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THE CRITICAL PRICE OF THE AMERICAN PUT NEAR MATURITY

IN THE JUMP DIFFUSION MODEL
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Université Paris-Est
Laboratoire d’Analyse et de Mathématiques Appliquées (UMR 8050), UPEM

UPEC, CNRS, Projet Mathrisk INRIA,
F-77454, Marne-la-vallée, FRANCE

Abstract. We study the behavior of the critical price of an American put option near
maturity in the Jump diffusion model when the underlying stock pays dividends at a
continuous rate and the limit of the critical price is smaller than the stock price. In
particular, we prove that, unlike the case where the limit is equal to the strike price,
jumps can influence the convergence rate.

Introduction

The behavior of the critical price of the American put near maturity has been deeply
investigated. Its limit was characterized in the Black Scholes model (see [5, 13]) by

b(T ) := lim
t→T

b(t) = min
(r

δ
K,K

)

,

where r and δ denote the interest rate and the dividend rate and b(t) is the critical price
at time t.

This result was generalized to more general exponential Lévy models in [7]. In fact,
denoting d̄ = r − δ −

∫
(ey − 1)+ν(dy) 1, with ν the Lévy measure of the underlying Lévy

process, we have

b(T ) = K , if d̄ ≥ 0,

and

b(T ) = ξ , if d̄ < 0,

where ξ is the unique solution, in [0,K], of

(1) rK − δx−
∫

(xey −K)+ν(dy) = 0.

(1)aych.bouselmi@gmail.fr
(2)damien.lamberton@univ-mlv.fr
1The quantity d̄ is denoted by d

+ in [7]
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In the Black Scholes Model, the quantity d̄ reduces to d̄ = r − δ and we distinguish,
according as d̄ > 0, d̄ = 0 and d̄ < 0, different behaviors of the critical price near maturity.
In fact, Barles et al in [1] (see also D. Lamberton [6]) established, in the case where d̄ > 0
(which implies b(T ) = K), that

(2)
K − b(t)

σK
∼t→T

√

(T − t)| ln(T − t)|,

where the expression f ∼t→a g (or f ∼a g) is equivalent to limt→a
f(t)
g(t) = 1. The cases

d̄ < 0 and d̄ = 0 were investigated by D. Lamberton and S. Villeneuve in [14] and they
obtained :
If d̄ = 0 (which also implies b(T ) = K)

K − b(t)

σK
∼t→T

√

2(T − t)| ln(T − t)|.

If d̄ < 0 (b(T ) < K), there exists y0 ∈ (0, 1), which is characterized thanks to an auxiliary
optimal stopping problem, such that

b(T )− b(t)

σb(T )
∼t→T y0

√

(T − t).

The critical price has also been studied in the Jump diffusion model. In fact, Pham proved
in [11] that the result (2), obtained in [1, 6], remains exactly the same in the Jump diffusion
model, in the case where d̄ > 0 and δ = 0. This remains true if δ > 0 (see [10]).

The purpose of this paper is to study the convergence rate of the critical price of the
American put, in the Jump diffusion model, with d̄ ≤ 0. Considering the results of Pham
in [11], we expect to obtain the same results as the study performed by Lamberton and
Villeneuve in the Black-Scholes model when (d̄ = r − δ ≤ 0 ), meaning that jumps do not
have any influence on the convergence rate. Surprisingly, we obtain the expected result
only for the case d̄ = 0. Indeed, we obtain for d̄ = 0 (see Theorem 4.1),

K − b(t)

σK
∼t→T

√

2(T − t)| ln(T − t)|,

and for d̄ < 0 (see Theorem 3.2),

b(T )− b(t)

σb(T )
∼t→T yλ,β

√

(T − t),

where yλ,β is a real umber satisfying yλ,β ≥ y0, and depending on ν({ K
b(T )}) we can have

yλ,β > y0. This point will be discussed in more details in section 3.3.
This study is composed of four sections. In Section 1, we recall some useful results on the

American put which will be used throughout this study. In Section 2, we give some results
on the regularity of the American put price and the early exercise premium. In Section 3,
we investigate the case where the limit of the critical price is far from the singularity K.
Therefore, we have enough regularity to give an expansion of the American put price near
maturity from which the critical price behavior will be deduced. The method is similar
to the one used in [14] and is based on an expansion of the American put price along
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parabolas. However, the possibility that the stock price jumps into a neighborhood of
the exercise price produces a contribution of the local time in the expansion. Section 4 is
devoted to the study of the case d̄ = 0. In this case b(T ) = K, hence we have no longer
enough smoothness to obtain an expansion around the limit point (T, b(T )). Then we will
study the behavior of the European critical price be(t) instead of b(t). Thereafter, we prove
that b(t) and be(t) have the same behavior.

1. Preliminary

In the Jump Diffusion model, under a risk-neutral probability, the risky asset price is
modelized by (St)t≥0 given by

St = S0e
X̃t , with X̃t = (r − δ)t+ σBt −

σ2

2
t+ Zt − t

∫

(ey − 1)ν(dy)

where r > 0 is the interest rate, δ ≥ 0 the dividend rate, (Bt)t≥0 a Standard Brownian

Motion and (Zt)t≥0 a Compound Poisson Process and ν its Levy measure. We then have

dSt = St−
(
γ0dt+ σdBt + dZ̄t

)
, with Z̄t = Σ0<s≤t(e

∆Zs−1) and γ0 = r−δ−
∫

(ey−1)ν(dy).

Denote by F the completed natural filtration of the process X̃t and suppose all over this
paper that the following assumptions are satisfied

σ > 0, ν(R) <∞,

∫

eyν(dy) <∞ and d̄ = r − δ −
∫

y>0
(ey − 1)ν(dy) ≤ 0.

The price of an American put with maturity T > 0 and strike price K > 0 is given, at
t ∈ [0, T ], by P (t, St) with P defined for all (t, x) ∈ [0, T ] × R

+ by

P (t, x) = sup
τ∈T0,T−t

E(e−rτ (K − xeX̃τ )+),

where T0,T−t is the set of all F-stopping times taking values in [0, T − t]. The value function
P can also be characterized (see [7]) as the unique continuous and bounded solution of the
following variational inequality

max{ψ − P ;
∂P

∂t
+AP − rP} = 0, (in the sense of distributions),

with the terminal condition P (T, .) = ψ. Here A is the infinitesimal generator of the
process S. The free boundary of this variational inequality is called the exercise boundary,
and at each t ∈ [0, T ], the critical price is given by

b(t) = inf
{
x > 0 | P (t, x) > (K − x)+

}
.

It was proved in [7] that, if d̄ ≤ 0, then

(3) lim
t→T

b(t) = ξ := b(T ),

where ξ is the unique solution, in [0,K], of rK = δx +
∫
(xey −K)+ν(dy). Note that, if

d̄ = 0, then b(T ) = ξ = K.
3



Finally, recall that the price of a European put with maturity T and strike price K is
given, at time t, by

Pe(t, x) = E

(

e−r(T−t)(K − ST−t)+ | S0 = x
)

.

The quantity (P−Pe) is called the early exercise premium, we then have P (t, x) = Pe(t, x)+
e(T − t, x). Setting θ = T − t, then the early exercise prime, e(θ, x), is characterized for
the American put in the exponential Levy model as follows (see[10])

e(θ, x) =

E

{∫ θ

0
e−rs

(

rK − δSx
s −

∫

y>0
[P (t+ s, Sx

s e
y)− (K − Sx

s e
y)] ν(dy)

)

1{Sx
s<b(t+s)}ds

}

.

We also define, for all t ∈ (0, T ), the European critical price, be(t), as the unique solution
of

F (t, x) = Pe(t, x)− (K − x) = 0.

It easy to check that, for all t ∈ (0, T ), be(t) is well defined, be(t) ∈ (0,K). It is also
straightforward that Pe ≤ P , therefore b(t) ≤ be(t) ≤ K .

2. Regularity estimate for the value function in the jump diffusion model

In this section, we study the spatial derivatives behavior of P , Pe and e(θ, x) near
(T, b(T )). We also give a lower bound for the second spatial derivative near (T, b(T )).
These results will be proved in Appendix 1.

Lemma 2.1. Under the model assumption, we have

(1) For all x ∈ (0, be(t) ∧ b(T )], we have, as θ(= T − t) goes to 0,
∣
∣
∣
∣

∂e

∂x
(θ, x)

∣
∣
∣
∣
=

1

x
o(
√
θ),

with o(
√
θ) uniform with respect to x.

(2) For all x ∈ (0, b(T ) ∧ be(t)], we have

∂P

∂x
(t, x) + 1 = (1 +

1

x
)o(

√
θ),

with o(
√
θ) uniform with respect to x.

Lemma 2.2. According to the hypothesis of the model, we have, for all b(t) ≤ x < b(T ) ∧
be(t) and for all θ = T − t small enough, the following inequality

inf
b(t)<u<x

u2σ2

2

∂2P

∂x2
(t, u) ≥

(
δ̄ − ǫ(θ)

)
(b(T )− x)− λβE

(

σBθ − ln(
b(T )

x
)

)+

+ o(
√
θ),

with limθ↓0 ǫ(θ) = 0, δ̄ = δ +
∫

{y>ln( K
b(T )

} e
yν(dy), λ = ν

{

ln
(

K
b(T )

)}

and β = K
δ̄b(T )

.
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3. Regular case

We begin this section with introducing an auxiliary optimal stopping problem which
will be needful for deriving the expansion of the American put price near maturity along a
parabolic branch. Once we have this expansion we will be able to derive the convergence
rate of the critical price.

3.1. An auxiliary optimal stopping problem. Let β be a non-negative number, (Bs)s≥0

be a standard Brownian motion with local time at x denoted by L̃x. We denote by T0,1
the set of all σ (Bt ; t ≥ 0)-stopping times with values in [0, 1] . Consider also a Poisson

process (Ns)s≥0, independent of B, with intensity λ, we denote by T̂1 its first jump time

and by T̂0,1 the set of all σ ((Nt, Bt) ; t ≥ 0)-stopping times with values in [0, 1]. We define
the functions υλ,β as follows

vλ,β(y) = sup
τ∈T̂0,1

E

[

eλτ1{N̂τ=0}

∫ τ

0
fλβ(y +Bs)ds+

β

2
eλτ1{N̂τ=1}

(

L−y
τ (B)− L−y

T̂1
(B)

)]

,

where fa(x) = x+ ax+. Notice that vλ,β is a non negative function. Moreover, we have

Lemma 3.1. Define
yλ,β = − inf{x ∈ R | vλ,β(x) > 0}.

We have 0 < yλ,β < 1 + λβ(2 + eλ) and

∀y < −yλ,β, vλ,β(y) = 0.

We finish this paragraph with an inequality, which will be used to derive a lower bound
for the second derivative of P (see the proof of the upper bound in Theorem 3.2).
We define the function C on R by C(x) = x − λβ E(B1 − x)+ and we have the following
lemma,

Lemma 3.2. For all x > yλ,β, we have

C(x) > 0.

These results will be proved in Appendix 2: A study of vλ,β.

3.2. American put price expansion. Throughout this section, we assume d̄ < 0, so
that b(T ) < K. We then have enough regularity of the American put price to derive an
expansion of P around b(T ) along a certain parabolic branch.

