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THE CRITICAL PRICE OF THE AMERICAN PUT NEAR MATURITY
IN THE JUMP DIFFUSION MODEL

AycH BouseLMmi®Y, DAMIEN LAMBERTON ?

Université Paris-Est
Laboratoire d’Analyse et de Mathématiques Appliquées (UMR 8050), UPEM
UPEC, CNRS, Projet Mathrisk INRIA,
F-77454, Marne-la-vallée, FRANCE

ABSTRACT. We study the behavior of the critical price of an American put option near
maturity in the Jump diffusion model when the underlying stock pays dividends at a
continuous rate and the limit of the critical price is smaller than the stock price. In
particular, we prove that, unlike the case where the limit is equal to the strike price,
jumps can influence the convergence rate.

INTRODUCTION

The behavior of the critical price of the American put near maturity has been deeply
investigated. Its limit was characterized in the Black Scholes model (see [5, 13]) by
r
T) = lim b(t) = min (K, K)
T i= Jim b(t) = min (K, K)
where r and 0 denote the interest rate and the dividend rate and b(t) is the critical price
at time t.

This result was generalized to more general exponential Lévy models in [7]. In fact,
denoting d =r — 6 — [(e¥ — 1)Tv(dy) ! with v the Lévy measure of the underlying Lévy
process, we have

b(T)=K,if d>0,
and
bWT)=¢,if d<0,

where £ is the unique solution, in [0, K], of

(1) rK —dx — /(:Eey — K)Tv(dy) = 0.

Maych.bouselmi@gmail.fr
() damien.lamberton@univ-mlv.fr
IThe quantity d is denoted by d* in [7]



In the Black Scholes Model, the quantity d reduces to d = r — § and we distinguish,
according as d > 0, d = 0 and d < 0, different behaviors of the critical price near maturity.
In fact, Barles et al in [1] (see also D. Lamberton [6]) established, in the case where d > 0
(which implies b(T') = K), that

K —b(t)
) BND e T 0T 1),

(t)

where the expression f ~y_q g (or f ~, g) is equivalent to lim;_,, O 1. The cases
d < 0 and d = 0 were investigated by D. Lamberton and S. Villeneuve in [14] and they
obtained :
If d = 0 (which also implies b(T") = K)

KT?@) ~ist A/ 2(T — 1) In(T — ).
If d <0 (b(T) < K), there exists yo € (0,1), which is characterized thanks to an auxiliary
optimal stopping problem, such that

b(T) — bt T

The critical price has also been studied in the Jump diffusion model. In fact, Pham proved
in [11] that the result (2), obtained in [1, 6], remains exactly the same in the Jump diffusion
model, in the case where d > 0 and § = 0. This remains true if § > 0 (see [10]).

The purpose of this paper is to study the convergence rate of the critical price of the
American put, in the Jump diffusion model, with d < 0. Considering the results of Pham
n [11], we expect to obtain the same results as the study performed by Lamberton and
Villeneuve in the Black-Scholes model when (d = 7 — § < 0 ), meaning that jumps do not
have any influence on the convergence rate. Surprisingly, we obtain the expected result
only for the case d = 0. Indeed, we obtain for d = 0 (see Theorem 4.1),

B2 e VAT 0T ],

and for d < 0 (see Theorem 3.2),
b(T) —b(t
(a)b( )( ) ~sr Ya sV (T —t),

where y) 3 is a real umber satisfying yx g3 > yo, and depending on V({TI;)}) we can have
Y3 > Yo. This point will be discussed in more details in section 3.3.

This study is composed of four sections. In Section 1, we recall some useful results on the
American put which will be used throughout this study. In Section 2, we give some results
on the regularity of the American put price and the early exercise premium. In Section 3,
we investigate the case where the limit of the critical price is far from the singularity K.
Therefore, we have enough regularity to give an expansion of the American put price near
maturity from which the critical price behavior will be deduced. The method is similar

to the one used in [14] and is based on an expansion of the American put price along
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parabolas. However, the possibility that the stock price jumps into a neighborhood of
the exercise price produces a contribution of the local time in the expansion. Section 4 is
devoted to the study of the case d = 0. In this case b(T) = K, hence we have no longer
enough smoothness to obtain an expansion around the limit point (7',6(7")). Then we will
study the behavior of the European critical price b (t) instead of b(t). Thereafter, we prove
that b(t) and be(t) have the same behavior.

1. PRELIMINARY

In the Jump Diffusion model, under a risk-neutral probability, the risky asset price is
modelized by (S¢),~ given by

~ B 2
Sy = S()BXt, with X; = (7" — 5)t +oB; — %t + Z; — t/(ey — 1)I/(dy)

where r > 0 is the interest rate, § > 0 the dividend rate, (B);», a Standard Brownian
Motion and (Z;),~, a Compound Poisson Process and v its Levy measure. We then have

dS; = Si- (ydt + 0dBy + dZ;) , with Z; = Yocs<t(€Z:—1) and vo = r—5—/(ey—1)y(dy).

Denote by F the completed natural filtration of the process X; and suppose all over this
paper that the following assumptions are satisfied

o >0, v(R) < oo, /eyu(dy) < 00 and d=r—§— (e —1)v(dy) < 0.
y>0

The price of an American put with maturity 7" > 0 and strike price K > 0 is given, at

t € [0,T], by P(t,S;) with P defined for all (t,x) € [0,T] x RT by

P(t.w) = sup E(c (K —2e™)y),
T€T0, 17—t
where T 77—+ is the set of all F-stopping times taking values in [0, 7" —¢]. The value function
P can also be characterized (see [7]) as the unique continuous and bounded solution of the
following variational inequality

oprP
max{y — P; 5 + AP —rP} =0, (in the sense of distributions),
with the terminal condition P(7,.) = 1. Here A is the infinitesimal generator of the
process S. The free boundary of this variational inequality is called the exercise boundary,

and at each t € [0, 7, the critical price is given by
b(t) =inf {z > 0| P(t,z) > (K —x)"}.
It was proved in [7] that, if d < 0, then

3) limn (1) = € = b(T),

where § is the unique solution, in [0, K], of rK = dx + [(ze¥ — K)Tv(dy). Note that, if

d=0, then b(T) =¢ =K.
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Finally, recall that the price of a European put with maturity 7" and strike price K is
given, at time ¢, by

P.(t,x) =E <€_T(T_t) (K —ST—¢)+ ’ So = LE) .

The quantity (P—P,) is called the early exercise premium, we then have P(t,x) = P.(t,z)+
e(T — t,x). Setting § = T — ¢, then the early exercise prime, e(6, ), is characterized for
the American put in the exponential Levy model as follows (see[10])

e(d,x) =
0
E {/ e " <7’K — 057 — / [P(t+s,55¢Y) — (K — S7eY)] V(dy)> 1{S§<b(t+s)}ds} .
0 y>0

We also define, for all ¢ € (0,7), the European critical price, b.(t), as the unique solution
of

F(t,z) = P.(t,x) — (K —z) = 0.
It easy to check that, for all t € (0,7), b.(t) is well defined, b.(t) € (0,K). It is also
straightforward that P, < P, therefore b(t) < b.(t) < K .

2. REGULARITY ESTIMATE FOR THE VALUE FUNCTION IN THE JUMP DIFFUSION MODEL

In this section, we study the spatial derivatives behavior of P, P. and e(f,z) near
(T,b(T)). We also give a lower bound for the second spatial derivative near (7',b(T)).
These results will be proved in Appendix 1.

Lemma 2.1. Under the model assumption, we have
(1) For all x € (0,be(t) Ab(T)], we have, as 0(=T —t) goes to 0,
1
66 _ 0(\/5)7

%(9796) -

with o(v/0) uniform with respect to x.
(2) For all x € (0,b(T) A be(t)], we have
oP 1

5o (@) +1=(1+ 2)o(Vh),

with o(\/0) uniform with respect to .

