5

0 1,71 21,54 16,30 2,53 11,80 

6 7.68 6,12 1,76 20,31 6,79 2,57 11,59 

  (% ) :14.18%imean e  (% ) : 8.94%imean e  

ˆ%
ri : relative standard deviation. 

0 0
ˆ% / %

i i iie g g g    . 

 

 

For each experiment, the relative error norms || || / || ||j jρ Y  computed on each joint j equation 

are given in Table VI. Results show that the best reconstruction is achieved for parameters of 

Case 4, i.e. with parameters identified with IDIM-TLS techniques considering the knowledge of 

the payload mass only. In Figure 2, using the parameters identified in Case 4 of Section IV.B, the 

actuator torques along the trajectory 1 calculated with the relation (4) ˆ τ v g  (where v  is the 
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measured motor current reference and ˆg  the vector of the identified drive gains) are compared 

with torques computed using the IDIM (2) ˆτ IDMχ  (where χ̂  are the identified dynamic 

parameters). It can be observed that the torques are well calculated using the identified IDIM. It 

should be mentioned that the relative errors for joints 3 and 5 are a bit higher due to unmodelled 

phenomena (backlash in gearboxes and non-linear friction terms). 

Then, using the data collected on each trajectory, the payload is estimated using a classical 

IDIM-WLS [18] presented in Sections II.C and II.D, in which the actuator torques are calculated 

with the relation (4) ˆ τ v g  which requires the knowledge of the drive gains. Five different 

values of ˆg  are thus considered, which are the ones defined in the five previous cases (a priori 

gains or gains identified using the techniques presented in Section III). The results are given in 

Table VII. Only the payload mass is shown, as it is the only payload parameter value which we 

can trust, because it is accurately weighed. 

It can be observed that the best payload estimation is obtained for drive gains identified in Case 

4 (%e=0.65%), i.e. with IDIM-TLS techniques considering the knowledge of the payload mass 

only. The worst results are obtained for the gains identified in Cases 1 and 2 (%e=8.35%), i.e. the 

gains obtained with the modified IDIM-WLS procedure. Indeed, as mentioned previously, the 

noises in YL and Wr of (16) are correlated. Such correlation introduces a bias in the results and 

leads to wrong estimation of the parameters. In order to definitely validate our method, a second 

payload of 1.686±0.005 kg is attached on the end-effector and the same experiments are 

performed. Then, using the data collected on each trajectory, the payload is estimated using a 

classical IDIM-WLS [18], in which the actuator torques are calculated with the relation (4) 

ˆ τ v g . The same five different values of ˆg  are considered. The results are given in Table 

VIII. 
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TABLE V 

CONDITION NUMBER OF THE OBSERVATION MATRIX 

 Traj. 1 Traj. 2 Traj. 3 

cond(W) 2177 2817 1930 

 

TABLE VI 

RELATIVE ERROR NORMS ON TORQUE ESTIMATION FOR CROSS-VALIDATION TRAJECTORIES  

  Relative error norm (%) 
 ĝ   Manu

f 
Case 1 Case 2 Case 3 Case 4 

Traj. 1 Joint 1 12,83 12,64 12,46 12,67 12,52 
 Joint 2 9,96 9,82 10,04 10,39 9,72 

Joint 3 25,80 26,03 26,32 25,53 26,00 
Joint 4 15,20 14,88 14,35 16,91 14,30 
Joint 5 35,06 35,98 35,27 33,54 35,41 
Joint 6 19,36 21,11 19,94 24,10 19,86 

Traj. 2 Joint 1 11,44 11,41 11,23 11,38 11,29 
 Joint 2 7,66 7,81 8,04 7,60 7,46 

Joint 3 24,36 24,72 24,72 24,50 24,35
Joint 4 12,24 11,30 10,88 11,31 10,89 
Joint 5 30,36 31,55 30,64 31,47 30,50 
Joint 6 15,36 18,00 15,71 17,78 15,45 