Theorem 3.1. Let a be a negative number (a < 0) and b(T ) denote the limit of b(t) when
t goes to T , b(T ) = limt→T b(t). If d̄ < 0, we have

P (T − θ, b(T )ea
√
θ) = (K − b(T )ea

√
θ)+ + Cθ

3
2υλ,β(

a

σ
) + o(θ

3
2 ),

where C = σb(T )δ̄eλ, with λ = ν{ln K
b(T )}, δ̄ = δ +

∫

y>ln(K/b(T )) e
yν(dy) and υλ,β(y) as

defined in the previous section with β = K
b(T )δ̄

.
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Remark 1. Notice that if ν does not charge
{

ln( K
b(T ))

}

, meaning that λ = 0 and T̂1 =

∞ a.s, then,

υλ,β(a) = υ0(a) = sup
τ∈T0,1

E

(∫ τ

0
(a+Bs) ds

)

.

In this case, the American put price will have the same expansion as in the Black&Scholes
model, (see [9]).

Before proving Theorem 3.1, we state an elementary estimate for the expectation of the
local time of Brownian motion.

Lemma 3.3. For all real number a and for all t > 0, we have

0 ≤ E(a−Bt)+ − a+ ≤
√
t
e−

a2

2t

√
2π
.

Proof of lemma 3.3:

The first inequality follows from Jensen’s inequality. For the other inequality, we have

E(a−Bt)+ =

∫ a/
√
t

−∞
(a−

√
ty)e−y2/2 dy√

2π

= a

∫ a/
√
t

−∞
e−y2/2 dy√

2π
+

√
t
e−

a2

2t

√
2π

Then, if a ≤ 0,

E(a−Bt)+ ≤
√
t
e−

a2

2t√
2π
.

If a ≥ 0, we can write

E(a−Bt)+ − a = −
∫ +∞

a/
√
t
e−y2/2 dy√

2π
+

√
t
e−

a2

2t√
2π

≤
√
t
e−

a2

2t√
2π
.

�

In order to derive the expansion of the American put price, we start from the Meyer-Ito
formula (see [12]):
(4)

(K−St)+ = (K−S0)++
∫ t

0
(−1{Ss≤K})Ss(γ0ds+σdBs)+

∑

0<s≤t

(K−Ss)+−(K−Ss−)++
1

2
LK
t ,

where LK
t is the local time of the process at K until the date t. We give, in the following

lemma, an estimation of ELK
t , for small times t, which will allow us to neglect a part of

the contribution of the local time in the expansion of P (t, x), near maturity.
6



Lemma 3.4. Let a be a negative number, a < 0 and S0 = b(T )ea
√
θ . If b(T ) < K, then

we have, for all F-stopping time τ with values in [0, θ],

E
(
LK
τ

)
= 2KE

[(

(−a
√
θ − σBτ )

+ − (−a
√
θ − σBT̂1

)+
)

1{T̂1<τ}

]

+ o(θ
3
2 ) ≤ w0θ

3/2,

where T̂1 = inf{s ≥ 0 ; ∆Xs = ln( K
b(T ) )} and w0 a non-negative constant independent of a.

Proof of Lemma 3.4:

Let T1 be the first jump time of the process Z and τ an F-stopping time with values in
[0, θ]. We have, the local time being a nondecreasing process,

LK
τ = LK

τ∧T1
+ LK

τ − LK
τ∧T1

= LK
τ∧T1

+ 1{T1<τ}
(
LK
τ − LK

T1

)

≤ LK
θ∧T1

+ 1{T1<θ}
(
LK
T1+θ − LK

T1

)
.

Estimating ELK
θ∧T1

In the stochastic interval [0, T1[, the process (St) matches with the process (Št) defined
by

Št = S0e
(γ0−σ2

2
)t+σBt .

We deduce (when observing that the process LK is continuous) that

LK
θ∧T1

= ĽK
θ∧T1

≤ ĽK
θ ,

where ĽK is the local time at K of the process Š. Note that

1

2
ĽK
θ = (K − Šθ)+ − (K − S0)+ −

∫ θ

0
(−1{Šs≤K})Šs(γ0ds+ σdBs).

As the process (ĽK
θ ) increases only on {Št = K}, we have

ĽK
θ = ĽK

θ 1{τK<θ},

where τ̌K = inf{t ≥ 0; Št > K}. By Hölder,

EĽK
θ ≤ (P(τ̌K < θ))1−

1
p ||ĽK

θ ||p, p > 1.

We easily deduce that EĽK
θ = o(θn), for all n > 0.

Estimating E
[
1{T1<τ}

(
LK
τ − LK

T1

)]

Notice that we have

E
[
1{T1<τ}

(
LK
τ − LK

T1

)]
≤ E

[
1{T1<θ}

(
LK
T1+θ − LK

T1

)]
,

and by the strong Markov property, we obtain

(5) E
[
1{T1<θ}

(
LK
T1+θ − LK

T1

)]
= E

(

1{T1<θ}EST1
(LK

θ )
)

,

where Ex is the expectation associated to Px and Px defines the law of St when S0 = x.

Estimating Ex

(
LK
θ

)

7



Let T1 be the first jump time of the process Z. We then have

LK
θ = LK

θ∧T1
+ LK

θ − LK
θ∧T1

According to equality (4) we deduce, using the compensation formula (see [3])

1

2
LK
θ = (K − Sθ)+ − (K − S0)+ +

∫ θ

0
1{Ss−≤K}Ss−(γ0ds+ σdBs)

−
∫ θ

0
ds

∫

Φ(Ss−, y)ν(dy) +Mθ,

where Φ(x, y) = (K − xey)+ − (K − x)+ and (Mt) is a martingale which vanishes at 0.
Taking expectations, we have

1

2
E
(
LK
θ

)
= E(K − Sθ)+ − (K − S0)+ + E

∫ θ

0

(

γ0Ss1{Ss≤K} −
∫

Φ(Ss, y)ν(dy)

)

ds.

We deduce easily from this equality that

1

2
Ex

(
LK
θ

)
= Ex(K − Sθ)+ − (K − x)+ + xO(θ)

with O(θ) independent of x. We have

Ex(K − Sθ)+ − (K − x)+ = Ex(K − xe(r−δ−σ2

2
)θ+σBθ+Z̃θ)+ − (K − x)+

We also have

E

∣
∣
∣
∣
e(r−δ−σ2

2
)θ+σBθ+Z̃θ − eσBθ

∣
∣
∣
∣

= eσ
2θ/2

E

∣
∣
∣
∣
e(r−δ−σ2

2
)θ+Z̃θ − 1

∣
∣
∣
∣

= O(θ)

Therefore

Ex(K − Sθ)+ − (K − x)+ = E(K − xeσBθ )+ − (K − x)+ + xO(θ)

= E(K − x(1 + σBθ))+ − (K − x)+ + xO(θ)

= xσ

(

E

(
K − x

xσ
−Bθ

)

+

−
(
K − x

xσ

)

+

)

+ xO(θ).

Hence, using lemma 3.3 above,

Ex(K − Sθ)+ − (K − x)+ ≤ xσ
√

θ/(2π) exp

(

−(K − x)2

2x2σ2θ

)

+ xO(θ).
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Going back to (5), we obtain

1

2
E
[
1{T1<θ}

(
LK
T1+θ − LK

T1

)]

≤ σ

√

θ

2π
E

(

1{T1<θ}ST1 exp

(

−(K − ST1)
2

2S2
T1
σ2θ

))

+ E
(
1{T1<θ}ST1

)
O(θ)

= σ

√

θ

2π
S0E

(

1{T1<θ}e
(γ0−σ2

2
)T1+σBT1

+ZT1 exp

(

−(K − ST1)
2

2S2
T1
σ2θ

))

+O(θ2).

At this stage, we notice that P(T1 ≤ θ) = 1 − e−λθ = O(θ) and that, conditionally on
{T1 ≤ θ}, T1 is uniformly distributed on [0, θ].

As ZT1 is independent of both T1 and B, we see that, conditionally to {T1 < θ}, ST1 has
the same law as

K exp

{(

V − ln(
K

b(T )
)

)

+
√
θ

(

a+ (γ0 −
σ2

2
)
√
θU + σg

√
U

)}

,

where U , g and V are two independent random variables, U is uniform on [0, 1], g standard
Gaussian and V has the same law as ZT1 . Therefore, we can state that there exists a non
negative constant independent of a such that

E(LK
θ | S0 = b(T )ea

√
θ) ≤ w0θ

3/2 = O(θ3/2).

Estimating E
[
LK
τ − LK

τ∧T1

]
, in the case where ν{ln( K

b(T ))} = 0:

If we assume ν{ln( K
b(T ))} = 0, which means that V − ln( K

b(T )) 6= 0 a.s , we obtain, by

dominated convergence that

lim
t↓0

E

(

ST1 exp

(

−K
2(1− ST1

K )2

2S2
T1
σ2θ

)

| T1 < θ

)

= 0.

Therefore E
[
1{T1<θ}

(
LK
T1+θ − LK

T1

)]
= o(θ3/2), hence

E

(

LK
θ | S0 = b(T )ea

√
θ
)

= o(θ3/2)

Estimating E
[
LK
τ − LK

τ∧T1

]
, in the case where ν{ln( K

b(T ))} > 0:

Let us introduce the processes X̂ and Ẑ such that

Ẑt =
∑

s<t

∆X̃s1{∆X̃s=ln K
b(T )

} and X̂ = X̃ − Ẑ,

and T̂1 = inf{s ≥ 0, Ẑt 6= 0}. Then, since τ ≤ θ, we have

E

[

LK
τ∧T̂1

− LK
τ∧T1

]

= E

[

(LK
τ∧T̂1

− LK
τ∧T1

)1{T1<τ∧T̂1}

]

= o(θ
3
2 ).

Indeed, on {τ < T̂1}, the process X̃ matches with the process X̂ whose Lévy measure does
not charge the point {ln( K

b(T ))}, (we are in the same case as ν{ln( K
b(T ))} = 0). And on
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{T1 < T̂1 ≤ τ} ⊂ {T1 < T̂1 ≤ θ}, the process Z has jumped two times before θ, however,

P

(
∑

s≤θ 1{∆Zs 6=0} ≥ 2
)

= O(θ2). Thus,

E
[
LK
τ − LK

τ∧T1

]
= E

[

LK
τ − LK

τ∧T̂1

]

+ o(θ3/2).

Besides,

1

2
E

[

LK
τ − LK

τ∧T̂1

]

=
1

2
E

[

(LK
τ − LK

τ∧T̂1
)1T̂1<τ

]

= E

[(

(K − Sτ )
+ − (K − ST̂1

)+
)

1T̂1<τ

]

+ o(θ3/2)

= E

[(

(K − S0K

b(T )
e
X̂

T̂1
−X̃

T̂1
+X̃τ )+ − (K − S0K

b(T )
e
X̂

T̂1 )+
)

1T̂1<τ

]

+ o(θ
3
2 ).