Lemma 2.2. According to the hypothesis of the model, we have, for all b(t) < x < b(T) A
be(t) and for all =T —t small enough, the following inequality

. u2o? 92P
inf

b(T)
b(t)<u<z 2 W(

B +
tau) > (0—€(8) (b(T) — z) — A\BE <0B9 - ln(—)> +0(V0),

xT

with limg g €e(f) =0, § =& + f{y>1n(%p)} eYv(dy), \=v {ln (TIZ{F))} and 3 = —Sbl({T)'



3. REGULAR CASE

We begin this section with introducing an auxiliary optimal stopping problem which
will be needful for deriving the expansion of the American put price near maturity along a
parabolic branch. Once we have this expansion we will be able to derive the convergence
rate of the critical price.

3.1. An auxiliary optimal stopping problem. Let 3 be a non-negative number, (B;)s>0
be a standard Brownian motion with local time at z denoted by L*. We denote by To,1
the set of all o (B; ; t > 0)-stopping times with values in [0,1] . Consider also a Poisson
process (Ns)s>0, independent of B, with intensity A\, we denote by Ty its first jump time
and by 7o the set of all o ((N;, By) ; t > 0)-stopping times with values in [0, 1]. We define
the functions vy g as follows

B ar - -
vsly) = sup [ s, _0}/ oty + Bo)ds + 5L g (7vB) - L2/(B))| .
T€T0,1
where f,(2) = x + ax™. Notice that vy 3 is a non negative function. Moreover, we have
Lemma 3.1. Define
yrg = —inf{z € R | vy g(z) > 0}.
We have 0 < yy 5 < 1+ A3(2+¢*) and
Yy < —yag  oapy) =0.

We finish this paragraph with an inequality, which will be used to derive a lower bound
for the second derivative of P (see the proof of the upper bound in Theorem 3.2).
We define the function C' on R by C(z) = 2 — A3 E(B; — )t and we have the following
lemma,

Lemma 3.2. For all x > y) g, we have
C(z) > 0.
These results will be proved in  Appendiz 2: A study of vy g.

3.2. American put price expansion. Throughout this section, we assume d < 0, so
that b(T) < K. We then have enough regularity of the American put price to derive an
expansion of P around b(T') along a certain parabolic branch.

Theorem 3.1. Let a be a negative number (a < 0) and b(T) denote the limit of b(t) when
t goes to T, b(T) = limy_,7 b(t). If d <0, we have

P(T = 9,6(1)e™") = (K = b(T)e")* + Ch7 0, 5(=) + 0(07),

where C' = ob(T)oe*, with A = v{ln TI;)}’ b =08+ fy>1n(K/b(T)) eYv(dy) and vy g(y) as

defined in the previous section with § =

K
b(T)s "



Remark 1. Notice that if v does not charge {ln(%)}, meaning that A = 0 and T =

o0 a.s, then,
vy g(a) =vo(a) = sup E (/ (a + Bs)d8> .
7€70,1 0

In this case, the American put price will have the same expansion as in the Black&Scholes
model, (see [9]).

Before proving Theorem 3.1, we state an elementary estimate for the expectation of the
local time of Brownian motion.

Lemma 3.3. For all real number a and for all t > 0, we have

_d?
e 2t

Nors

0<E(a— By —ay <Vt

Proof of lemma 3.3:
The first inequality follows from Jensen’s inequality. For the other inequality, we have

a/V't

Bla-B)s = [ <a—¢%y>e—y2/2%

a/Vt 2 d _g
= w2 VS
a/_oo ¢ V2T V2T

Then, if a <0,
a2
e 2t

Vor

E(a— By < Vi

If a > 0, we can write

2 2
Feo d e~ % e 2

E(a—By))x —a = — e~Y?/2 Y +Vt <t .
( )+ /a/\/i \ 2 Vor \ 2

O

In order to derive the expansion of the American put price, we start from the Meyer-Ito
formula (see [12]):

(4)

t
1
(K—St)+ = (K—S())++/ (_1{53§K})SS(’Y()CZS+O'CZBS)+ E (K—SS)+—(K—SS—)++§LtK,
0 0<s<t

where L is the local time of the process at K until the date t. We give, in the following
lemma, an estimation of ELX, for small times ¢, which will allow us to neglect a part of

the contribution of the local time in the expansion of P(¢,x), near maturity.
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Lemma 3.4. Let a be a negative number, a < 0 and Sy = b(T)e“\/a S IfN(T) < K, then
we have, for all F-stopping time T with values in [0, 6],

E (LF) = 2KE | ((~avl - 0B,)" = (~aV0 = 0B )% ) 147,y | + 0(0%) < wo0*/2,

where Ty = inf{s > 0; AX, = ln(T[;))} and wo a non-negative constant independent of a.

Proof of Lemma 3.4:
Let 17 be the first jump time of the process Z and 7 an F-stopping time with values in
[0,6]. We have, the local time being a nondecreasing process,

L7['{ = L7['{/\T1 + L7['{ - L7['{/\T1 = L7['{/\T1 + 1{T1<7'} (L7['{ - L%)

K K K
< Lgng, + Lm<oy (L7, 40 — L1y) -

A

Estimating ELgi\Tl
In the stochastic interval [0, 7}, the process (S;) matches with the process (S;) defined
by

2
St = 506(70_07)t+03t.
We deduce (when observing that the process L is continuous) that
K 7 K F K
Loty = Lo, < Ly

where L¥ is the local time at K of the process S. Note that
1. . 0 }
§L£)( = (K — Sp)+ — (K — So)+ — /0 (—11g,<k})9s(ods + odBs).

As the process (LX) increases only on {S; = K}, we have
Ly = Lg(l{n«@}’
where 7i = inf{t > 0;S; > K}. By Holder,
ELY < (B(rx < 0)' 77 1Ll p>1.
We easily deduce that ELE = o(6™), for all n > 0.

Estimating E [1{T1<T} (Lf — lefl)]
Notice that we have

E [Ln<r) (L7 = L1,)] <E [Lini<oy (LT 40 — L7,)]
and by the strong Markov property, we obtain
) E [Ln<op (K0 — T5)] = E (1, <o) B (L))
where E, is the expectation associated to P, and P, defines the law of S; when Sy = .

Estimating E, (Léf )



Let T be the first jump time of the process Z. We then have
K K K K
Ly = Lopr, + Loy — Lypr,

According to equality (4) we deduce, using the compensation formula (see [3])
glo = (K =50+ = (K =S0)++ | L, <k)S-(t0ds + 0dBy)
0

_ /06 ds/cp(ss,y)v(dy) + My,

where ®(z,y) = (K —ze¥); — (K — )4 and (M) is a martingale which vanishes at 0.
Taking expectations, we have

0
%E (Ly) =E(K — Sp)+ — (K — So)+ +E/0 (70531{SS§K} - /‘P(Ssay)V(dy)) ds.

We deduce easily from this equality that

LB, (L) = Eull = So) — (K ). +200)

with O(0) independent of x. We have
0'2 74
Eo(K = Sp)y — (K =)y = Eo(K —ael 0720000t 20y, (K — ),
We also have

2 ~
E 6(7‘—5—%)9—1—039—1—29 _ eo’Bg

c7202) ‘e(r_5_§)9+29 1
= 0(0)
Therefore

E.(K — Sp)y — (K —2)y = E(K —ze’P), — (K — ), +20(f)
= E(K —2(1+0Bp))s — (K —z) +20(0)

— 20 <E <K$;”” - B@>+ = <K$;x>+> +20(0).

— )2
E.(K —Sp)+ — (K — )4 <xo/0/(27) exp <—u> +z0(0).

Hence, using lemma 3.3 above,

2220260



Going back to (5), we obtain

1
§E [1{T1<9} (L7[g1+9 - L%)]

0 (K — St )2
< oy %E <1{T1<9}ST1 exp <_2S%170210 +E (g1, <0351, ) O(0)

0 _o2 Ty +oB VA (K - ST )2 2
A (1{T1<0}6(70 2 IFoBn 2 exp <_2S%170219 0.

At this stage, we notice that P(T} < ) = 1 — e % = O(#) and that, conditionally on
{Ty < 6}, T is uniformly distributed on [0, 6].