Traj. 3 Joint 1 9,18 8,73 8,73 8,82 8,70 
 Joint 2 7,29 7,28 7,42 7,07 6,92 

Joint 3 24,78 25,39 25,26 25,24 24,86 
Joint 4 13,06 12,76 12,09 12,77 12,12 
Joint 5 33,71 35,06 33,66 35,05 33,72 
Joint 6 16,26 19,28 16,53 19,09 16,23 

Mean 17,99 18,54 17,96 18,62 17,79 
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TABLE VII 

ESTIMATION OF THE PAYLOAD MASS OF 4.59 KG ± 0.005 KG 

 ĝ   Manuf Case 1 Case 2 Case 3 Case 4 
Traj. 1 

7M̂  4,44 4,32 4,22 4,53 4,57 
 ˆ%

ri  1,68 1,54 1,54 1,54 1,56 
%e 3,27 5,88 8,06 1,31 0,44 

Traj. 2 
7M̂  4,44 4,29 4,19 4,50 4,54 

 ˆ%
ri  1,18 1,09 1,09 1,08 1,10 

%e 3,27 6,54 8,71 1,96 1,09 
Traj. 3 

7M̂  4,46 4,31 4,21 4,53 4,57 

 

ˆ%
ri  1,03 0,94 0,94 0,94 0,95 

%e 2,83 6,10 8,28 1,31 0,44 
Mean(%e) 3,12 6,17 8,35 1,53 0,65 

7 7 7
ˆ% / %e M M M   

 

TABLE VIII 

ESTIMATION OF THE PAYLOAD MASS OF 1.686 KG ± 0.005 KG  

 ĝ   
Manu
f Case 1 Case 2 Case 3 Case 4 

Traj. 1 
7M̂  1,67 1,58 1,55 1,66 1,68 

 
ˆ%

ri  
2,61 2,51 2,51 2,49 2,53 

%e 0,95 6,29 8,07 1,54 0,36 
Traj. 2 

7M̂  1,70 1,60 1,56 1,68 1,70 
 

ˆ%
ri  

1,92 1,87 1,87 1,86 1,88 
%e 0,83 5,10 7,47 0,36 0,83 

Traj. 3 
7M̂  1,70 1,59 1,56 1,67 1,70 

 

ˆ%
ri  

1,94 1,89 1,89 1,88 1,89 
%e 0,83 5,69 7,47 0,95 0,83 

Mean(%e) 0.87 5,69 7,67 0,95 0,67 

7 7 7
ˆ% / %e M M M   

 

Once again, it can be observed that the best payload estimation is obtained for drive gains 

identified in Case 4 (%e=0.67%), i.e. with IDIM-TLS techniques considering the knowledge of 
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the payload mass only. This result is very close to the one obtained with the mass used for the 

identification (%e=0.65% in Table VII), i.e. the identified gains make the identification not 

sensitive to the added mass. And the worst results are obtained for the gains identified in Cases 1 

and 2, i.e. the gains obtained with the modified IDIM-WLS procedure which lead to a biased 

parameter estimation. 

All these results show the effectiveness of this approach: for calibrating the drive gains, it is 

only necessary to weigh the payload mass and to carry out standard trajectories of industrial 

robot. And the calibration of the drive gains improves the torques estimation and parameters 

identification. 

To conclude this section, and in order to strengthen the method validation, we would like to 

mention that the proposed method has been experimentally tested on two other industrial robots 

(the Staübli RX-90 robot (about 10kg of payload) and the Kuka KR270 robot (270kg of 

payload)) and on two prototypes of parallel robots developed in French laboratories (the 

Orthoglide from the IRCCyN of Nantes [31] and the DualV from the LIRMM of Montpellier 

[32]). Experimental results have shown significant improvements of the identification of the 

drive gains values leading to better payload estimations for all these robots compared to the 

manufacturer’s values. 

