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Abstract

We use a simple N -player stochastic game with idiosyncratic and common noises to introduce the
concept of Master Equation originally proposed by Lions in his lectures at the Collège de France. Con-
trolling the limit N Ñ 8 of the explicit solution of the N -player game, we highlight the stochastic nature
of the limit distributions of the states of the players due to the fact that the random environment does
not average out in the limit, and we recast the Mean Field Game (MFG) paradigm in a set of coupled
Stochastic Partial Differential Equations (SPDEs). The first one is a forward stochastic Kolmogorov
equation giving the evolution of the conditional distributions of the states of the players given the com-
mon noise. The second is a form of stochastic Hamilton Jacobi Bellman (HJB) equation providing the
solution of the optimization problem when the flow of conditional distributions is given. Being highly
coupled, the system reads as an infinite dimensional Forward Backward Stochastic Differential Equation
(FBSDE). Uniqueness of a solution and its Markov property lead to the representation of the solution of
the backward equation (i.e. the value function of the stochastic HJB equation) as a deterministic function
of the solution of the forward Kolmogorov equation, function which is usually called the decoupling field
of the FBSDE. The (infinite dimensional) PDE satisfied by this decoupling field is identified with the
master equation. We also show that this equation can be derived for other large populations equilibriums
like those given by the optimal control of McKean-Vlasov stochastic differential equations.

The paper is written more in the style of a review than a technical paper, and we spend more time and
energy motivating and explaining the probabilistic interpretation of the Master Equation, than identifying
the most general set of assumptions under which our claims are true.

1 Introduction

In several lectures given at the Collège de France, P.L. Lions describes mean-field games by a single equation
referred to as the master equation. Roughly speaking, this equation encapsulates all the information about
the Mean Field Game (MFG) into a single equation. The purpose of this paper is to review its theoretical
underpinnings and to derive it for general MFGs with common noise.

The master equation is a Partial Differential Equation (PDE) in time, the state controlled by the players
(typically an element of a Euclidean space, say R

d), and the probability distribution of this state. While
the usual differential calculus is used in the time domain r0, T s and in the state space R

d, the space PpRdq
of probability measures needs to be endowed with a special differential calculus described in Lions’ lectures,
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and explained in the notes Cardaliaguet wrote from these lectures, [1]. See also [2] and the appendix at the
end of the paper.

Our goal is to emphasize the probabilistic nature of the master equation, as the associated characteristics
are (possibly random) paths with values in the space R

d ˆ PpRdq. Our approach is especially enlightening
for mean field games in a random environment (see Section 2 for definitions and examples), the simplest
instances occurring in the presence of random shocks common to all the players. In that framework, the
characteristics are given by the dynamics of ppXt,LpXt|W 0qqq0ďtďT , where pXtq0ďtďT is the equilibrium
trajectory of the game, as identified by the solution of the mean field game problem, and pLpXt|W 0qq0ďtďT

which denotes its conditional marginal distributions given the value of the common noise, describes the
conditional distribution of the population at equilibrium. Examples of mean field games with a common
noise were considered in [10], [9] and [6]. Their theory is developed in the forthcoming paper [4] in a rather
general setting.

As in the analysis of standard MFG models, the main challenge is the solution of a coupled system of
a forward and a backward PDEs. However, in the random environment case, both equations are in fact
stochastic PDEs (SPDEs). The forward SPDE is a Kolmogorov equation describing the dynamics of the
conditional laws of the state given the common noise, and the backward SPDE is a stochastic Hamilton-
Jacobi-Bellman equation describing the dynamics of the value function. Our contention is that this couple
of SPDEs should be viewed as a Forward Backward Stochastic Differential Equation (FBSDE) in infinite
dimension. For with this point of view, if some form of Markov property holds, it is natural to expect
that the backward component can be written as a function of the forward component, this function being
called the decoupling field. In finite dimension, a simple application of Itô’s formula shows that when the
decoupling field is smooth, it must satisfy a PDE. We use an infinite dimensional version of this argument
to derive the master equation. The infinite dimension version of Itô’s formula needed for the differential
calculus chosen for the space of measures is taken from another forthcoming paper [7] and is adapted to the
case of a random environment in the appendix.

While the MFG approach does not ask for the solution of stochastic equations of the McKean-Vlasov
type at first, the required fixed point argument identifies the equilibrium trajectory of the game as the de
facto solution of such an equation. This suggests that the tools developed for solving MFG problems could
be reused for solving optimal control problems of McKean-Vlasov dynamics. In the previous paper [2], we
established a suitable version of the stochastic Pontryagin principle for the control of McKean-Vlasov SDEs
and highlighted the differences with the version of the stochastic Pontryagin principle used to tackle MFG
models. Here we show in a similar way that our derivation of the master equation can be used as well for
this other type of large population equilibrium problem.

The paper is organized as follows. Mean field games in a random environment are presented in Section 2.
The problem is formulated in terms of a stochastic forward-backward system in infinite dimension. A specific
example, taken from [6], is exposed in Section 3. The master equation is derived explicitly. In Section 4, we
propose a more systematic approach approach of the master equation for large population control problems
in a random environment. We consider both the MFG problem and the control of McKean-Vlasov dynamics.
Another example, taken from [10], is revisited in Section 5. We end up with the proof of the chain rule
along flow of random measures in the Appendix.

When analyzed within the probabilistic framework of the stochastic maximum principle, MFGs with a
common noise lead to the analysis of stochastic differential equations conditioned on the knowledge of some of
the driving Brownian motions. These forms of conditioned forward stochastic dynamics are best understood
in the framework of Terry Lyons’ theory of rough paths. Indeed integrals and differentials with respect to the
conditioned paths can be interpreted in the sense of rough paths while the meaning of the others can remain
in the classical Itô calculus framework. We thought this final remark was appropriate given the raison d’être
of the present volume, and our strong desire to convey our deepest appreciation to the man, and pay homage
to the mathematician as a remarkably creative scientist.
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2 Mean Field Games in a Random Environment

The basic purpose of mean-field game theory is to analyze asymptotic Nash equilibriums for large populations
of individuals with mean-field interactions. This goes back to the earlier and simultaneous and independent
works of Lasry and Lions in [12, 13, 14] and Caines, Huang and Malhamé in [11].

Throughout the paper, we shall consider the problem when the individuals (also referred to as particles
or players) are subject to two sources of noise: an idiosyncratic noise, independent from one particle to
another, and a common one, accounting for the common environment in which the individuals evolve. We
decide to model the environment by means of a zero-mean Gaussian white noise field W 0 “ pW 0pΛ, BqqΛ,B ,
parameterized by the Borel subsets Λ of a Polish space Ξ and the Borel subsets B of r0,8q, such that

E
“

W 0pΛ, BqW 0pΛ1, B1q
‰

“ ν
`

Λ X Λ1
˘

|B X B1|,

where we used the notation |B| for the Lebesgue measure of a Borel subset of r0,8q. Here ν is a non-negative
measure on Ξ, called the spatial intensity of W 0. Often we shall use the notation W 0

t for W 0p ¨ , r0, tsq, and
most often, we shall simply take Ξ “ R

ℓ.
We now assume that the dynamics in R

d, with d ě 1, of the private state of player i P t1, ¨ ¨ ¨ , Nu are
given by stochastic differential equations (SDEs) of the form:

dXi
t “ b

`

t,Xi
t , µ

N
t , αi

t

˘

dt ` σ
`

t,Xi
t , µ

N
t , αi

t

˘

dW i
t `

ż

Ξ

σ0
`

t,Xi
t , µ

N
t , αi

t, ξ
˘

W 0pdξ, dtq, (1)

where W 1, . . . ,WN are N independent Brownian motions, independent of W 0, all of them being defined
on some filtered probability space pΩ,F “ pFtqtě0,Pq. For simplicity, we assume that W 0,W 1, . . . ,WN are
1-dimensional (multidimensional analogs can be handled along the same lines). The term µN

t denotes the
empirical distribution of the particles are time t:

µN
t “ 1

N

N
ÿ

i“1

δXi
t
.

The processes ppαi
tqtě0q1ďiďN are progressively-measurable processes, with values in an open subset A of

some Euclidean space. They stand for control processes. The coefficients b, σ and σ0 are defined accordingly
on r0, T s ˆ R

d ˆ PpRdq ˆ ApˆΞq with values in R
d, in a measurable way, the set PpRdq denoting the space

of probability measures on R
d endowed with the topology of weak convergence.

The simplest example of random environment corresponds to a coefficient σ0 independent of ξ. In this
case, the random measure W 0 may as well be independent of the spatial component. In other words, we
can assume that W 0pdξ, dtq “ W 0pdtq “ dW 0

t , for an extra Wiener process W 0 independent of the space
location ξ and of the idiosyncratic noise terms pW iq1ďiďN , representing an extra source of noise which is
common to all the players.

If we think of W 0pdξ, dtq as a random noise which is white in time (to provide the time derivative of
a Brownian motion) and colored in space (the spectrum of the color being given by the Fourier transform
of ν), then the motivating example we should keep in mind is a function σ0 of the form σ0pt, x, µ, α, ξq „
σ0pt, x, µ, αqδpx ´ ξq (with Ξ “ R

d and where δ is a mollified version of the delta function which we treat as
the actual point mass at 0 for the purpose of this informal discussion). In which case the integration with
respect to the spatial part of the random measure W 0 gives

ż

Rd

σ0pt,Xi
t , µ

N
t , αi

t, ξqW 0pdξ, dtq “ σ0pt,Xi
t , µ

N
t qW 0pXi

t , dtq,

which says that, at time t, the private state of player i is subject to several sources of random shocks: its
own idiosyncratic noise W i

t , but also, an independent white noise shock picked up at the very location/value
of his own private state.
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2.1 Asymptotics of the Empirical Distribution µN
t

The rationale for the MFG approach to the search for approximate Nash equilibriums for large games is
based on several limiting arguments, including the analysis of the asymptotic behavior as N Ñ 8 of the
empirical distribution µN

t coupling the states dynamics of the individual players. By the symmetry of our
model and de Finetti’s law of large numbers, this limit should exist if we allow only exchangeable strategy
profiles pα1

t , ¨ ¨ ¨ , αN
t q. This will be the case if we restrict ourselves to distributed strategy profiles of the

form α
j
t “ αpt,Xj

t , µ
N
t q for some deterministic (smooth) function pt, x, µq ÞÑ αpt, x, µq P A.