As Zp, is independent of both T} and B, we see that, conditionally to {7} < 8}, St, has
the same law as

K exp { <v - ln(%)> +V0 <a + (v — %2)\/5U + ag\/ﬁ> } ,

where U, g and V' are two independent random variables, U is uniform on [0, 1], g standard
Gaussian and V has the same law as Z7,. Therefore, we can state that there exists a non
negative constant independent of a such that

E(Lg( ‘ SO = b(T)e“\/a) < 'w093/2 — 0(93/2)
Estimating E [Lf — LfATl] , in the case where V{ln(b({fp))} 0

If we assume V{ln(%)} = 0, which means that V' — ln(%) # 0 a.s , we obtain, by
dominated convergence that

LmE [ S K21 - ) 1Ty <6) =0
e | Snew | —ggrmy | 1Ti<0) =0

Therefore E 17, <o (LQIfH_@ — L?)] = 0(63/?), hence
E (L§ | So = b(T)eY?) = o(6*/?)
Estimating E [LE — LfATl], in the case where V{ln(T{fp))} > 0:

Let us introduce the processes X and Z such that
Zi= AX I gy and X=X-2,

s<t

o(T)
and Ty = inf{s > 0, Zy + 0}. Then, since 7 < 6, we have
K 3
E |:L7—/\T1 LT/\Tl] =E |:(LT/\T1 LT/\Tl) {T1<T/\T1} = 0(62)'

Indeed, on {7 < Tl}, the process X matches with the process X whose Levy measure does
not charge the point {IH(TI%)}, (we are in the same case as V{ln( )} = 0). And on
9



{1 < T < T} Cc{ < T < 0}, the process Z has jumped two times before 6, however,
P (nge Linz 20y 2 2) = 0(#%). Thus,

E[LE — LK, 1 =E|LE - LK . | +0(6%?).
1

T/\Tl
Besides,

1 K K _ 1 K K
SE [LT - LMTJ = °E [(LT ~ LK )1

= E|((K=8)" = (K= $;)%) 15, ., | +0(6*?)

- E K( - %eXﬂ_XﬁJFXTW — (K - %e%ﬁ) 1T1<T] +0(07).

Tl <T]

Since P (nge Lag, 201 = 2) — O(6?), conditionally on {T7 < 7}, we can assume that
Ny = 1, where Ny denotes the number of jumps of X up to 6, Ny = nge 1{AX37£0} =

> s<6 L{az.20y- Noticing that % = Ke™? we obtain

JEE

SoK % — %o 4%, SoK x. .
= 2 | - e Ty (= BB ) Ly gy |+ 000%)

= 2KE [((—a\/é —pr — 0Bt = (—aVl — uTy — UBT1)+) 1{T1<T}] +0(62)

— 2KE [((—a\/é —0B)t = (—aVh - O'BT1)+) 1{T1<r}} +0(62)

The last two equalities follow from P(T} < 7) = O(6), |(1— e+ z) <oy < %2 and the
fact that, for all stropping time o with values in [0, 8], we have

2
OF <a + u\/% + \%BQ> e

0

Proof of Theorem 3.1: First of all, we recall our notation X, = Xt — Zy, Sy = S’t/ezt (i.e
the continuous part of the processes) and 7T the first jump time 77 = inf{t > 0|Z; # 0}
and from now on, we consider Sy as a function of . More precisely, we denote by Sg =
b(T)erV? = emtav0 with a < 0 and 2o = In(b(T)).

10



According to equation (4), we have for all stopping times 7 € 7o g,
E [e‘”(K — ST)+] — (K — Sp)*

_E [ /0 ' <e—m1{SSSK} (-m 465, + S, / (e¥ — 1)u(du)>

_— / [ — Sae)* — (K — SS)+])V(dy)> ds] +3E ( /0 CerdLk >
©6) = I%n)+ T ),

where
T%r) = E [ /0 ’ <e—’“81{55<,<} (—rK 465, + S, / (¥ — 1)V(du)>
rerre [0 = .0 (5 = 5 wlan) ) ds|

and

JUr) = %E (/0 e—"SdL§> .

At this stage, since J% > 0, we can state that , given Sy = b(T)eA‘/g, we have
(1) %) SE[e77(K = 8;)1] = (K = So)t = I%(7) + J°(r) < T°(r) + wob?,

the last inequality follows from Lemma 3.4. In what follows, we will express Z% and J“ in
more appropriate forms. Let us start with J¢.

Estimating J%:
Recall that 77 = inf{t > 0 ; AX; = In TZ{“)} and setSy = b(T)e)‘\/a with A < 0, then
according to Lemma 3.4, we have E (L)) = O(63/?), therefore

Jr) = SE (LK) +o(6?)
® = KE|((-avh—0B)" — (~av8—0B1)") Ly | +0(6%)

Estimating of 7%:
First of all, remark that we have
11



B [ (s [ 10 = Sy (K =80 o)) s
< Ku(R) /O "B(s, > K)ds

0
) < Kv(R) / P{S, > K, T, > 0} + P{S, > K, T} < 6}ds
0

IN

Kv(R) </00 P{S, > K}ds + 0P{T} < 9}) = 0(0%).
And noticing that
Lo<ry (2(e¥ = 1) + [(K —2e’)" — (K —2)"]) = (ze¥ — K)" 1<k,
we thus obtain
%) =E </06T—7‘81{53§K} <—7~K + 65, + /(ssey - K)+y(dy)> ds> +0(6%).

We can also omit e~"* in the expression as an error of the order of O(6?). Then we obtain,

for all stopping times 7 with values in [0, 6]

%) =E </1{SS<K} <—7‘K + 655 + /(Ssey — K)+V(dy)> ds> + 0(9%).
0
We denote

h(z) = —rK + 6e” + /(e:”ey — K)Tv(dy),

and recall that S; = SgeXt = b(T)erVo+Xe = b(T)eXf\/é = ewo*’quﬂ, where X =y + X; .
We thus have

(10) T9r) = E </1{M+XS<IHT§)}h(xO +ave + Xs)ds> +o(63).
; <

(1)

Now, we will try to express the quantity (/) under a more appropriate form. The first step
is to neglect the contribution of the finite variation part of the process X. Notice that

Lgpemgoph(@)] < KV |d]) and |h<:c>—h<y>|§|ex—ey|<a+ />Oeyu<du>).

Moreover, for all (z,y) € R?, we have

| La<im(r)y (x) = Liy<in(y ()]
= |(h(x) = h(Y)) Lizvy<in(r)y + P(@) L)<y — (W) gy<in(i)<a}]

< Agle® = €¥| Lipvy<in()3 A1 (L) <y} + Lin(x)<a) » -



where Ay = K(r Vv |d|) > 0 and Ay = § + fy>0 eYv(du). Let ky = In (%) > 0 and recall
that X; — 0B, = (0 — U—;)t + Z;, then

‘1{mo+a\/§+f<sgan}h($0 +ave+ X,) — Lo tavBroB.<in 1 P(T0 + aVvl + o By)

< A protaVo+Xs _ zot+avh+oBs

L% voB,<ip—avar T €, —avicony T Lk —avi<z.})
< Agh(T)eoBs

(0 =% )s+2Zs _ 1‘ + C(l{kb<o‘BS} + 1{kb<Xs})’

the last inequality is due to a < 0 and e = B(T).
Taking the expectation, we obtain, for all s € [0, 6]

k2
P(ky < 0Bs) < ]P’(&(9 <oB;) < C\/@e_?ge,
o

for § small enough, we have % <kyp— (v — U—;)s, then

2

ky — (0 — %)
oo

~ k:2
P(ky < Xs) < P( ® < B)) +P(Ty < 0) < CVe 545 + Af

E <e“BS

0
/o . (‘1{m0+a\/5+)25§1nK}h(350 +aVo+ X,)

and

6(70_7)5+Zs _ 1‘) é ETS

02
e(o—")s _ 1' + 105K !eZS — 1‘ < D6.

