Laurent Bétermin 
  
Etienne Sandier 
  
Renormalized Energy and Asymptotic Expansion of Optimal Logarithmic Energy on the Sphere

Keywords: AMS Classification: Primary 52A40, 82B05, Secondary 41A60, 82B21, 31C20 Coulomb gas, Abrikosov lattices, Triangular lattice, Renormalized energy, Crystallization, Logarithmic energy, Number theory, Logarithmic potential theory, Weak confinement, Gamma-convergence, Ginzburg-Landau, Vortices

. We show that the asymptotic expansion as n → +∞ of the minimal logarithmic energy of n points on the unit sphere in R 3 has a term of order n thus proving a long standing conjecture of Rakhmanov, Saff and Zhou [Math. Res. Letters, 1:647-662, 1994]. Finally we prove the equivalence between the conjecture of Brauchart, Hardin and Saff [Contemp. Math., 578:31-61,2012] about the value of this term and the conjecture of Sandier and Serfaty [Comm. Math. Phys., 313(3):635-743, 2012] about the minimality of the triangular lattice for a "renormalized energy" W among configurations of fixed asymptotic density.

Introduction

Let (x 1 , ..., x n ) ∈ (R 2 ) n be a configuration of n points interacting through a logarithmic potential and confined by an external field V . The Hamiltonian of this system, also known as a Coulomb gas, is defined as

w n (x 1 , ..., x n ) := - n i =j log |x i -x j | + n n i=1 V (x i )
where | • | is the Euclidean norm in R 2 . The minimization of w n is linked to the following classical problem of logarithmic potential theory: find a probability measure µ V on R 2 which minimizes

I V (µ) := R 2 ×R 2 V (x) 2 + V (y) 2 -log |x -y| dµ(x)dµ(y) (1.1)
amongst all probability measures µ on R 2 . This type of problem dates back to Gauss. More recent references are the thesis of Frostman [START_REF] Frostman | Potentiel d'équilibre et capacité des ensembles[END_REF] and the monography of E.Saff and V.Totik [START_REF] Saff | of Grundlehren der Mathematischen Wissenschaften[END_REF]. The usual assumptions on V : R 2 → R ∪ {+∞} are that it is lower semicontinuous, that it is finite on a set of nonzero capacity, and that it satisfies the growth assumption lim |x|→+∞ {V (x) -2 log |x|} = +∞.

(1.2)

These assumptions ensure that a unique minimizer µ V of I V exists and that it has compact support. Recently, Hardy and Kuijlaars [START_REF] Hardy | Weakly Admissible Vector Equilibrium Problems[END_REF] (see also [START_REF] Hardy | A Note on Large Deviations for 2D Coulomb Gas with Weakly Confining Potential[END_REF]) proved that if one replaces (1.2) by the socalled weak growth assumption

lim inf |x|→+∞ V (x) -log(1 + |x| 2 ) > -∞, (1.3) 
then I V still admits a unique minimizer, which may no longer have compact support. Moreover Bloom, Levenberg and Wielonsky [START_REF] Bloom | Logarithmic Potential Theory and Large Deviation[END_REF] proved that the classical Frostman type inequalities still hold in this case. These results make use of the stereographic projection, a method already used by Rakhmanov, Saff and Zhou in [START_REF] Rakhmanov | Electrons on the Sphere[END_REF] to prove separation properties of optimal configurations on spheres.

Coming back to the minimum of the discrete energy w n , its relation to the minimum of I V is that as n → +∞, the minimum of w n is equivalent to n 2 min I V . The next term in the asymptotic expansion of w n was derived by Sandier and Serfaty [START_REF] Sandier | 2d Coulomb gases and the renormalized energy[END_REF] in the classical case (1.2), it reads

min w n = n 2 min I V - n 2 log n + α V n + o(n),
where α V is related to the minimum of a Coulombian renormalized energy studied in [START_REF] Sandier | From the Ginzburg-Landau Model to Vortex Lattice Problems[END_REF] which quantifies the discrete energy of infinitely many positive charges in the plane screened by a uniform negative background. Note that rather strict assumptions in addition to (1.2) need to be made on V for this expansion to hold, but they are satisfied in particular if V is smooth and strictly convex.

Here, we show that such an asymptotic formula still holds when the classical growth assumption (1.2) is replaced with the weak growth assumption (1.3). However it is no longer obvious that the minimum of w n is achieved in this case, as the weak growth assumption could allow one point to go to infinity. Theorem 1.1. Let V be an admissible potential 1 . Then the following asymptotic expansion holds.

inf (R 2 ) n w n = I V (µ V )n 2 - n 2 log n + 1 π min A 1 W - 1 2 R 2 m V (x) log m V (x)dx n + o(n), (1.4) 
where µ V = m V (x) dx is the unique minimizer of I V (see Section 2 for precise definitions of W and A 1 .)

This result is proved using the methods in [START_REF] Sandier | From the Ginzburg-Landau Model to Vortex Lattice Problems[END_REF][START_REF] Sandier | 2d Coulomb gases and the renormalized energy[END_REF] suitably adapted to equilibrium measures with possibly non-compact support together using the stereographic projection as in [START_REF] Rakhmanov | Electrons on the Sphere[END_REF], or more recently in [START_REF] Dragnev | On the Separation of Logarithmic Points on the Sphere[END_REF][START_REF] Hardy | Weakly Admissible Vector Equilibrium Problems[END_REF][START_REF] Hardy | A Note on Large Deviations for 2D Coulomb Gas with Weakly Confining Potential[END_REF][START_REF] Bloom | Logarithmic Potential Theory and Large Deviation[END_REF], which allows also to connect the discrete energy problem for log gases in the plane with the discrete logarithmic energy problem for finitely many points on the unit sphere S 2 in the Euclidean space R 3 .

The logarithmic energy of a configuration (y 1 , ..., y n ) ∈ (S 2 ) n is given by E log (y 1 , ..., y n ) := -n i =j log y iy j , where • is the Euclidean norm in R 3 . Finding a minimizer of such an energy functional is a problem with many links and ramifications as discussed in the fundamental paper of Saff and Kuijlaars [START_REF] Kuijlaars | Distributing Many Points on a Sphere[END_REF] (see also [START_REF] Brauchart | Distributing Many Points on Spheres: Minimal Energy and Designs[END_REF]). For instance Smale's 7 th problem [START_REF] Smale | Mathematical Problems for the Next Century[END_REF] is to find, for any n ≥ 2, a universal constant c ∈ R and a nearly optimal configuration (y 1 , ..., y n ) ∈ (S 2 ) n such that, letting E log (n) denote the minimum of E log on (S 2 ) n , E log (y 1 , ..., y n ) -E log (n) ≤ c log n.

Identifying the term of order n in the expansion of E log (n) can be seen as a modest step towards a better understanding of this problem.

It was known (lower bound by Wagner [START_REF] Wagner | On Means of Distances on the Surface of a Sphere. II. Upper Bounds[END_REF] and upper bound by Kuijlaars and Saff [START_REF] Kuijlaars | Asymptotics For Minimal Discrete Energy on the Sphere[END_REF]), that

1 2 -log 2 n 2 - 1 2 n log n + c 1 n ≤ E log (n) ≤ 1 2 -log 2 n 2 - 1 2 n log n + c 2 n
for some fixed constant c 1 and c 2 . Thus one can naturally ask for the existence of the limit

lim n→+∞ 1 n E log (n) - 1 2 -log 2 n 2 + n 2 log n .
Conjecture 1.2. (Rakhmanov, Saff and Zhou, [START_REF] Rakhmanov | Minimal Discrete Energy on the Sphere[END_REF]) There exists a constant C not depending on n such that 

E log (n) = 1 2 -log 2 n 2 - n 2 log n + Cn + o(n) as n → +∞.
C BHS := 2 log 2 + 1 2 log 2 3 + 3 log √ π Γ(1/3) . (1.5) 
As we will see, our results imply that the last conjecture is equivalent to one concerning the global optimizer of the renormalized energy W . Conjecture 1.4. (Sandier and Serfaty, [START_REF] Sandier | From the Ginzburg-Landau Model to Vortex Lattice Problems[END_REF], or see the review by Serfaty [START_REF] Serfaty | Ginzburg-Landau Vortices, Coulomb Gases, and Renormalized Energies[END_REF]) The triangular lattice is a global minimizer of W among discrete subsets of R 2 with asymptotic density one.

The expansion (1.4) in the particular case V (x) = log(1 + |x| 2 ) transported to S 2 using an inverse stereographic projection and appropriate rescaling gives an expansion for E log (n) and thus proves Conjecture 1.2. The constant C in Conjecture 1.2 can moreover be expressed in terms of the minimum of the renormalized energy W . The value of W for the triangular lattice obviously provides an upper bound for this minimum, and by using the Chowla-Selberg formula to compute the expression given in [START_REF] Sandier | From the Ginzburg-Landau Model to Vortex Lattice Problems[END_REF] for this quantity, we show that this upper bound is precisely C BHS . This bound is of course sharp if and only if Conjecture 1.4 is true. Thus we deduce from (1.4) the following.