In order to understand this limit, we can use an argument from propagation of chaos theory, as exposed
in the lecture notes by Sznitman [19]. Another (though equivalent) way consists in discussing the action of
µ̄N
t on test functions for t P r0, T s, T denoting some time horizon. Fixing a smooth test function φ with

compact support in r0, T s ˆ R
d and using Itô’s formula, we compute:

dxφpt, ¨ q, 1

N

N
ÿ

j“1

δ
X

j
t
y “ 1

N

N
ÿ

j“1

dφpt,Xj
t q

“ 1

N

N
ÿ

j“1

ˆ

Btφpt,Xj
t qdt ` ∇φpt,Xj

t q ¨ dXj
t ` 1

2
tracet∇2φpt,Xj

t qdrXj ,Xjstu
˙

“ 1

N

N
ÿ

j“1

Btφpt,Xj
t qdt ` 1

N

N
ÿ

j“1

∇φpt,Xj
t q ¨ σ

`

t,X
j
t , µ

N
t , αpt,Xj

t , µ
N
t q

˘

dW
j
t

` 1

N

N
ÿ

j“1

∇φpt,Xj
t q ¨ b

`

t,X
j
t , µ

N
t , αpt,Xj

t , µ
N
t q

˘

dt

` 1

N

N
ÿ

j“1

∇φpt,Xj
t q ¨

ż

Ξ

σ0
`

t,X
j
t , µ

N
t , αpt,Xj

t , µ
N
t q, ξ

˘

W 0pdξ, dtq

` 1

2N

N
ÿ

j“1

trace

"ˆ

rσσ:s
`

t,X
j
t , µ

N
t , αpt,Xj

t , µ
N
t q

˘

`
ż

Ξ

rσ0σ0:s
`

t,X
j
t , µ

N
t , αpt,Xj

t , µ
N
t q, ξ

˘

νpdξq
˙

∇
2φpt,Xj

t q
*

dt

Our goal is to take the limit as N Ñ 8 in this expression. Using the definition of the measures µN
t we can

rewrite the above equality as:

xφpt, ¨ q, µN
t y ´ xφp0, ¨ q, µN

0 y

“ OpN´1{2q `
ż t

0

@

Btφps, ¨ q, µN
s yds `

ż t

0

@

∇φps, ¨ q ¨ b
`

s, ¨ , µN
s , αps, ¨ , µN

s q
˘

, µN
s yds

` 1

2

ż t

0

B

trace

"ˆ

rσσ:s
`

s, ¨ , µN
s , αps, ¨ , µN

s q
˘

`
ż

Ξ

rσ0σ0:s
`

s, ¨ , µN
s , αps, ¨ , µN

s q, ξ
˘

νpdξq
˙

∇
2φpt, ¨ q

*

, µN
s

F

ds

`
ż t

0

@

∇φps, ¨ q ¨
ż

Ξ

σ0
`

s, ¨ , µN
s , αps, ¨ , µN

s q, ξ
˘

W 0pdξ, dsq, µN
s

D

,

which shows (formally) after integration by parts that, in the limit N Ñ 8,

µt “ lim
NÑ8

µN
t
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appears as a solution of the Stochastic Partial Differential Equation (SPDE)

dµt “ ´∇ ¨
“

b
`

t, ¨ , µt, αpt, ¨ , µtq
˘

µt

‰

dt ´ ∇ ¨
ˆ
ż

Ξ

σ0
`

t, ¨ , µt, αpt, ¨ , µtq, ξ
˘

W 0pdξ, dtqµt

˙

` 1

2
trace

„

∇
2

ˆ

“

σσ:
‰`

t, ¨ , µt, αpt, ¨ , µtq
˘

`
ż

Ξ

“

σ0σ0:
‰`

t, ¨ , µt, αpt, ¨ , µtq, ξ
˘

νpdξq
˙

µt



dt.

(2)

This SPDE reads as a stochastic Kolmogorov equation. It describes the flow of marginal distributions of
the solution of a conditional McKean-Vlasov equation, namely:

dXt “ b
`

t,Xt, µt, αpt,Xt, µtq
˘

dt ` σ
`

t,Xt, µt, αpt,Xt, µtq
˘

dWt

`
ż

Ξ

σ0pt,Xt, µt, αpt,Xt, µtq, ξ
˘

W 0pdξ, dtq,
(3)

subject to the constraint µt “ LpXt|F0
t q, where F0 “ pF0

t qtě0 is the filtration generated by the spatial white
noise measure W 0. Throughout the whole paper, the letter L refers to the law, so that LpXt|F0

t q denotes
the conditional law of Xt given F0

t . The connection between (2) and (3) can be checked by expanding
pxφpt, ¨q, µty “ EpφpXtq|F0

t qq0ďtďT by means of Itô’s formula.
For the sake of illustration we rewrite this SPDE in a few particular cases which we will revisit later on:

1. If we assume that σpt, x, µ, αq ” σ is a constant, that σ0pt, x, µ, αq ” σ0pt, xq is also uncontrolled and
that the spatial white noise is actually scalar, namely W pdξ, dtq “ dW 0

t for a scalar Wiener process W 0

independent of the Wiener processes pW iqiě1, then the stochastic differential equations giving the dynamics
of the state of the system read

dXi
t “ bpt,Xi

t , µ
N
t , αi

tqdt ` σdW i
t ` σ0pt,Xi

tqdW 0
t , i “ 1, ¨ ¨ ¨ , N (4)

and the limit µt of the empirical distributions satisfies the equation

dµt “ ´∇ ¨
“

b
`

t, ¨ , µt, αpt, ¨ , µtq
˘

µt

‰

dt ´ ∇ ¨
`

σ0pt, ¨ qdW 0
t µt

˘

` 1

2
trace

”

∇
2

´

“

σσ: ` σ0σ0:
‰

pt, ¨ q
¯

µt

ı

dt.
(5)

Writing the corresponding version (3), rough paths theory would permit to express the dynamics of the
path pXtqtě0 conditional on the values of W 0. This would be another way to express the dynamics of the
conditional marginal laws of pXtqtě0 given W 0.

2. Note that, when the ambient noise is not present (i.e. either σ0 ” 0 or W 0 ” 0), this SPDE reduces
to a deterministic PDE. It is the Kolmogorov equation giving the forward dynamics of the distribution at
time t of the nonlinear diffusion process pXtqtě0 (nonlinear in McKean’s sense).

2.2 Solution Strategy for Mean Field Games

When players are assigned a cost functional, a natural (and challenging) question is to determine equilibriums
within the population. A typical framework is to assume that the cost to player i, for any i P t1, . . . , Nu,
writes

J ipα1, . . . , αN q “ E

„
ż T

0

f
`

t,Xi
t , µ

N
t , αi

t

˘

dt ` g
`

Xi
T , µ

N
T

˘



,

for some functions f : r0, T s ˆR
d ˆPpRdq ˆA Ñ R and g : Rd ˆPpRdq Ñ R. Keep in mind the fact that the

cost J i depends on all the controls ppαj
t q0ďtďT qjPt1,...,Nu through the flow of empirical measures pµN

t q0ďtďT .
In the search for a Nash equilibrium α, one assumes that all the players j but one keep the same strategy

profile α, and the remaining player deviates from this strategy in the hope of being better off. If the number
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of players is large (think N Ñ 8), one expects that the empirical measure µN
t will not be affected much

by the deviation of one single player, and for all practical purposes, one can assume that the empirical
measure µN

t is approximately equal to its limit µt. So in the case of large symmetric games, the search for
approximate Nash equilibriums could be done through the solution of the optimization problem of one single
player (typically the solution of a stochastic control problem instead of a large game) when the empirical
measure µN

t is replaced by the solution µt of the SPDE (2) appearing in this limiting regime, the ‘α’ plugged
in (2) denoting the strategy used by the players at equilibrium.

The implementation of this method can be broken down into three steps for pedagogical reasons:

(i) Given an initial distribution µ0 on R
d, fix an arbitrary measure valued adapted stochastic process

pµtq0ďtďT over the probability space of the random measure W 0. It stands for a possible candidate
for being a Nash equilibrium.

(ii) Solve the (standard) stochastic control problem (with random coefficients)

inf
pαtq0ďtďT

E

„
ż T

0

fpt,Xt, µt, αtqdt ` gpXT , µT q


(6)

subject to

dXt “ b
`

t,Xt, µt, αt

˘

dt ` σ
`

t,Xt, µt, αt

˘

dWt `
ż

Ξ

σ0
`

t,Xt, µt, αt, ξ
˘

W 0pdξ, dtq,

with X0 „ µ0, over controls in feedback form, Markovian in X conditional on the past of the flow of
random measures pµtq0ďtďT .

(iii) Plug the optimal feedback function αpt, x, µtq in the SPDE (2). Then, determine the measure valued
stochastic process pµtq0ďtďT so that the solution of the SPDE (2) be precisely pµtq0ďtďT itself.

Clearly, this last item requires the solution of a fixed point problem in an infinite dimensional space, while
the second item involves the solution of an optimization problem in a space of stochastic processes. Thanks
to the connection between the SPDE (2) and the McKean-Vlasov equation (3), the fixed point item (iii)
reduces to the search for a flow of random measures pµtq0ďtďT such that the law of the optimally controlled
process (resulting from the solution of the second item) is in fact µt, i.e.

@t P r0, T s, µt “ LpXt|F0
t q.

In the absence of the ambient random field noise term W 0, the measure valued adapted stochastic process
pµtq0ďtďT can be taken as a deterministic function r0, T s Q t ÞÑ µt P PpRdq and the control problem in item
(ii) is a standard Markovian control problem. Moreover, the fixed point item (iii) reduces to the search for a
deterministic flow of measures r0, T s Q t ÞÑ µt P PpRdq such that the optimally controlled process (resulting
from the solution of the second item) satisfies LpXtq “ µt.

2.3 Stochastic HJB Equation

In this subsection, we study the stochastic control (ii) when the flow of random measures µ “ pµtq0ďtďT is
fixed. Optimization is performed over the set A of F-progressively measurable A-valued processes pαtq0ďtďT

satisfying

E

ż T

0

|αt|2dt ă 8.

For each pt, xq P r0, T s ˆR
d, we let pXt,x

s qtďsďT be the solution of the stochastic differential equation (being
granted that it is well-posed)

dXs “ bps,Xs, µs, αsqds ` σps,Xs, µs, αsqdWs `
ż

Ξ

σ0ps,Xs, µa, αs, ξqW 0pdξ, dsq, (7)

6



with Xt “ x. With this notation, we define the (conditional) cost

J
µ
t,x

`

pαsqtďsďT

˘

“ E

„
ż T

t

fps,Xt,x
s , µs, αsqds ` gpXt,x

T , µT q
ˇ

ˇ

ˇ
F

0
t



(8)

and the (conditional) value function

V µpt, xq “ ess inf
pαsqtďsďT PA

J
µ
t,x

`

pαsqtďsďT

˘

. (9)

We shall drop the superscript and write Xs for Xt,x
s when no confusion is possible. Under some regularity

assumptions, we can show that, for each x P R
d, pV pt, xqq0ďtďT is an F

0-semi-martingale and deduce, by
identification of its Itô decomposition, that it solves a form of stochastic Hamilton-Jacobi Bellman (HJB)
equation. Because of the special form of the state dynamics (7), we introduce the (nonlocal) operator symbol

L˚
`

t, x, y, z, pz0pξqqξPΞ

˘

“ inf
αPA

„

bpt, x, µt, αq ¨ y ` 1

2
trace

`

rσσ:spt, x, µt, αq ¨ z
˘

` fpt, x, µt, αq

` 1

2
trace

ˆ
ż

Ξ

rσ0σ0:spt, x, µt, α, ξqdνpξqs ¨ z
˙

`
ż

Ξ

σ0
`

t, x, µt, α, ξq ¨ z0pξqdνpξq


.

(10)

Assuming that the value function is smooth enough, we can use a generalization of the dynamic programming
principle to the present set-up of conditional value functions to show that V µpt, xq satisfies a form of
stochastic HJB equation as given by a parametric family of BSDEs in the sense that:

V µpt, xq “ gpxq `
ż T

t

L˚
`

s, x, BxV ps, xq, B2xV µps, xq, pZµps, x, ξqqξPΞ

˘

ds

`
ż T

t

Zµps, x, ξqW 0pdξ, dsq.
(11)

Noticing that W 0 enjoys the martingale representation theorem (see Chapter 1 in [17]), this result can be
seen as part of the folklore of the theory of backward SPDEs (see for example [18] or [16]).