Hence,

_ 1{x0+a\/§+oBS§1nK}h(‘T0 + CL\/@ + O'BS) > ds = 0(92)
Thanks to this estimation, equation (10) becomes
(1) %(r) = E </1{a\/§+UBs<lnb(KT) h(zo + av0 + O'Bs)d3> + 0(9%)-
0 <

The function h is convex, therefore it is right and left differentiable. Particularly, we have
all z < In(K),

hy(z) = € <5 + /eyl{y>ln(K)—:v}’/(dy)>
and

hly(z) = e® <5 + /eyl{yzln(K)_x}y(dy)> .
Hence, we can write

ha(xo)(z — 0) ™ — hy(wo)(z — x0)™ < h(w) — h(zo) < hy(x)(z — 20)" — hy(@)(x — 20) ", "



hence

h(z) — (h(zo) + hiy(xo)(x — x0)™ — hy(x0)(z — 20)7)
hy (@) = hy(xo)) (x — x0)™ + (hy(zo) — hy(w)) (x — w0)~
hy(xV x0) — hy(x A x0)) |z — o).

IN A

o~

Thanks to the equation characterizing b(T") when d < 0, we have h(x) = h(In(b(T)) = 0.
We thus obtain, by setting Ah'(zq) = hjy(z0) — hy(20),

h(zo + x) = AN (x0)z™ + hy(zo)z + |z| R(z),
where R(x) —4_50 0, and

0<R(x) < (hylwo+aT) — hylzo—27))

<
< L(1+¢€"),
with L a positive constant. We can then write

1{a\/§+oBsgln %}h(iﬂo +aVo + oBy)
= (Ah/(l’o)(a\/@—i- oBs)tT + h;(azo)a\/@ + 0B5> <1 — 1{a\/5+aBs>1nb{fT)}>

(12) + ‘a\/é + 0B| R(aV0 + 0 B)1

e

We state that

(13) ‘E/OT ‘a\/@ + 0B, R(ax/@—i— oBg)1 ds| = 0(9%)

Favo K
{X$V7<In e

‘E/ (Ah’(azo)(a\/g—kUBS)Jr —i—h;(xo)a\/@—i—aBs) 1{a\/§+oBS>1nTI§)}dS = 0(9%)7
0

(14)

Indeed, we have for (13), by setting s = u#,

‘E(/T‘a\/@—i-aBs
0

5(T)

R(aV6 + 0Bs) 1, /o+0B.<In K }ds> ‘

(NI

1
= 0 /0 E [\CL—FUBS\R(\/E(CL+JBS))1{G\/§+0\/§BSSIHT;;)}] ds.

As |R(z)| < L(e* + 1) and |R(x)] —,_0 0, we have by bounded convergence

1 ~ ~
/0 E |:|a+O-BS|R(ng\/é)l{a\/@+chsglnb(KT)}:| ds —9_o O.
14



And for the estimate in (14), we have

‘E/ (Ah'(a:o)(a\/é—i-UBS)Jr +h;(a:0)a\/5+aBs> 1{a\/§+oBS>1nT;;)}ds
0

0 S

C\/E/O E [<|a| +J\/;|Bl|> 1{a+031>ﬁ1n%}} ds
3 1 K

< 24/ 2 — ln—

< CO24\/E(|a| + |B1|) \/IP’{a+aBl> \/§lnb(T)}

= 0.

Therefore, taking the expectation of the integral of (12) between 0 and all stopping time
7 € To,p gives

IN

T%r) = E/OT (@raB.<in o) 1@ + V0 + 0By)ds
= h’g(:no)E/O (a\/é +o ) ds + AN (o) /OT<a\/§ +o0B ) ds + 0(9%)
(15) = b(T)OE /T<a\/§ + UBS) + A3 (a\/é + O'Bs>+d8 + 0(9%),

0
with § = 5+fy>ln e eYv(dy) , B = %5, =v{ln TIT(“)} and we recall that hy(zg) = b(T)é

and AN (xg) = Kv{In {5} then (A8 = 5 <x03)>-

Comming back to (6) and using (8) and (15) we obtain

E(e (K —8,)") = (K-S)"+E (b(T)S/OT (a\/é + 0B, + \3(aV + UBS)+) ds>
K17, oy (@V8+ 0Bt = @V +0B7)")) +0(6%2),

with 0(6%/?) independent of 7. Hence

P(T = 0,b(T)e™?) = (K = b(T)e™Y?)* + ob(1)505 3 6(a/o) + 0(67/2),
where ¥ g ¢ defined by
Uxpo(y) = sup E </T Fro(yV0 + Bo)ds + Blyp, ((?J\/EJF Bt — (yVo + BTI)JF)) :
7’676,9 0

with fu(x) = z 4+ axz™. To simplify the expression of vy g g, we notice first that, if we set
BY = By /V/0, we can write

UnBO = \/5 sup E (/0 fAB(y + Bf/e)ds + 51{T1<T} <(y + Bf/e) (Z/ + BT /9) >>

7'67{)’9

T/0
— \/ETSE%)S E (6/0 Pas(y + Bl)ds + Blep oy ((y +Blp)" — (y+ BTl/e) >>
. 15



We also notice that 7 € Ty if and only if 7/6 € 76(31, where ’7'0(?1 is the set of the stopping
times of the filtration (Fy;)¢>0, with values in [0, 1], then

Vrpo = Vo sup E <9/0 Dy + Bf)ds -+ 51{T1<67} ((y + Bf)+ —(y+ B§1/9)+>>

7'676631

Note that vy g¢(y) does not change if we replace 760’1 by 7671 the set of the stopping times
of the natural filtration of the couple (BY, Ng,), where N is defined by

N, = Z LAz, =K /b(T))}-
0<s<t

The processes (Ngt)tzo is a Poisson process with intensity O\, where A = v{In(K/b(T))}.
Under the probability P, defined by

dP 91\716—,\(9—1)

dP ’

the process (B, Nt)ogtg has the same law as (B?, Ngt)ogtgl. Hence,

onsoly) = V@ sup E [Qme—w—n <9 /OT Py +Bads + Bl .y ((y B = (y+ Bﬁﬁ)ﬂ

7€T0,1

= V0 sup E [eme—”("—” <9 /0 " fasly+ Bods + élw (L?%B) - L;f’<B>)>} :

7'676,1

where L™Y(B) denotes the local time of B at —y. We have for 7 € Ty 1,

E |:0N7—e>\7'(9_1) (9/ f)\ﬁ(y + Bs)d8>:| =0E |:1{NT:0}6_>\T(9—1) </ f)\ﬁ(y + Bs)d8>:| +0R;,
o 0

and if 0 <1

1
Bol < 08 1500 [ sty + Balas)] = 00)

Hence,

B 0% O (0 [ sty Baas )| =08 |15, ([ oty + Bas) | + o)

Besides,

E [efvle—*(@—lh (Fi<r) ((L;y(B) — L (B))} - E [eme—ﬂe—lh thi<r) ((L;y(B) - L;f(B))]
— 6E [e)‘Tl{NTzl} ((L;y(B) - L;ly(B)ﬂ +O(6?).

We then have

Tnpaly) = 0320y 5(y) +o(0?), y



with

T T p T - -
us(y) = sup B [& 1{1\77:0}/0 Py + Ba)ds + 5eM g (Lry(B) _L:ﬁly(B)> :

Finally, we obtain

P(T - 0,b(T)e™V?) — (K — b(T)e™?) = ¢

3.3. Convergence rate of the critical price. Thanks to the expansion given in Theo-
rem 3.1, we are now able to state the first main result of this paper.

Theorem 3.2. Under the hypothesis of the model and d < 0, we have :
If v{In TIT(“)} =0, then we have

lim b(T)—bt)
ST T 1)
with yo = —sup{x € R ; vo(x) = sup,e7y, E(fy (z + Bs)ds) = 0}.
If v{ln TIT(“)} > 0, we then have

lim b(T) — b(t)

t=T gb(T)\/(T — t)
with yx g as defined in Lemma 3.1, with

K K

A=v{iln———}, B=——= and 5:(5+/ eYv(dy).
{ b(T)} b(T')o y>1n(K/b(c(r)) )

=YX

Proofof Theorem 3.2:
According to Theorem 3.1, we have for all a < 0,

P(T — 6,6(T)e™?) = (K — b(T)e™V0)+ + CQ%UW(S) +o(63).
Lower bound for b(T') — b(t)
Specifically, we have for all @ > —oy, g, where y, 5 is defined by Lemma 3.1,

a
—)>0
us(2) >0,
we thus obtain for 0 close to 0,

P(t,b(T)e™?) > (K — b(T)e™v?),
and then

In(b(T)) 4+ av0 > In(b(t)),
17



hence

b(T') — b(t)
- 7 @ 7 > —
b(t)Vo
Noting that since 7 > 0 we have b(T") > 0, and by making ¢ tend to 7" then a to —oy, g,
we obtain BT — b2
lim inf (T) — b(®)

P — g .
ST B(TWT —¢ = UM

Upper bound for b(T") — b(t)
Let’s consider a < —oyy g, we have thus vy 5(%) = 0 and consequently,

P(t,b(T)e™?) — (K — b(T)e™?) = g(6),

with g(60) = 0(63).
In addition, we have for all b(t) < x < K,
T 2
Pita) = Pt bE) — (= O G 006 = [ (0 b0 Gy ),

since —g(t, du) is a positive measure on |0, +oc[. As the smooth-fit is satisfied, 2 (t b(t)) =
-1 (See [8]), we have for all b(t) < x < K,

T 2
P(t,z) — (K —z) = /b(t)(u—b( ))?)2@ du).