Theorem 1.5. There exists C = 0 independent of n such that, as n → +∞,

E log (n) = 1 2 -log 2 n 2 - n 2 log n + Cn + o(n), C = 1 π min A 1 W + log π 2 + log 2.
Moreover C ≤ C BHS where C BHS is given in (1.5), and equality holds iff min

A 1
W is achieved for the triangular lattice of density one.

The plan of the paper is as follows. In Section 2 we recall the definition of W and some of its properties from [START_REF] Sandier | From the Ginzburg-Landau Model to Vortex Lattice Problems[END_REF]. In Section 3 we recall results about existence, uniqueness and variational Frostman inequalities for µ V . Moreover, we give the precise definition of an admissible potential V . In Sections 4 and 5 we adapt the method of [START_REF] Sandier | From the Ginzburg-Landau Model to Vortex Lattice Problems[END_REF] to the case of equilibrium measures with noncompact support. The expansion (1.4) is proved in Section 6. Finally in Section 7 we prove Conjecture 1.2 about the existence of C, the upper bound C ≤ C BHS and the equivalence between Conjectures 1.3 and 1.4.

Renormalized Energy

Here we recall the definition of the renormalized energy W (see [START_REF] Sandier | 2d Coulomb gases and the renormalized energy[END_REF] for more details). For any R > 0, B R denotes the ball centered at the origin with radius R. Definition 2.1. Let m be a nonnegative number and E be a vector-field in R2 . We say E belongs to the admissible class

A m if div E = 2π(ν -m) and curl E = 0 (2.1)
where ν has the form ν = p∈Λ δ p , for some discrete set Λ ⊂ R 2 , (2.2)

and if ν(B R ) |B R | is bounded by a constant independent of R > 1.
Remark 2.2. The real m is the average density of the points of Λ when E ∈ A m .

Definition 2.3. Let m be a nonnegative number. For any continuous function χ and any vectorfield E in R 2 satisfying (2.1) where ν has the form (2.2) we let

W (E, χ) = lim η→0   1 2 R 2 \∪ p∈Λ B(p,η) χ(x)|E(x)| 2 dx + π log η p∈Λ χ(p)   .
We use the notation χ B R for positive cutoff functions satisfying, for some constant

C independent of R |∇χ B R | ≤ C, Supp(χ B R ) ⊂ B R , χ B R (x) = 1 if d(x, B c R ) ≥ 1. (2.3) 
where d(x, A) is the Euclidean distance between x and set A.

Definition 2.4. The renormalized energy W is defined, for E ∈ A m and {χ B R } R satisfying (2.3), by

W (E) = lim sup R→+∞ W (E, χ B R ) |B R | .
Remark 2.5. It is shown in [START_REF] Sandier | From the Ginzburg-Landau Model to Vortex Lattice Problems[END_REF]Theorem 1] that the value of W does not depend on the choice of cutoff functions satisfying (2.3), and that W is bounded below and admits a minimizer over A 1 . Moreover (see [START_REF] Sandier | From the Ginzburg-Landau Model to Vortex Lattice Problems[END_REF]Eq. (1.9),(1.12)]), if E ∈ A m , m > 0, then

E ′ = 1 √ m E(./ √ m) ∈ A 1 and W (E) = m W (E ′ ) - π 2 log m .
In particular

min Am W = m min A 1 W - π 2 log m , (2.4) 
and E is a minimizer of W over A m if and only if E ′ minimizes W over A 1 .

In the periodic case, the following result [23, Theorem 2], which supports Conjecture 1.4 above: Given a Bravais lattice 2 Λ of density m, there is a unique (modulo constants) Λ-periodic solution H Λ to the equation -∆H = 2π( p∈Λ δ pm) and we may define

W (Λ) = W (∇H Λ ).

Then we have

Theorem 2.6. The unique minimizer, up to rotation, of W over Bravais lattices of fixed density m is the triangular lattice

Λ m = 2 m √ 3 Z(1, 0) ⊕ Z 1 2 , √ 3 2 . 
This is proved in [START_REF] Sandier | From the Ginzburg-Landau Model to Vortex Lattice Problems[END_REF] using the result of Montgomery on minimal theta function [START_REF] Montgomery | Minimal Theta Functions[END_REF], we provide an alternative proof below.

Proof. Osgood, Phillips and Sarnak [19, Section 4, page 205] proved, for Λ = Z ⊕ τ Z, τ = a + ib, that the height of the flat torus C/Λ (see [START_REF] Osgood | Extremals of Determinants of Laplacians[END_REF][START_REF] Chiu | Height of Flat Tori[END_REF][START_REF] Coulangeon | Spherical Designs and Heights of Euclidean Lattices[END_REF] for more details) is

h(Λ) = -log(b|η(τ )| 4 ) + C, C ∈ R,
where η is the Dedekind eta function 3 . But from [START_REF] Sandier | From the Ginzburg-Landau Model to Vortex Lattice Problems[END_REF] we have

W (Λ) = - 1 2 log √ 2πb|η(τ )| 2 + C, therefore W (Λ) = αh(Λ) + β where α > 0, β ∈ R are independent of Λ.
Then from [19, Corollary 1(b)], the triangular lattice minimizes h among Bravais lattices with fixed density, hence the same is true for W .

Equilibrium Problem in the Whole Plane

In this section we recall results on existence, uniqueness and characterization of the equilibrium measure µ V and we give the definition of the admissible potentials. We say that K is log-polar if I 0 (µ) = +∞ for any µ ∈ M 1 (K) and we say that a Borel set E is log-polar if every compact subset of E is log-polar. Moreover, we say that an assertion holds quasi-everywhere (q.e.) on A ⊂ R 2 if it holds on A\P where P is log-polar. Remark 3.2. We recall that the Lebesgue measure of a log-polar set is zero. Now we recall results about the existence, the uniqueness and the characterization of the equilibrium measure µ V proved in [START_REF] Frostman | Potentiel d'équilibre et capacité des ensembles[END_REF][START_REF] Saff | of Grundlehren der Mathematischen Wissenschaften[END_REF] for the classical growth assumption (1.2), and by Hardy and Kuijlaars [START_REF] Hardy | A Note on Large Deviations for 2D Coulomb Gas with Weakly Confining Potential[END_REF][START_REF] Hardy | Weakly Admissible Vector Equilibrium Problems[END_REF] (for existence and uniqueness) and Bloom, Levenberg and Wielonsky [START_REF] Bloom | Logarithmic Potential Theory and Large Deviation[END_REF] (for Frostman type variational inequalities) for weak growth assumption (1.3). Theorem 3.3. ( [START_REF] Frostman | Potentiel d'équilibre et capacité des ensembles[END_REF][START_REF] Saff | of Grundlehren der Mathematischen Wissenschaften[END_REF][START_REF] Hardy | A Note on Large Deviations for 2D Coulomb Gas with Weakly Confining Potential[END_REF][START_REF] Hardy | Weakly Admissible Vector Equilibrium Problems[END_REF][START_REF] Bloom | Logarithmic Potential Theory and Large Deviation[END_REF]) Let V be a lower semicontinuous function on R 2 such that {x ∈ R 2 ; V (x) < +∞} is a non log-polar subset of R 2 satisfying

lim inf |x|→+∞ {V (x) -log(1 + |x| 2 )} > -∞.
Then we have:

1. inf µ∈M 1 (R 2 )
I V (µ) is finite, where I V is given by (1.1).

There exists a unique equilibrium measure µ

V ∈ M 1 (R 2 ) with I V (µ V ) = inf µ∈M 1 (R 2 ) I V (µ)
and the logarithmic energy I 0 (µ V ) is finite.

3. The support Σ V of µ V is contained in {x ∈ R 2 ; V (x) < +∞} and Σ V is not log-polar.

Let

c V := I V (µ V ) - R 2 V (x) 2 dµ V (x) (3.1)
denote the Robin constant. Then we have the following Frostman variational inequalities (for the fact that U µ V is well defined, see for instance [START_REF] Bloom | Logarithmic Potential Theory and Large Deviation[END_REF]):

U µ V (x) + V (x) 2 ≥ c V q.e. on R 2 , (3.2) 
U µ V (x) + V (x) 2 ≤ c V for all x ∈ Σ V . (3.3) Remark 3.4. In particular we have U µ V (x) + V (x) 2 = c V q.e. on Σ V .
As in [START_REF] Rakhmanov | Electrons on the Sphere[END_REF], [START_REF] Dragnev | On the Separation of Logarithmic Points on the Sphere[END_REF], or more recently in [START_REF] Hardy | A Note on Large Deviations for 2D Coulomb Gas with Weakly Confining Potential[END_REF], the hypothesis of Theorem 3.3 are usefully transported to the sphere S in R 3 centred at (0, 0, 1/2) with radius 1/2, by the inverse stereographic projection T : R 2 → S defined by

T (x 1 , x 2 ) = x 1 1 + |x| 2 , x 2 1 + |x| 2 , |x| 2 1 + |x| 2 , for any x = (x 1 , x 2 ) ∈ R 2 .
We know that T is a conformal homeomorphism from R 2 to S\{N } where N := (0, 0, 1) is the North pole of S.