2.4 Towards the Master Equation

The definition of L˚ in (10) suggests that the optimal feedback in (8) could be identified as a function α̂

of t, x, µt, V
µpt, ¨q and Zµpt, ¨, ¨q realizing the infimum appearing in the definition of L˚. Plugging such a

choice for α in the SPDE (2), we deduce that the fixed point condition in the item (iii) of a definition of an
MFG equilibrium could be reformulated in terms of an infinite dimensional FBSDE, the forward component
of which being the Kolmogorov SPDE (2) (with the specific choice of α) and the backward component the
stochastic HJB equation (11). The forward variable would be pµtq0ďtďT and the backward one would be
pV µpt, ¨qq0ďtďT . Standard FBSDE theory suggests the existence of a decoupling field expressing the backward
variable in terms of the forward one, in other words that V µpt, xq could be written as V pt, x, µtq for some
function V , or equivalently, that V µpt, ¨q could be written as V pt, ¨, µtq. Using a special form of Itô’s change
of variable formula proven in the appendix at the end of the paper, these decoupling fields are easily shown,
at least when they are smooth, to satisfy PDEs or SPDEs in the case of FBSDEs with random coefficients.
The definition of the special notion of smoothness required for this form of Itô formula is recalled in the
appendix. This is our hook to Lions’s master equation. In order to make this point transparent, we strive
in the sequel, to provide a better understanding of the mapping V : r0, T s ˆ R

d ˆ PpRdq Ñ R and of its
dynamics.
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3 An Explicitly Solvable Model

This section is devoted to the analysis of an explicitly solvable model. It was introduced and solved in [6].
We reproduce the part of the solution which is relevant to the present discussion. Our interest in this model
is the fact that the finite player game can be solved explicitly and the limit N Ñ 8 of the solution can be
controlled. We shall use it as a motivation and testbed for the introduction of the master equation of mean
field games with a common noise.

3.1 Constructions of Exact Nash Equilibria for the N-Player Game

We denote by Xi
t the log-capitalization of a bank i P t1, ¨ ¨ ¨ , Nu at time t. We assume that each bank

controls its rate of borrowing and lending through the drift of Xi
t in such a way that:

dXi
t “

“

apmN
t ´ Xi

tq ` αi
t

‰

dt ` σ

ˆ

a

1 ´ ρ2dW i
t ` ρdW 0

t

˙

, (12)

where W i
t , i “ 0, 1, . . . , N are independent scalar Wiener processes, σ ą 0, a ě 0, and mN

t denotes the
sample mean of the Xi

t as defined by mN
t “ pX1

t ` ¨ ¨ ¨ ` XN
t q{N . So, in the notation introduced in (1), we

have

bpt, x, µ, αq “ apm ´ xq ` α, with m “
ż

R

xµpdxq,

since the drift of pXi
tqtě0 at time t depends only uponXi

t itself and the mean mN
t of the empirical distribution

µN
t of Xt “ pX1

t , ¨ ¨ ¨ ,XN
t q, and

σpt, x, µ, αq “ σ
a

1 ´ ρ2, and σ0pt, xq “ σρ.

Bank i P t1, ¨ ¨ ¨ , Nu controls its rate of lending and borrowing (to a central bank) at time t by choosing the
control αi

t in order to minimize

J ipα1, ¨ ¨ ¨ , αN q “ E

„
ż T

0

fpt,Xi
t , µ

N
t , αi

tqdt ` gpXi
T , µ

N
T q



, (13)

where the running and terminal cost functions f and g are given by:

fpt, x, µ, αq “ 1

2
α2 ´ qαpm ´ xq ` ǫ

2
pm ´ xq2,

gpx, µq “ c

2
pm ´ xq2,

(14)

where, as before, m denotes the mean of the measure µ. Clearly, this is a Linear-Quadratic (LQ) model and,
thus, its solvability should be equivalent to the well-posedness of a matricial Riccati equation. However,
given the special structure of the interaction, the Ricatti equation is in fact scalar and can be solved explicitly
as we are about to demonstrate.

Given an N -tuple pα̂iq1ďiďN of functions from r0, T s ˆ R into R, we define, for each i P t1, ¨ ¨ ¨ , Nu, the
related value function V i by:

V ipt, x1, . . . , xN q “ inf
pαi

sqtďsďT

E

„
ż T

t

f
`

s,Xi
s, µ

N
s , αi

s

˘

ds ` gipXi
T , µ

N
T q

ˇ

ˇ

ˇ
Xt “ x



,

with the cost functions f and g given in (14), and where the dynamics of pX1
s , . . . ,X

N
s qtďsďT are given in

(12) with X
j
t “ xj for j P t1, . . . , Nu and α

j
s “ α̂jps,Xj

s q for j �“ i. By dynamic programming, the N scalar
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functions V i must satisfy the system of HJB equations:

BtV ipt, xq ` inf
αPR

 `

apx ´ xiq ` α
˘

BxiV ipt, xq ` 1

2
α2 ´ qα

`

x ´ xi
˘(

` ǫ

2
px̄ ´ xiq2

`
ÿ

j �“i

`

apx ´ xjq ` α̂jpt, xjq
˘

BxjV jpt, xq ` σ2

2

N
ÿ

j“1

N
ÿ

k“1

`

ρ2 ` δj,kp1 ´ ρ2q
˘

B2
xjxkV

ipt, xq “ 0,

for pt, xq P r0, T s ˆ R
N , where we use the notation x for the mean x “ px1 ` ¨ ¨ ¨ ` xN q{N and with the

terminal condition V ipT, xq “ pc{2qpx´xiq2. The infima in these HJB equations can be computed explicitly:

inf
αPR

 `

apx ´ xiq ` α
˘

BxiV ipt, xq ` 1

2
α2 ´ qα

`

x ´ xi
˘(

“ apx ´ xiqBxiV ipt, xq ´ 1

2

“

q
`

x ´ xi
˘

´ BxiV ipt, xq
‰2
,

the infima being attained for
α “ q

`

x ´ xi
˘

´ BxiV ipt, xq.
Therefore, the Markovian strategies pα̂iq1ďiďN forms a Nash equilibrium if α̂ipt, xq “ q

`

x´xi
˘

´ BxiV ipt, xq,
which suggests to solve the system of N coupled HJB equations:

BtV i `
N
ÿ

j“1

“

pa ` qq
`

x ´ xj
˘

´ BxjV j
‰

BxjV i ` σ2

2

N
ÿ

j“1

N
ÿ

k“1

`

ρ2 ` δj,kp1 ´ ρ2q
˘

B2xjxkV
i

` 1

2
pǫ ´ q2q

`

x ´ xi
˘2 ` 1

2
pBxiV iq2 “ 0, i “ 1, ¨ ¨ ¨ , N,

(15)

with the same boundary terminal condition as above. Then, the feedback functions α̂ipt, xq “ qpx ´ xiq ´
BxiV ipt, xq are expected to give the optimal Markovian strategies. Generally speaking, these systems of HJB
equations are usually difficult to solve. Here, because the particular forms of the couplings and the terminal
conditions, we can solve the system by inspection, checking that a solution can be found in the form

V ipt, xq “ ηt

2
px ´ xiq2 ` χt, (16)

for some deterministic scalar functions t ÞÑ ηt and t ÞÑ χt satisfying ηT “ c and χT “ 0 in order to match
the terminal conditions for the V is. Indeed, the partial derivatives BxjV i and BxjxkV i read

BxjV ipt, xq “ ηt
` 1

N
´ δi,j

˘ `

x ´ xi
˘

, B2
xjxkV

ipt, xq “ ηt
` 1

N
´ δi,j

˘

p 1

N
´ δi,kq.

and plugging these expressions into (15), and identifying term by term, we see that the system of HJB
equations is solved if an only if

$

’

&

’

%

9ηt “ 2pa ` qqηt `
`

1 ´ 1

N2

˘

η2t ´ pǫ ´ q2q,

9χt “ ´1

2
σ2p1 ´ ρ2q

`

1 ´ 1

N

˘

ηt,
(17)

with the terminal conditions ηT “ c and χT “ 0. As emphasized earlier, the Riccati equation is scalar and
can be solved explicitly. One gets:

ηt “ ´pǫ ´ q2q
`

epδ`´δ´qpT´tq ´ 1
˘

´ c
`

δ`epδ`´δ´qpT´tq ´ δ´
˘

`

δ´epδ`´δ´qpT´tq ´ δ`
˘

´ cp1 ´ 1{N2q
`

epδ`´δ´qpT´tq ´ 1
˘ , (18)
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provided we set:

δ˘ “ ´pa ` qq ˘
?
R, with R “ pa ` qq2 `

ˆ

1 ´ 1

N2

˙

pǫ ´ q2q ą 0. (19)

Observe that the denominator in (18) is always negative since δ` ą δ´, so that ηt is well defined for any
t ď T . The condition q2 ď ǫ implies that ηt is positive with ηT “ c. Once ηt is computed, one solves for χt

(remember that χT “ 0) and finds:

χt “ 1

2
σ2p1 ´ ρ2q

´

1 ´ 1

N

¯

ż T

t

ηs ds. (20)

For the record, we note that the optimal strategies read

α̂i
t “ q

`

Xt ´ Xi
t

˘

´ BxiV i “
´

q ` p1 ´ 1

N
qηt

¯

`

Xt ´ Xi
t

˘

, (21)

and the optimally controlled dynamics:

dXi
t “

´

a ` q ` p1 ´ 1

N
qηt

¯

`

Xt ´ Xi
t

˘

dt ` σ
´

a

1 ´ ρ2dW i
t ` ρdW 0

t

¯

. (22)

3.2 The Mean Field Limit

We emphasize the dependence upon the number N of players and we now write ηNt and χN
t for the solutions

ηt and χt of the system (17), and V i,Npt, xq “ pηN {2qpx ´ xiq2 `χN
t for the value function of player i in the

N player game. Clearly,
lim

NÑ8
ηNt “ η8

t , and lim
NÑ8

χN
t “ χ8

t ,

where the functions η8
t and χ8

t solve the system:

$

&

%

9η8
t “ 2pa ` qqη8

t ` pη8
t q2 ´ pǫ ´ q2q,

9χ8
t “ ´1

2
σ2p1 ´ ρ2qη8

t ,
(23)

which is solved as in the case N finite. We find

η8
t “ ´pǫ ´ q2q

`

epδ`´δ´qpT´tq ´ 1
˘

´ c
`

δ`epδ`´δ´qpT´tq ´ δ´
˘

`

δ´epδ`´δ´qpT´tq ´ δ`
˘

´ c
`

epδ`´δ´qpT´tq ´ 1
˘ , (24)

and

χ8
t “ 1

2
σ2p1 ´ ρ2q

ż T

t

η8
s ds. (25)

Next we consider the equilibrium behavior of the players’ value functions V i,N . For the purpose of the
present discussion we notice that the value functions V i,N of all the players in the N player game can be
written as

V i,N
`

t, px1, ¨ ¨ ¨ , xN q
˘

“ V N

ˆ

t, xi,
1

N

N
ÿ

j“1

δxj

˙

where the single function V N is defined as

V N pt, x, µq “ ηNt
2

ˆ

x ´
ż

R

xdµpxq
˙2

` χN
t , pt, x, µq P r0, T s ˆ R ˆ P1pRq,
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where P1pRdq denotes the space of integrable probability measures on R
d. Since the dependence upon the

measure is only through the mean of the measure, we shall often use the function

vN pt, x,mq “ ηNt
2

px ´ mq2 ` χN
t , pt, x,mq P r0, T s ˆ R ˆ R,

Notice that, at least for pt, x,mq fixed, we have

lim
NÑ8

vN pt, x,mq “ v8pt, x,mq

where

v8pt, x,mq “ η8
t

2
px ´ mq2 ` χ8

t , pt, x,mq P r0, T s ˆ R ˆ R.