Then, for b(t) < z = b(T)e*V?, we have according to Lemma 2.2,

%%(t,u) > b(T)o <(1 — V) — ABVoE (31 + §)+> +o(V0)

\%

v

b(T)oV b0 (—g — \E (Bl + §)+> +0(V8)

Hence

Plt.2) (K = a) 2 (o= b0) P (Vi + o) ).

where C(z) = © — A\BE(B; — z)". Due to lemma 3.2 and to the continuity of C(z), we
have, for =% close enough to yy g, C(—%) > 0. Moreover,
a a 3
P(t,b(T)e™?) — (K = b(T)e™?) = g(0) = 0(6?).

Therefore, for § small enough, there exists a positive constant A such that

em/@ . 2 2,52 9(0) — 0
(16) [(b(T") b(t))"]* < Ab(0) C2)E ()

(B(T)e™? (1) = o(V8), «



and then, for 6 small enough,
b(T) — b(t)
b(T)Vo
Finally, by making a tend to —oy, g, we obtain
. b(T) — b(t)
limsup ———= < .
t—>Tp b(T)\/T —t TIrB

< —a+o(1).

4. LIMIT CASE

In this part, we consider the limit case where d = r — 6 — fy>0(ey —1)v(dy) = 0, we then
have

Theorem 4.1. According to the model hypothesis, if d = 0, then, we have
K —b(t
lim ®) =
=T g K\/(T —t)|In(T — t)]
The method for proving Theorem 4.1 consists of analysing the behavior of the European
critical price b.(t) introduced in section 1, afterwards we prove that the behavior of the

critical price b(t) is similar by controling the difference b(t) — b (t).
Let us denote by

In(57) — 1o
ovo

2

WhereM:’YO—Z—Q=7‘—5—f(ey—1)1/(dy)—%.

a(f) =

Proposition 4.1. Under the model hypothesis, if d = 0, then we have

i) a(f) ~y/2In(3)

- Kobe(t)  _
if) limg—o -2 0n0) V2

Proof of Proposition 4.1:
Since b(t) < be(t) < K and b(t) — K, we clearly have

\/ga(e) —0—-0 0.

We will first prove that () —g_,o +00, or equivalently.

w LR
We have
(18) K —b(t) = e "E [(K - be(t)effe)+]

19



Therefore

K=b(t) e [ (K = bat) 1—eXo\ "
— e E <T+be(t)7> ]

+
K — . 1— oV OB +ub+Zg
_ g (B0 loe
Vo Vo
Now, if we notice that w# —>‘Zi0 —o B, we have by Fatou lemma
- VYe K — Ve *
lim inf 71)@) > E <lim inf 71)@) — O'KB1>
6—0 \/5 6—0 \/5
— b, K —b.()\ "
= liminf 7b(t) +E <0KB1 — lim inf 7b()>

0—0 Vo 9—0 N

which is equivalent to

E

K —b.(t)\T
— - 7 < 0.
<O’KBl llgl_}(l]lf NG > ] <0

This gives (17) which yields the wanted result.
i) We now rewrite equation (18) to obtain

K —be(t) = e ™K — be(t)e ™ + e "E [(be(t)eXe - K> j :

therefore

(19) e "R [(eXG — eln(be(t))>+] = (1- e_re) —(1- 6_66).

We will give an expansion for each side of the equation. For the left hand side of the
equation, we have

. [(ef(e _ ehﬂ(r’fn)f]

e—rﬁ-i—@;ﬁ-aa(@)\/éE |:<60\/§B1+Z9—0a(9)\/§ _ 1) +:|

_ e—rﬁ—i—ﬁu-ﬁ-aa(@)\/éE [(Ugeze _ 1)—1-]

)

20



where Uy = eVOB1—0a(®)VE Gince the process Z; is independent of Uy, we can write

E |(Upe” —1)" U]
= (Up- 1D +E [/9 ds/ (Ugezs+y —1)" = (Uge” - 1)+) V(dy)!Ue]

_ Wy -1 /ds/ (Use? —1)* — Uy — 1)) w(dy) + UpO(62),

where O(0?) is detrministic. Indeed,

‘E er ds/ ((Useve? —1)" — (Uge? ~1)*) u(dy)|U9}

0
< Ug/eyu(du)/ E‘eZS - 1| ds = UyO(6?).
0

Taking the expectation, we thus obtain,
e
—E[(Us— 1)*] + 9/1@ [(Use? — 1) v(dy) — v(R)OE [(Uy — 1)*] + O(62).
Since a(f) — oo, we have like in [6]

E[(Us—1)"] ~ oVOE (B — a(9)" = o(V0),

then

(NI

E|(Une” 1] = E[W-17]+6 / E [(Uge? = 1)"] v(dy) + 0(02).

We recall that Uy = e"\/éBl_"o‘(e)\/g, then
+
E [(Uge? —1)*] — (ey—m(@W - 1)

< yoaOVIR |oVoB: _ 1\ = 'O(VD).

Hence,

B [(05e® ~1)"]

= E[Uy—-1)"] + 9/ <ey_m(9)‘/§ - 1>+ v(dy) + 0(0%)

= E[Us—1)*"] +6 (ey—mww - 1) v(dy)

y>0

—0 ev=oOVO _ 1) y(dy) + O(63).
0<y<oa()Vo < ) 91



Since (1 —e™*) < z, we then have

—¢-00

< {0 <y < oa®)V}oa(d)V0,

(V= OV0 _ 1)y (dy)

/(o,m(e)\/@)

—o(a(6)83)

and noticing that 0% = o(a (9)92 we obtain

E (Ugez"— 1) E (Up—1 +9/ — 1) v(dy) — a(&)@go/eyl/(dy) + o(a(6)8
y>0

Nl

).

The left hand side of equation (19) becomes
: +
e—reE |:<6X9 o eln(vlft))) :| — 6—7‘9‘1'9#4'00!(9)\/51[4: |:(U9€Z9 o 1)+]

e—r9+9u+cra(9)\/§E [(UG _ 1)+]

+ (14 0a(0)VE +o(a(6)VE)) <9 / (¥ = 1)* v(dy) —a(0)030 /y ) + o(a(9)92)>

Njw

_ e—r@-l—@u-l—aa(e)\/@E [(Ué) o 1)+] +0 /(ey _ 1)+1/(dy) _ V(R-F)O—a(g)@% + o(a(9)9 )
(20)

Besides, the right hand side of (19)

(1—e ™) — (1 —e %) = oVaOtulrg _ 59 1 O(62)
= (r—08)0+r03a(0) + o(62a(0))
(1) _ </(ey _ 1)+y(dy)> 0+ roa(0)03 + o(03a(0)).
Thanks to (20) and (21), equation (19) becomes,
e 0Ot OVOR [(17, — 1)T] = o (r + v(R)) a(0)8? + (62 (8)).
Hence,

E [(Up — 1)F] ~ o (r+ v(RT)) a(6)63.

As explained above, thanks to proposition 2.1 in [14], we have

NG
V2T (6)e

E[(Us—1)"] ~ oVOE(B; — a(h))t ~

22() ’

Thus, we have

(22) ~ (r+v(RT)) 0a(0),

22



hence
1
(23) a(f) ~ 2111(5).

ii) Since Kbe(®)

Kods ™ a(f), we obtain

K — b (t) / 1
— "~ 29111(5).