The procedure is as follows: Given V : R 2 → R, we may define (see [START_REF] Hardy | A Note on Large Deviations for 2D Coulomb Gas with Weakly Confining Potential[END_REF]) V : S → R by letting

V(T (x)) = V (x) -log(1 + |x| 2 ), V(N ) = lim inf |x|→+∞ {V (x) -log(1 + |x| 2 )}. (3.4)
Then V satisfies the hypothesis of Theorem 3.3 if and only if V is a lower semicontinuous function on S which is finite on a nonpolar set. Therefore, in this case, the minimum of

I V (µ) := S×S -log x -y + V(x) 2 + V(y) 2 dµ(x) dµ(y)
among probability measures on S is achieved. Here xy denotes the euclidean norm in R 3 . Moreover, see [START_REF] Hardy | A Note on Large Deviations for 2D Coulomb Gas with Weakly Confining Potential[END_REF], the minimizer µ V is related to µ V by the following relation

µ V = T #µ V , (3.5) 
where T #µ denotes the push-forward of the measure µ by the map T .

Definition 3.5. We say that V : R 2 → R is admissible if it is of class C 3 and if, defining V as above,

(H1):

The set {x ∈ R 2 ; V (x) < +∞} is not log-polar and lim inf

|x|→+∞ {V (x)-log(1+|x| 2 )} > -∞.

(H2):

The equilibrium measure µ V is of the form m V (x)1 Σ V (x) dx, where m V is a C 1 function on S and dx denotes the surface element on S, where the function m V is bounded above and below by positive constants m and m, and where Σ V is a compact subset of S with C 1 boundary.

Remark 3.6. Using (H2) and (3.5), we find that

dµ V (x) = m V (x)1 Σ V dx,
where

Σ V = T -1 (Σ V ) and m V (x) = m V (T (x)) (1 + |x| 2 ) 2 . (3.6) Note that (1 + |x| 2 ) -2
is the Jacobian of the transformation T .

Splitting Formula

Assume V is admissible. We define as in [START_REF] Sandier | 2d Coulomb gases and the renormalized energy[END_REF] the blown-up quantities:

x ′ = √ nx, m ′ V (x ′ ) = m V (x), dµ ′ V (x ′ ) = m ′ V (x ′ )dx ′
and we define

ζ(x) := U µ V (x) + V (x) 2 -c V , (4.1) 
where c V is the Robin constant given in (3.1). Then by (3.2) and

(3.3), ζ(x) = 0 q.e. in Σ V and ζ(x) ≥ 0 q.e. in R 2 \Σ V . To any n-tuple of points (x 1 , ..., x n ) ∈ (R 2
) n , we will now associate several quantities. First the probability measure

ν n = 1 n n i=1 δ x i , (4.2) 
then the potential

H n := -2πn∆ -1 (ν n -µ V ) = -n R 2 log |. -y|d(ν n -µ V )(y) = - n i=1 log |. -x i | -nU µ V (4.3)
where ∆ -1 is the convolution operator with 1 2π log |•|, hence such that ∆•∆ -1 = Id where ∆ denotes the usual Laplacian. We also define the rescaled measure (which is not a probability measure since it has mass n)

ν ′ n = n i=1 δ x ′ i , (4.4) 
and the rescaled potential

H ′ n := -2π∆ -1 (ν ′ n -µ ′ V ). (4.5)
Finally we will use the following notation for the associated electric field in rescaled coordinates

E νn := -2π∆ -1 (ν ′ n -µ ′ V ). (4.6)
Note that even though E νn is defined in rescaled variables, we do not use a prime in the notation to lighten notation.

Lemma 4.1. Let V be an admissible potential. Then we have

lim R→+∞ B R H ′ n (x)dµ ′ V (x) = R 2 H ′ n (x)dµ ′ V (x), lim R→+∞ W (∇H ′ n , 1 B R ) = W (∇H ′ n , 1 R 2 ). (4.7)
Proof. From Definition 3.1 and (4.3) we have, letting r = |x|,

H n (x) = n i=1 R 2 log |x -y| |x -x i | dµ V (y) = = n 2 R 2 log 1 -2 x r • y r + |y| 2 r 2 dµ V (y) - 1 2 n i=1 log 1 -2 x r • x i r + |x i | 2 r 2 . (4.8) From (3.6) we know that dµ V (y) = m V (y) dy where |m V (y)| < C/(1 + |y| 2 ) 2 .
By replacing in (4.8) and in the expression for ∇H n (x) deduced frome (4.8) by differentiating, we easily deduce that if

|x| > R 0 := 2 max i |x i | then |H n (x)| ≤ C |x| , |∇H n (x)| ≤ C |x| 2 .
Using (3.6) again this implies that H n ∈ L 1 (µ V ), hence the first equality in (4.7). This also implies that

|∇H n | 2 in in L 1 (R 2 \ B R 0 ). Then, since W (∇H n , 1 R 2 ) = W (∇H n , 1 B R 0 ) + 1 2 R 2 \B R 0 |∇H n | 2 ,
the second equality in(4.7) follows.

Lemma 4.2. Let V be admissible. Then, for every configuration

(x 1 , ...x n ) ∈ (R 2 ) n , n ≥ 2,
we have

w n (x 1 , ..., x n ) = n 2 I V (µ V ) - n 2 log n + 1 π W (E νn , 1 R 2 ) + 2n n i=1 ζ(x i ). (4.9) 
Proof. We may proceed as in the proof of [24, Lemma 3.1] and make use of the Frostman type inequalities (3.2) and (3.3) and Lemma 4.1. The important point is that, as shown in the proof of the previous lemma, we have H n (x) = O(|x| -1 ) and ∇H n (x) = O(|x| -2 ) as |x| → +∞ which implies, exactly like in the case of compact support, that lim

R→+∞ ∂B R H n (x)∇H n (x). ν(x)dx = 0
where ν(x) is the outer unit normal vector at x ∈ ∂B R .

Lower bound

Here we follow the strategy of [START_REF] Sandier | 2d Coulomb gases and the renormalized energy[END_REF], pointing out the required modifications in the noncompact case.

Mass spreading result and modified density g

We have the following result from [24, Proposition 3.4]:

Lemma 5.1. Let V be admissible and assume (ν, E) are such that ν = p∈Λ δ p for some finite subset

Λ ⊂ R 2 and div E = 2π(ν -m V ), curl E = 0 in R 2 .
Then, given any ρ > 0 there exists a signed measure g supported on R 2 and such that:

• There exists a family B ρ of disjoint closed balls covering Supp(ν) = Λ such that the sum of the radii of the balls intersecting any ball of radius 1 is bounded by ρ ; furthermore,

g(A) ≥ -C( m V ∞ + 1) + 1 4 A |E(x)| 2 1 Ω\Bρ (x)dx, for any A ⊂ R 2 ,
where C depends only on ρ;

• we have

dg(x) = 1 2 |E(x)| 2 dx outside p∈Λ B(p, λ)
where λ depends only on ρ;

• there exists λ, C > 0 depending only on ρ such that for any function χ compactly supported in R 2 we have 

W (E, χ) -χdg ≤ CN (log N + m V ∞ ) ∇χ ∞ where N = #{p ∈ Λ; B(p, λ) ∩ Supp(∇χ) = ∅}; • for any U ⊂ Ω #(Λ ∩ U ) ≤ C(1 + m V 2 ∞ | Û | + g( Û )) where Û := {x ∈ R 2 ; d(x, U ) < 1}. Definition 5.2. Assume ν n = 1 n n i=1 δ x i .
W (E νn , 1 R 2 ) = R 2
dg νn .

(5.1)

Ergodic Theorem

We adapt the abstract setting in [24, Section 4.1]. We are given a Polish space X, which is a space of functions, on which R 2 acts continuously. We denote this action (λ, u) → θ λ u := u(. + λ), for any λ ∈ R 2 and u ∈ X. We assume it is continuous with respect to both λ and u.

We also define T ε λ and T λ acting on R 2 ×X, by T ε λ (x, u) := (x+ελ, θ λ u) and T λ (x, u) := (x, θ λ u). For a probability measure P on R 2 × X we say that P is T -invariant if for every λ ∈ R 2 , it is invariant under the mapping (x, u) → (x, θ λ u).

We let {f ε } ε , and f be measurable functions defined on R 2 × X which satisfy the following properties. For any sequence {x ε , u ε } ε such that x ε → x as ε → 0 and such that for any R > 0, lim sup

ε→0 B R f ε (x ε + ελ, θ λ u ε )dλ < +∞, we have 1. (Coercivity) {u ε } ε has a convergent subsequence; 2. (Γ-liminf) If {u ε } ε converges to u, then lim inf ε→0 f ε (x ε , u ε ) ≥ f (x, u).
Remark 5.4. In contrast with the compact case, not every sequence {x ε } has a convergent subsequence, hence convergence needs to be assumed.

Now let

V be an admissible potential on R 2 and µ V its associated equilibrium measure. We have Theorem 5.5. Let V , X, (f ε ) ε and f be as above. We define

F ε (u) := R 2 f ε (x, θ x ε u)dµ V (x) Assume (u ε ) ε ∈ X is a sequence such that F ε (u ε ) ≤ C for any ε > 0. Let P ε be the image of µ V by x → (x, θ x ε u ε ), then: 1. (P ε ) ε admits a convergent subsequence to a probability measure P , 2. the first marginal of P is µ V , 3. P is T -invariant, 4. for P -a.e. (x, u), (x, u) is of the form lim ε→0 (x ε , θ xε ε u ε ), 5. lim inf ε→0 F ε (u ε ) ≥ R 2 ×X f (x, u)dP (x, u).