Since P

(
∑

s≤θ 1{∆X̃s 6=0} ≥ 2
)

= O(θ2), conditionally on {T̂1 < τ}, we can assume that

Nθ = 1, where Nθ denotes the number of jumps of X̃ up to θ, Nθ =
∑

s≤θ 1{∆X̃s 6=0} =
∑

s≤θ 1{∆Zs 6=0}. Noticing that S0K
b(T ) = Kea

√
θ, we obtain

E

[

LK
τ − LK

τ∧T̂1

]

= 2E

[(

(K − S0K

b(T )
e
X̂

T̂1
−X̃

T̂1
+X̃τ )+ − (K − S0K

b(T )
e
X̂

T̂1 )+
)

1{Nθ=1}1{T̂1<τ}

]

+ o(θ
3
2 )

= 2KE

[(

(−a
√
θ − µτ − σBτ )

+ − (−a
√
θ − µT̂1 − σBT̂1

)+
)

1{T̂1<τ}

]

+ o(θ
3
2 )

= 2KE

[(

(−a
√
θ − σBτ )

+ − (−a
√
θ − σBT̂1

)+
)

1{T̂1<τ}

]

+ o(θ
3
2 )

The last two equalities follow from P(T̂1 < τ) = O(θ),
∣
∣(1− ex + x)1{x≤0}

∣
∣ ≤ x2

2 and the
fact that, for all stropping time ̺ with values in [0, θ], we have

θE

(

a+ µ
̺√
θ
+

σ√
θ
B̺

)2

≤ Cθ.

�

Proof of Theorem 3.1: First of all, we recall our notation X̌t = X̃t−Zt, Št = S̃t/e
Zt (i.e

the continuous part of the processes) and T1 the first jump time T1 = inf{t > 0|Zt 6= 0}
and from now on, we consider S0 as a function of θ. More precisely, we denote by Sθ

0 =

b(T )ea
√
θ = ex0+a

√
θ, with a < 0 and x0 = ln(b(T )).

10



According to equation (4), we have for all stopping times τ ∈ T0,θ,

E
[
e−rτ (K − Sτ )+

]
− (K − S0)

+

= E

[∫ τ

0

(

e−rs1{Ss≤K}

(

−rK + δSs + Ss

∫

(ey − 1)ν(du)

)

+e−rs

∫
[
(K − Sse

y)+ − (K − Ss)
+
]
)ν(dy)

)

ds

]

+
1

2
E

(∫ τ

0
e−rsdLK

s

)

= Ia(τ) + J a(τ),(6)

where

Ia(τ) = E

[∫ τ

0

(

e−rs1{Ss≤K}

(

−rK + δSs + Ss

∫

(ey − 1)ν(du)

)

+e−rs

∫
[
(K − Sse

y)+ − (K − Ss)
+
]
)ν(dy)

)

ds

]

and

J a(τ) =
1

2
E

(∫ τ

0
e−rsdLK

s

)

.

At this stage, since J a ≥ 0, we can state that , given S0 = b(T )eλ
√
θ, we have

Ia(τ) ≤ E
[
e−rτ (K − Sτ )+

]
− (K − S0)

+ = Ia(τ) + J a(τ) ≤ Ia(τ) +w0θ
3
2 ,(7)

the last inequality follows from Lemma 3.4. In what follows, we will express Ia and J a in
more appropriate forms. Let us start with J a.

Estimating J a:

Recall that T̂1 = inf{t ≥ 0 ; ∆X̃t = ln K
b(T )} and setS0 = b(T )eλ

√
θ with λ < 0, then

according to Lemma 3.4, we have E
(
LK
θ

)
= O(θ3/2), therefore

J a(τ) =
1

2
E
(
LK
τ

)
+ o(θ

3
2 )

= KE

[(

(−a
√
θ − σBτ )

+ − (−a
√
θ − σBT̂1

)+
)

1{T̂1<τ}

]

+ o(θ
3
2 ).(8)

Estimating of Ia:

First of all, remark that we have
11



E

[∫ τ

0

(

e−rs1{Ss>K}

∫
[
(K − Sse

y)+− (K − Ss)
+
]
ν(dy)

)

ds

]

≤ Kν(R)

∫ θ

0
P{Ss > K}ds

≤ Kν(R)

∫ θ

0
P{Ss > K,T1 > θ}+ P{Ss > K,T1 ≤ θ}ds(9)

≤ Kν(R)

(∫ θ

0
P{Šs > K}ds+ θP{T1 ≤ θ}

)

= O(θ2).

And noticing that

1{x≤K}
(
x(ey − 1) +

[
(K − xey)+ − (K − x)+

])
= (xey −K)+1{x≤K},

we thus obtain

Ia(τ) = E

(∫ τ

0
e−rs1{Ss≤K}

(

−rK + δSs +

∫

(Sse
y −K)+ν(dy)

)

ds

)

+ o(θ
3
2 ).

We can also omit e−rs in the expression as an error of the order of O(θ2). Then we obtain,
for all stopping times τ with values in [0, θ]

Ia(τ) = E

(∫ τ

0
1{Ss≤K}

(

−rK + δSs +

∫

(Sse
y −K)+ν(dy)

)

ds

)

+ o(θ
3
2 ).

We denote

h(x) = −rK + δex +

∫

(exey −K)+ν(dy),

and recall that St = Sθ
0e

X̃t = b(T )ea
√
θ+X̃t = b(T )eX̃

a
√

θ
t = ex0+X̃a

√
θ

t , where X̃y
t = y + X̃t .

We thus have

Ia(τ) = E

(∫ τ

0
1{a

√
θ+X̃s≤ln K

b(T )
}h(x0 + a

√
θ + X̃s)ds

)

︸ ︷︷ ︸

(I)

+o(θ
3
2 ).(10)

Now, we will try to express the quantity (I) under a more appropriate form. The first step

is to neglect the contribution of the finite variation part of the process X̃ . Notice that

∣
∣1{x≤ln(K)}h(x)

∣
∣ ≤ K(r ∨ |d̄|) and |h(x) − h(y)| ≤ |ex − ey|

(

δ +

∫

y>0
eyν(du)

)

.

Moreover, for all (x, y) ∈ R
2, we have

∣
∣1{x≤ln(K)}h(x)− 1{y≤ln(K)}h(y)

∣
∣

=
∣
∣(h(x) − h(y)) 1{x∨y≤ln(K)} + h(x)1{x≤ln(K)<y} − h(y)1{y≤ln(K)<x}

∣
∣

≤ A0 |ex − ey| 1{x∨y≤ln(K)}A1

(
1{ln(K)<y} + 1{ln(K)<x}

)
,

12



where A1 = K(r ∨ |d̄|) > 0 and A0 = δ +
∫

y>0 e
yν(du). Let kb = ln

(
K

b(T )

)

> 0 and recall

that X̃t − σBt = (γ0 − σ2

2 )t+ Zt, then
∣
∣
∣1{x0+a

√
θ+X̃s≤lnK}h(x0 + a

√
θ + X̃s)− 1{x0+a

√
θ+σBs≤lnK}h(x0 + a

√
θ + σBs)

∣
∣
∣

≤ A0

∣
∣
∣ex0+a

√
θ+X̃s − ex0+a

√
θ+σBs

∣
∣
∣ 1{X̃s∨σBs≤kb−a

√
θ} + C(1{kb−a

√
θ<σBs} + 1{kb−a

√
θ<X̃s})

≤ A0b(T )e
σBs

∣
∣
∣
∣
e(γ0−

σ2

2
)s+Zs − 1

∣
∣
∣
∣
+ C(1{kb<σBs} + 1{kb<X̃s}),

the last inequality is due to a < 0 and ex0 = B(T ).
Taking the expectation, we obtain, for all s ∈ [0, θ]

P(kb < σBs) ≤ P(
kb

σ
√
θ
< σB1) ≤ C

√
θe−

k2b
2σ2θ ,

for θ small enough, we have kb
2 < kb − (γ0 − σ2

2 )s, then

P(kb < X̃s) ≤ P(
kb − (γ0 − σ2

2 )s

σ
√
θ

< B1) + P(T1 ≤ θ) ≤ C
√
θe−

k2b
8σ2θ +Aθ

and

E

(

eσBs

∣
∣
∣
∣
e(γ0−

σ2

2
)s+Zs − 1

∣
∣
∣
∣

)

≤ e
σ2

2
s

∣
∣
∣
∣
e(γ0−

σ2

2
)s − 1

∣
∣
∣
∣
+ eγ0sE

∣
∣eZs − 1

∣
∣ ≤ Dθ.

Hence,
∫ θ

0
E

(∣
∣
∣1{x0+a

√
θ+X̃s≤lnK}h(x0 + a

√
θ + X̃s)

− 1{x0+a
√
θ+σBs≤lnK}h(x0 + a

√
θ + σBs)

∣
∣
∣

)

ds = O(θ2).

Thanks to this estimation, equation (10) becomes

Ia(τ) = E

(∫ τ

0
1{a

√
θ+σBs≤ln K

b(T )
}h(x0 + a

√
θ + σBs)ds

)

+ o(θ
3
2 ).(11)

The function h is convex, therefore it is right and left differentiable. Particularly, we have
all x < ln(K),

h′g(x) = ex
(

δ +

∫

ey1{y>ln(K)−x}ν(dy)

)

and

h′d(x) = ex
(

δ +

∫

ey1{y≥ln(K)−x}ν(dy)

)

.

Hence, we can write

h′d(x0)(x− x0)
+ − h′g(x0)(x− x0)

− ≤ h(x) − h(x0) ≤ h′g(x)(x− x0)
+ − h′d(x)(x − x0)

−,
13



hence

0 ≤ h(x)−
(
h(x0) + h′d(x0)(x− x0)

+ − h′g(x0)(x− x0)
−)

≤
(
h′g(x)− h′d(x0)

)
(x− x0)

+ +
(
h′g(x0)− h′d(x)

)
(x− x0)

−

=
(
h′g(x ∨ x0)− h′d(x ∧ x0)

)
|x− x0|.

Thanks to the equation characterizing b(T ) when d̄ < 0, we have h(x0) = h(ln(b(T )) = 0.
We thus obtain, by setting ∆h′(x0) = h′d(x0)− h′g(x0),

h(x0 + x) = ∆h′(x0)x
+ + h′g(x0)x+ |x| R̃(x),

where R̃(x) −→x→0 0, and

0 ≤ R̃(x) ≤
(
h′g(x0 + x+)− h′d(x0 − x−)

)

≤ L (1 + ex) ,

with L a positive constant. We can then write

1{a
√
θ+σBs≤ln K

b(T )
}h(x0 + a

√
θ + σBs)

=
(

∆h′(x0)(a
√
θ + σBs)

+ + h′g(x0)a
√
θ + σBs

)(

1− 1{a
√
θ+σBs>ln K

b(T )
}

)

+
∣
∣
∣a
√
θ + σBs

∣
∣
∣ R̃(a

√
θ + σBs)1{X̃a

√
θ

s ≤ln K
b(T )

}.(12)

We state that
∣
∣
∣
∣
E

∫ τ

0

∣
∣
∣a
√
θ + σBs

∣
∣
∣ R̃(a

√
θ + σBs)1{X̃a

√
θ

s ≤ln K
b(T )

}ds

∣
∣
∣
∣
= o(θ

3
2 )(13)

∣
∣
∣
∣
E

∫ τ

0

(

∆h′(x0)(a
√
θ + σBs)

+ + h′g(x0)a
√
θ + σBs

)

1{a
√
θ+σBs>ln K

b(T )
}ds

∣
∣
∣
∣
= o(θ

3
2 ),

(14)

Indeed, we have for (13), by setting s = uθ,
∣
∣
∣
∣
E

(∫ τ

0

∣
∣
∣a
√
θ + σBs

∣
∣
∣ R̃(a

√
θ + σBs)1{a

√
θ+σBs≤ln K

b(T )
}ds

)∣
∣
∣
∣

= θ
3
2

∫ 1

0
E

[

|a+ σBs| R̃(
√
θ(a+ σBs))1{a

√
θ+σ

√
θBs≤ln K

b(T )
}

]

ds.