 

V. CONCLUSION 

This paper has presented a new method for the global identification of the robot dynamic 

parameters including the gains of the total drive chain. This method is easy to implement and 

does not need any special test or measurement on the components of the joint drive train. It is 

based on an IDIM-TLS technique using motor current reference and joint position sampled data 
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while the robot is tracking some reference trajectories without load fixed on the robot and some 

trajectories with a known payload fixed on the robot end-effector. The ten inertial parameters are 

measured or calculated by CAD software. The method has been successfully experimentally 

validated on a Stäubli TX-40 robot. 
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Fig. 2. Motor torques (joint side units) calculated with identified gains (red) and with IDIM 
(blue) of the TX-40 with the payload of 4.59kg. 
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Four methods have been tested: (i) a modified IDIM-WLS using ten payload parameters 

calculated with CAD, (ii) the same modified IDIM-WLS using only accurately weighed payload 

mass, (iii) the IDIM-TLS using ten payload parameters calculated with CAD and (iv) the IDIM-

TLS using only accurately weighed payload mass. Then, using the manufacturer’s drive gains and 

the identified ones, results have been compared in terms of torque reconstruction and payload 

parameter estimation. The best results have been obtained when the IDIM-TLS is performed with 

the weighed payload mass only while modified IDIM-WLS techniques gave the poorest results 

due to noise correlations between the observation matrix and the measurement vector.  

This approach is very simple to perform and the experimental results have shown its 

effectiveness: for calibrating the joint drive gains, it is only necessary to accurately weigh the 

payload mass and to carry standard trajectories of industrial robot.  
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Fig. 1. TX-40 robot and its calibrated payload of 4.59 Kg. 
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Fig. 2. Motor torques (joint side units) calculated with identified gains (red) and with IDIM 
(blue) of the TX-40 with the payload of 4.59kg. 
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TABLE I 

THE ESSENTIAL DYNAMIC PARAMETERS OF THE TX-40 IDENTIFIED WITH IDIM-WLS.  

 with 10 cad param. with 1 weighed mass m7 
parameter id.val. ˆ%

ri  id.val. ˆ%
ri  %ei 

ZZ1R 1,17e+0 2,28 1,14e+0 2,66 2,56 
Fv1 6,35e+0 2,37 6,21e+0 2,70 2,20 
Fs1 5,18e+0 3,80 4,98e+0 4,10 3,86 
XX2R -4,54e-1 3,53 -4,43e-1 3,81 2,42 
XZ2R -1,43e-1 5,85 -1,43e-1 5,88 0,00 
ZZ2R 9,85e-1 1,36 9,60e-1 1,92 2,54 
MX2R 1,97e+0 1,57 1,92e+0 2,21 2,54 
Fv2 4,17e+0 2,09 4,09e+0 2,52 1,92 
Fs2 7,28e+0 2,60 7,09e+0 2,91 2,61 
XX3R 9,56e-2 13,42 9,14e-2 13,84 4,39 
ZZ3R 1,19e-1 5,50 1,16e-1 5,75 2,52 
MX3 3,63e-2 24,39 3,77e-2 23,00 3,86 
MY3R -5,19e-1 2,69 -5,02e-1 3,30 3,28 
Ia3 7,52e-2 7,29 7,39e-2 7,44 1,73 
Fv3 1,46e+0 3,22 1,42e+0 3,60 2,74 
Fs3 5,81e+0 2,87 5,64e+0 3,29 2,93 
XY4 - - -5,27e-3 35,04 - 
MX4 -1,53e-2 18,62 -1,34e-2 21,25 12,42 
Ia4 2,50e-2 4,63 2,36e-2 5,55 5,60 
Fv4 6,54e-1 2,49 6,37e-1 3,76 2,60 
Fs4 1,72e+0 3,11 1,68e+0 4,26 2,33 
MY5R -2,40e-2 14,60 -2,26e-2 15,67 5,83 
Ia5 4,69e-2 8,11 4,24e-2 9,28 9,59 
Fv5 1,24e+0 3,63 1,21e+0 4,56 2,42 
Fs5 2,81e+0 3,87 2,71e+0 4,83 3,56 
Ia6 9,80e-3 6,29 8,33e-3 7,77 15,00 
Iam6 8,49e-3 19,92 8,95e-3 18,72 5,42 
Fv6 4,57e-1 2,07 4,34e-1 3,51 5,03 
Fvm6 4,30e-1 3,21 4,11e-1 4,31 4,42 
Fsm6 1,52e+0 2,95 1,53e+0 4,11 0,66 
off6 - - 7,91e-2 24,72 - 
XX7 0.64e-1 - 8,39e-2 5,79 31,09 
XY7 -1.80e-2 - -1,19e-2 17,55 33,89 
XZ7 2.60e-2 - 2,22e-2 9,69 14,62 
YY7 0.64e-1 - 8,20e-2 5,82 28,13 
YZ7 2.60e-2 - 3,18e-2 5,33 22,31 
ZZ7 4.40e-2 - 5,21e-2 3,92 18,41 
MX7 -2.90e-1 - -2,43e-1 3,29 16,21 
MY7 -2.90e-1 - -2,54e-1 3,41 12,41 
MZ7 4.10e-1 - 3,91e-1 3,90 4,63 
M7=4.59±0.005  M7=4.59±0.005 - 