Moreover we have

R 2 ×X f (x, u)dP (x, u) = R 2 ×X lim R→+∞ - B R f (x, θ λ u)dλ dP (x, u).
where -B R denote the integral average over B R .

Proof. The proof follows [START_REF] Sandier | From the Ginzburg-Landau Model to Vortex Lattice Problems[END_REF][START_REF] Sandier | 2d Coulomb gases and the renormalized energy[END_REF] but with µ V replacing the normalized Lebesgue measure on a compact set Σ V . We sketch it and detail the parts where modifications are needed. For any R > 0 we let µ R V denote the restriction of µ V to B R , and P R ε denote the image of µ R V by the map x → (x, θ x ε u ε ).

Step 1: Convergence of a subsequence of (P ε ) to a probability measure P . It suffices to prove that the sequence {P ε } ε is tight. From [START_REF] Sandier | From the Ginzburg-Landau Model to Vortex Lattice Problems[END_REF][START_REF] Sandier | 2d Coulomb gases and the renormalized energy[END_REF], which deals with the compact case, {P R ε } ε is tight, for any R > 0. Now take any δ > 0, we need to prove that there exists a compact subset K δ of R 2 × X such that P ε (K δ ) > 1δ for any ε > 0. For this we first choose R > 0 large enough so that (µ Vµ R V )(R 2 ) < δ/2. This implies that P R ε has total measure at least 1δ/2 and then we may use the tightness of {P R ε } ε to find that there exists a compact set K δ such that P R ε (K δ ) > 1δ. It follows that P ε (K δ ) > 1δ, and then that {P ε } ε is tight.

Step 2: P is T -invariant. Let λ ∈ R 2 , let Φ be a bounded continuous function on R 2 × X and let P λ be the image of P by (x, u) → (x, θ λ u). By the change of variables y = ελ + x = (ελ + I 2 )(x) and for a subsequence ε → 0 along which P ε → P , we obtain,

R 2 ×X Φ(x, u)dP λ (x, u) = R 2 ×X Φ(x, θ λ u)dP (x, u) = lim ε→0 R 2 ×X Φ(x, θ λ u)dP ε (x, u) = lim ε→0 R 2 Φ(x, θ λ+ x ε u ε )dµ V (x) = lim ε→0 R 2 Φ(x, θ ελ+x ε u ε )dµ V (x) = lim ε→0 R 2 Φ y -λε, θ y ε u ε m V (y -λε)dy.
From the boundedness of Φ and the decay properties of m V (see (3.6)) it is straight forward to check that, along the same subsequence ε → 0,

lim ε→0 R 2 Φ y -λε, θ y ε u ε m V (y -λε)dy = lim ε→0 R 2 Φ y -λε, θ y ε u ε m V (y) dy = lim ε→0 R 2 ×X Φ (y -λε, u) dP ε (y, u).
Then, arguing as in [START_REF] Sandier | 2d Coulomb gases and the renormalized energy[END_REF] using the tightness of (P ε ) ε we obtain

lim ε→0 R 2 ×X Φ (y -λε, u) dP ε (y, u) = lim ε→0 R 2 ×X Φ(y, u)dP ε (y, u) = R 2 ×X Φ(x, u)dP (x, u),
which concludes the proof that

R 2 ×X Φ(x, u)dP λ (x, u) = R 2 ×X Φ(x, u)dP (x, u), i.e. that P is T -invariant.
Items 2 and 4 in the theorem are obvious consequences of the definition of P and items 5 and 6. require no modification from [START_REF] Sandier | 2d Coulomb gases and the renormalized energy[END_REF]. We have proved above items 1 and 3.

Asymptotic Expansion of the Hamiltonian

We define

α V := 1 π R 2 min A m V (x) W dx = 1 π min A 1 W - 1 2 R 2 m V (x) log m V (x)dx,
where the equality is a consequence of (2.4). The fact that α V is finite follows from (3.6), which ensures that the integral converges.

Recalling the notations (4.1)-(4.6), we define

F n (ν) =      1 n 1 π W (E n , 1 R 2 ) + 2n ζdν if ν is of the form 1 n n i=1 δ x i , +∞ otherwise.
and set, for any measure ν n of the form (4.2),

P νn := R 2 δ (x,Eν n (x √ n+.)) dµ V (x).
The following result extends [24, Theorem 2] to a class of equilibrium measures with possibly unbounded support, which requires a restatement which makes it slightly different from its counterpart in [START_REF] Sandier | 2d Coulomb gases and the renormalized energy[END_REF]. It is essentially a Gamma-Convergence (see [START_REF] Braides | Gamma-Convergence for Beginners[END_REF]) statement, consisting of a lower bound and an upper bound, the two implying the convergence of

1 n w n (x 1 , ..., x n ) -n 2 I V (µ V ) + n 2 log n to α V for a minimizer (x 1 , ..., x n ) of w n .

Main result

Theorem 6.1. Let 1 < p < 2 and X = R 2 × L p loc (R 2 , R 2 ). Let V be an admissible function. A. Lower bound: Let (ν n ) n such that F n (ν n ) ≤ C, so that in particular ν n is of the form (4.2) for every n. Then:

1. P νn is a probability measure on X and (P νn ) n admits a subsequence which converges to a probability measure P on X,

the first marginal of

P is µ V , 3. P is T -invariant, 4. E ∈ A m V (x)
for P -a.e. (x, E),

we have the lower bound

lim inf n→+∞ 1 nπ W (E νn , 1 R 2 ) ≥ 1 π R 2 W (E) m V (x) dP (x, E) ≥ α V . (6.1) 
B. Upper bound. Conversely, assume P is a T -invariant probability measure on X whose first marginal is µ V and such that for P -almost every (x, E) we have E ∈ A m V (x) . Then there exist a sequence

{ν n = n i=1 δ x i } n of measures on R 2 and a sequence {E n } n in L p loc (R 2 , R 2 ) such that div E n = 2π(ν ′ n -m ′ V )
and such that, defining 

P n = R 2 δ (x,En(x √ n+.)) dµ V (x),
F n (ν n ) ≤ 1 π R 2 W (E) m V (x) dP (x, E). (6.2) 
C. Consequences for minimizers. Let for any n, (x 1 , ..., x n ) denote a minimizer of w n and let

ν n = n i=1 δ x i .
Then, for any weak subsequential limit P of (P νn ) n we have:

1. for P -almost every (x, E), E minimizes W over A m V (x) ;

2. we have

lim n→+∞ F n (ν n ) = lim n→+∞ 1 nπ W (E νn , 1 R 2 ) = 1 π R 2 W (E) m V (x) dP (x, E) = α V ,
hence we obtain the following asymptotic expansion, as n → +∞:

min (R 2 ) n w n = I V (µ V )n 2 - n 2 log n + α V n + o(n).

Proof of the lower bound

We follow the same lines as in [24, Section 4.2]. Because F n (ν n ) ≤ C and (4.9), we have that

1 n 2 w n (x 1 , . . . x n ) → I V (µ V ),
therefore ν n converges to µ V (this follows from the results in [START_REF] Hardy | A Note on Large Deviations for 2D Coulomb Gas with Weakly Confining Potential[END_REF]). We let ν ′ n = i δ x ′ i , and E νn , H ′ n , g n be as in Definition 5.2. Let χ be a C ∞ cutoff function supported on the unit ball B 1 and with integral equal to 1. We define

f n (x, ν, E, g) :=    1 π R 2 χ(y) m V (x) dg(y) if (ν, E, g) = θ √ nx (ν ′ n , E νn , g n ), +∞ otherwise.
As in [24, Section 4.2, Step 1], if we let

F n (ν, E, g) := R 2 f n x, θ x √ n (ν, E, g) dµ V (x), then F n (ν ′ n , E νn , g n ) = R 2 1 π R 2 χ(y) m V (x) d(θ x √ n #g)dµ V (x) = 1 π R 2 R 2 χ(y -x √ n)dxdg n (y) ≤ 1 nπ W (E νn , 1 R 2 ) + g - n (U c ) nπ ,
by (5.1), where U = {x ′ : d(x ′ , R 2 \Σ) ≥ 1}. As in [START_REF] Sandier | 2d Coulomb gases and the renormalized energy[END_REF], we have g

- n (U c ) = o(n). Hence, if (ν, E, g) = (ν ′
n , E νn , g n ), as n → +∞:

F n (ν, E, g) ≤ 1 nπ W (E νn , 1 R 2 ) + o(1),
and F n (ν, E, g) = +∞ otherwise. Now, as in [START_REF] Sandier | 2d Coulomb gases and the renormalized energy[END_REF], we want to use Theorem 5.5 with ε = 1 √ n and 

X = M + × L p loc (R 2 , R 2 ) × M where p ∈]1, 2[, M + is
V := -C( m V 2 ∞ + 1). Let Q n be the image of µ V by x → (x, θ x √ n (ν ′ n , E νn , g n ))
. We have:

1) The fact that f n is coercive is proved as in [START_REF] Sandier | 2d Coulomb gases and the renormalized energy[END_REF]Lemma 4.4]. Indeed, if (x n , ν(n), E(n), g(n)) n is such that x n → x and, for any R > 0, lim sup

n→+∞ B R f n x n + λ √ n , θ λ (ν(n), E(n), g(n)) dλ < +∞,
then the integrand is bounded for a.e. λ. By assumption on f n , for any n,

θ λ (ν(n), E(n), g(n)) = θ xn √ n+λ (ν ′ n , E νn , g n ), hence it follows that (ν(n), E(n), g(n)) = θ xn √ n (ν ′ n , E νn , g n ).
For any R > 0, there exists C R > 0 such that for any n > 0,

B R f n x n + λ √ n , θ λ (ν n , E νn , g n ) dλ = B R 1 π R 2 χ(y) m V x n + λ √ n d(θ λ+xn √ n #g n (y))dλ = 1 π B R R 2 χ(y -x n √ n -λ) m V x n + λ √ n dg n (y)dλ = 1 π R 2 χ * 1 B R (xn √ n) 1 m V (./ √ n) (y)dg n (y) < C R .
This, inequalities (3.6) and the fact that g n is bounded below imply that

g n (B R (x n √ n)) is bounded independently of n.
Hence by the same argument as in [24, Lemma 4.4], we have the convergence of a subsequence of (ν(n), E(n), g(n)).

2) We have the Γ-liminf property: if (x(n), ν(n), E(n), g(n)) → (x, ν, E, g) as n → +∞, then, by Fatou's Lemma,

lim inf n→+∞ f n (x(n), ν(n), E(n), g(n)) ≥ f (x, ν, E, g) := 1 π χ(y) m V (x) dg(y),
obviously if the left-hand side is finite. Therefore, Theorem 5.5 applies and implies that:

1. The sequence of measures (Q n ) n admits a subsequence which converges to a measure Q which has µ V as first marginal.

It holds that

Q-almost every (x, ν, E, g) is of the form lim n→+∞ (x n , θ xn √ n (ν ′ n , E νn , g n )). 3. The measure Q is T -invariant. 4. We have lim inf n→+∞ F n (ν ′ n , E νn , g n ) ≥ 1 π R 2 R 2 χ(y) m V (x)
dg(y) dQ(x, ν, E, g).
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.

1 π χ(y) m V (x) dg(y)dQ(x, ν, E, g) = lim R→+∞ - B R χ(y -λ) m V (x)
dg(y)dλ dQ(x, ν, E, g).

Now we can follow exactly [24, 24, Section 4.2, Step 3]. We notice that P n is the marginal of Q n corresponding to the variables (x, E), and deduce from 4) that lim inf

n→+∞ 1 nπ W (E νn , 1 R 2 ) ≥ χdg dQ(x, ν, E, g) m V (x) = lim R→+∞ 1 πR 2 χ * 1 B R dg dQ(x, ν, E, g) m V (x) ≥ 1 π W (E) dQ(x, ν, E, g) m V (x) = 1 π W (E) m V (x) dP (x, E).
Thus the lower bound (6.1) is proved. The fact that the right-hand side is larger than α V is obvious because the first marginal of dP m V is the Lebesgue measure.

Proof of the upper bound, the case

Supp(µ V ) = R 2
The discussion following Theorem 3.3 permits to reduce the case of V 's such that Supp(µ V ) = R 2 to the case of a compact support. We now explain how this is done. Since Supp(µ V ) = R 2 , there exists y ∈ S which does not belong to the support of µ V . Let R be a rotation such that R(N ) = y, then the minimum of

I V•R is µ V•R = R -1 #µ V hence N does not belong to its support.
Letting ϕ = T -1 RT , we have that ϕ is of the form z → az + b cz + d with adbc = 1, and applying

(3.4), (3.5) to V • R we have that µ Vϕ = T -1 #µ V•R , where V • R(T (x)) = V ϕ (x) -log(1 + |x| 2 ).
This implies that µ Vϕ has compact support since N does not belong to the support of µ V•R . Moreover, using (3.4) again to evaluate V(RT (x)) we find for any x such that RT (x) = N , i.e.

x = -d/c,

V ϕ (x) = V (T -1 RT (x)) -log(1 + |T -1 RT (x)| 2 ) + log(1 + |x| 2 ), V ϕ (-d/c) = V(N ) + log(1 + |d/c| 2 ) = log(1 + |d/c| 2 ) + lim inf |x|→+∞ {V (x) -log(1 + |x| 2 )}.
Finally we find that

V ϕ (x) = V (ϕ(x)) -log(1 + |ϕ(x)| 2 ) + log(1 + |x| 2 ), V ϕ (-d/c) = lim inf y→-d/c
V ϕ (y). ( 6.3)

Now we rewrite the discrete energy by changing variables, to find that, writing w n,V instead of w n to clarify the dependence on V , (6.4) where x i = ϕ(y i ). Now we use the identity (see [START_REF] Rakhmanov | Electrons on the Sphere[END_REF], [START_REF] Hardy | A Note on Large Deviations for 2D Coulomb Gas with Weakly Confining Potential[END_REF])

w n,V (x 1 , . . . , x n ) = - n i =j log |ϕ(y i ) -ϕ(y j )| + n n i=1 V (ϕ(y i )),
T (x) -T (y) = |x -y| 1 + |x| 2 1 + |y| 2
applied to ϕ(x), ϕ(y) together with the fact that ϕ = T -1 RT and that R is a rotation to get

T (x) -T (y) = |ϕ(x) -ϕ(y)| 1 + |ϕ(x)| 2 1 + |ϕ(y)| 2 .
The two together imply that

log |ϕ(x)-ϕ(y)| = log |x-y|+ 1 2 log(1+|ϕ(x)| 2 )+ 1 2 log(1+|ϕ(y)| 2 )- 1 2 log(1+|x| 2 )- 1 2 log(1+|y| 2 ).
Replacing in (6.4) shows that

w n,V (x 1 , . . . , x n ) = w n,Vϕ (y 1 , . . . , y n ) + i log(1 + |ϕ(y i )| 2 ) - i log(1 + |y i | 2 ), x i = ϕ(y i ). (6.5)
It follows from (6.5) that an upper bound for min w n,V can be computed by using a minimizer for w n,Vϕ as a test function. But now we recall that µ Vϕ has compact support, hence the results of [START_REF] Sandier | 2d Coulomb gases and the renormalized energy[END_REF] apply and we find, using the fact that for such a minimizer

1 n i δ y i converges to µ Vϕ , min w n,V ≤ n 2 I Vϕ (µ Vϕ ) - 1 2 n log n + α Vϕ + log 1 + |ϕ(x)| 2 1 + |x| 2 dµ Vϕ (x) n + o(n), (6.6) 
where

α Vϕ = α 1 π - 1 2 Σ Vϕ m Vϕ (x) log m Vϕ (x) dx, α 1 := min A 1 W.
We remark that

I Vϕ (µ Vϕ ) = I V (µ V ) because µ Vϕ = ϕ -1 #µ V . Moreover, it follows from (3.6) that m Vϕ (x) = m V (ϕ(x)) 1 + |ϕ(x)| 2 1 + |x| 2 2 ,
which plugged in the expression for α Vϕ and then in (6.6) yields,

min w n,V ≤ n 2 I V (µ V ) - 1 2 n log n + α V n + o(n),
which matches the lower-bound we already obtained and thus proves Theorem 1.1 in the case where the support of µ V is not the full plane.

Proof of the upper bound by compactification and conclusion

Here we assume that Σ

V = R 2 . Let ϕ(z) := - 1 z = ϕ -1 (z).
Then, using the notations of the previous section, we deduce from (6.3) that

V ϕ (z) = V (ϕ(z)) + 2 log |z|.
To simplify exposition and notation, we assume that µ

V (B 1 ) = µ V (B c 1 ) = 1/2, otherwise there would exist R such that µ V (B R ) = µ V (B c R ) = 1/2 and we should use the transformation ϕ R (z) = ϕ -1 R (z) = -Rz -1 instead.
Our idea is to cut Σ V = R 2 into two parts in order to construct a sequence of 2n points associated to a sequence of vector-fields. We will only construct test configurations with an even number of points, again to simplify exposition and avoid unessential technicalities.

Step 1: Reminder of the compact case and notations. We reproduce below [START_REF] Sandier | 2d Coulomb gases and the renormalized energy[END_REF]Corollary 4.6] when K is a compact set of R 2 . Note that we have replaced there the hypothesis of T λ(x)invariance (which is part of the definition of an admissible P ) by the usual translation invariance. We give in the appendix a direct proof that the two notions are in fact equivalent, it would follow also from the fact that the translation invariance implies that the disintingration measures are themselves invariant (see [START_REF] Leblé | A Uniqueness Result for Minimizers of the 1D Log-gas Renormalized Energy[END_REF]Remark 2.4]). Theorem 6.2. ( [START_REF] Sandier | 2d Coulomb gases and the renormalized energy[END_REF]) Let P be a T -invariant probability measure on

X = K × L p loc (R 2 , R 2 )
, where K is a compact subset of R 2 with C 1 boundary.