Similarly, all the optimal strategies in (21) may be expressed through a single feedback function α̂N pt, x,mq “
rq ` p1 ´ 1{NqηNt spm ´ xq as α̂i

t “ α̂N pt,Xi
t ,m

N
t q. Clearly,

lim
NÑ8

α̂N pt, x,mq “ α̂8pt, x,mq,

where α̂8pt, x,mq “ rq ` ηtspm ´ xq.
Repeating the analysis in Subsection 2.1, we find that the limit of the empirical distributions satisfies

the following version of (5):

dµt “ ´Bx
ˆ

rapmt ´ ¨ q ´ α8pt, ¨ qsµt

˙

dt ` σ2

2
B2xµtdt ´ σρBxµtdW

0
t , t P r0, T s, (26)

where mt “
ş

Rd xdµtpxq, which is the Kolmogorov equation for the conditional marginal law given W 0 of
the solution of the McKean-Vlasov equation:

dX t “
“

a
`

mt ´ Xtq ` α8pt,X tq
‰

dt ` σ
´

ρdW 0
t `

a

1 ´ ρ2dWt

¯

, (27)

subject to the condition mt “ ErX t|F0
t s. Applying the Kolmogorov equation to the test function φpxq “ x,

we get

dmt “
ˆ
ż

α8pt, xqdµtpxq
˙

dt ` σρdW 0
t . (28)

We now write the stochastic HJB equation (11) in the present context. Remember that we assume that
the stochastic flow pµtq0ďtďT is given (as the solution of (26) with some prescribed initial condition µ0 “ µ),
and hence so is pmtq0ďtďT . Here

L˚pt, x, y, z, z0q “ inf
αPA

„

rapmt ´ xq ` αsy ` σ2

2
z ` σρz0 ` α2

2
´ qαpmt ´ xq ` ǫ

2
pmt ´ xq2



.

Since the quantity to minimize is quadratic in α, we need to compute it for ᾱ “ ᾱpt, x,mt, yq with
ᾱpt, x,m, yq “ qpm ´ xq ´ y. We get:

L˚pt, x, y, z, z0q “ pa ` qqpmt ´ xqy ´ 1

2
y2 ` σ2

2
z ` σρz0 ` 1

2
pǫ ´ q2qpmt ´ xq2.

Accordingly, the stochastic HJB equation takes the form

dtV
µpt, xq “

„

´ pa ` qqpmt ´ xqBxV µpt, xq ` 1

2
rBxV µpt, xqs2 ´ σ2

2
B2xV µpt, xq

´ σρBxZµpt, xq ´ 1

2
pǫ ´ q2qpmt ´ xq2



dt ´ Zµpt, xqdW 0
t , (29)

with the boundary condition V
µ
t pxq “ pc{2qpmT ´ xq2.
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3.3 Search for a Master Equation

A natural candidate for solving (29) is the random field pt, xq ÞÑ v8pt, x,mtq, where as above pmtq0ďtďT

denotes the means of the solution pµtq0ďtďt of the Kolmogorov SPDE (26). This can be checked rigorously
by using the expression of v8 and by expanding pv8pt, x,mtqq0ďtďT by Itô’s formula (taking advantage
of (28)). As suggested at the end of the previous section, this shows that the stochastic HJB equation
admits a solution V µpt, xq that can be expressed as a function of the current value µt of the solution of the
Kolmogorov SPDE, namely

V µpt, xq “ v8

ˆ

t, x,

ż

Rd

x1dµtpx1q
˙

.

The same argument shows that pXtq0ďtďT defined in (27) as a solution of a McKean-Vlasov SDE is in fact
the optimal trajectory of the control problem considered in the item (ii) of the definition of a MFG, see
(6), under the solution pµtq0ďtďT of the stochastic PDE (26). Put it differently, pµtq0ďtďT is a solution of
the MFG and the function α8 is the associated feedback control, as suggested by the asymptotic analysis
performed in the previous paragraph.

A natural question is to characterize the dynamics of the function v8 in an intrinsic way. By definition
of the value function (see (9)), we have

V µpt,X tq “ E

„
ż T

t

f
`

s,Xs, µs, α̂
8ps,Xsq

˘

ds ` g
`

XT , µT

˘ˇ

ˇFt



so that
dV µpt,X tq “ ´f

`

t,X t, µt, α̂
8pt,X tq

˘

dt ` dMt, t P r0, T s,
for some pFtq0ďtďT -martingale pMtq0ďtďT . Recalling that ᾱpt, x,m, yq “ qpm ´ xq ´ y, Bxv8pt, x,mq “
η8
t px ´ mq, and α̂8pt, x,mq “ rq ` ηtspm ´ xq, we deduce that

α̂8pt, x,mq “ ᾱ
`

t, x,m, Bxv8pt, x,mq
˘

,

which is the standard relationship in stochastic optimal control for expressing the optimal feedback in terms
of the minimizer ᾱ of the underlying extended Hamiltonian and of the gradient of the value function v8.
We deduce that

f
`

t,Xt, µt, α̂
8pt,X tq

˘

“ ´1

2

`

qpmt ´ X tq ´ Bxv8pt,X t,mtq
˘`

qpmt ´ X tq ` Bxv8pt,X t,mtq
˘

` ǫ

2

`

mt ´ Xt

˘2
,

so that

dV µpt,X tq “
´

´ 1

2
pǫ ´ q2qpmt ´ Xtq2 ´ 1

2

“

Bxv8pt,X t,mtq
‰2
¯

dt ` dMt. (30)

We are to compare this Itô expansion with the Itô expansion of pv8pt,X t,mtqq0ďtďT . Using the short-hand
notation v8

t for v8pt,X t,mtq and standard Itô’s formula, we get:

dv8
t “ Btv8

t dt ` Bxv8
t dX t ` Bmv8

t dmt ` σ2

2
B2xxv8

t ` σ2

2
ρ2B2mmv8

t ` σ2ρ2B2xmv8
t

“
”

Btv8
t ` Bxv8

t apmt ´ X tq ` Bxv8
t α̂8pt,X tq ` Bmv8

t xµt, α
8pt, ¨ qy

` σ2

2
B2xv8

t ` σ2

2
ρ2B2mv8

t ` σ2ρ2B2xmv8
t



dt

` σρrBxv8
t ` Bmv8

t sdW 0
t ` σ

a

1 ´ ρ2Bxv8
t dWt.

(31)
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Identifying the bounded variation terms in (30) and (31), we get:

Btv8
t ` Bxv8

t apmt ´ X tq ` Bxv8
t α̂8pt,X tq ` Bmv8

t xµt, α
8pt, ¨ qy

` σ2

2
B2xv8

t ` σ2

2
ρ2B2mv8

t ` σ2ρ2B2xmv8
t “ ´1

2
pǫ ´ q2qpmt ´ Xtq2 ´ 1

2

“

Bxv8
t

‰2
,

where α̂8pt, x,mq “ qpm ´ xq ´ Bxv8pt, x,mq. Therefore, for a general smooth function V : pt, x,mq ÞÑ
V pt, x,mq, the above relationship with v8 replaced by V holds if

BtV pt, x,mq ` pa ` qqpm ´ xqBxV pt, x,mq ` 1

2
pǫ ´ q2qpm ´ xq2 ´ 1

2
rBxV pt, x,mqs2

` σ2

2
B2xV pt, x,mq ` σ2

2
ρ2B2mV pt, x,mq ` σ2ρ2B2xmV pt, x,mq “ 0,

(32)

for all pt, x,mq P r0, T s ˆ R
d ˆ R

d provided we have

ż

BxV pt, x,mqdµpxq “ 0, 0 ď t ď T, (33)

(33) being used to get rid of the interaction between µt and α8. Obviously, v8 satisfies (33). (Notice that
this implies that the stochastic Kolmogorov equation becomes: dmt “ ρσdW 0

t .)
Equation (32) reads as the dynamics for the decoupling field permitting to express the value function

V µ as a function of the current statistical state µt of the population. We call it the master equation of the
problem.

4 The Master Equation

While we only discussed mean field games so far, it turns out that the concept of master equation applies
as well to the control of dynamics of McKean-Vlasov type whose solution also provides approximate equi-
libriums for large populations of individuals interacting through mean field terms. See [2] for a detailed
analysis. We first outline a procedure common to the two problems. Next we specialize this procedure to
the two cases of interest, deriving a master equation in each case. Finally, we highlight the differences to
better understand what differentiates these two related problems.

4.1 General Set-Up

Stated in loose terms, the problem is to minimize the quantity

E

„
ż T

0

fps,Xα
s , µs, αsqds ` gpXα

T , µT q


(34)

over the space of square integrable F-adapted controls pαsq0ďsďT under the constraint that

dXα
s “ b

`

s,Xα
s , µs, αs

˘

ds ` σps,Xα
s , µs, αsqdWs `

ż

Ξ

σ0ps,Xα
s , µs, αs, ξqW 0pdξ, dsq. (35)

Yet the notion of what we call a minimizer must be specified. Obvious candidates for a precise definition
of the minimization problem lead to different solutions. We consider two specifications: on the one hand,
mean field games and control of McKean-Vlasov dynamics on the other.

1. When handling mean-field games, minimization is performed along a frozen flow of measures pµs “
µ̂sq0ďsďT describing a statistical equilibrium of the population, and the stochastic process pX̂sq0ďsďT formed
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by the optimal paths of the optimal control problem (34) is required to satisfy the matching constraints
µ̂s “ LpX̂s|F0

s q for 0 ď s ď T . This is exactly the procedure described in Subsection 2.2.
2. Alternatively, minimization can be performed over the set of all the solutions of (35) subject to the

McKean-Vlasov constraint pµs “ µα
s q0ďsďT , with µα

s “ LpXα
s |F0

s q for 0 ď s ď T , in which case the problem
consists in minimizing the cost functional (34) over McKean-Vlasov diffusion processes.

As discussed painstakingly in [5], the two problems have different solutions since, in mean field games,
the minimization is performed first and the fitting of the distribution of the optimal paths is performed
next, whereas in the control of McKean-Vlasov dynamics, the McKean-Vlasov constraint is imposed first
and the minimization is handled next. Still, we show here that both problems can be reformulated in terms
of master equations, and we highlight the differences between the two in these reformulations.