rel. err. norm ||ρ||/||Y|| =12.40% rel. err. norm ||ρ||/||Y||=12.43% 

,
ˆ(% ) : 7.86%,i a bmean e  Y V g

, 
1 2 1ˆ ˆ ˆ% / %i i i ie     ., where 

1ˆi  is the i-th parameter of IDIM-WLS using the knowledge of the ten payload parameters and 

2ˆi  is the i-th parameter of IDIM-WLS using the knowledge of the payload mass only. 



 

M. Gautier, S. Briot 37 Paper DS-13-1373 
 

TABLE II 

THE DRIVE GAINS OF THE TX-40: A PRIORI STAÜBLI’S DATA AND IDENTIFIED VALUES WITH IDIM-

WLS.  

 A priori with 10 CAD parameters with 1 weighed mass M7 

i 
0i

g  ˆ
i

g  ˆ%
ri  %ei ˆ

i
g  ˆ%

ri  %ei 

1 32.96 30,20 2,41 8,37 31,10 2,02 5,64 

2 32.96 29,80 1,72 9,59 30,50 1,09 7,46 

3 25.65 21,80 2,36 15,01 22,40 1,74 12,67 

4 -11.52 -8,06 3,33 30,03 -8,27 1,76 28,21 

5 18.48 14,00 3,10 24,24 14,40 1,36 22,08 

6 7.68 5,88 3,15 23,44 6,08 1,44 20,83 

  (% ) :18.45%imean e  (% ) :16..5%imean e  

ˆ%
ri : relative standard deviation. 

0 0
ˆ% / %

i i iie g g g    . 
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TABLE III 
THE ESSENTIAL DYNAMIC PARAMETERS OF THE TX-40 IDENTIFIED WITH IDIM-TLS.  

 with 10 cad param. with 1 weighed mass m7 
par. id.val. 

ˆ%
ri  id.val. 