We assume that P has first marginal dx |K /|K| and that for P -almost every (x, E) we have E ∈ A m(x) , where m is a smooth function on K bounded above and below by positive constants. Then there exists a sequence {ν n = n i=1 δ x i } n of empirical measures on K and a sequence

{E n } n in L p loc (R 2 , R 2 ) such that div E n = 2π(ν ′ n -m ′ ),
such that E n = 0 outside K and such that P n := -K δ (x,En( √ nx+.)) dx → P as n → +∞. Moreover

lim sup n→+∞ 1 nπ W (E n , 1 R 2 ) ≤ |K| π W (E)dP (x, E).
We write µ V = µ

(1)

V + µ (2) 
V where µ

V := µ V |B 1 and µ

(2)

V := µ V |B c 1 , where A denotes the closure of set A in R 2 . Let μ(2) V := ϕ#µ (2) 
V , then we have

dµ (1) V (x) = m V (x)1 B 1 (x)dx =: m (1) 
V (x)dx and dμ

(2)

V (x) = m Vϕ (x)1 B 1 (x)dx =: m (2) Vϕ (x)dx, where m Vϕ (x) = m V (ϕ -1 (x))| det(Dϕ -1 x )|.
Note that, by assumption (H2) and (3.6) we have that there exists positive constants m and m such that, for any

x ∈ B 1 , 0 < m ≤ m V (x) ≤ m and 0 < m ≤ m Vϕ (x) ≤ m.
Moreover the boundary ∂B 1 is C 1 . Now let P be a T -invariant probability measure on X whose first marginal is µ V and be such that for P -almost very (x, E), we have E ∈ A m V (x) . We can write P = P (1) + P (2) , where P (1) is the restriction of

P to B 1 × L p loc (R 2 , R 2 ) with first marginal µ (1) 
V , and P (2) is the restriction of

P to B c 1 × L p loc (R 2 , R 2 ) with first marginal µ (2) 
V . We define P (1) by the relation

dP (1) (x, u) = m V (x)|B 1 |d P (1) (x, u),
and then P (1) is a T -invariant probability measure on B 1 ×L p loc (R 2 , R 2 ) with first marginal dx |B 1 /|B 1 | and such that, for P (1) -a.e. (x, E), E ∈ A m (1)

V (x) . We denote by ϕ#P (2) the pushforward of P (2) by (x, E) → y, Ẽ , where y := ϕ(x) and Ẽ := (Dϕ y ) T E(Dϕ y •), (

where Dϕ x is the differential of ϕ at point x.

Then if div E = 2π(ν -m V (x)dx) we have div Ẽ = 2π(ϕ#ν -|∂ z ϕ(y)| 2 m V (ϕ(y))
) so that for ϕ#P (2) -a.e. (y, Ẽ) the vector field Ẽ belongs to

A m Vϕ (y) , since m Vϕ (y) dy = m V (ϕ(y)) d(ϕ(y)) = m V (ϕ(y))|∂ z ϕ(y)| 2 dy.
We define P (2) by the relation

d(ϕ#P (2) )(y, Ẽ) = m Vϕ (y)|B 1 |d P (2) (y, Ẽ),
and then P (2) is a T -invariant probability measure on B 1 ×L p loc (R 2 , R 2 ) with first marginal dy |B 1 /|B 1 | and such that, for P (2) a.e. (y, Ẽ), Ẽ ∈ A m Vϕ (y) .

Step 2: Application of Theorem 6.2. We may now apply Theorem 6.2 to P (1) and P [START_REF] Braides | Gamma-Convergence for Beginners[END_REF] . We thus construct a sequence {ν

n := n i=1 δ x (1) 
i } of empirical measures on B 1 and a sequence {E

n } n in L p loc (B 1 , R 2 ) such that div E (1) n = 2π((ν (1) n ) ′ -(m (1) 
V ) ′ ) and

P 1 n := - B 1 δ (x,E (1) 
n ( √ nx+.)) dx → P (1) ,

as n → +∞. Moreover, we have lim sup

n→+∞ 1 nπ W (E (1) n , 1 R 2 ) ≤ |B 1 | π W (E)d P (1) (x, E). (6.8) 
Applying now the same Theorem to P (2) , we construct a sequence {ν

n := n i=1 δ x(2) i } of empirical measures on B 1 and a sequence { Ẽ(2) n } n in L p loc (B 1 , R 2 ) such that div Ẽ(2) n = 2π((ν (2) n ) ′ -(m (2) 
Vϕ ) ′ ) and P (2)

n := - B 1 δ (x, Ẽ (2) 
n (

√ nx+.)) dx → P (2) ,
as n → +∞. Moreover, we have lim sup

n→+∞ 1 nπ W ( Ẽ(2) n , 1 R 2 ) ≤ |B 1 | π W ( Ẽ)d P (2) (y, Ẽ).
Step 3: Construction of sequences and conclusion. It is not difficult to see that we can assume x(2) j = 0 for any j and any n ≥ 2 (otherwise we translate the point a little bit). Now we set x

(2)

j := ϕ(x (2) 
j ) and in view of (6.7), for each n we define ν (2) n := ϕ#ν (2) 

n = n j=1 δ x (2) j and E (2) n (x) := (Dϕ n -1/2 x ) T Ẽ(2) n (n 1/2 ϕ(n -1/2 x)).
Hence, we have a sequence of vector-fields E

(2)

n of L p loc (R 2 , R 2 ) such that div E (2) n = 2π((ν (2) n ) ′ -(m (2) 
V ) ′ )
where m

(2)

V (x) = m V (x)1 Bc 1 (x) is the density of µ (2) 
V . Below we will use the notation |∂ z ϕ(z)| for the modulus of the complex derivative of ϕ at the point z.

We have, for every i,

W (E (2) n , 1 R 2 ) = lim η→0 1 2 R 2 \ n i=1 B(x (2) 
i ,η)

|E (2) n (x ′ )| 2 dx ′ + πn log η = lim η→0 1 2 R 2 \ n i=1 B(x (2) 
i ,η)

|(Dϕ n -1/2 x ′ ) T Ẽ(2) n (n 1/2 ϕ(n -1/2 x ′ ))| 2 dx ′ + πn log η = lim η→0 1 2 R 2 \ n i=1 B(y (2) i ,|∂zϕ(x (2) 
i )|η) | Ẽ(2) n (y ′ )| 2 dy ′ + πn log η = lim η→0 1 2 R 2 \ n i=1 B(y (2) i ,|∂zϕ(x (2) 
i )|η) | Ẽ(2) n (y ′ )| 2 dy ′ + π n i=1 log |∂ z ϕ(x i )|η -π n i=1 log |∂ z ϕ(x i )| = W ( Ẽ(2) n , 1 R 2 ) -π n i=1 log |∂ z ϕ(x i )|,
where the change of variable is

y ′ = n 1/2 ϕ(n -1/2 x ′ ).
Furthermore, we have

W ( Ẽ)d P (2) (y, Ẽ) = 1 |B 1 | W ( Ẽ) d(ϕ#P (2) )(y, Ẽ) m Vϕ (y) = 1 |B 1 | W Dϕ T y E(Dϕ y .) dP (2) (x, E) m Vϕ (y)
by change of variable y = ϕ(x) and Ẽ = Dϕ T y E(Dϕ y •). Now we remark that, for λ > 0 and

E ∈ A m , W (λE(λ.)) = lim R→+∞ 1 πR 2 lim η→0 1 2 R 2 \ i B(y i ,η) χ R (y)λ 2 |E(λy)| 2 dy + π i χ R (y i ) log η = lim R→+∞ 1 πR 2 lim η→0 1 2 R 2 \ i B(x i ,λη) χ R (x/λ)|E(x)| 2 dx + π i χ R (x i /λ) log η
where x = λy. Thus, setting R ′ = Rλ and η ′ = ηλ, we get

W (λE(λ.)) = lim R ′ →+∞ λ 2 πR ′2 lim η ′ →0 1 2 R 2 \ i B(x i ,η ′ ) χ R ′ (x)|E(x)| 2 dx + π i χ R ′ (x i ) log η ′ -log η = λ 2 (W (E) -m log λ) .

Applying this equality with

λ = |∂ z ϕ(x)| -1 = |∂ z ϕ -1 (y)|, we obtain lim sup n→+∞ 1 nπ W (E (2) n , 1 R 2 ) + π n i=1 log |∂ z ϕ(x i )| ≤ 1 π 1 |∂ z ϕ(x)| 2 W (E) + log |∂ z ϕ(x)|m (2) V (x) dP (2) (x, E) m Vϕ (y) , that is to say, because m (2) 
V is the density of points {x i } as n → +∞, lim sup

n→+∞ 1 nπ W (E (2) n , 1 R 2 ) + B c 1 log |∂ z ϕ(x)|dµ (2) V (x) ≤ 1 π W (E) dP (2) (x, E) m V (x) + B c 1 log |∂ z ϕ(x)|dP (2) (x). As B c 1 log |∂ z ϕ(x)|dP (2) (x) = B c 1 log |∂ z ϕ(x)|dµ (2) 
V (x), it follows that lim sup

n→+∞ 1 nπ W (E (2) n , 1 R 2 ) ≤ 1 π W (E) dP (2) (x, E) m V (x) . (6.9) 
Finally, we set ν 2n := ν (1) n + ν (2) n and E 2n := E (1) n + E (2) n , and by (6.8) and (6.9), we have, since

E (1)
n and E

(2)

n have disjoint supports, lim sup n→+∞ 1 nπ W (E n , 1 R 2 ) ≤ 1 π W (E) m V (x) dP (1) (x, E) + 1 π W (E) m V (x) dP (2) (x, E) = 1 π W (E) m V (x) dP (x, E)
which proves (6.2). Furthermore, by changes of variable,

P (1) n := B 1 δ (x,E (1) 
n (x √ n+.)) dµ V (x) → P (1) and P (2) n :=

B c 1 δ (x,E (2) 
n (x √ n+.)) dµ V (x) → P (2) in the weak sense of measure, and it follows that P n = P (1) n + P (2) n → P (1) + P (2) = P.