The reason for handling both problems within a single approach is that in both cases, we rely on
manipulations of a value function defined over the enlarged state space R

d ˆ P2pRdq. For technical reasons,
we restrict ourselves to measures in P2pRdq which denotes the space of square integrable probability measures
(i.e. probability measures with a finite second moment). Indeed, for each pt, x, µq P r0, T s ˆ R

d ˆ P2pRdq,
we would like to define V pt, x, µq as the expected future costs:

V pt, x, µq “ E

„
ż T

t

fps,Xα̂
s , µ̂s, α̂sqds ` gpXα̂

T , µ̂T q
ˇ

ˇXα̂
t “ x



, (36)

where α̂ minimizes the quantity (34) when we add the constraint µt “ µ and compute the time integral
between t and T . In other words:

pα̂sqtďsďT “ argminαE

„
ż T

t

fps,Xα
s , µs, αsqds ` gpXα

T , µT q


, (37)

the rule for computing the infimum being as explained above, either from the mean field game procedure
as in 1, or from the optimization over McKean-Vlasov dynamics as explained in 2. In both cases, the flow
pµ̂sqtďsďT appearing in (36) satisfies the fixed point condition pµ̂s “ LpXα̂

s |F0,t
s qqtďsďT , which is true in both

cases as pXα̂
s qtďsďT is an optimal path. Here and in the following pF0,t

s qtďsďT is the filtration generated by
the future increments of the common noise W 0, in the sense that F0,t

s “ σtW 0
r ´ W 0

t : t ď r ď su. Recall
that we use the notation W 0

r for tW 0pΛ, r0, rquΛ when Λ varies through the Borel subsets of Ξ. Below, the
symbol ‘hat’ always refers to optimal quantities, and pXα̂

s qtďsďT is sometimes denoted by pX̂sqtďsďT .

Generally speaking, the definition of the (deterministic) function V pt, x, µq makes sense whenever the
minimizer pα̂sqtďsďT exists and is unique. When handling mean-field games, some additional precaution
is needed to guarantee the consistency of the definition. Basically, we also need that, given the initial
distribution µ at time t, there exists a unique equilibrium flow of conditional probability measures pµ̂sqtďsďT

satisfying µ̂t “ µ and µ̂s “ LpX̂s|F0,t
s q for all s P rt, T s, where pX̂sqtďsďT is the optimal path of the

underlying minimization problem (performed under the fixed flow of measures pµ̂sqtďsďT ). In that case,
the minimizer pα̂sqtďsďT reads as the optimal control of pX̂sqtďsďT . In the case of the optimal control of
McKean-Vlasov stochastic dynamics, minimization is performed over the set of conditional McKean-Vlasov
diffusion processes with the prescribed initial distribution µ at time t, in other words, satisfying (35) with
LpXtq “ µ and µs “ µα

s “ LpXα
s |F0,t

s q for all s P rt, T s. In that case, the mapping pt, µq ÞÑ
ş

Rd V pt, x, µqdµpxq
appears as the value function of the optimal control problem:

E
“

V pt, χ, µq
‰

“ inf
α

E

„
ż T

t

f
`

s,Xα
s ,LpXα

s |F0,t
s q, αs

˘

ds ` g
`

Xα
T ,LpXα

T |F0,t
T q

˘



, (38)

subject to Xα
t “ χ where χ is a random variable with distribution µ, i.e. χ „ µ.

Our goal is to characterize the function V as the solution of a partial differential equation (PDE) on the
space r0, T s ˆ R

d ˆ P2pRdq. In the framework of mean-field games, such an equation was touted in several
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presentations, and called the master equation. See for example [15], [1] or [9]. We discuss the derivation of
this equation below in Subsection 4.4. Using a similar strategy, we also derive a master equation in the case
of the optimal control of McKean-Vlasov stochastic dynamics in Subsection 4.5 below.

4.2 Dynamic Programming Principle

In order to understand better the definition (36), we consider the case in which the minimizer pα̂sqtďsďT

has a feedback form, namely α̂s reads as α̂ps,Xα̂
s , µ̂sq for some function α̂ : r0, T s ˆ R

d ˆ P2pRdq Ñ R. In
this case, (36) becomes

V pt, x, µq “ E

„
ż T

t

f
`

s,Xα̂
s , µ̂s, α̂ps,Xα̂

s , µ̂sq
˘

ds ` gpXα̂
T , µ̂T q

ˇ

ˇXα
t “ x



, (39)

where pXα̂
s qtďsďT is the solution (if well-defined) of (35) with αs replaced by α̂ps,Xα̂

s , µ̂sq. It is worth
recalling that, in that writing, µ̂s matches the conditional law LpXα̂

s |F0,t
s q and is forced to start from µ̂t “ µ

at time t.

Following the approach used in finite dimension, a natural strategy is then to use (39) as a basis for
deriving a dynamic programming principle for V . Quite obviously, a very convenient way to do so consists
in requiring the optimal pair pX̂s “ Xα̂

s , µ̂sqtďsďT to be Markov in R
d ˆ P2pRdq, in which case we get

V pt ` h,Xα̂
t`h, µ̂t`hq

“ E

„
ż T

t`h

fps,Xα̂
s , µ̂s, α̂sqds ` gpXα̂

T , µ̂T q
ˇ

ˇF
0,t
t`h _ σ

 

Xα̂
t , pWs ´ WtqsPrt,t`hs

(



.

Here, the σ-field F
0,t
t`h _ σtXα̂

t , pWs ´ WtqsPrt,t`hsu comprises all the events observed up until time t ` h.

The rigorous proof of the Markov property for the path pX̂s “ Xα̂
s , µ̂sqtďsďT is left open. Intuitively, it

sounds reasonable to expect that the Markov property holds if, for any initial distribution µ, there exists a
unique equilibrium pµ̂sqtďsďT starting from µ̂t “ µ at time t P r0, T s. The reason is that, when uniqueness
holds, there is no need to investigate the past of the optimal path in order to decide of the future of the
dynamics. Such an argument is somehow quite generic in probability theory. In particular, the claim is
expected to be true in both cases, whatever the meaning of what an equilibrium is. Of course, this suggests
that the following dynamic version of (36)

V pt, x, µq “ E

„
ż t`h

t

fps,Xα̂
s , µ̂s, α̂sqds ` V

`

t ` h,Xα̂
t`h, µ̂t`h

˘ˇ

ˇXα̂
t “ x



(40)

must be valid. The fact that (40) should be true in both cases is the starting point for our common analysis
of the master equation. For instance, as a by-product of (40), we can derive a variational form of the
dynamic programming principle:

E
“

V pt, χ, µq
‰

“ inf E

„
ż t`h

t

fps,Xα
s , µs, αsqds ` V pt ` h,Xα

t`h, µt`hq


, (41)

which must be true in both cases as well, provided the random variable χ has distribution µ, i.e. χ „ µ, the
minimization being defined as above according to the situation.

The proof of (41) is as follows. First, we observe from (39) that (41) must be valid when t ` h “ T .
Then, (40) implies that the left-hand side is greater than the ride-hand side by choosing pα̂sqtďsďT as a
control. To prove the converse inequality, we choose an arbitrary control pαsqtďsďt`h between times t and
t ` h. In the control of McKean-Vlasov dynamics, this means that the random measures pµsqtďsďt`h are
chosen accordingly, as they depend on pαsqtďsďt`h, so that µt`h is equal to the conditional law of Xα

t`h
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at time t ` h. At time t ` h, this permits to switch to the optimal strategy starting from pXα
t`h, µt`hq.

The resulting strategy is of a greater cost than the optimal one. By (39), this cost is exactly given by the
right-hand side in (41).

In the framework of mean field games, the argument for proving that the left-hand side is less than the
right-hand side in (41) is a bit different. The point is that the flow pµsqtďsďT is fixed and matches pµ̂sqtďsďT ,
so that α̂ps,Xα̂

s , µ̂sq reads as an optimal control for optimizing (34) in the environment pµs “ µ̂sqtďsďT . So
in that case, V pt, x, µq is expected to match the optimal conditional cost

V pt, x, µq “ inf E

„
ż T

t

fps,Xα
s , µ̂s, αsqds ` gpXα

T , µ̂T q
ˇ

ˇXα
t “ x



, (42)

where pXα
s qtďsďT solves the SDE (35) with pµs “ µ̂sqtďsďT therein. Going back to (41), the choice of an

arbitrary control pαsqtďsďt`h between times t and t`h doesn’t affect the value of pµsqtďsďt`h, which remains
equal to pµ̂sqtďsďt`h. At time t ` h, this permits to switch to the optimal strategy starting from Xα

t`h in
the environment pµ̂sqtďsďT . Again, the resulting strategy is of a greater cost than the optimal one and, by
(39), this cost is exactly given by the right-hand side in (41).

We emphasize that, when controlling McKean-Vlasov dynamics, (42) fails as in that case, the flow of
measures is not frozen during the minimization procedure. In particular, the fact that (42) holds true in
mean-field games only suggests that V satisfies a stronger dynamic programming principle in that case:

V pt, x, µq “ inf E

„
ż t`h

t

fps,Xα
s , µ̂s, αsqds ` V

`

t ` h,Xα
t`h, µ̂t`h

˘ˇ

ˇXα
t “ x



. (43)

The reason is the same as above. On the one hand, (40) implies that the left-hand side is greater than
the ride-hand side by choosing pα̂sqtďsďT as a control. On the other hand, choosing an arbitrary control
pα̂sqtďsďt`h between t and t`h and switching to the optimal control starting from Xα

t`h in the environment
pµ̂sqtďsďT , the left-hand side must be less than the right-hand side.

4.3 Derivation of the Master Equation

As illustrated earlier (see also the discussion of the second example below), the derivation of the master
equation can be based on a suitable chain rule for computing the dynamics of V along paths of the form
(35). This requires V to be smooth enough in order to apply an Itô like formula.

In the example tackled in the previous section, the dependence of V upon the measure reduces to a
dependence upon the mean of the measure, and a standard version of Itô’s formula could be used. In
general, the measure argument lives in infinite dimension and different tools are needed. The approach
advocated by P.L. Lions in his lectures at the Collège de France suggests to lift-up the mapping V into

Ṽ : r0, T s ˆ R
d ˆ L2pΩ̃, F̃ , P̃;Rdq Q pt, x, χ̃q ÞÑ Ṽ pt, x, χ̃q “ V pt, x,Lpχ̃qq,

where pΩ̃, F̃ , P̃q can be viewed as a copy of the space pΩ,F ,Pq. The resulting Ṽ is defined on the product
of r0, T s ˆ R

d and a Hilbert space, for which the standard notion of Fréchet differentiability can be used.
Demanding V to be smooth in the measure argument is then understood as demanding Ṽ to be smooth
in the Fréchet sense. In that perspective, expanding pV ps,Xα

s , µsqqtďsďT is then the same as expanding
pṼ ps,Xα

s , χ̃sqqtďsďT , where the process pχ̃sqtďsďT is an Itô process with pµsqtďsďT as flow of marginal
conditional distributions (conditional on F0,t).