ˆ%
ri  %ei 

ZZ1R 1,28e+0 2,00 1,28e+0 2,04 0,00 
Fv1 6,93e+0 2,08 7,01e+0 2,07 1,15 
Fs1 5,61e+0 3,18 5,46e+0 3,20 2,67 
off1 - - 3,01e-1 27,13 - 
XX2R -4,95e-1 2,91 -5,01e-1 2,84 1,21 
XZ2R -1,54e-1 4,86 -1,58e-1 4,42 2,60 
ZZ2R 1,02e+0 1,34 1,05e+0 1,51 2,94 
MX2R 2,04e+0 1,55 2,11e+0 1,73 3,43 
Fv2 4,29e+0 2,10 4,45e+0 2,02 3,73 
Fs2 7,56e+0 2,48 7,72e+0 2,28 2,12 
XX3R 1,07e-1 9,79 1,05e-1 9,80 1,87 
ZZ3R 1,24e-1 5,25 1,27e-1 4,53 2,42 
MX3 4,02e-2 18,36 4,14e-2 16,79 2,99 
MY3R -5,53e-1 2,39 -5,71e-1 2,55 3,25 
Ia3 8,03e-2 6,77 8,31e-2 6,14 3,49 
Fv3 1,52e+0 3,14 1,57e+0 2,93 3,29 
Fs3 6,12e+0 2,72 6,28e+0 2,62 2,61 
XY4 - - -5,61e-3 26,20 - 
MX4 -1,53e-2 21,74 -1,50e-2 19,45 1,96 
Ia4 2,51e-2 5,48 2,71e-2 5,02 7,97 
Fv4 6,58e-1 2,87 7,27e-1 3,22 10,49 
Fs4 1,73e+0 3,62 1,92e+0 3,74 10,98 
MY5R -2,52e-2 18,08 -2,37e-2 17,29 5,95 
Ia5 4,73e-2 11,60 4,90e-2 8,67 3,59 
Fv5 1,24e+0 4,65 1,41e+0 3,88 13,71 
Fs5 2,84e+0 4,87 3,15e+0 3,93 10,92 
Ia6 9,92e-3 9,38 9,69e-3 6,79 2,32 
Iam6 8,51e-3 20,93 1,04e-2 17,29 22,21 
Fv6 4,61e-1 2,73 5,02e-1 2,78 8,89 
Fvm6 4,32e-1 2,87 4,75e-1 2,88 9,95 
Fsm6 - - 1,77e+0 3,07 - 
off6 - - 9,33e-2 17,46 - 
XX7 0.64e-1 - 9,59e-2 5,13 49,84 
XY7 -1.80e-2 - -1,43e-2 21,79 20,56 
XZ7 2.60e-2 - 2,46e-2 7,88 5,38 
YY7 0.64e-1 - 9,29e-2 4,92 45,16 
YZ7 2.60e-2 - 3,73e-2 4,48 43,46 
ZZ7 4.40e-2 - 6,03e-2 3,41 37,05 
MX7 -2.90e-1 - -2,75e-1 2,65 5,17 
MY7 -2.90e-1 - -2,84e-1 2,75 2,07 
MZ7 4.10e-1 - 4,48e-1 3,11 9,27 
M7=4.59±0.005  M7=4.59±0.005 - 
rel. err. norm ||ρ||/||Y|| =11.95% rel. err. norm 

||ρ||/||Y||=11.15% 

,
ˆ(% ) : 8.28%,i a bmean e  Y V g

 
1 2 1ˆ ˆ ˆ% / %i i i ie     ., where 

1ˆ
i  is the i-th parameter of IDIM-TLS using the knowledge of the ten payload parameters and 

2ˆ
i  

is the i-th parameter of IDIM-TLS using the knowledge of the payload mass only. 
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TABLE IV 

THE DRIVE GAINS OF THE TX-40: A PRIORI STAÜBLI’S DATA AND IDENTIFIED VALUES WITH IDIM-

TLS.  

 A priori with 10 CAD parameters with 1 weighed mass M7 

i 
0i

g  ˆ
i

g  ˆ%
ri %ei ˆ

i
g  ˆ%

ri %ei 

1 32.96 33,8

0 1,83 2,55 33,90 1,87 2,85 

2 32.96 31,5

0 1,10 4,43 32,40 1,36 1,70 

3 25.65 23,5

0 1,70 8,38 24,20 1,87 5,65 

4 -11.52 -8,31 1,99 27,86 -9,21 2,75 20,05 

5 18.48 14,5

0 1,71 21,54 16,30 2,53 11,80 

6 7.68 6,12 1,76 20,31 6,79 2,57 11,59 

  (% ) :14.18%imean e  (% ) : 8.94%imean e  

ˆ%
ri : relative standard deviation. 