Part C follows from A and B as in [START_REF] Sandier | 2d Coulomb gases and the renormalized energy[END_REF].

7 Consequence: the Logarithmic Energy on the Sphere

The asymptotic expansion of the minimum of the Hamiltonian w n in the case of weakly confining potential that we have -where the minimizing points are allowed to fill the whole plane instead of being confined to a fixed compact set as in the classical case -allows through the use of the inverse stereographic projection (as in [START_REF] Rakhmanov | Electrons on the Sphere[END_REF], [START_REF] Dragnev | On the Separation of Logarithmic Points on the Sphere[END_REF], [START_REF] Hardy | A Note on Large Deviations for 2D Coulomb Gas with Weakly Confining Potential[END_REF]) to determine the asymptotic expansion of the optimal logarithmic energy on sphere.

Inverse stereographic projection

Here we recall properties of the inverse stereographic projection used by Hardy and Kuijlaars [START_REF] Hardy | A Note on Large Deviations for 2D Coulomb Gas with Weakly Confining Potential[END_REF][START_REF] Hardy | Weakly Admissible Vector Equilibrium Problems[END_REF] and by Bloom, Levenberg and Wielonsky [START_REF] Bloom | Logarithmic Potential Theory and Large Deviation[END_REF] in order to prove Theorem 3.3.

Let S be the sphere of R 3 centred at (0, 0, 1/2) of radius 1/2, Σ be an unbounded closed set of R 2 and T : R 2 → S be the associated inverse stereographic projection defined by

T (x 1 , x 2 ) = x 1 1 + |x| 2 , x 2 1 + |x| 2 , |x| 2 1 + |x| 2 , for any x = (x 1 , x 2 ) ∈ R 2 ,
where R 2 := {(x 1 , x 2 , 0); x 1 , x 2 ∈ R}. We know that T is a conformal homeomorphism from C to S\{N } where N := (0, 0, 1) is the North pole of S.

Proof. Let (x 1 , ..., x n ) be a minimizer of w n . We define y i := T (x i ) for any 1 ≤ i ≤ n and we notice that

R 2 log(1 + |x| 2 )dν n (x) = -2 R 2 log 1 1 + |x| 2 dν n (x) = -2 S log y -N dT #ν n (y),
and by Lemma 7.2, (y 1 , ..., y n ) is a minimizer of E log on S. Now, denoting by σ the normalized Haar measure on SO(3), for any point y 0 on the sphere we have that the image of σ by the map R → R(y 0 ) is the normalized uniform measure on the sphere. Therefore

- SO(3) 2 n i log Ry i -N dσ(R) = -2- S log y -N dy,
where -denotes the average with respect to the uniform measure on S. It follows that for some R 1 the integrand of left-hand side is no greater than the right-hand side and that for some (possibly identical) R 2 the reverse is true. Then since SO( 3) is connected we may connect R 1 and R 2 by a continuous path, and we may further assume that Ry i = N for every i when R is along this path. Since the integrand of the left-hand side is continuous with respect to R on the path we deduce that there exists a rotated configuration (ȳ 1 , ..., ȳn ) such that

1 n i log ȳi -N = - S log y -N dy.
But, for any rotation R of S the rotated configuration of points is still a minimizer. Thus, transporting back to R 2 with T -1 , we obtain a minimizer (x 1 , ..., xn ) of w n such that

1 n i log(1 + |x i | 2 ) = R 2 log(1 + |x| 2 )dµ V (x).
If (x 1 , . . . , x n ) is a minimizer of w n we use [4, Theorem 15] about the optimal point separation which yields the existence of constants C and n 0 such that for any n ≥ n 0 and any minimizer {y 1 , ..., y n } ∈ S n of the logarithmic energy on the sphere, we have

min i =j y i -y j > C √ n -1 .
Letting y i = T (x i ) we have that (N, y 1 , . . . , y n ) is a minimizer of the logarithmic energy, hence for any 1 ≤ i ≤ n,

y i -N > C √ n -1 .
For n ≥ n 0 and δ > 0 sufficiently small, we define, for any 0 < r ≤ δ, k(r) := # {y i | y i ∈ B(N, r) ∩ S} , and r i = y i -N . From the separation property there exists a constant C such that k(r) ≤ Cr 2 n for any r. Hence we have k(r) = 0 if r < 1/ √ Cn. Thus, using integration by parts, for some small enough c > 0 we have

- y i ∈B(N,δ) log r i = - δ c/ √ n-1 log r dk(r) = -n(δ) log δ + δ c/ √ n-1 k(r) r dr ≤ -Cnδ 2 log δ + Cn δ c/ √ n-1 rdr ≤ Cδ 2 n| log δ|. It follows that lim δ→0 lim sup n→+∞ - 1 n B(N,δ)∩S log y -N dT #ν n (y) = lim δ→0 lim sup n→+∞ - 1 n y i ∈B(N,δ) log y i -N = 0. (7.2)
For every integer n and R > 0 we have 

R 2 log(1 + |x| 2 )dν n (x) = B R log(1 + |x| 2 )dν n (x) + B c R log(1 + |x| 2 )dν n (x). ( 7 
(x) = lim R→+∞ B R log(1 + |x| 2 )dµ V (x) = R 2 log(1 + |x| 2 )dµ V (x),
and from (7.2) we have lim

R→+∞ lim sup n→+∞ 1 n B c R log(1 + |x| 2 )dν n (x) = 0.
Therefore, taking the limits n → +∞ and then R → +∞ in (7.3) we find

lim n→+∞ R 2 log(1 + |x| 2 )dν n (x) = R 2 log(1 + |x| 2 )dµ V (x).
The convergence is proved.

The following result proves the existence of the constant C in the Conjecture 1.2 of Rakhmanov, Saff and Zhou.

Theorem 7.5. We have

E log (n) = 1 2 -log 2 n 2 - n 2 log n + 1 π min A 1 W + log π 2 + log 2 n + o(n), as n → +∞.
Proof. As E log is invariant by translation of the 2-sphere, we work on the sphere S2 of radius 1 and centered at (0, 0, 1). Let (y 1 , ..., y n ) ∈ S2 be a minimizer of E log . Without loss of generality, for any n, we can choose this configuration such that y i = N for any 1 ≤ i ≤ n. Hence there exists (x 1 , ..., x n ) such that y i 2 = T (x i ) for any i and we get 

E log (y 1 , ...., y n ) = - n i =j log y i -y j = - n i =j log T (x i ) -T (x j ) -n(n -1) log 2 = w n (x 1 , ..., x n ) -n(n - 
I V (µ V ) + n 2 log n = lim inf n→+∞ 1 n w n (x 1 , ..., xn ) - n i=1 log(1 + |x i | 2 ) -n 2 I V (µ V ) + n 2 log n ≥ α V - R 2 log(1 + |x| 2 )dµ V (x).
The upper bound (6.2) and Lemma 7.2 yield, (x 1 , ..., x n ) being a minimizer of w n :

lim sup n→+∞ 1 n w n (x 1 , ..., xn ) -n 2 I V (µ V ) + n 2 log n ≤ lim sup n→+∞ 1 n w n (x 1 , ..., x n ) -n 2 I V (µ V ) + n 2 log n = lim sup n→+∞ 1 n w n (x 1 , ..., x n ) - n i=1 log(1 + |x i | 2 ) -n 2 I V (µ V ) + n 2 log n = α V - R 2 log(1 + |x| 2 )dµ V (x).
Thus, we get

lim n→+∞ 1 n w n (x 1 , ..., xn ) -n 2 I V (µ V ) + n 2 log n = α V - R 2 log(1 + |x| 2 )dµ V (x).
Therefore, we have the following asymptotic expansion, as n → +∞, for some minimizer (x 1 , ..., xn ) of w n :

w n (x 1 , ..., xn ) = n 2 I V (µ V ) - n 2 log n + 1 π min A 1 W - 1 2 R 2 m V (x) log m V (x)dx - R 2 V (x)dµ V (x) n + o(n).
We know that I V (µ V ) = 1 2 (see [3, Eq. (2.26)]) and

R 2 log(1 + |x| 2 )dµ V (x) = 1 π R 2 log(1 + |x| 2 ) (1 + |x| 2 ) 2 dx = 2 +∞ 0 r log(1 + r 2 ) (1 + r 2 ) 2 dr = - log(1 + r 2 ) 1 + r 2 +∞ 0 + +∞ 0 2r (1 + r 2 ) 2 dr = - 1 1 + r 2 +∞ 0 = 1.
Hence we obtain, as n → +∞, 

w n (x 1 , ..., xn ) = n 2 2 - n 2 log n + 1 π min A 1 W + 1 2 log(π(1 + |x| 2 ) 2 )dµ V (x) -1 n + o(n) = n 2 2 - n 2 
W (Λ 1/2π ) = - 1 2 log √ 2πb|η(τ )| 2 ,
where Λ 1/2π is the triangular lattice corresponding to the density m = 1/2π, τ = a+ib = 1/2+i √ 3 2 and η is the Dedekind eta function defined, with q = e 2iπτ , by η(τ ) = q 1/24 n≥1 (1q n ).