The fact that we require pχ̃sqtďsďT to have pµsqtďsďT as flow of marginal conditional distributions calls
for some precaution in the construction of the lifting. A way to do just this consists in writing pΩ,F ,Pq in
the form pΩ0 ˆ Ω1,F0 b F1,P0 b P

1q, pΩ0,F0,P0q supporting the common noise W 0, and pΩ1,F1,P1q the
idiosyncratic noise W . So an element ω P Ω can be written as ω “ pω0, ω1q P Ω0 ˆ Ω1. Considering a copy
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pΩ̃1, F̃1, P̃1q of the space pΩ1,F1,P1q, it then makes sense to consider the process pχ̃sqtďsďT as the solution
of an equation of the same form of (35), but on the space pΩ0 ˆ Ω̃1,F0 b F̃1,P0 b P̃

1q, pΩ̃1, F̃1, P̃1q being
endowed with a copy W̃ of W . The realization at some ω0 P Ω0 of the conditional law of χ̃s given F0 then
reads as the law of the random variable χ̃spω0, ¨q P L2pΩ̃1, F̃1, P̃1;Rdq. Put in our framework, this makes
rigorous the identification of Lpχ̃spω0, ¨qq with µspω0q.
Generally speaking, we expect that pṼ ps,Xα

s , χ̃sq “ Ṽ ps,Xα
s pω0, ω1q, χ̃spω0, ¨qqqtďsďT can be expanded as

dṼ
`

s,Xα
s , χ̃s

˘

“
“

BtṼ ps,Xα
s , χ̃sq ` Aα

x Ṽ ps,Xα
s , χ̃sq ` Aα

µṼ ps,Xα
s , χ̃sq

` Aα
xµṼ ps,Xα

s , χ̃sq
‰

ds ` dMs, t ď s ď T,
(44)

with Ṽ pT, x, χ̃q “ gpx,Lpχ̃qq as terminal condition, where

piq Aα
x denotes the second-order differential operator associated to the process pXα

s qtďsďT . It acts on
functions of the state variable x P R

d and thus on the variable x in Ṽ pt, x, χ̃q in (44).

piiq Aα
µ denotes some second-order differential operator associated to the process pχ̃sqtďsďT . It acts on

functions from L2pΩ̃1, F̃1, P̃1;Rdq into R and thus on the variable χ̃ in Ṽ pt, x, χ̃q.

piiiq Aα
xµ denotes some second-order differential operator associated to the cross effect of pXα

s qtďsďT and

pχ̃sqtďsďT , as both feel the same noise W 0. It acts on functions from R
d ˆL2pΩ̃1, F̃1, P̃1;Rdq and thus

on the variables px, χ̃q in Ṽ pt, x, χ̃q.

pivq pMsqtďsďT is a martingale.

A proof of (44) is given in the appendix at the end of the paper. Observe that Axµ ” 0 if there is no common
noise W 0. Plugging (44) into (41) and letting h tend to 0, we then expect:

BtE
“

Ṽ pt, χ, χ̃q
‰

` inf
α

E
“

Aα
x Ṽ pt, χ, χ̃q ` Aα

µṼ pt, χ, χ̃q ` Aα
xµṼ pt, χ, χ̃q ` fpt, χ, µ, αq

‰

“ 0, (45)

where χ are χ̃ random variables defined on pΩ1,F1,P1q and pΩ̃1, F̃1, P̃1q respectively, both being distributed
according to µ. If the minimizer has a feedback form, namely if the optimization over random variables
α reduces to optimization over random variables of the form α̂pt, χ, µq, α̂ being a function defined on
r0, T s ˆ R

d ˆ P2pRdq, then the same strategy applied to (40), shows that Ṽ satisfies the master equation

BtṼ pt, x, χ̃q ` Aα̂pt,x,µq
x Ṽ pt, χ, χ̃q ` Aα̂pt,x,µ̃q

µ Ṽ pt, χ, χ̃q ` Aα̂pt,x,µq
xµ Ṽ pt, χ, χ̃q

` f
`

t, χ, µ, α̂pt, x, µq
˘

“ 0.
(46)

Of course, the rule for computing the infimum in (45) depends on the framework. In the case of the
optimal control of McKean-Vlasov diffusion processes, pχ̃spω0, ω̃1qqtďsďT in (44) is chosen as a copy, denoted
by pX̃α

s pω0, ω̃1qqtďsďT , of pXα
s pω0, ω1qqtďsďT on the space pΩ0 ˆ Ω̃1,F0 b F̃1,P0 b P̃

1q. In that case, Aα
µ

depends on α explicitly. In the framework of mean field games, pχ̃spω0, ω̃1qqtďsďT is chosen as a copy of the
optimal path pX̂sqtďsďT of the optimization problem (36) under the statistical equilibrium flow initialized
at µ at time t. It does not depend on α so that Aα

µ does not depend on α. Therefore, Aµ “ Aα
µ has no role

in the computation of the infimum.

For the sake of illustration, we specialize the form of (46) to a simpler case when (35) reduces to

dXs “ bps,Xs, µs, αsqds ` σpXsqdWs ` σ0pXsqdW 0
s .
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In that case, we know from the results presented in the appendix that

Aα
x ϕ̃pt, x, χ̃q “ xb

`

t, x,Lpχ̃q, α
˘

, Bxϕ̃pt, x, χ̃qy

` 1

2
Trace

“

σpxq
`

σpxq
˘:B2xϕ̃pt, x, χ̃q

‰

` 1

2
Trace

“

σ0pxq
`

σ0pxq
˘:B2xϕ̃pt, x, χ̃q

‰

,

Aα
µϕ̃pt, x, χ̃q “ b

`

t, χ̃,Lpχ̃q, β̃
˘

¨ Dµϕ̃pt, x, χ̃q

` 1

2
D2

µϕ̃
`

t, x, χ̃
˘“

σ0pχ̃q, σ0pχ̃q
‰

` 1

2
D2

µϕ̃
`

t, x, χ̃
˘“

σpχ̃qG̃, σpχ̃qG̃
‰

,

Aα
xµϕ̃pt, x, χ̃q “ x

 

BxDµϕ̃
`

t, x, χ̃
˘

¨ σ0pχ̃q
(

, σ0pxq
D

,

(47)

where G̃ is an N p0, 1q random variable on the space pΩ̃1, F̃1, P̃1q, independent of W̃ . The notations Dµ and
D2

µ refer to Fréchet derivatives of smooth functions on the space L2pΩ̃1, F̃1, P̃1;Rdq. For a random variable

ζ̃ P L2pΩ̃1, F̃1, P̃1;Rdq, the notation Dµϕ̃pt, x, χ̃q ¨ ζ̃ denotes the action of the differential of ϕ̃pt, x, ¨q at point
χ̃ along the direction ζ̃. Similarly, the notation D2

µϕ̃pt, x, χ̃qrζ̃ , ζ̃s denotes the action of the second-order

differential of ϕ̃pt, x, ¨q at point χ̃ along the directions pζ̃ , ζ̃q. We refer to the appendix for a more detailed
account.

Notice that χ̃ in Aα
µϕ̃pt, x, χ̃q denotes the copy of χ, χ standing for the value at time t of the controlled

diffusion process pχsqtďsďT . Specifying the value of χ according to the framework used for performing
the optimization, we derive below the precise shape of the resulting master equation. Notice also that
Aα

xµϕ̃pt, x, χ̃q does not depend upon α as the coefficients σ0 and σ do not depend on it.

4.4 The Case of Mean Field Games

In the framework of Mean-Field Games, pχ̃sqtďsďT is chosen as a copy of the optimal path pX̂sqtďsďT . This
says that, in (47), χ̃ stands for the value at time t of the optimally controlled state from the optimization
problem (36) under the statistical equilibrium flow initialized at µ at time t. Therefore, the minimization
in (45) reduces to

inf
α

E
“

xbpt, χ, µ, αq, BxṼ pt, χ, χ̃qy ` fpt, χ, µ, αq
‰

“ inf
α

E
“

xbpt, χ, µ, αq, BxV pt, χ, µqy ` fpt, χ, µ, αq
‰

,
(48)

the equality following from the fact that BxṼ pt, x, χ̃q is the same as BxV pt, x, µq (as the differentiation is
performed in the component x).

Assume now that there exists a measurable mapping ᾱ : r0, T sˆR
dˆP2pRdqˆR

d Q pt, x, µq ÞÑ ᾱpt, x, µ, yq,
providing the argument of the minimization:

ᾱpt, x, µ, yq “ arg inf
αPRd

Hpt, x, µ, y, αq, (49)

where the reduced Hamiltonian H is defined as:

Hpt, x, µ, y, αq “ xbpt, x, µ, αq, yy ` fpt, x, µ, αq, (50)

Then, the minimizer in (48) must be α “ ᾱpt, χ, µ, BxV pt, χ, µqq, showing that α̂pt, x, µq “ ᾱpt, x, µ, BxV pt, x, µqq
is an optimal feedback. By (46), the master equation reads

BtṼ pt, x, χ̃q ` inf
α

H
`

t, x, µ, BxṼ pt, x, χ̃q, α
˘

`
`

Aµ ` Axµ

˘

Ṽ pt, x, χ̃q

` 1

2
Trace

“

σpxq
`

σpxq
˘:B2xṼ pt, x, χ̃q

‰

` 1

2
Trace

“

σ0pxq
`

σ0pxq
˘:B2xṼ pt, x, χ̃q

‰

“ 0.
(51)
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By identification of the transport term, this says that the statistical equilibrium of the MFG with µ as initial
distribution must be given by the solution of the conditional McKean-Vlasov equation:

dX̂s “ b
`

s, X̂s, µ̂s, ᾱ
`

s, X̂s, µ̂s, BxV ps, X̂s, µ̂sq
˘

` σ
`

X̂s

˘

dWs ` σ0
`

X̂s

˘

dW 0
s , (52)

subject to the constraint µ̂s “ LpX̂s|F0
s q for s P rt, T s, with X̂t „ µ. We indeed claim

Proposition 4.1. On the top of the assumption and notation introduced right above, assume that, for all
t P r0, T s, x P R

d and µ P P2pRdq

|ᾱpt, x, µ, yq| ď C

„

1 ` |x| ` |y| `
ˆ
ż

Rd

|x1|2dµpx1q
˙1{2

, (53)

and that the growths of the coefficients b, σ and σ0 satisfy a similar bound. Assume also that Ṽ is a (classical)
solution of (51) satisfying, for all t P r0, T s, x P Rd and χ̃ P L2pΩ̃1, F̃1, P̃1;Rdq,

|BxṼ pt, x, χ̃q| ` }DµṼ pt, x, χ̃q}L2pΩ̃1q ď C
´

1 ` |x| ` Ẽ
1
“

|χ̃|2
‰1{2

¯

, (54)

and that, for any initial condition pt, µq P r0, T s ˆ P2pRdq, Equation (52) has a unique solution. Then, the
flow pLpX̂s|F0

s qqtďsďT solves the mean field game with pt, µq as initial condition.

Proof. The proof consists of a verification argument. First, we notice from (53) and (54) that the solution
of (52) is square integrable in the sense that its supremum norm over r0, T s is square integrable. Similarly,
for any square integrable control α, the supremum of Xα (with Xα

t „ µ) is square integrable. The point is
then to go back to (42) and to plug µ̂s “ LpX̂s|F0

s q in the right-hand side. Replacing g by V pT, ¨, ¨q and
applying Itô’s formula in the appendix (see Proposition 6.5), using the growth and integrability assumptions
to guarantee that the expectation of the martingale part is zero, we deduce that the right-hand side is indeed
greater than V pt, x, µq. Choosing pαs “ ᾱps, X̂s, µ̂s, BxV ps, X̂s, µ̂sqqtďsďT , equality must hold. This proves
that pX̂sqtďsďT is a minimization path of the optimization problem driven by its own flow of conditional
distributions, which is precisely the definition of an MFG equilibrium.