0 0
ˆ% / %

i i iie g g g    . 
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TABLE V 

CONDITION NUMBER OF THE OBSERVATION MATRIX 

 Traj. 1 Traj. 2 Traj. 3 

cond(W) 2177 2817 1930 
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TABLE VI 

RELATIVE ERROR NORMS ON TORQUE ESTIMATION FOR CROSS-VALIDATION TRAJECTORIES  

  Relative error norm (%) 
 ĝ   Manu

f 
Case 1 Case 2 Case 3 Case 4 

Traj. 1 Joint 1 12,83 12,64 12,46 12,67 12,52 
 Joint 2 9,96 9,82 10,04 10,39 9,72 

Joint 3 25,80 26,03 26,32 25,53 26,00 
Joint 4 15,20 14,88 14,35 16,91 14,30
Joint 5 35,06 35,98 35,27 33,54 35,41 
Joint 6 19,36 21,11 19,94 24,10 19,86 

Traj. 2 Joint 1 11,44 11,41 11,23 11,38 11,29 
 Joint 2 7,66 7,81 8,04 7,60 7,46 

Joint 3 24,36 24,72 24,72 24,50 24,35 
Joint 4 12,24 11,30 10,88 11,31 10,89 
Joint 5 30,36 31,55 30,64 31,47 30,50 
Joint 6 15,36 18,00 15,71 17,78 15,45 

Traj. 3 Joint 1 9,18 8,73 8,73 8,82 8,70 
 Joint 2 7,29 7,28 7,42 7,07 6,92 

Joint 3 24,78 25,39 25,26 25,24 24,86
Joint 4 13,06 12,76 12,09 12,77 12,12 
Joint 5 33,71 35,06 33,66 35,05 33,72 
Joint 6 16,26 19,28 16,53 19,09 16,23 

Mean 17,99 18,54 17,96 18,62 17,79 
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TABLE VII 

ESTIMATION OF THE PAYLOAD MASS OF 4.59 KG ± 0.005 KG 

 ĝ   Manuf Case 1 Case 2 Case 3 Case 4 
Traj. 1 

7M̂  4,44 4,32 4,22 4,53 4,57 
 ˆ%

ri  1,68 1,54 1,54 1,54 1,56 
%e 3,27 5,88 8,06 1,31 0,44 

Traj. 2 
7M̂  4,44 4,29 4,19 4,50 4,54 

 ˆ%
ri  1,18 1,09 1,09 1,08 1,10 

%e 3,27 6,54 8,71 1,96 1,09 
Traj. 3 

7M̂  4,46 4,31 4,21 4,53 4,57 

 

ˆ%
ri  1,03 0,94 0,94 0,94 0,95 

%e 2,83 6,10 8,28 1,31 0,44 
Mean(%e) 3,12 6,17 8,35 1,53 0,65 

7 7 7
ˆ% / %e M M M   
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TABLE VIII 

ESTIMATION OF THE PAYLOAD MASS OF 1.686 KG ± 0.005 KG  

 ĝ   
Manu
f Case 1 Case 2 Case 3 Case 4 

Traj. 1 
7M̂  1,67 1,58 1,55 1,66 1,68 

 
ˆ%

ri  
2,61 2,51 2,51 2,49 2,53 

%e 0,95 6,29 8,07 1,54 0,36 
Traj. 2 

7M̂  1,70 1,60 1,56 1,68 1,70 
 

ˆ%
ri  

1,92 1,87 1,87 1,86 1,88 
%e 0,83 5,10 7,47 0,36 0,83 

Traj. 3 
7M̂  1,70 1,59 1,56 1,67 1,70 

 

ˆ%
ri  

1,94 1,89 1,89 1,88 1,89 
%e 0,83 5,69 7,47 0,95 0,83 

Mean(%e) 0.87 5,69 7,67 0,95 0,67 

7 7 7
ˆ% / %e M M M   

 