As |R̃(x)| ≤ L(ex + 1) and |R̃(x)| −→x→0 0, we have by bounded convergence

∫ 1

0
E

[

|a+ σBs| R̃(X̃a
√
θ

θs )1{a
√
θ+σBs≤ln K

b(T )
}

]

ds −→θ→0 0.
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And for the estimate in (14), we have
∣
∣
∣
∣
E

∫ τ

0

(

∆h′(x0)(a
√
θ + σBs)

+ + h′g(x0)a
√
θ + σBs

)

1{a
√
θ+σBs>ln K

b(T )
}ds

∣
∣
∣
∣

≤ C
√
θ

∫ θ

0
E

[(

|a|+ σ

√
s

θ
|B1|

)

1{a+σB1>
1√
θ
ln K

b(T )
}

]

ds

≤ Cθ
3
2

√

E (|a|+ |B1|)2
√

P{a+ σB1 >
1√
θ
ln

K

b(T )
}

= O(θn).

Therefore, taking the expectation of the integral of (12) between 0 and all stopping time
τ ∈ T0,θ gives

Ia(τ) = E

∫ τ

0
1{a

√
θ+σBs≤ln K

b(T )
}h(x0 + a

√
θ + σBs)ds

= h′g(x0)E
∫ τ

0

(

a
√
θ + σBs

)

ds+∆h′(x0)E
∫ τ

0

(

a
√
θ + σBs

)+
ds + o(θ

3
2 ),

= b(T )δ̄E

∫ τ

0

(

a
√
θ + σBs

)

+ λβ
(

a
√
θ + σBs

)+
ds+ o(θ

3
2 ),(15)

with δ̄ = δ+
∫

y>ln K
b(T )

eyν(dy) , β = K
b(T )δ̄

, λ = ν{ln K
b(T )} and we recall that h′g(x0) = b(T )δ̄

and ∆h′(x0) = Kν{ln K
b(T )} then (λβ = ∆h′(x0)

h′
g(x0)

).

Comming back to (6) and using (8) and (15), we obtain

E
(
e−rτ (K − Sτ )

+
)

= (K − S0)
+ + E

(

b(T )δ̄

∫ τ

0

(

a
√
θ + σBs + λβ(a

√
θ + σBs)

+
)

ds

)

+K1{T̂1<τ}

(

(a
√
θ + σBτ )

+ − (a
√
θ + σBT̂1

)+
))

+ o(θ3/2),

with o(θ3/2) independent of τ . Hence

P (T − θ, b(T )ea
√
θ) = (K − b(T )ea

√
θ)+ + σb(T )δ̄v̄λ,β,θ(a/σ) + o(θ3/2),

where v̄λ,β,θ defined by

v̄λ,β,θ(y) = sup
τ∈T0,θ

E

(∫ τ

0
fλβ(y

√
θ +Bs)ds+ β1{T̂1<τ}

(

(y
√
θ +Bτ )

+ − (y
√
θ +BT̂1

)+
))

,

with fa(x) = x + ax+. To simplify the expression of v̄λ,β,θ, we notice first that, if we set

Bθ
t = Bθt/

√
θ, we can write

v̄λ,β,θ =
√
θ sup
τ∈T0,θ

E

(∫ τ

0
fλβ(y +Bθ

s/θ)ds + β1{T̂1<τ}

(

(y +Bθ
τ/θ)

+ − (y +Bθ
T̂1/θ

)+
))

=
√
θ sup
τ∈T0,θ

E

(

θ

∫ τ/θ

0
fλβ(y +Bθ

s )ds+ β1{T̂1<τ}

(

(y +Bθ
τ/θ)

+ − (y +Bθ
T̂1/θ

)+
)
)
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We also notice that τ ∈ T0,θ if and only if τ/θ ∈ T θ
0,1, where T θ

0,1 is the set of the stopping
times of the filtration (Fθt)t≥0, with values in [0, 1], then

v̄λ,β,θ =
√
θ sup
τ∈T θ

0,1

E

(

θ

∫ τ

0
fλβ(y +Bθ

s )ds+ β1{T̂1<θτ}

(

(y +Bθ
τ )

+ − (y +Bθ
T̂1/θ

)+
))

Note that v̄λ,β,θ(y) does not change if we replace T θ
0,1 by T̂0,1 the set of the stopping times

of the natural filtration of the couple (Bθ
t , N̂θt), where N̂ is defined by

N̂t =
∑

0<s≤t

1{∆Zs=ln(K/b(T ))}.

The processes (N̂θt)t≥0 is a Poisson process with intensity θλ, where λ = ν{ln(K/b(T ))}.
Under the probability P̂, defined by

dP̂

dP
= θN̂1e−λ(θ−1),

the process (Bt, N̂t)0≤t≤1 has the same law as (Bθ
t , N̂θt)0≤t≤1. Hence,

v̄λ,β,θ(y) =
√
θ sup
τ∈T0,1

E

[

θN̂1e−λ(θ−1)

(

θ

∫ τ

0
fλβ(y +Bs)ds+ β1{T̂1<τ}

(

(y +Bτ )
+ − (y +BT̂1

)+
))]

=
√
θ sup
τ∈T0,1

E

[

θN̂τ e−λτ(θ−1)

(

θ

∫ τ

0
fλβ(y +Bs)ds+

β

2
1{T̂1<τ}

(

L−y
τ (B)− L−y

T̂1
(B)

))]

,

where L−y(B) denotes the local time of B at −y. We have for τ ∈ T0,1,

E

[

θN̂τ eλτ(θ−1)

(

θ

∫ τ

0
fλβ(y +Bs)ds

)]

= θE

[

1{N̂τ=0}e
−λτ(θ−1)

(∫ τ

0
fλβ(y +Bs)ds

)]

+ θRτ ,

and if θ ≤ 1

|Rτ | ≤ θE

[

1{N̂τ≥1}e
−λτ(θ−1)

(∫ 1

0
|fλβ(y +Bs)|ds

)]

= O(θ).

Hence,

E

[

θN̂τ e−λτ(θ−1)

(

θ

∫ τ

0
fλβ(y +Bs)ds

)]

= θE

[

1{N̂τ=0}e
λτ

(∫ τ

0
fλβ(y +Bs)ds

)]

+O(θ2),

Besides,

E

[

θN̂1e−λ(θ−1)1{T̂1<τ}

(

(L−y
τ (B)− L−y

T̂1
(B)

)]

= E

[

θN̂τ e−λτ(θ−1)1{T̂1<τ}

(

(L−y
τ (B)− L−y

T̂1
(B)

)]

= θE
[

eλτ1{N̂τ=1}

(

(L−y
τ (B)− L−y

T̂1
(B)

)]

+O(θ2).

We then have

v̄λ,β,θ(y) = θ3/2vλ,β(y) + o(θ3/2),
16



with

vλ,β(y) = sup
τ∈T0,1

E

[

eλτ1{N̂τ=0}

∫ τ

0
fλβ(y +Bs)ds+

β

2
eλτ1{N̂τ=1}

(

L−y
τ (B)− L−y

T̂1
(B)

)]

.

Finally, we obtain

P (T − θ, b(T )ea
√
θ)− (K − b(T )ea

√
θ) = θ

3
2 (σb(T )δ̄eλ)υλ,β

(a

σ

)

+ o(θ
3
2 ),

�

3.3. Convergence rate of the critical price. Thanks to the expansion given in Theo-
rem 3.1, we are now able to state the first main result of this paper.

Theorem 3.2. Under the hypothesis of the model and d̄ < 0, we have :
If ν{ln K

b(T )} = 0, then we have

lim
t→T

b(T )− b(t)

σb(T )
√

(T − t)
= y0,

with y0 = − sup{x ∈ R ; v0(x) = supτ∈T0,1 E(
∫ τ
0 (x+Bs)ds) = 0}.

If ν{ln K
b(T )} > 0, we then have

lim
t→T

b(T )− b(t)

σb(T )
√

(T − t)
= yλ,β,

with yλ,β as defined in Lemma 3.1, with

λ = ν{ln K

b(T )
} , β =

K

b(T )δ̄
and δ̄ = δ +

∫

y>ln(K/b(T ))
eyν(dy).

Proofof Theorem 3.2:

According to Theorem 3.1, we have for all a < 0,

P (T − θ, b(T )ea
√
θ) = (K − b(T )ea

√
θ)+ + Cθ

3
2υλ,β(

a

σ
) + o(θ

3
2 ).

Lower bound for b(T )− b(t)
Specifically, we have for all a > −σyλ,β, where yλ,β is defined by Lemma 3.1,

υλ,β(
a

σ
) > 0,

we thus obtain for θ close to 0,

P (t, b(T )ea
√
θ) > (K − b(T )ea

√
θ),

and then

ln(b(T )) + a
√
θ > ln(b(t)),
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hence

b(T )− b(t)

b(t)
√
θ

> −a.

Noting that since r > 0 we have b(T ) > 0, and by making t tend to T then a to −σyλ,β,
we obtain

lim inf
t→T

b(T )− b(t)

b(T )
√
T − t

≥ σyλ,β.

Upper bound for b(T )− b(t)
Let’s consider a ≤ −σyλ,β, we have thus υλ,β(

a
σ ) = 0 and consequently,

P (t, b(T )ea
√
θ)− (K − b(T )ea

√
θ) = g(θ),

with g(θ) = o(θ
3
2 ).

In addition, we have for all b(t) < x < K,

P (t, x)− P (t, b(t))− (x− b(t))
∂P

∂x
(t, b(t)) =

∫ x

b(t)
(u− b(t))

∂2P

∂x2
(t, du),

since ∂2P
∂x2 (t, du) is a positive measure on ]0,+∞[. As the smooth-fit is satisfied, ∂P

∂x (t, b(t)) =
−1 (see [8]), we have for all b(t) < x < K,

P (t, x)− (K − x) =

∫ x

b(t)
(u− b(t))

∂2P

∂x2
(t, du).