Remark 4.2. Proposition 4.1 says that the solution of the master equation (51) contains all the information
needed to solve the mean field game problem. In that framework, it is worth mentioning that the flow of con-
ditional distributions pµ̂s “ LpX̂s|F0

s qqtďsďT solves the SPDE (2), with αps, ¨, µ̂sq “ ᾱps, x, µ̂s, BxV ps, x, µ̂sqq.
Notice finally that pYs “ BxV ps, X̂s, µ̂sqqtďsďT may be reinterpreted as the adjoint process in the stochastic
Pontryagin principle derived for mean field games in [3] (at least when there is no common noise W 0). In
that framework, it is worth mentioning that the function pt, x, µq ÞÑ BxV pt, x, µq reads as the decoupling field
of the McKean-Vlasov FBSDE deriving from the stochastic Pontryagin principle. It plays the same role as
the gradient of the value function in standard optimal control theory. See Subsection 4.6.

4.5 The Case of the Control of McKean-Vlasov Dynamics

When handling the control of McKean-Vlasov dynamics, pχ̃sqtďsďT is chosen as a copy of pXα
s qtďsďT . This

says that, in (47), α̃ reads as a copy of α so that the minimization in (45) takes the form

inf
α

E
“

xbpt, χ, µ, αq, BxṼ pt, χ, χ̃qy ` bpt, χ̃, µ, α̃q ¨ DµṼ pt, χ, χ̃q ` fpt, χ, µ, αq
‰

“ inf
α

E
1

”

xbpt, χ, µ, αq, BxV pt, χ, µqy ` Ẽ
1
“

xbpt, χ̃, µ, α̃q, BµV pt, χ, µqpχ̃qy
‰

` fpt, χ, µ, αq
ı

,

where the function BµV pt, x, µqp¨q represents the Fréchet derivative DµṼ pt, x, χ̃q, that is DµṼ pt, x, χ̃q “
BµV pt, x, µqpχ̃q. See the appendix at the end of the paper for explanations. By Fubini’s theorem, the
minimization can be reformulated as

inf
α

E
1

”

@

bpt, χ, µ, αq, BxV pt, χ, µq ` Ẽ
1
“

BµV pt, χ̃, µqpχq
‰D

` fpt, χ, µ, αq
ı

. (55)
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The strategy is then the same as in the previous paragraph. Assume indeed that there exists a measurable
mapping ᾱ : r0, T s ˆ R

d ˆ P2pRdq ˆ R
d Q pt, x, µq ÞÑ ᾱpt, x, µ, yq minimizing the reduced Hamiltonian as in

(49), then the minimizer in (55) must be

α̂ “ ᾱ
`

t, χ, µ, BxV pt, χ, µq ` Ẽ
1rBµV pt, χ̃, µqpχqs

˘

“ ᾱ

ˆ

t, χ, µ, BxV pt, χ, µq `
ż

Rd

BµV pt, x1, µqpχqdµpx1q
˙

,

showing that α̂pt, x, µq “ ᾱpt, x, µ, BxV pt, x, µq `
ş

Rd BµV pt, x1, µqpxqdµpx1qq is an optimal feedback. By (46),
this permits to make explicit the form of the master equation. Notice that the term in α̂ in (46) does not
read as an infimum, namely:

xb
`

t, x, µ, α̂pt, x, µq
˘

, BxV pt, x, µqy ` b
`

t, χ̃, µ, α̂pt, χ̃, µq
˘

¨ DµṼ pt, x, χ̃q ` f
`

t, x, µ, α̂pt, x, µq
˘

�“ inf
α

“

bpt, x, µ, αq ¨ BxṼ pt, x, χ̃q ` bpt, x, µ, α̃
˘

¨ DµṼ pt, x, χ̃q ` fpt, x, µ, αq
‰

.

This says that the optimal path solving the optimal control of McKean-Vlasov dynamics must be given by:

dX̂s “ b

„

s, X̂s, µ̂s, ᾱ

ˆ

s, X̂s, µ̂s, BxV ps, X̂s, µ̂sq `
ż

Rd

BµV ps, x1, µ̂sqpX̂sqdµ̂spx1q
˙

dt

` σ
`

X̂s

˘

dWs ` σ0
`

X̂s

˘

dW 0
s ,

(56)

subject to the constraint µ̂s “ LpX̂s|F0
s q for s P rt, T s, with X̂t „ µ. We indeed claim

Proposition 4.3. On the top of the assumptions and notations introduced above, assume that ᾱ, b, σ and
σ0 satisfy (53). Assume also Ṽ is a classical solution of (46) satisfying, for all t P r0, T s, x P R

d and
χ̃ P L2pΩ̃1, F̃1, P̃1;Rdq,

|BxṼ pt, x, χ̃q| ` }DµṼ pt, x, χ̃q}
2,Ω̃1 ď C

´

1 ` |x| ` Ẽ
1
“

|χ̃|2
‰1{2

¯

, (57)

and that, for any initial condition pt, µq P r0, T s ˆ P2pRdq, Equation (56) has a unique solution. Then, the
flow pLpX̂s|F0

s qqtďsďT solves the minimization problem (34), set over controlled McKean-Vlasov dynamics.

Proof. The proof consists again of a verification argument. As for mean field games, we notice from (53) and
(57) that the supremum (over r0, T s) of the solution of (56) is square integrable and that, for any (square
integrable) control α, the supremum of Xα (with Xα

t „ µ) is also square integrable. The point is then
to go back to (38). Replacing g by V pT, ¨, ¨q and applying Itô’s formula in the appendix (see Proposition
6.5) (taking benefit of the integrability condition (54) for canceling the expectation of the martingale part)
and using the same Fubini argument as in (55), we deduce that the right-hand side is indeed greater than
V pt, x, µq. Choosing αs “ α̂ps, X̂s, µ̂sq, with α̂pt, x, µq “ ᾱpt, x, µ, BxV pt, x, µq `

ş

Rd BµV pt, x1, µqpxqdµpx1qq,
equality must hold.

Remark 4.4. The flow of conditional distributions pµ̂s “ LpX̂s|F0
s qqtďsďT solves an SPDE, on the same

model as (2). The formulation of that SPDE is left to the reader.
Notice finally that pBxV ps, X̂s, µ̂sq `

ş

Rd BµV ps, x, µ̂sqpX̂sqdµ̂spxqqtďsďT may be reinterpreted as the ad-
joint process in the stochastic Pontryagin principle derived for the control of McKean-Vlasov dynamics in
[2] (at least when there is no common noise W 0). In particular, the function pt, x, µq ÞÑ BxV ps, x, µq `
ş

Rd BµV ps, x, µqpxqdµpxq reads as the decoupling field of the McKean-Vlasov FBSDE deriving from the
stochastic Pontryagin principle for the control of McKean-Vlasov dynamics. It is interesting to notice that
the fact that the formula contains two different terms is a perfect reflection of the backward propagation of
the terminal condition of the FBSDE. Indeed, as seen in [2], this terminal condition has two terms corre-
sponding to the partial derivatives of the terminal cost function g with respect to the state variable x and the
distribution µ. See Subsection 4.6.
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4.6 Viscosity Solutions

In the previous paragraph, we used the master equation within the context of a verification argument to
identify optimal paths of the underlying optimal control problem, and we alluded to the connection with
purely probabilistic methods derived from the stochastic Pontryagin principle. The stochastic Pontryagin
principle works as follows: under suitable conditions, optimal paths are identified with the forward compo-
nent of a McKean-Vlasov FBSDE. In that framework, our discussion permits to identify the gradient of the
function V with the decoupling field of the FBSDE. This FBSDE has the form:

#

dXs “ bps,Xs, µs, α̂ps,Xs, µs, Ysqqds ` σ0pXsqdW 0
s ` σpXsqdWs,

dYs “ ´Ψ
`

s,Xs, µs, α̂ps,Xs, µs, Ysq
˘

ds ` Z0
sdW

0
s ` ZsdWs, YT “ φpXT , µT q

(58)

for some functions pt, x, ν, αq ÞÑ Ψpt, x, ν, αq and px, µq ÞÑ φpx, µq, the McKean-Vlasov nature of the FBSDE
being due to the constraints µs “ LpXs|F0

s q and νs “ LppXs, Ysq|F0
s q.

In the mean field game case, the stochastic Pontryagin principle takes the form

Ψpt, x, ν, αq “ BxH
`

t, x, µ, y, α
˘

, φpx, µq “ Bxgpx, µq, (59)

where µ denotes the first marginal of ν, and

Ψpt, x, ν, αq “ BxH
`

t, x, µ, y, α
˘

`
ż

RdˆRd

`

BµH
`

t, x1, µ, y1, α1
˘

pxq
˘

|α1“α̂pt,x1,µ,y1q
νpdx1, dy1q,

φpx, µq “ Bxgpx, µq `
ż

Rd

Bµgpx1, µqpxqµpdx1q
(60)

in the case of the control of McKean-Vlasov dynamics.

One may wonder if a converse to the strategy discussed previously is possible: how could we reconstruct
a solution of the master equation from a purely probabilistic approach? Put it differently, given the solution
of the McKean-Vlasov FBSDE characterizing the optimal path via the stochastic Pontryagin principle, is
it possible to reconstruct V and to prove that it satisfies a PDE or SPDE which we could identify to the
master equation?

In the forthcoming paper [7], the authors investigate the differentiability of the flow of a McKean-Vlasov
FBSDE and manage, in some cases, to reconstruct V as a classical solution of the master equation.

A more direct approach consists in constructing V as a viscosity solution of the master equation. This
direct approach was used in [1] for non-stochastic games. In all cases the fundamental argument relies
on a suitable form of the dynamic programming principle. This was our motivation for the discussion in
Subsection 4.2. Still we must remember that Subsection 4.2 remains mostly at the heuristic level, and that a
complete proof of the dynamic programming principle in this context would require more work. This is where
the stochastic Pontryagin principle may help. If uniqueness of the optimal paths and of the equilibrium are
known (see for instance [3] and [2]), then the definition of V in (36) makes sense. In this case, not only do
we have the explicit form the optimal paths, but the dynamic programming principle is expected to hold.

We refrain from going into the gory details in this review paper. Instead, we take the dynamic pro-
gramming principle for granted. The question is then to derive the master equation for V in the viscosity
sense, from the three possible versions (43), (40) and (41). In the present context, since differentiability
with respect to one of the variables is done through a lifting of the functions, we will be using the following
definition of viscosity solutions.

Definition 4.5. We say that V is a super-solution (resp. sub-solution) in the sense of viscosity of the master
equation if whenever pt, x, µq P r0, T s ˆ R

d ˆ P2pRdq and the function r0, T s ˆ R
d ˆ P2pRdq Q ps, y, νq ÞÑ

ϕps, y, νq is continuously differentiable, once in the time variable s, and twice in the variables y and ν,
satisfies V pt, x, µq “ ϕpt, x, µq and V ps, y, νq ě ϕps, y, νq for all ps, y, νq then we have (45) and/or (46), with
Ṽ replaced by ϕ̃ and “ 0 replaced by ď 0 (respectively by ě 0).
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The reason why we say and/or might look rather strange. This will be explained below, the problem
being actually more subtle than it seems at first.