To compare the behaviors of b(t) and b, (t), we have to control the difference between them.

O

Proposition 4.2. According to the model hypothesis, if d = 0, then there exists C > 0
such that

O§M<C.

Before proving Proposition 4.2, we need to prove the non decreasing of b (t) near matu-
rity which is the purpose of this following lemma

Lemma 4.1. The critical European put price, b.(t), is differentiable on (0,T) and for t
close to T', we have

bL(t) > 0.

Proof of Lemma 4.1:

We recall that F is the function defined by F(t,z) = P.(t,z) — (K — x), F is C* on
(0,7) x (0, K) and satisfies %—I;(t, x) = alze (t,z)+1 > 0. Due to its definition, b.(t) satisfies
the following equation, P.(t,bc(t)) — (K —be(t)) = 0. Then, thanks to the implicit function
theorem, b.(t) is differentiable on (0,7") and

WPV { LX) S J(AX0)
‘ 9E (¢, be(t)) e (t,be(t)) + 17
which means that
6 2 (1, be(1)) < 0
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We will study the sign of 881} (t,be(t)) instead of that of b.(t).
The European put price satisfies the following equation

0P,
O 1 bute)
0.2 . 2 92 2 2
= rP.(t,be(t)) — be(t) 88:; (t,0e(t)) — (r — 5)be(t)8a—12(t, be(t))
~ [ |Pettuten = Pt = o - 5 E @b 0) |
0.2 . 2 92 2 A
= (=)~ T T ) - (o= fler = i) 0.0 5 o)
d=0

—/ OPe(t, be(t)e?)v(dy) + v(Ry ) Pe(t, be(t))
y>

- [P0 - o) - st - nGE oo via
y<0

Since P.(t,.) is a non negative convex function, we have fy>0 [P.(t,be(t)eY)] v(dy) > 0 and

[Pt - rieio) —ber = GE )] v >0
so that
0-2 . 2 92 2
%“’be(”) < (r+u(RY)) (K = be(t) — b2(t) %; (t,be(t).

Thanks to lemma 4.1, we have an equivalent for (K — b.(t)). Now, let’s have a look at the

estimate of 882;;‘3 (t,be(t)) near T. We have

—(t,x) = P T} ) [eXT*tl

In(2)
_ _e—r(T—t)/ eupf(T,t(u)du’

—00

{K—meXT*t >0}

Sl

where py denotes the density of X and X; = u(t) + 0By + Z;. Then, we have
9°P, o K K
i B0 <1“<§)>

_rr—p) K K
e~r(=0 —2Pu(T—t)+oBr—; (111(;)) P(T > 0)

B K 1 <1n(K/z)7p.9>2
2\ o8 ) P(T) >0
e > .
20V 270 (T )

v

= €
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Then,

OLe0(0) < (r 4+ v(RH) (K — (1) o

We can easily check that K — b.(t) ~ 0 Kv/6a(8) = o(a®(0)v/6), and we recall the equiva-
lency (22)

L~ (r+(R)) 0a(0),

V2ma2(f)e 2

which yields

a2(0)
oK a()? e "2
e ———e T P(T} >0) ~ oK

2/ 2710 24/ 270

Then, we have, for § small enough

%(t,be(t)) < —%(r+v<R+>>a3<6>¢5+o<a3<9>\/5><07

which proves that b, (t) is a non decreasing function for ¢ close to T

N % (r+ v(RY)) a¥(0)VE.

We are now in a position to prove Proposition 4.2.
Proof of Proposition 4.2:
An expansion of P(t,z) around (¢,b(t)) gives

oP

T 2
P(t,x) = P(tb(#) — (2 = b(t) 5 (£,b(t)) = /b N b(1)) S (1 ),

and thanks to the smooth-fit which is satisfied at b(t), we obtain

(-b(e)* . PP

P(t,z) — (K — ) 2 b(t)<u<z Ox?

(t,u).

First, we are going to give, as in Lemma 2.2, a lower bound for inf “2202 %Z—J;(t,u).
b(t) <u<be () r

The variational inequality gives, for u € (b(t), K),
u?o? 82_P(

2 0z
> rP(t,u) — (r — 5)ug—P(t,u) —/<P(t,uey) — P(t,u) — u(e’ — 1)g—i(t,u)>u(dy)

t,u)

X

v

r(K — ) _< - /y(ey _ 1)1/(dy)> uaa—];(t, ) —/y Pt ue?) — P(t, u)v(dy)

>0 >0

_ /y<0<p(t7 ueV) — (K —u) —u(e? — 1)?)—P(t, u)>1/(dy).

X
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Since P(t,.) is non increasing and d = 0, we obtain

u2a2 2
727];(75, u) > r(K —u) — /<0<P(t, ue?’) — (K —u) —u(e? — 1)2—5(1% U)>V(dy)

Y

_ r(K—u)—/yP(t, ue?)—(K — ue¥)w(dy) — u (g—];(t, ) + 1) (L(1 - ey)y(dy)> .

<0 <0
Thanks to the convexity of P, g—?(t,u) is non decreasing and g—?(t,u) > —1 . We then
have, for all t < T,

it CCEL G s K abo(0)— [Pl b (e — (K — b)) (dy)
b(t)<u<be(t) 2 Ox2" c y<0 c 4

) (Gt b+ 1) ([0 ey

> r(K—=be(t))— fg(t,be(t)ey)—(ff — be(t)e! v (dy) + o(\/9).

v

We obtained the last inquality, using the estimate of e(0, x) = O(6) and %—I; (t,x)+1 = o(/6)
(see Lemma 2.1). Since y < 0, we also have P, (t,b.(t)e¥)—(K — b.(t)e?) < 0, thus

. u2o? 92P
inf

b(t)<u<b (t)TW(t’u) > r(K=be()) +o(V0).

Besides, for # small enough, we have v/ < K — b.(t), then we obtain

o 2
PUn®) (0 —00) 2 )+ o)

Furthermore,

P(t,0c(t)) — (K = be(t)) = e(0, (1))

0
o —rs _ sabe(t) be (t) . _ qbe(t)
= E{/e <7"K 48, /P(t—l—S,SS e) <K Sy ey>u(dy)>1{S§e(t)<b(t+s)}d8}

0 y>0
’ be(t be(t +
< E{/O e TS <TK — 55’86() _/ (Sse( ¥ — K) u(dy)> 1{Sg6(t)<b(t+s)}ds}
y>0
Since § = r — fy>0(ey — 1)v(dy), we have

0< <7~K — 0z — / (ze¥ — K)* V(dy)> Lo<b(t+s))
y>0

< <7’(K —x)— /y>0 (ze¥ — K)© — (ze¥ —2)" V(dy)) Liz< Ky

< (r+v@®R)) (K - z)t,
26



thus,

(r+v(RM))E {/06 e (K - sge<t>)+ ds}

0
= T 1% + — S S
= (r+u(RY)) /0 BT - s,b.(t))d

e(0,be(t))

IN

= (r+v([®R")) /ePe(t—l—u,be(t))du.
0

And as we saw in lemma 4.1, near T', b.(t) is non-decreasing, then b.(t) < be(t + u). Due
to the non-decreasing of P(t,x) — (K — x) on x, we thus have

P.(t+u,be(t)) < K —be(t),
In conclusion, we have

e(0,be(t)) < (r + V(R+)) O(K — be(t))

and
[be(t) — b(t)]2 N
. > — be(1)).
e(0.be(1) = 2 B — ()
Which gives the wanted result: There exists a constant C' such that
be(t) — b(t) < C.
NG

5. APPENDIX 1: PROOFS OF LEMMAS

Proof of Lemma 2.1:
According to the early exercise premium formula, we have,

P(t,x) = P(t,x) +e(T — t,x)

and

0
e(f,z) =E {/ e Rt + s, $581)1{zsg<b(t+s)}d8} ;
0

with

O(t,x) =rK — dx — / P(t,ze?) — (K — xze?) v(dy).

y>0
Notice that @ is a continuous function and ||®/ | <6 + fy>0 eYv(dy).
1) It is obvious that 0 < e(f,7) < 0rK = O(0), since 0 < ®(t, 7)1 pep(4s)y < TK.
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2) For all random variable X, we denote by px its density, we thus have for all fixed
s €10,40],

_ (—otus—u)?
e TRy (u)du

p—XS(x) = p—/JS—O’BS *p—ZS(;U) = %U\/ﬁ

(24) < Cr

ol

We can state

ae 6 —Ts
a_x(evw) = E{/O e S;(I);c(t"i_37%5;)1{m5§<b(t+s)}d3}
Dt +5,b(t+5)) x
(25) —/0 . P_x. (ln( o s))> ds.