Then, for b(t) < x = b(T )ea
√
θ, we have according to Lemma 2.2,

u2σ2

2

∂2P

∂x2
(t, u) ≥ b(T )δ̄

(

(1− ea
√
θ)− λβ

√
θσE

(

B1 +
a

σ

)+
)

+ o(
√
θ)

≥ b(T )δ̄
√
θσ

(

−a
σ
− λβE

(

B1 +
a

σ

)+
)

+ o(
√
θ)

Hence

P (t, x)− (K − x) ≥ [(x− b(t))+]2
(
C(− a

σ )

b(0)2σ2

√
θ + o(

√
θ)

)

,

where C(x) = x − λβE(B1 − x)+. Due to lemma 3.2 and to the continuity of C(x), we
have, for −a

σ close enough to yλ,β, C(− a
σ ) > 0. Moreover,

P (t, b(T )ea
√
θ)− (K − b(T )ea

√
θ) = g(θ) = o(θ

3
2 ).

Therefore, for θ small enough, there exists a positive constant A such that

(16) [(b(T )ea
√
θ − b(t))+]2 ≤ Ab(0)2σ2

g(θ)

C(− a
σ )
√
θ
= o(θ)

(b(T )ea
√
θ − b(t))+ = o(

√
θ),

18



and then, for θ small enough,

b(T )− b(t)

b(T )
√
θ

≤ −a+ o(1).

Finally, by making a tend to −σyλ,β, we obtain

lim sup
t→T

b(T )− b(t)

b(T )
√
T − t

≤ σyλ,β.

�

4. Limit case

In this part, we consider the limit case where d̄ = r− δ−
∫

y>0(e
y − 1)ν(dy) = 0, we then

have

Theorem 4.1. According to the model hypothesis, if d̄ = 0, then, we have

lim
t→T

K − b(t)

σK
√

(T − t)| ln(T − t)|
=

√
2.

The method for proving Theorem 4.1 consists of analysing the behavior of the European
critical price be(t) introduced in section 1, afterwards we prove that the behavior of the
critical price b(t) is similar by controling the difference b(t)− be(t).

Let us denote by

α(θ) =
ln( K

be(t)
)− µθ

σ
√
θ

,

where µ = γ0 − σ2

2 = r − δ −
∫
(ey − 1)ν(dy) − σ2

2 .

Proposition 4.1. Under the model hypothesis, if d̄ = 0, then we have

i) α(θ) ∼
√

2 ln(1θ )

ii) limθ→0
K−be(t)

σK
√

|θ ln(θ)|
=

√
2

Proof of Proposition 4.1:

Since b(t) ≤ be(t) ≤ K and b(t) → K, we clearly have
√
θα(θ) −→θ→0 0.

We will first prove that α(θ) −→θ→0 +∞, or equivalently.

(17) lim
θ→0

K − be(t)

σ
√
θ

= +∞.

We have

(18) K − be(t) = e−rθ
E

[(

K − be(t)e
X̃θ

)+
]

19



Therefore

K − be(t)√
θ

= e−rθ
E

[(

K − be(t)√
θ

+ be(t)
1 − eX̃θ

√
θ

)+]

= e−rθ
E

[(

K − be(t)√
θ

+ be(t)
1 − eσ

√
θB1+µθ+Zθ

√
θ

)+]

Now, if we notice that 1−eσ
√
θB1+µθ+Zθ√

θ
−→p.s

θ→0 −σB1, we have by Fatou lemma

lim inf
θ→0

K − be(t)√
θ

≥ E

[(

lim inf
θ→0

K − be(t)√
θ

− σKB1

)+
]

= lim inf
θ→0

K − be(t)√
θ

+ E

[(

σKB1 − lim inf
θ→0

K − be(t)√
θ

)+
]

which is equivalent to

E

[(

σKB1 − lim inf
θ→0

K − be(t)√
θ

)+
]

≤ 0.

This gives (17) which yields the wanted result.
i) We now rewrite equation (18) to obtain

K − be(t) = e−rθK − be(t)e
−δθ + e−rθ

E

[(

be(t)e
X̃θ −K

)+
]

,

therefore

(19) e−rθ
E

[(

eX̃θ − e
ln( K

be(t)
)
)+
]

=
K

be(t)
(1− e−rθ)− (1− e−δθ).

We will give an expansion for each side of the equation. For the left hand side of the
equation, we have

e−rθ
E

[(

eX̃θ − e
ln( K

be(t)
)
)+
]

= e−rθ+θµ+σα(θ)
√
θ
E

[(

eσ
√
θB1+Zθ−σα(θ)

√
θ − 1

)+
]

= e−rθ+θµ+σα(θ)
√
θ
E

[(
Uθe

Zθ − 1
)+
]

,

20



where Uθ = eσ
√
θB1−σα(θ)

√
θ. Since the process Zt is independent of Uθ, we can write

E

[(
Uθe

Zθ − 1
)+ |Uθ

]

= (Uθ − 1)+ + E

[∫ θ

0
ds

∫ ((
Uθe

Zs+y − 1
)+ −

(
Uθe

Zs − 1
)+
)

ν(dy)|Uθ

]

= (Uθ − 1)+ +

∫ θ

0
ds

∫
(
(Uθe

y − 1)+ − (Uθ − 1)+
)
ν(dy) + UθO(θ2),

where O(θ2) is detrministic. Indeed,
∣
∣
∣
∣
E

[∫ θ

0
ds

∫ ((
Uθe

yeZs − 1
)+ − (Uθe

y − 1)+
)

ν(dy)|Uθ

]∣
∣
∣
∣

≤ Uθ

∫

eyν(du)

∫ θ

0
E
∣
∣eZs − 1

∣
∣ ds = UθO(θ2).

Taking the expectation, we thus obtain,

E

[(
Uθe

Zθ − 1
)+
]

= E
[
(Uθ − 1)+

]
+ θ

∫

E
[
(Uθe

y − 1)+
]
ν(dy)− ν(R)θE

[
(Uθ − 1)+

]
+O(θ2).

Since α(θ) → ∞, we have like in [6]

E
[
(Uθ − 1)+

]
∼ σ

√
θE (B1 − α(θ))+ = o(

√
θ),

then

E

[(
Uθe

Zθ − 1
)+
]

= E
[
(Uθ − 1)+

]
+ θ

∫

E
[
(Uθe

y − 1)+
]
ν(dy) + o(θ

3
2 ).

We recall that Uθ = eσ
√
θB1−σα(θ)

√
θ, then

E
[
(Uθe

y − 1)+
]
−
(

ey−σα(θ)
√
θ − 1

)+

≤ ey−σα(θ)
√
θ
E

∣
∣
∣eσ

√
θB1 − 1

∣
∣
∣ = eyO(

√
θ).

Hence,

E

[(
Uθe

Zθ − 1
)+
]

= E
[
(Uθ − 1)+

]
+ θ

∫ (

ey−σα(θ)
√
θ − 1

)+
ν(dy) +O(θ

3
2 )

= E
[
(Uθ − 1)+

]
+ θ

∫

y>0

(

ey−σα(θ)
√
θ − 1

)

ν(dy)

−θ
∫

0<y<σα(θ)
√
θ

(

ey−σα(θ)
√
θ − 1

)

ν(dy) +O(θ
3
2 ).

21



Since (1− e−x) ≤ x, we then have

∣
∣
∣
∣
∣

∫

(0,σα(θ)
√
θ)
(ey−σα(θ)

√
θ − 1)ν(dy)

∣
∣
∣
∣
∣

≤

−→θ→00
︷ ︸︸ ︷

ν{0 < y < σα(θ)
√
θ}σα(θ)

√
θ

︸ ︷︷ ︸

=o(α(θ)θ
1
2 )

,

and noticing that θ
3
2 = o(α(θ)θ

3
2 ), we obtain

E
(
Uθe

Zθ− 1
)+
= E (Uθ− 1)++ θ

∫

(ey − 1)+ν(dy)− α(θ)θ
3
2σ

∫

y>0
eyν(dy) + o(α(θ)θ

3
2 ).

The left hand side of equation (19) becomes

e−rθ
E

[(

eX̃θ − e
ln( K

be(t)
)
)+
]

= e−rθ+θµ+σα(θ)
√
θ
E

[(
Uθe

Zθ − 1
)+
]

= e−rθ+θµ+σα(θ)
√
θ
E
[
(Uθ − 1)+

]

+
(

1 + σα(θ)
√
θ + o(α(θ)

√
θ)
)(

θ

∫

(ey − 1)+ ν(dy) −α(θ)θ 3
2σ

∫

y>0
eyν(dy) + o(α(θ)θ

3
2 )

)

= e−rθ+θµ+σα(θ)
√
θ
E
[
(Uθ − 1)+

]
+ θ

∫

(ey − 1)+ν(dy)− ν(R+)σα(θ)θ
3
2 + o(α(θ)θ

3
2 ).

(20)

Besides, the right hand side of (19)

K

be(t)
(1− e−rθ)− (1− e−δθ) = eσ

√
θα(θ)+µθrθ − δθ +O(θ2)

= (r − δ)θ + rσθ
3
2α(θ) + o(θ

3
2α(θ))

=

(∫

(ey − 1)+ν(dy)

)

θ + rσα(θ)θ
3
2 + o(θ

3
2α(θ)).(21)

Thanks to (20) and (21), equation (19) becomes,

e−rθ+θµ+σα(θ)
√
θ
E
[
(Uθ − 1)+

]
= σ

(
r + ν(R+)

)
α(θ)θ

3
2 + o(θ

3
2α(θ)).

Hence,

E
[
(Uθ − 1)+

]
∼ σ

(
r + ν(R+)

)
α(θ)θ

3
2 .

As explained above, thanks to proposition 2.1 in [14], we have

E
[
(Uθ − 1)+

]
∼ σ

√
θE(B1 − α(θ))+ ∼ σ

√
θ

√
2πα2(θ)e

α2(θ)
2

.

Thus, we have

(22)
1

√
2πα2(θ)e

α2(θ)
2

∼
(
r + ν(R+)

)
θα(θ),
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hence

(23) α(θ) ∼
√

2 ln(
1

θ
).

ii) Since K−be(t)

Kσ
√
θ

∼ α(θ), we obtain

K − be(t)

σK
∼
√

2θ ln(
1

θ
).

�

To compare the behaviors of b(t) and be(t), we have to control the difference between them.

Proposition 4.2. According to the model hypothesis, if d̄ = 0, then there exists C > 0
such that

0 ≤ be(t)− b(t)√
T − t

≤ C.

Before proving Proposition 4.2, we need to prove the non decreasing of be(t) near matu-
rity which is the purpose of this following lemma

Lemma 4.1. The critical European put price, be(t), is differentiable on (0, T ) and for t
close to T , we have

b′e(t) ≥ 0.

Proof of Lemma 4.1:

We recall that F is the function defined by F (t, x) = Pe(t, x) − (K − x), F is C1 on
(0, T )× (0,K) and satisfies ∂F

∂x (t, x) =
∂Pe
∂x (t, x)+1 > 0. Due to its definition, be(t) satisfies

the following equation, Pe(t, be(t))− (K− be(t)) = 0. Then, thanks to the implicit function
theorem, be(t) is differentiable on (0, T ) and

b′e(t) = −
∂F
∂t (t, be(t))
∂F
∂x (t, be(t))

= −
∂Pe
∂t (t, be(t))

∂Pe
∂x (t, be(t)) + 1

,

which means that

−b′e(t)
∂Pe

∂t
(t, be(t)) ≤ 0.
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We will study the sign of ∂Pe
∂t (t, be(t)) instead of that of b′e(t).