We recall the Chowla-Selberg formula (see [START_REF] Chowla | On Epstein's Zeta-Function[END_REF] or [START_REF] Cohen | Number theory II: Analytic and Modern Methods[END_REF]Proposition 10.5.11] for details): 

Appendix

Here we prove the following Proposition 7.8. Assume X is a Polish space X, on which R n acts continuously. We denote this action (λ, u) → θ λ u and assume it is separately continuous w.r.t both λ ∈ R n and u ∈ X. Assume P is a probability measure on R n × X which for every λ is invariant under the map (x, u) → (x, θ λ u). Then, for any continuous function x → λ(x) it holds that P is invariant under the map (x, u) → (x, θ λ (x)u).

Proof. Let Φ be any bounded continuous function on R n × X, we need to prove that for any continuous function x → λ(x) Φ(x, u) dP (x, u) = Φ(x, θ λ(x) u) dP (x, u).

for any integer k > 0 we let {χ i,k } i be a partition of unity on R n subordinate to the covering of R n by balls of radius 1/k, and we let x i,k belong to the support of χ i,k . Then, from the continuity of Φ, λ and θ, it is straightforward to check that for every (x, u) ∈ R n × X we have lim k→+∞ i χ i,k (x)Φ(x, θ λ(x i,k ) u) = Φ(x, θ λ(x) u).

It follows by dominated convergence that lim k→+∞ i χ i,k (x)Φ(x, θ λ(x i,k ) u) dP (x, u) = Φ(x, θ λ(x) u) dP (x, u). (7.4) But by the invariance of P we have χ i,k (x)Φ(x, θ λ(x i,k ) u) dP (x, u) = χ i,k (x)Φ(x, u) dP (x, u), hence i χ i,k (x)Φ(x, θ λ(x i,k ) u) dP (x, u) = Φ(x, u) dP (x, u).

Replacing (7.4) we get the desired result.
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3. 1

 1 Equilibrium measure, Frostman inequalities and differentiation of U µ V Definition 3.1. ([1]) Let K ⊂ R 2 be a compact set and let M 1 (K) be the family of probability measures supported on K. Then the logarithmic potential and the logarithmic energy of µ ∈ M 1 (K) are defined as U µ (x) := -K log |x -y|dµ(y) and I 0 (µ) := -K×K log |x -y|dµ(x)dµ(y).

  the set of nonnegative Radon measures on R 2 and M the set of Radon measures bounded below by -C

4 . 2 =

 42 for τ a root of the integral quadratic equation αz 2 + βz + γ = 0 where D = β 2 -4αγ < 0, D m is the Kronecker symbol, w the number of roots of unity in Q(i √ -D) and when the class number ofQ(i √ -D) is equal to 1. In our case b = √ 3/2, w = 6, α = β = γ = 1 because τ is a root of unity,Now it is possible to find the exact value of the renormalized energy of the triangular lattice Λ 1 of density m = 1:W (Λ 1 ) = 2πW (Λ 1/2π )π log(2π)

  .3) By Lemma 7.3, ν n goes weakly to the measure µ V on B R for any R hence

	lim R→+∞	lim n→+∞ B R	log(1 + |x| 2 )dν n

  1) log 2. By Lemma 7.2, (y 1 , ..., y n ) is a minimizer of E log if and only if (x 1 , ..., x n ) is a minimizer of w

n . By the lower bound (6.1) and the convergence of Lemma 7.4, we have, for some minimizer (x 1 , ..., xn ) of w n : lim inf n→+∞ 1 n w n (x 1 , ..., xn )n 2

  Remark 7.6. It follows from the lower bound proved by Rakhmanov, Saff and Zhou [20, Theorem 3.1], that (1e -a ) b ≈ -4.6842707. 7.3 Computation of renormalized energy for the triangular lattice and upper bound for the term of order n Sandier and Serfaty proved in [23, Lemma 3.3] that

	and the asymptotic expansion of E log (n) is
		E log (n) =	1 2	-log 2 n 2 -	n 2	log n +	1 π	min A 1	W +	log π 2	+ log 2 n + o(n).
	1 π	min A 1	W +	log π 2	+ log 2 = lim n→+∞ ≥ -1 2 log n 1	π 2	E log (y 1 , ..., y n ) -(1 -e -a ) b ,	1 2	-log 2 n 2 +	n 2	log n
	where a :=	2 √ √ 27 2π	2π +	√ 27 +	√	2π and b :=	2π + 2π +	√ 27 -√ 27 +	√ √	2π 2π	, and we get
						min A 1	W ≥ -	π 2	log 2π 2
			=	n 2 2	-	n 2	log n + log n +	1 π 1 π	min A 1 min A 1	W + W +	log π 2 log π 2	+ log(1 + |x| 2 )dµ V (x) -1 n + o(n) n + o(n),

  BHS ≈ -0.0556053, and we find exactly the value C BHS conjectured by Brauchart, Hardin and Saff in [6, Conjecture 4]. Therefore Conjecture 1.3 is true if and only if the triangular lattice Λ 1 is a global minimizer of W among vector-fields in A 1 , i.e.

	Thus, we get												
	1 π	W (Λ 1 ) +	log π 2	+ log 2						
	= = 2 log 2 + 1 π π log π -1 2 log π 2 2 log 3 -3π log(Γ(1/3)) + 3 + 3 log √ π Γ(1/3) = C min A 1 W = W (Λ 1 ) = π log √ 3Γ(1/3) 3 3 2 π log 2 + 2 √ 2π .	log π 2	+ log 2
	Thus we obtain the following result						
	Theorem 7.7. We have:									
	1. It holds n→+∞ lim	1 n	E log (n) -	1 2	-log 2 n 2 +	n 2	log n ≤ 2 log 2 +	1 2	log	2 3	+ 3 log	√ π Γ(1/3)	.
	2. Conjectures 1.3 and 1.4 are equivalent, i.e. min A 1				

W = W (Λ 1 ) ⇐⇒ C = C BHS .

See Section 3.1 for the precise definition

A Bravais lattice of R 2 , also called "simple lattice" is L = Z u ⊕ Z v where ( u, v) is a basis of R 2 .

SeeSection 7.3 
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We have the following identity:

Furthermore, if |y| → +∞, we obtain, for any x ∈ R 2 :

We note Σ S = T (Σ) ∪ {N } the closure of T (Σ) in S. Let M 1 (Σ) be the set of probability measures on Σ. For µ ∈ M 1 (Σ), we denote by T #µ its push-forward measure by T characterized by

for every Borel function f : Σ S → R. The following result is proved in [START_REF] Hardy | A Note on Large Deviations for 2D Coulomb Gas with Weakly Confining Potential[END_REF]:

7.2 Asymptotic expansion of the optimal logarithmic energy on the unit sphere An important case is the equilibrium measure associated to the potential

corresponding to the external field V ≡ 0 on S and where T #µ V is the uniform probability measure on S (see [START_REF] Hardy | A Note on Large Deviations for 2D Coulomb Gas with Weakly Confining Potential[END_REF]). Hence V is an admissible potential and from (3.6) we find

We define

and we recall that the logarithmic energy of a configuration (y 1 , ..., y n ) ∈ S n is given by

Furthermore, we recall that E log (n) denotes the minimal logarithmic energy of n points on S 2 . Lemma 7.2. For any (x 1 , ..., x n ) ∈ (R 2 ) n , we have the following equalities:

which imply that (x 1 , ..., x n ) minimizes w n ⇐⇒ (T (x 1 ), ..., T (x n )) minimizes E log (x 1 , ..., x n ) minimizes w n ⇐⇒ (T (x 1 ), ..., T (x n ), N ) minimizes E log .

Proof. For any 1 ≤ i ≤ n, we set y i := T (x i ), hence we get, by (7.1), E log (y 1 , ...., y n ) := -

Furthermore, by (7.1), we obtain

in the weak sense of measures.

Proof. Let (x 1 , ..., x n ) be a minimizer of wn , then (T (x 1 ), ..., T (x n )) is a minimizer of E log . Brauchart, Dragnev and Saff proved in [4, Proposition 11] that

As T #µ V ({N }) = 0, by Lemma 7.1 we get the result. If (x 1 , ..., x n ) is a minimizer of w n , then (T (x 1 ), ..., T (x n ), N ) minimizes E log and we can use our previous argument because

in the weak sense of measures, and we have the same conclusion. There exists minimizers of w n for which the same is true.