Then, we have

Ode

Oz 5%

IN

0
‘E {/ e Sl (t+ s, xS;)l{xS}.<b(t+s)}dS}‘
0

N /09 CI>(t+s,;(t+s))p_Xs (ln(b(tis))> ds‘
II¢Q\IM@9+‘/OH <I>(t—|—s,b(t+s))p_XS <1n( x )> sl

x

IN

According to inequality (24) , we also have

/ cI>(t+sbt+s (
0

/ <t+s}< >>d‘

- Ctet9 / O(t + bu, b(t+9u))d
T 0 Vou
Ct@\/_ 1 1
< 0 sup |P(u,b(u / —du
| D (u, b(u))| e

€ t<u<t+0

< Ct@

U

te 1
§C Vo sup ]@(u,b(u))]/o %du.

x T—0<u<T

However, thanks to the continuity of b(u) and of ®(¢, ), we have lim  sup  |®(u,b(u))| =
0=07—9<u<T

|®(T,b(T))| = 0. Therefore, we conclude that |8e (0,2)] = Lo(v0

3) Using the previous point, we have !ae 0,z ‘ = 0(V/0), then for all = < b,(t) A b(T) and
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f small enough , we have

0<1+ aa—];(t,:n) < (1 + %(t,:@) + o(V0)

- 1-E [(eXe)l{Xedn%}] +o(V0)
X
< 1= B[ a0 ]| + VD)

If b(T') = K, then for x < b.(t),

X _
1-E |:(e N xpctn be(tfibm}} = P(By > Vba(h)) —E <0391 (By< ﬂa(g)}) +o0(V0).

Since a(f) — oo, we have
0—0

‘E (UB@l{B@<\/§a(e)}>‘ = oVOE (Bil{p <ae)}) = o(V0),

and using equivalencies (22) and (23), we also have

_ a2
2

a(0)

(&

P(B; > a(f)) < < CHa2(H) = O(0]1nd]) = o(V0).

If b(T) < K, then for 6 small enough b(T') < b.(t) and

_ Xo
PoE [“ )1{X9<1H(TI§>>}]

Vo (T

= P(Blziln(£)> + oVOE Bll{ K } +o(V0)

1 e~ 20 ()
\/§< - —1—0) €T (Vo) = o(VE).
ln(m)

Proof of Lemma 2.2:
Let be x € (b(t),b(T)), then the variational inequality gives, for almost u € (b(t), ),

u?o? 0°P oP
TW(t,u) > rP(t,u) — (r — 5)u%(t,u)
—/ <P(t,uey) — P(t,u) —u(e’ — 1)2—];(t,u)> v(dy).
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Notice that P(t,u) > K — u, thus

u2c? 2P
TW(t’u) r(K—u)+(r—90)u
- [ (Pt~ (1 )+ u(e — 1)) )
(26) —u <g—l;(t,u) + 1) <(r 0~ [~ 1)V(dy)>

(27)

And thanks to Lemma 2.1, we also have, for all b(0) < u <z < b.(t) Ab(T),

independently of u, therefore,

u2o? 9P

@) g

hu) > rK—éu—/(P(t,uey)—(K—uey))u(dy)+o(\/§).

As the right hand side of equality (28) is non increasing in u, we obtain

) u?c? 02 P
inf ——(
b(t)<u<z 2 Ox2
(29)

t,u) > rK—dr— / (P(t,ze¥) — (K — ze¥)) v(dy) + o(V0).

Notice that
/P(t,xey)u(dy) = P.(t,ze¥) +e(0,zeY)

E(K — zeYe™)Tu(dy) + o(V0)

E (K — zeY(1+ 0By))" v(dy) + o(V6)

Il
—— —

E (K — ze¥) — ze¥oBg) " v(dy) + o(V0).
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We now consider the integral [ P(t, ze¥)v(dy) over the sets {y < ln(T{fF))}, {ln(%) <y}
and {y = ln(b(T )}. Then, on the set {y < ln( )} we have

/ P(t,ze¥)v(dy) = / E (K — ze¥) — zeYoBy) " v(dy) + o(V/0)
{y<In( b(T)} {

y<In(g77y}

= / (K — ze¥)P(xeYo By < (K — ze?))v(dy)
{y<In(5{5y}

- / reVolk (391{xey0B9<(K—xey)}) V(dy) + O(\/é)
fy<in(5}

< /{ (K — ze)v(dy) —:EU\/_/ e’E (B11{3< L (K emyo 1)}> v(dy) + o(V8).

y<lIn(5 ) } {y<In( 2~ e

A‘x

we have Le¥ —1> K _¢=¥ — 1> 0, therefore
)/? z u(T)

0<-E (Bll{&g;g(f;ey—l)}) E (Bll{B 1> (e 1)})

\x

For all y < In(5 5

S

By the dominated convergence we obtaln,

(30) / P(t,ze’)v(dy) < / (K — ze¥)v(dy) + o(V8).
{y<In(4{5} {y<In(31}

On the set {y > ln(LT)} we have K < b(T")eY, therefore

/ K P(t, ze¥)v(dy) :/ (( — ze¥) — zeYoBy) T v(dy) + o(V0)
{y>In(407y {

= (b(T) - a:)/{ () e’P <Bl < 7 <§e‘y — 1>> v(dy)
y>5 1y

—\/533/ eyaE<Bl _ )de +o(V0
oty © o\ P g (e V@) +o070)

Notice that for ally>ln(w{fp)),we have%\/g(Ke v-1) < %(%e‘y—l)%—oo, thus
K 1 K
PBi1<——=(—e¥—-1) < PB1<——=(——eY-1
(Br< —7( e ) (B1 g\/é(b(t)e )
— 0,
0—0
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and

S B (T

— 0.
6—0

Therefore, by dominated convergence, we obtain
/ e'P(B; < —(ﬁe —1))v(dy) — 0
{y>In(z55} oV b(t) 60

en)
and
_\/éx/ b Vol (Bll{meyo\/@31<(K—xey)}) I/(dy) = O(\/@)
{y>1n(b(7T}

)
Consequently, if we denote by €(f) = f{y>ln(T1§F)}ey]P’(B1 < U—\/@(me v —1))v(dy), we

1 K —
obtain
31 P(t,ze¥)v(d < (B(T) — z)e(8) + o(\V0),
(31) /{y»n(b%)} w(dy) < (B(T) - 2)e(B) + o(VB)

with €(0) = 0.
F 1nally, on the set {y = IH(LT)} we have

/ . P(t,ze¥)v(dy) = . E (K — ze¥) — ze¥o Bg) " v(dy) + o(V/0)
{In(35)} {In(3775)}
— / (1{{ —ze¥)v(dy) + / I}E{(:EeyUBg — (K —ze"))" v(dy) + o(V0)
{In(577)} {In(5e7y

- /{ . (K — ze¥)v(dy) + /{ E@@E <JBe - (Ee‘y - 1)>+ v(dy)

)} In(gfsy)
:EK K T) *

IN

b o oo ()

We have thus proved that

/ Ptz u(dy) < /{ B aenudy) + Ky {m <%> } E <JBG I (bTT)>>+

5

+(b(T) — z) €(0) + o(V0),



Coming back to inequality (29), we obtain

/P(t,a:ey) — (K — ze?)v(dy)

s ) (o n (2]

+(b(T) — ) e(6) + o(V0).