The European put price satisfies the following equation

∂Pe

∂t
(t, be(t))

= rPe(t, be(t))−
σ2be(t)

2

2

∂2Pe

∂x2
(t, be(t))− (r − δ)be(t)

∂Pe

∂x
(t, be(t))

−
∫ [

Pe(t, be(t)e
y)− Pe(t, be(t))− be(t)(e

y − 1)
∂Pe

∂x
(t, be(t))

]

ν(dy)

= r(K − be(t))−
σ2be(t)

2

2

∂2Pe

∂x2
(t, be(t))−

(

r−δ−
∫

(ey − 1)+ν(dy)

)

︸ ︷︷ ︸

d̄=0

be(t)
∂Pe

∂x
(t, be(t))

−
∫

y>0
Pe(t, be(t)e

y)ν(dy) + ν(R+)Pe(t, be(t))

−
∫

y<0

[

Pe(t, be(t)e
y)− Pe(t, be(t))− be(t)(e

y − 1)
∂Pe

∂x
(t, be(t))

]

ν(dy)

Since Pe(t, .) is a non negative convex function, we have
∫

y>0 [Pe(t, be(t)e
y)] ν(dy) ≥ 0 and

∫

y<0

[

Pe(t, be(t)e
y)− Pe(t, be(t))− be(t)(e

y − 1)
∂Pe

∂x
(t, be(t))

]

ν(dy) ≥ 0,

so that

∂Pe

∂t
(t, be(t)) ≤

(
r + ν(R+)

)
(K − be(t))−

σ2be(t)
2

2

∂2Pe

∂x2
(t, be(t)).

Thanks to lemma 4.1, we have an equivalent for (K − be(t)). Now, let’s have a look at the

estimate of ∂2Pe

∂x2 (t, be(t)) near T . We have

∂Pe

∂x
(t, x) = −e−r(T−t)

E

[

eX̃T−t1{K−xeX̃T−t>0}

]

= −e−r(T−t)

∫ ln(K
x
)

−∞
eupX̃T−t

(u)du,

where pX denotes the density of X and X̃t = µ(t) + σBt + Zt. Then, we have

∂2Pe

∂x2
(t, x) = e−r(T−t)K

x2
pX̃T−t

(

ln(
K

x
)

)

≥ e−r(T−t)K

x2
pµ(T−t)+σBT−t

(

ln(
K

x
)

)

P(T1 > θ)

= e−rθ K

x2σ
√
2πθ

e
−1
2

(

ln(K/x)−µθ

σ
√
θ

)2

P(T1 > θ).
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Then,

∂Pe

∂t
(t, be(t)) ≤

(
r + ν(R+)

)
(K − be(t))− e−rθ σK

2
√
2πθ

e−
α(θ)2

2 P(T1 > θ).

We can easily check that K − be(t) ∼ σK
√
θα(θ) = o(α3(θ)

√
θ), and we recall the equiva-

lency (22)
1

√
2πα2(θ)e

α2(θ)
2

∼
(
r + ν(R+)

)
θα(θ),

which yields

e−rθ σK

2
√
2πθ

e−
α(θ)2

2 P(T1 > θ) ∼ σK
e−

α2(θ)
2

2
√
2πθ

∼ σK

2

(
r + ν(R+)

)
α3(θ)

√
θ.

Then, we have, for θ small enough

∂Pe

∂t
(t, be(t)) ≤ −σK

2

(
r + ν(R+)

)
α3(θ)

√
θ + o(α3(θ)

√
θ) < 0,

which proves that b′e(t) is a non decreasing function for t close to T .

�

We are now in a position to prove Proposition 4.2.
Proof of Proposition 4.2:

An expansion of P (t, x) around (t, b(t)) gives

P (t, x)− P (t, b(t))− (x− b(t))
∂P

∂x
(t, b(t)) =

∫ x

b(t)
(u− b(t))

∂2P

∂x2
(t, du),

and thanks to the smooth-fit which is satisfied at b(t), we obtain

P (t, x)− (K − x) ≥ (x− b(t))2

2
inf

b(t)≤u≤x

∂2P

∂x2
(t, u).

First, we are going to give, as in Lemma 2.2, a lower bound for inf
b(t)≤u≤be(t)

u2σ2

2
∂2P
∂x2 (t, u).

The variational inequality gives, for u ∈ (b(t),K),

u2σ2

2

∂2P

∂x2
(t, u)

≥ rP (t, u)− (r − δ)u
∂P

∂x
(t, u)−

∫(

P (t, uey)− P (t, u) − u(ey − 1)
∂P

∂x
(t, u)

)

ν(dy)

≥ r(K − u)−
(

r − δ −
∫

y>0
(ey − 1)ν(dy)

)

u
∂P

∂x
(t, u)−

∫

y>0
P (t, uey)− P (t, u)ν(dy)

−
∫

y<0

(

P (t, uey)− (K − u)− u(ey − 1)
∂P

∂x
(t, u)

)

ν(dy).
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Since P (t, .) is non increasing and d̄ = 0, we obtain

u2σ2

2

∂2P

∂x2
(t, u) ≥ r(K − u)−

∫

y<0

(

P (t, uey)− (K − u)− u(ey − 1)
∂P

∂x
(t, u)

)

ν(dy)

= r(K−u)−
∫

y<0
P (t, uey)−(K − uey)ν(dy)− u

(
∂P

∂x
(t, u) + 1

)(∫

y<0
(1− ey)ν(dy)

)

.

Thanks to the convexity of P , ∂P
∂x (t, u) is non decreasing and ∂P

∂x (t, u) ≥ −1 . We then
have, for all t < T ,

inf
b(t)≤u≤be(t)

u2σ2

2

∂2P

∂x2
(t, u) ≥ r(K−be(t))−

∫

y<0
P (t, be(t)e

y)−(K − be(t)e
y)ν(dy)

−be(t)
(
∂P

∂x
(t, be(t)) + 1

)(∫

y<0
(1− ey)ν(dy)

)

≥ r(K−be(t))−
∫

y<0
Pe(t, be(t)e

y)−(K − be(t)e
y)ν(dy) + o(

√
θ).

We obtained the last inquality, using the estimate of e(θ, x) = O(θ) and ∂P
∂x (t, x)+1 = o(

√
θ)

(see Lemma 2.1). Since y < 0, we also have Pe(t, be(t)e
y)−(K − be(t)e

y) ≤ 0, thus

inf
b(t)≤u≤be(t)

u2σ2

2

∂2P

∂x2
(t, u) ≥ r(K−be(t)) + o(

√
θ).

Besides, for θ small enough, we have
√
θ ≤ K − be(t), then we obtain

P (t, be(t))− (K − be(t)) ≥ [(be(t)− b(t))+]2

b2e(t)σ
2

r(K − be(t))(1 + o(1)).

Furthermore,

P (t, be(t)) − (K − be(t)) = e(θ, be(t))

= E

{∫ θ

0
e−rs

(

rK−δSbe(t)
s −

∫

y>0
P (t+ s, Sbe(t)

s ey)−
(

K−Sbe(t)
s ey

)

ν(dy)

)

1{Sbe(t)
s <b(t+s)}ds

}

≤ E

{∫ θ

0
e−rs

(

rK − δSbe(t)
s −

∫

y>0

(

Sbe(t)
s ey −K

)+
ν(dy)

)

1{Sbe(t)
s <b(t+s)}ds

}

Since δ = r −
∫

y>0(e
y − 1)ν(dy), we have

0 ≤
(

rK − δx−
∫

y>0
(xey −K)+ ν(dy)

)

1{x<b(t+s)}

≤
(

r(K − x)−
∫

y>0
(xey −K)+ − (xey − x)+ ν(dy)

)

1{x<K}

≤
(
r + ν(R+)

)
(K − x)+ ,
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thus,

e(θ, be(t)) ≤
(
r + ν(R+)

)
E

{∫ θ

0
e−rs

(

K − Sbe(t)
s

)+
ds

}

=
(
r + ν(R+)

)
∫ θ

0
Pe(T − s, be(t))ds

=
(
r + ν(R+)

)
∫ θ

0
Pe(t+ u, be(t))du.

And as we saw in lemma 4.1, near T , be(t) is non-decreasing, then be(t) ≤ be(t+ u). Due
to the non-decreasing of Pe(t, x)− (K − x) on x, we thus have

Pe(t+ u, be(t)) ≤ K − be(t),

In conclusion, we have

e(θ, be(t)) ≤
(
r + ν(R+)

)
θ(K − be(t))

and

e(θ, be(t)) ≥
[be(t)− b(t)]2

b2(t)σ2
δ̄(K − be(t)).

Which gives the wanted result: There exists a constant C such that

be(t)− b(t)√
θ

≤ C.

�

5. Appendix 1: Proofs of lemmas

Proof of Lemma 2.1:

According to the early exercise premium formula, we have,

P (t, x) = Pe(t, x) + e(T − t, x)

and

e(θ, x) = E

{∫ θ

0
e−rsΦ(t+ s, xS1

s )1{xS1
s<b(t+s)}ds

}

,

with

Φ(t, x) = rK − δx−
∫

y>0
P (t, xey)− (K − xey) ν(dy).

Notice that Φ is a continuous function and ‖Φ′
x‖∞ ≤ δ +

∫

y>0 e
yν(dy).

1) It is obvious that 0 ≤ e(θ, x) ≤ θrK = O(θ), since 0 ≤ Φ(t, x)1{x<b(t+s)} ≤ rK.
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2) For all random variable X, we denote by pX its density, we thus have for all fixed
s ∈ [0, θ],

p−X̃s
(x) = p−µs−σBs ∗ p−Zs(x) =

1√
s

1

σ
√
2π

∫

e−
(−x+µs−u)2

2σ2s p−Zs(u)du

≤ Cte 1√
s
.(24)

We can state

∂e

∂x
(θ, x) = E

{∫ θ

0
e−rsS1

sΦ
′
x(t+ s, xS1

s )1{xS1
s<b(t+s)}ds

}

−
∫ θ

0

Φ(t+ s, b(t+ s))

x
p−X̃s

(

ln(
x

b(t+ s)
)

)

ds.(25)

Then, we have

∣
∣
∣
∣

∂e

∂x
(θ, x)

∣
∣
∣
∣

≤
∣
∣
∣
∣
E

{∫ θ

0
e−rsS1

sΦ
′
x(t+ s, xS1

s )1{xS1
s<b(t+s)}ds

}∣
∣
∣
∣

+

∣
∣
∣
∣

∫ θ

0

Φ(t+ s, b(t+ s))

x
p−X̃s

(

ln(
x

b(t+ s)
)

)

ds

∣
∣
∣
∣

≤ ‖Φ′
x‖∞

b(T )

x
θ +

∣
∣
∣
∣

∫ θ

0

Φ(t+ s, b(t+ s))

x
p−X̃s

(

ln(
x

b(t+ s)
)

)

ds

∣
∣
∣
∣
.