Finally, since 7K = 6b(T) + [(b(t)e¥ — K)Tv(y), we have
o? 0*P
t
b(t)1§nu<x 2 Ox 922 ( U)

> rK —o0r— / (P(t,ze¥) — (K — ze¥)) v(dy) + o(V/0)

K b(T)\ ™"
> (b(T) - 2)[5+ / uldy) + () ~Kv {7 VE (08— () 4 o(v)
{y>In 155) (T) z
v{ln —
We note o = {_((%M% and & = 6 + f{y>1n(%} eYv(dy), we then have for all v and all
x such that b(t) <u<z<bT)

o2 0?P
i t
b(t)1££<x 2 022 ()

> b(T)é <% —aE <O’Bg - ln(@ﬁ ) — (0(T) — z) e(8) + o(V0).

O

Remark 2. The expression infy)<y<qp #%(t,u) is justified thanks to the smoothness
of P in the continuation region which can be proved thanks to PDE argquments (see for
instance [2]). Nevertheless, we will only need this lower bound of the second derivative in

the distribution sense (%271; (t,du)).

APPENDIX 2: A STUDY OF v) g
Lemma 3.1 : There exists yr 5 € (0, (1 + A3(2+ €)) such that such that
Yy < —yrg, urag(y) =0.
yrp = —inf{x € R | vy g(x) > 0}.

Proof of Lemma 3.1:
We have

ung(y) = sup (Lo(7) + (7)),
7€T0,1
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with
I(r)=E <€”1{NT=0} /OT sy + Bs)ds> :
and
n(r) = BE (M5 _yy ((w+ Bt = (y+ B)7)).

we will study In(7) and I;(7). First of all, we note that the process (M);>o defined by
MY = eM1 (K=} is a non negative martingale with M? = 1. Under the probability P°
with density M on J, it is straightforward to check that (B);>¢ remains a F-Brownian
motion. We have if y <0,

Io(r) = E° </OT Fasly + Bs)ds>
= E° <y7’ + /OT Byds + A\ /OT(y + Bs)+ds>
yE° (1) 4+ (1 4+ AB)E° ( /0 ' Bjds>

IN

IN

yE° (1) + (A8 + 1)E° (/OT E° (B | Fs) ds) :

Notice that, for 7 € 7o 1,

- 1
2 ([ 1)) = B ([ 1gE (57 1 7))

< EY

where, we used 0 < 7 <1, for the last inequality. We then have
I(r) < (y+A8+DE (7).
For the study of I1(7), let us introduce the martingale (M}!)o<i<1 defined by

M= B (Mg | F)

= E(Mm oy | F) +E (Mg | F)

- 1{Nt=0}e>\P(N1 ~N=1)+ 1{Nt=1}e>\]P>(Nl ~ Ny =0)

A A
= ligog Al —t)e + 15 e y



Under the probability P! with density M!/\ on F, it is straightforward to check that
(Bt)o<t<1 remains a F-Brownian motion. We have for y < 0,

Il(T)

MNE ((y+ Br) = (v + By o))
ABE! ((y + B:-)™)

ABE" (Brlip,>y))

ABE! (BE/lyl) = ABE (7) /yl-

VAR VAN VAN

Using the two upper bound of Iy(7) and I;(7), we obtain

ug(y) < sup <(y + A6+ DE%(7) + y1[431(7')>

7€T0,1 |y|
= sup E <(y + A8+ 1)TM0(T) + ﬁTMl(T)>
7€T0,1 ’y‘
AT B AT AT
= 86171—1) E <(y + A8+ 1)re L —op + HT <1{NT=0}/\(1 —7)e’ T + Loy, —1ye >>
T 0,1
< swp E(f(r.N)),
7€T0,1

with

1
f(t7$) = 1{x:0}te>\t (y +1+ /\5(1 + m)) + 1{x:1}5te>\t/|y|'

Notice that

swp E(f(n ) = o E (rr.0m).

where 79 1(/V) denotes the set of the stopping times of the natural completed filtration of
the process (IVi);>0, with values in [0, 1].

Then, if 7 € 79 1(N), there exists , thanks to Lemma 5.1, tg € [0, 1], such that
TN Tl =19 A Tl.
we then have
A _ A
E (Te Tl{NT:O}) = E <7'e Tl{T1>T}>

= t()e)\to]P’(Tl > T)

= th
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and

IN

E <7‘e’\Tl{T1 ST})

= E (T@AT

E (Te)‘Tl{NTZI})

1{T1§to}>
BAP(Tl < to)
M1 — e M) < Aety.

IN

we deduce that

sup E(f(T,NT)) < sup <t0<y+1+Aﬁ(2+eA)>>.

|y

T€T0,1(N) 0stosl
The right hand side of this equation will be equal to 0 if
2 A
y+1+ Aw <0,
Yy

and particularly, if y < — (1 + AB(2 + e)‘)), then

—yrg > — (1 +AB(2+ e)‘)> :

To prove —yy g < 0, we consider y = 0. Since for all stopping time T,

E <e’\Tl{NT:0} /0 AB(y + Bs)Tds + 5e”1{NT:1} ((y + BT —(y+ BT1)+>> > 0.
we have

vx3(0) > sup E/ Bgds = vy(0),
7€T0,1 0

and it is proved in [14] or [4], Proposition 2.2.4. v(0) > 0. O

Lemma 5.1. Let N = (Ny)i>0 a homogenous Poisson process with intensity X, and T} its
first jump time. if T is a stopping time of the natural completed filtration of N such that
7 <Ti a.s., then, T =17 a.s., or there exists to > 0, such that T =ty N1} a.s.

Proof We denote by F = (F;);>0 the natural completed filtration of N. First of all, notice
that for all ¢ > 0 and A € Fy,

P(A| N, =0) € {0,1}.

Indeed, the A having this property form a sub c-algebra of F; which contains the events
of the form {Ng =n}, with 0 < s <t and n € N.
Now, let 7 be a F-stopping time. We have for all t > 0, P(7 > ¢ | N; =0) € {0,1}. We set

I={tel0,+o0] | P(t >t | N, =0)=0}.
Notice that t € I if and only if P(7 > ¢,717 > t) =0, or

teleP(r AT <t)=1.
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If 7 < Ty as. and if P(r < T1) > 0, there exists s > 0 (rational number) such that
P(r <s,s<Ty) >0, hence P(1 < s| Ny =0) >0, and P(7 > s | Ny =0) = 0. We deduce
that I is non empty and we can write

I = [tg, +oo[, avec tg =inf{t >0 |P(r >t | Ny =0) = 0}.

We then have 7 A Ty < tg a.s., hence 7 < ¢ty A Ty. Moreover, for s < ty, we have P(r >
s| Ng=0) =1and P(t <s | Ny =0) =0, hence P(r < s,s < T1) = 0.Therefore,
P(r < to AT1) = 0 and consequently 7 =ty AT} a.p. O

Lemma 3.2 : For all x > y) g, we have
C(z) > 0.

Proof We have vy g(—yx ) = 0, considering the stopping time 7 = 1, we obtain
1
A A
E [e L=y /0 Fas(Bs = yap)ds + Be Lz, iy ((Bl —uag) ) — By — ym)*)] <0.
However, we have, using the independence between N and B ,

' 1
- [exl{NFO} / Faa(Ba = y*vﬁ)ds] = 'P(N; =0) <—ym + ABE / (Bs —yrs)" ds)
’ 0

(32) = g5+ ABE /0 (B, — yps) s,
On the other hand, we have
E [ﬁekl{mzl} <(B1 —yng)") — (B — ym)J’)]
= PN = 1) [E(B1 — )" —E ((By, — )71 = 1)

= B\ [E(B1 _ yA,ﬁ)+ —E ((BT1 - yA,ﬁ)ﬂTl < 1)} .

Noticing that A\ = AS and that conditionally to {Tl <1}, T; is uniformly distributed on
[0,1], we obtain

E {ﬁeAl{lel} <(Bl —u8)") = (Bp — yA’ﬁ)Jr)]

1
(33) = W [EB - B ([ (B maas)|.
0
Combining (32) and (33), we have
—yrs + ABE(BL —ya5)" = —Clyas) <0

To conclude the proof, we use the strict increasing of C', hence for all z > y, g, we have
C(x) > C(y)\ﬁ) > 0.
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