According to inequality (24) , we also have

∣
∣
∣
∣

∫ θ

0

Φ(t+ s, b(t+ s))

x
p−X̃s

(

ln(
x

b(t+ s)
)

)

ds

∣
∣
∣
∣

≤ Cte

∣
∣
∣
∣

∫ θ

0

Φ(t+ s, b(t+ s))

x
√
s

ds

∣
∣
∣
∣

=
Cte

x
θ

∣
∣
∣
∣

∫ 1

0

Φ(t+ θu, b(t+ θu))√
θu

du

∣
∣
∣
∣

≤ Cte

x

√
θ sup
t≤u≤t+θ

|Φ(u, b(u))|
∫ 1

0

1√
u
du

≤ Cte

x

√
θ sup
T−θ≤u≤T

|Φ(u, b(u))|
∫ 1

0

1√
u
du.

However, thanks to the continuity of b(u) and of Φ(t, x), we have lim
θ→0

sup
T−θ≤u≤T

|Φ(u, b(u))| =

|Φ(T, b(T ))| = 0. Therefore, we conclude that
∣
∣ ∂e
∂x(θ, x)

∣
∣ = 1

xo(
√
θ).

3) Using the previous point, we have
∣
∣ ∂e
∂x(θ, x)

∣
∣ = o(

√
θ), then for all x ≤ be(t) ∧ b(T ) and
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θ small enough , we have

0 ≤ 1 +
∂P

∂x
(t, x) ≤

(

1 +
∂Pe

∂x
(t, x)

)

+ o(
√
θ)

= 1− E

[

(eXθ )1{Xθ<ln K
x
}

]

+ o(
√
θ)

≤ 1− E

[

(eXθ )1{Xθ<ln K
be(t)∧b(T )

}

]

+ o(
√
θ).

If b(T ) = K, then for x ≤ be(t),

1− E

[

(eXθ )1{Xθ<ln K
be(t)∧b(T )

}

]

= P(Bθ ≥
√
θα(θ))− E

(

σBθ1{Bθ<
√
θα(θ)}

)

+ o(
√
θ).

Since α(θ) −→
θ→0

∞, we have

∣
∣
∣E

(

σBθ1{Bθ<
√
θα(θ)}

)∣
∣
∣ = σ

√
θE
(
B11{B1<α(θ)}

)
= o(

√
θ),

and using equivalencies (22) and (23), we also have

P (B1 ≥ α(θ)) ≤ e−
α2(θ)

2

α(θ)
≤ Cθα2(θ) = O(θ| ln θ|) = o(

√
θ).

If b(T ) < K, then for θ small enough b(T ) < be(t) and

1− E

[

(eXθ )1{Xθ<ln
(

K
b(T )

)

}

]

= P

(

B1 ≥
1√
θ
ln(

K

b(T )
)

)

+ σ
√
θE




B11{

B1≥
ln K

b(T )√
θ

}




+ o(

√
θ)

≤
√
θ

(

1

ln( K
b(T ))

+ σ

)

e
− 1

2θ
ln2( K

b(T )
)

√
2π

+ o(
√
θ) = o(

√
θ).

�

Proof of Lemma 2.2:

Let be x ∈ (b(t), b(T )), then the variational inequality gives, for almost u ∈ (b(t), x),

u2σ2

2

∂2P

∂x2
(t, u) ≥ rP (t, u)− (r − δ)u

∂P

∂x
(t, u)

−
∫ (

P (t, uey)− P (t, u)− u(ey − 1)
∂P

∂x
(t, u)

)

ν(dy).
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Notice that P (t, u) ≥ K − u, thus

u2σ2

2

∂2P

∂x2
(t, u) ≥ r(K − u) + (r − δ) u

−
∫

(P (t, uey)− (K − u) + u(ey − 1)) ν(dy)

−u
(
∂P

∂x
(t, u) + 1

)(

(r − δ)−
∫

(ey − 1)ν(dy)

)

(26)

(27)

And thanks to Lemma 2.1, we also have, for all b(0) ≤ u ≤ x ≤ be(t) ∧ b(T ),

∂P

∂x
(t, u) + 1 = o(

√
θ),

independently of u, therefore,

u2σ2

2

∂2P

∂x2
(t, u) ≥ rK − δu−

∫

(P (t, uey)− (K − uey)) ν(dy) + o(
√
θ).(28)

As the right hand side of equality (28) is non increasing in u, we obtain

inf
b(t)≤u≤x

u2σ2

2

∂2P

∂x2
(t, u) ≥ rK − δx−

∫

(P (t, xey)− (K − xey)) ν(dy) + o(
√
θ).

(29)

Notice that

∫

P (t, xey)ν(dy) = Pe(t, xe
y) + e(θ, xey)

=

∫

E(K − xeyeXθ )+ν(dy) + o(
√
θ)

=

∫

E (K − xey(1 + σBθ))
+ ν(dy) + o(

√
θ)

=

∫

E ((K − xey)− xeyσBθ)
+ ν(dy) + o(

√
θ).
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We now consider the integral
∫
P (t, xey)ν(dy) over the sets {y < ln( K

b(T ))}, {ln( K
b(T )) < y}

and {y = ln( K
b(T ))}. Then, on the set {y < ln( K

b(T ) )}, we have
∫

{y<ln( K
b(T )

}
P (t, xey)ν(dy) =

∫

{y<ln( K
b(T )

}
E (K − xey)− xeyσBθ)

+ ν(dy) + o(
√
θ)

=

∫

{y<ln( K
b(T )

}
(K − xey)P(xeyσBθ < (K − xey))ν(dy)

−
∫

{y<ln( K
b(T )

}
xeyσE

(
Bθ1{xeyσBθ<(K−xey)}

)
ν(dy) + o(

√
θ)

≤
∫

{y<ln( K
b(T )

}
(K − xey)ν(dy) − xσ

√
θ

∫

{y<ln( K
b(T )

}
eyE

(

B11{B1<
1

σ
√
θ
(K
x
e−y−1)}

)

ν(dy) + o(
√
θ).

For all y < ln( K
b(T )), we have K

x e
−y − 1 > K

b(T )e
−y − 1 > 0, therefore

0 ≤ −E

(

B11{B1<
1

σ
√
θ
(K
x
e−y−1)}

)

= E

(

B11{B1≥ 1

σ
√
θ
(K
x
e−y−1)}

)

≤ E

(

B11{B1≥ 1
σ
√
θ
( K
b(T )

e−y−1)}

)

−→θ→0 0.

By the dominated convergence we obtain,
∫

{y<ln( K
b(T )

}
P (t, xey)ν(dy) ≤

∫

{y<ln( K
b(T )

}
(K − xey)ν(dy) + o(

√
θ).(30)

On the set {y > ln( K
b(T ) )}, we have K < b(T )ey, therefore

∫

{y>ln( K
b(T )

}
P (t, xey)ν(dy) =

∫

{y>ln( K
b(T )

}
E ((K − xey)− xeyσBθ)

+ ν(dy) + o(
√
θ)

≤
∫

{y>ln( K
b(T )

}
E

[(

b(T )ey − xey − xeyσ
√
θB1

)

1{xeyσ
√
θB1<(K−xey)}

]

ν(dy) + o(
√
θ)

= (b(T )− x)

∫

{y>ln( K
b(T )

}
eyP

(

B1 <
1

σ
√
θ

(
K

x
e−y − 1

))

ν(dy)

−
√
θx

∫

{y>ln( K
b(T )

}
eyσE

(

B11{B1<
1

σ
√
θ
(K

x
e−y−1)}

)

ν(dy) + o(
√
θ)

Notice that for all y > ln( K
b(T )), we have 1

σ
√
θ

(
K
x e

−y − 1
)
≤ 1

σ
√
θ
( K
b(t)e

−y − 1) → −∞, thus

P(B1 <
1

σ
√
θ
(
K

x
e−y − 1)) ≤ P(B1 <

1

σ
√
θ
(
K

b(t)
e−y − 1))

−→
θ→0

0,
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and

E

(

|B1|1{B1<
1

σ
√

θ
(K
x
e−y−1)}

)

≤ E

(

|B1|1{B1<
1

σ
√
θ
( K
b(t)

e−y−1)}

)

−→
θ→0

0.

Therefore, by dominated convergence, we obtain
∫

{y>ln( K
b(T )

}
eyP(B1 <

1

σ
√
θ
(
K

b(t)
e−y − 1))ν(dy) −→

θ→0
0

and

−
√
θx

∫

{y>ln( K
b(T )

}
eyσE

(

B11{xeyσ
√
θB1<(K−xey)}

)

ν(dy) = o(
√
θ)

Consequently, if we denote by ǫ(θ) =
∫

{y>ln( K
b(T )

} e
y
P(B1 < 1

σ
√
θ
( K
b(t)e

−y − 1))ν(dy), we

obtain
∫

{y>ln( K
b(T )

}
P (t, xey)ν(dy) ≤ (b(T )− x)ǫ(θ) + o(

√
θ),(31)

with ǫ(θ) −→
θ→0

0.

Finally, on the set {y = ln( K
b(T ))}, we have

∫

{ln( K
b(T )

)}
P (t, xey)ν(dy) =

∫

{ln( K
b(T )

)}
E ((K − xey)− xeyσBθ)

+ ν(dy) + o(
√
θ)

=

∫

{ln( K
b(T )

)}
(K − xey)ν(dy) +

∫

{ln( K
b(T )

)}
E (xeyσBθ − (K − xey))+ ν(dy) + o(

√
θ)

=

∫

{ln( K
b(T )

)}
(K − xey)ν(dy) +

∫

{ln( K
b(T )

)}
xeyE

(

σBθ − (
K

x
e−y − 1)

)+

ν(dy)

=

∫

{ln( K
b(T )

)}
(K − xey)ν(dy) +

xK

b(T )
ν

{

ln

(
K

b(T )

)}

E

(

σBθ −
(
b(T )

x
− 1

))+

≤
∫

{ln( K
b(T )

)}
(K − xey)ν(dy) +Kν

{

ln

(
K

b(T )

)}

E

(

σBθ − ln

(
b(T )

x

))+

We have thus proved that

∫

P (t, xey)ν(dy) ≤
∫

{y≤ln( K
b(T )

}
(K − xey)ν(dy) +Kν

{

ln

(
K

b(T )

)}

E

(

σBθ − ln

(
b(T )

x

))+

+(b(T )− x) ǫ(θ) + o(
√
θ),
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Coming back to inequality (29), we obtain
∫

P (t, xey)− (K − xey)ν(dy)

≤ −
∫

{y>ln( K
b(T )

}
(K − xey)ν(dy) +Kν

{

ln

(
K

b(T )

)}

E

(

σBθ − ln

(
b(T )

x

))+

+(b(T )− x) ǫ(θ) + o(
√
θ).

Finally, since rK = δb(T ) +
∫
(b(t)ey −K)+ν(y), we have

inf
b(t)≤u≤x

u2σ2

2

∂2P

∂x2
(t, u)

≥ rK − δx−
∫

(P (t, xey)− (K − xey)) ν(dy) + o(
√
θ)

≥ (b(T )− x)

(

δ +

∫

{y>ln K
b(T )

}
eyν(dy) + ǫ(θ)

)

−Kν
{

ln
K

b(T )

}

E

(

σBθ − ln(
b(T )

x
)

)+

+ o(
√
θ).

We note α =
ν{ln

(

K
b(T )

)

}
δ̄

K
b(T ) and δ̄ = δ+

∫

{y>ln( K
b(T )

} e
yν(dy), we then have for all u and all

x such that b(t) ≤ u ≤ x < b(T )

inf
b(t)≤u≤x

u2σ2

2

∂2P

∂x2
(t, u)

≥ b(T )δ̄

(

(b(T )− x)

b(T )
− αE

(

σBθ − ln(
b(T )

x
)

)+
)

− (b(T )− x) ǫ(θ) + o(
√
θ).

�

Remark 2. The expression infb(t)<u<x
u2σ2

2
∂2P
∂x2 (t, u) is justified thanks to the smoothness

of P in the continuation region which can be proved thanks to PDE arguments (see for
instance [2]). Nevertheless, we will only need this lower bound of the second derivative in

the distribution sense (∂
2P

∂x2 (t, du)).

Appendix 2: A study of vλ,β

Lemma 3.1 : There exists yλ,β ∈
(
0, (1 + λβ(2 + eλ)

)
such that such that

∀y < −yλ,β, vλ,β(y) = 0.

yλ,β = − inf{x ∈ R | vλ,β(x) > 0}.

Proof of Lemma 3.1:

We have
vλ,β(y) = sup

τ∈T0,1
(I0(τ) + I1(τ)) ,
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with

I0(τ) = E

(

eλτ1{N̂τ=0}

∫ τ

0
fλβ(y +Bs)ds

)

,

and

I1(τ) = βE
(

eλτ1{N̂τ=1}

(

(y +Bτ )
+ − (y +BT̂1

)+
))

.

we will study I0(τ) and I1(τ). First of all, we note that the process (M0
t )t≥0 defined by

M0
t = eλt1{N̂t=0} is a non negative martingale with M0

0 = 1. Under the probability P
0

with density M0
t on Ft, it is straightforward to check that (B)t≥0 remains a F-Brownian

motion. We have if y ≤ 0,

I0(τ) = E
0

(∫ τ

0
fλβ(y +Bs)ds

)

= E
0

(

yτ +

∫ τ

0
Bsds + λβ

∫ τ

0
(y +Bs)

+ds

)

≤ yE0 (τ) + (1 + λβ)E0

(∫ τ

0
B+

s ds

)

≤ yE0 (τ) + (λβ + 1)E0

(∫ τ

0
E
0
(
B+

τ | Fs

)
ds

)

.

Notice that, for τ ∈ T0,1,

E
0

(∫ τ

0
E
0
(
B+

τ | Fs

)
ds

)

= E
0

(∫ 1

0
1{τ>s}E

0
(
B+

τ | Fs

)
ds

)

=

∫ 1

0
E
0
(
1{τ>s}E

0
(
B+

τ | Fs

))
ds

= E
0
(
τB+

τ

)

≤ E
0

(
τ2 +B2

τ

2

)

≤ E
0(τ),

where, we used 0 ≤ τ ≤ 1, for the last inequality. We then have

I0(τ) ≤ (y + λβ + 1)E0 (τ) .

For the study of I1(τ), let us introduce the martingale (M1
t )0≤t≤1 defined by

M1
t = E

(

eλ1{N̂1=1} | Ft

)

= E

(

eλ1{N̂1=1,N̂t=0} | Ft

)

+ E

(

eλ1{N̂1=1,N̂t=1} | Ft

)

= 1{N̂t=0}e
λ
P(N̂1 − N̂t = 1) + 1{N̂t=1}e

λ
P(N̂1 − N̂t = 0)

= 1{N̂t=0}λ(1− t)eλt + 1{N̂t=1}e
λt.
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Under the probability P
1 with density M1

t /λ on Ft, it is straightforward to check that
(Bt)0≤t≤1 remains a F-Brownian motion. We have for y < 0,

I1(τ) = λβE1
(

(y +Bτ )
+ − (y +BT̂1∧τ )

+
)

≤ λβE1
(
(y +Bτ )

+
)

≤ λβE1
(
Bτ1{Bτ>−y}

)

≤ λβE1
(
B2

τ/|y|
)
= λβE1 (τ) /|y|.

Using the two upper bound of I0(τ) and I1(τ), we obtain

vλ,β(y) ≤ sup
τ∈T0,1

(

(y + λβ + 1)E0(τ) +
λβ

|y|E
1(τ)

)

= sup
τ∈T0,1

E

(

(y + λβ + 1)τM0(τ) +
β

|y|τM
1(τ)

)

= sup
τ∈T0,1

E

(

(y + λβ + 1)τeλτ1{N̂τ=0} +
β

|y|τ
(

1{N̂τ=0}λ(1− τ)eλτ + 1{N̂τ=1}e
λτ
))

≤ sup
τ∈T0,1

E

(

f(τ, N̂τ )
)

,

with

f(t, x) = 1{x=0}te
λt

(

y + 1 + λβ(1 +
1

|y|)
)

+ 1{x=1}βte
λt/|y|.

Notice that

sup
τ∈T0,1

E

(

f(τ, N̂τ )
)

= sup
τ∈T0,1(N̂)

E

(

f(τ, N̂τ )
)

,

where T0,1(N̂) denotes the set of the stopping times of the natural completed filtration of

the process (N̂t)t≥0, with values in [0, 1].

Then, if τ ∈ T0,1(N̂), there exists , thanks to Lemma 5.1, t0 ∈ [0, 1], such that

τ ∧ T̂1 = t0 ∧ T̂1.

we then have

E

(

τeλτ1{N̂τ=0}

)

= E

(

τeλτ1{T̂1>τ}

)

= t0e
λt0P(T̂1 > τ)

= t0,
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and

E

(

τeλτ1{N̂τ=1}

)

≤ E

(

τeλτ1{T̂1≤τ}

)

= E

(

τeλτ1{T̂1≤t0}

)

≤ eλP(T̂1 ≤ t0)

= eλ(1− e−λt0) ≤ λeλt0.

we deduce that

sup
τ∈T0,1(N̂)

E

(

f(τ, N̂τ )
)

≤ sup
0≤t0≤1

(

t0

(

y + 1 + λ
β(2 + eλ)

|y|

))

.

The right hand side of this equation will be equal to 0 if

y + 1 + λ
β(2 + eλ)

|y| ≤ 0,

and particularly, if y ≤ −
(
1 + λβ(2 + eλ)

)
, then

−yλ,β ≥ −
(

1 + λβ(2 + eλ)
)

.

To prove −yλ,β < 0, we consider y = 0. Since for all stopping time τ ,

E

(

eλτ1{N̂τ=0}

∫ τ

0
λβ(y +Bs)

+ds+ βeλτ1{N̂τ=1}

(

(y +Bτ )
+ − (y +BT̂1

)+
))

≥ 0.

we have

υλ,β(0) ≥ sup
τ∈T0,1

E

∫ τ

0
Bsds = υ0(0),

and it is proved in [14] or [4], Proposition 2.2.4. υ0(0) > 0. �

Lemma 5.1. Let N = (Nt)t≥0 a homogenous Poisson process with intensity λ, and T1 its
first jump time. if τ is a stopping time of the natural completed filtration of N such that
τ ≤ T1 a.s., then, τ = T1 a.s., or there exists t0 ≥ 0, such that τ = t0 ∧ T1 a.s.

Proof We denote by F = (Ft)t≥0 the natural completed filtration of N . First of all, notice
that for all t ≥ 0 and A ∈ Ft,

P(A | Nt = 0) ∈ {0, 1}.
Indeed, the A having this property form a sub σ-algebra of Ft which contains the events
of the form {Ns = n}, with 0 ≤ s ≤ t and n ∈ N.
Now, let τ be a F-stopping time. We have for all t ≥ 0, P(τ > t | Nt = 0) ∈ {0, 1}. We set

I = {t ∈ [0,+∞[ | P(τ > t | Nt = 0) = 0}.
Notice that t ∈ I if and only if P(τ > t, T1 > t) = 0, or

t ∈ I ⇔ P (τ ∧ T1 ≤ t) = 1.
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If τ ≤ T1 a.s. and if P(τ < T1) > 0, there exists s > 0 (rational number) such that
P(τ ≤ s, s < T1) > 0, hence P(τ ≤ s | Ns = 0) > 0, and P(τ > s | Ns = 0) = 0. We deduce
that I is non empty and we can write

I = [t0,+∞[, avec t0 = inf{t ≥ 0 | P(τ > t | Nt = 0) = 0}.
We then have τ ∧ T1 ≤ t0 a.s., hence τ ≤ t0 ∧ T1. Moreover, for s < t0, we have P(τ >
s | Ns = 0) = 1 and P(τ ≤ s | Ns = 0) = 0, hence P(τ ≤ s, s < T1) = 0.Therefore,
P(τ < t0 ∧ T1) = 0 and consequently τ = t0 ∧ T1 a.p. �

Lemma 3.2 : For all x > yλ,β, we have

C(x) > 0.

.
Proof We have vλ,β(−yλ,β) = 0, considering the stopping time τ = 1, we obtain

E

[

eλ1{N̂1=0}

∫ 1

0
fλβ(Bs − yλ,β)ds+ βeλ1{N̂1=1}

(

(B1 − yλ,β)
+)− (BT̂1

− yλ,β)
+
)]

≤ 0.

However, we have, using the independence between N̂ and B,

E

[

eλ1{N̂1=0}

∫ 1

0
fλβ(Bs − yλ,β)ds

]

= eλP(N̂1 = 0)

(

−yλ,β + λβE

∫ 1

0
(Bs − yλ,β)

+ds

)

= −yλ,β + λβE

∫ 1

0
(Bs − yλ,β)

+ds.(32)

On the other hand, we have

E

[

βeλ1{N̂1=1}

(

(B1 − yλ,β)
+)− (BT̂1

− yλ,β)
+
)]

= βeλP(N̂1 = 1)
[

E(B1 − yλ,β)
+ − E

(

(BT̂1
− yλ,β)

+|N̂1 = 1
)]

= βλ
[

E(B1 − yλ,β)
+ − E

(

(BT̂1
− yλ,β)

+|T̂1 ≤ 1
)]

.

Noticing that λβ = λβ and that conditionally to {T̂1 ≤ 1}, T̂1 is uniformly distributed on
[0, 1], we obtain

E

[

βeλ1{N̂1=1}

(

(B1 − yλ,β)
+)− (BT̂1

− yλ,β)
+
)]

= λβ

[

E(B1 − yλ,β)
+ − E

(∫ 1

0
(Bs − yλ,β)

+ds

)]

.(33)

Combining (32) and (33), we have

−yλ,β + λβE(B1 − yλ,β)
+ = −C(yλ,β) ≤ 0

To conclude the proof, we use the strict increasing of C, hence for all x > yλ,β, we have

C(x) > C(yλ,β) ≥ 0.

�
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Paris-Est, 2009.
11. Huyên Pham, Optimal stopping, free boundary, and American option in a jump-diffusion model, Applied

Mathematics and Optimization 35 (1997), no. 2, 145–164.
12. Philip Protter, Stochastic integration and differential equations, Springer, 2004.
13. Pierre van Moerbeke, On optimal stopping and free boundary problems, Archive for Rational Mechanics

and Analysis 60 (1976), no. 2, 101–148.
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