Following the approach used in standard stochastic optimal control problems, the proof could consist in
applying Itô’s formula to ϕ̃ps,Xα̂

s , µ̂sqtďsďt`h. In fact, there is no difficulty in proving the viscosity inequality
(46) by means of (40). Still, this result is rather useless as the optimizer α̂ is expected to depend upon the
gradient of Ṽ and much more, as α̂ reads as ᾱ applied to the gradient of Ṽ . The question is thus to decide
whether it makes sense to replace the gradient of Ṽ in ᾱ by the gradient of ϕ̃. To answer the question, we
must distinguish the two problems:

1. In the framework of mean field games, the answer is yes. The reason is that, when V is smooth,
the inequality V ě ϕ in the neighborhood of pt, x, µq implies BxV pt, x, µq “ Bxϕpt, x, µq. This says that we
expect ϕ̃ to satisfy (51) with “ 0 replaced by ď 0. Actually, this can be checked rigorously by means of the
stronger version (43) of the dynamic programming principle, following the proof in [8].

2. Unfortunately, this is false when handling the control of McKean-Vlasov dynamics. Indeed, the
gradient of V is then understood as BxV pt, x, µq `

ş

Rd BµV pt, x1, µqpxqdµpx1q, which is ‘non-local’ in the
sense that it involves values of V pt, x1, µq for x1 far away from x. In particular, there is no way one can
replace BxV pt, x, µq `

ş

Rd BµV pt, x1, µqpxqdµpx1q by Bxϕpt, x, µq `
ş

Rd Bµϕpt, x1, µqpxqdµpx1q on the single basis
of the comparison of ϕ and V . This implies that, in the optimal control of McKean-Vlasov dynamics,
viscosity solutions must be discussed in the framework of (45). Obviously, this requires adapting the notion
of viscosity solution as only the function pt, µq ÞÑ

ş

Rd V pt, x, µqdµpxq matters in the dynamic programming
principle (41). Comparison is then done with test functions of the form pt, µq ÞÑ

ş

Rd φpt, x, µqdµpxq (or simply
φpt, µq). The derivation of an inequality in (45) is then achieved by a new application of Itô’s formula.

4.7 Comparison of the Two Master Equations

We repeatedly reminded the reader that the function V obtained in the case of mean field games (whether
or not there is a common noise) is not a value function in the usual sense of optimal control. Indeed, solving
a mean field game problem is finding a fixed point problem more than solving an optimization problem.
For this reason, the master equation should not read (and should not be interpreted) as a Hamilton-Jacobi-
Bellman equation. Indeed, even though the first terms in Equation (51) are of Hamiltonian type, the extra
term Aµ (specifically the first order term in Aµ) shows that this equation is not an HJB equation. On
the other hand, the previous subsection shows that the master equation for the control of McKean-Vlasov
dynamics, which comes from an optimization problem, can be viewed as an HJB equation when put in
the form (45). In that case, the solution reads as the value function pt, µq ÞÑ

ş

Rd V pt, x, µqdµpxq of the
corresponding optimization problem.

5 A Second Example: A Simple Growth Model

The following growth model was introduced and studied in [10]. We review its main features by recasting it
in the framework of the present discussion of the master equation of mean field games with common noise.
In fact the common noise W 0 is the only noise of the model since σ ” 0 and the idiosyncratic noises do not
appear.

5.1 Background

As it is the case in many economic models, the problem in [10] is set for an infinite time horizon (T “ 8) with
a positive discount rate r ą 0. As we just said, σ ” 0. Moreover, the common noise is a one dimensional
Wiener process pW 0

t qtě0. As before, we denote by F
0 “ pF0

t qtě0 its filtration. We also assume that its
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volatility is linear, that is σ0pxq “ σx for some positive constant σ, and that each player controls the drift
of its state so that bpt, x, µ, αq “ α. In other words, the dynamics of the state of player i read:

dXi
t “ αi

tdt ` σXi
tdW

0
t . (61)

We shall restrict ourselves to Markovian controls of the form αi
t “ αpt,Xi

t q for a deterministic function
pt, xq ÞÑ αpt, xq, which will be assumed non-negative and Lipschitz in the variable x. Under these conditions,
for any player, say player 1, X1

t ě 0 at all times t ą 0 if X1
0

ě 0 and for any two players, say players 1 and
2, the homeomorphism property of Lipschitz SDEs implies that X1

t ď X2
t at all times t ą 0 if X1

0 ď X2
0 .

Note that in the particular case
αpt, xq “ γx (62)

for some γ ą 0, then
X2

t “ X1
t ` pX2

0 ´ X1
0 qepγ´σ2{2qt`σW 0

t . (63)

We assume that k ą 0 is a fixed parameter and we introduce a special notation for the family of scaled
Pareto distributions with decay parameter k. For any real number q ě 1, we denote by µpqq the Pareto
distribution:

µpqqpdxq “ k
qk

xk`1
1rq,8qpxqdx. (64)

Notice that X „ µp1q is equivalent to qX „ µpqq. We shall use the notation µt for the conditional distribution
of the state Xt of a generic player at time t ě 0 conditioned by the knowledge of the past up to time t as given
by F0

t . Under the prescription (62), we claim that, if µ0 “ µp1q, then µt “ µpqtq where qt “ epγ´σ2{2qt`σW 0
t .

In other words, conditioned on the history of the common noise, the distribution of the states of the players
remains Pareto with parameter k if it started that way, and the left-hand point of the distribution qt can
be understood as a sufficient statistic characterizing the distribution µt. This remark is an immediate
consequence of formula (63) applied to X1

t “ qt, in which case q0 “ 1, and X2
t “ Xt, implying that

Xt “ X0qt. So if X0 „ µp1q, then µt „ µpqtq. In particular, we have an explicit solution of the conditional
Kolmogorov equation in the case of the particular linear feedback controls.

5.2 Optimization Problem

We now introduce the cost functions and define the optimization problem. We first assume that the problem
is set for a finite horizon T . For the sake of convenience, we skip the stage of the N player game for N

finite, and discuss directly the limiting MFG problem in order to avoid dealing with the fact that empirical
measures do not have densities. The shape of the terminal cost g will be specified later on. Using the same
notation as in [10], we define the running cost function f by

fpx, µ, αq “ c
xa

rpdµ{dxqpxqsb ´ E

p

αp

rµprx,8qqsb ,

for some positive constants a, b, c, E and p ą 1 whose economic meanings are discussed in [10]. We use the
convention that the density is the density of the absolutely continuous part of the Lebesgue’s decomposition
of the measure µ, and that in the above sum, the first term is set to 0 when this density is not defined or is
itself 0. The extended Hamiltonian of the system (see (49)) reads

Hpx, y, µ, αq “ αy ` c
xa

rpdµ{dxqpxqsb ´ E

p

αp

rµprx,8qqsb

and the value ᾱ of α minimizing H is given by (for y ě 0):

ᾱ “ ᾱpx, µ, yq “
ˆ

y

E

“

µprx,8qq
‰b

˙1{pp´1q

(65)
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so that:

Hpx, y, µ, ᾱq “
ˆ

y

E

“

µprx,8qq
‰b

˙1{pp´1q

y ` c
xa

rpdµ{dxqpxqsb

´ E

p

´

py{Eqrµprx,8qqsb
¯p{pp´1q

rµprx,8qqsb

“ p ´ 1

p
E´1{pp´1qyp{pp´1q

“

µprx,8qq
‰b{pp´1q ` c

xa

rpdµ{dxqpxqsb .

In the particular case of linear controls (62), using the explicit formula (64) for the density of µpqq and the
fact that

µpqqprx,8qq “ 1 ^ qk

xk
,

we get

f
`

x, µpqq, α
˘

“ c
xa

pkqk{xk`1qb1txěqu ´ E

p

αp

1 ^ pqkb{xkbq

“ c

kbqkb
xa`bpk`1q1txěqu ´ E

pqkb
αp

`

xkb _ qkb
˘

,

and

ᾱpx, µ, yq “
„

y

E

´ qkb

xkb
^ 1

¯

1{pp´1q

, (66)

so that

Hpx, y, µpqq, ᾱq “ p ´ 1

p
E´1{pp´1qyp{pp´1q

´ qkb{pp´1q

xkb{pp´1q
^ 1

¯

` c
xa`pk`1qb

kbqkb
1txěqu.

5.3 Search for a Pareto Equilibrium

Assuming that the initial distribution of the values of the state is given by the Pareto distribution µp1q,
we now restrict ourselves in searching for equilibriums with Pareto distributions, which means that the
description of the equilibrium flow of measures pµ̂tq0ďtďT can be reduced to the description of the flow of
corresponding Pareto parameters pq̂tq0ďtďT . Introducing the letter V for denoting the solution of the master
equation, we know from (51) and Proposition 4.1 that the optimal feedback control must read

α̂pt, xq “ ᾱ
`

x, µ̂t, BxV pt, x, µ̂tq
˘

“
„BxV pt, x, µ̂tq

E

´ q̂kbt
xkb

^ 1
¯

1{pp´1q

.

In order to guarantee that the equilibrium flow of measures is of Pareto type, it must satisfy the condition:

γx “
ˆBxV pt, x, µ̂tq

E

q̂kbt
xkb

˙1{pp´1q

, x ě q̂t. (67)

for some γ ą 0. There is no need for checking the condition for x ă q̂t as the path driven by the Pareto
distribution is then always greater than or equal to pq̂tqtě0.

Since we focus on equilibriums of Pareto type, we compute the function V at distributions of Pareto
type only. It then makes sense to parameterize the problem and to seek for V in the factorized form:

Vpt, x, qq “ V pt, x, µpqqq,
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for some function V : pt, x, qq P r0, T s ˆ R ˆ R Ñ R. Then, the relationship (67) takes the form:

γx “
ˆBxVpt, x, qq

E

qkb

xkb

˙1{pp´1q

, x ě q.

The point is then to write the equation satisfied by V, namely the equivalent of (51) but satisfied by V

instead of V . First, we observe that, in (51), σpxq ” 0. Obviously, the difficult point is to rewrite Aµ and
Axµ as differential operators acting on the variables q and px, qq respectively.

A natural solution is to redo the computations used for deriving (51) by replacing Itô’s formula for the
measures pµ̂tq0ďtďT by Itô’s formula for pq̂tq0ďtďT , taking benefit that pq̂tq0ďtďT solves the SDE

dq̂t “ γq̂tdt ` σq̂tdWt, (68)

which is a consequence of (62) and (63). Then the term AµṼ in (51), which reads as the Itô expansion of
V along pµ̂tq0ďtďT , turns into the second-order differential operator associated to the SDE satisfied by q̂t,
namely

AqVpt, x, qq “ γqBqVpt, x, qq ` 1

2
σ2q2B2qVpt, x, qq.

Similarly, the term AxµṼ in (51), which reads as the bracket of the components in R
d and in P2pRdq in the

Itô expansion, turns into the second-order differential operator associated to bracket of the SDEs satisfied
by pXtq0ďtďT in (61) and by pq̂tq0ďtďT , namely

AxqVpt, x, qq “ σ2xqB2xqVpt, x, qq.

Rewriting (51), we get

BtVpt, x, qq ` p ´ 1

p
E´1{pp´1q

`

BxVpt, x, qq
˘p{pp´1q

´ qkb{pp´1q

xkb{pp´1q
^ 1

¯

` c
xa`pk`1qb

kbqkb
1txěqu

` γqBqVpt, x, qq ` 1

2
σ2
“

x2B2xVpt, x, qq ` q2B2qVpt, x, qq ` 2xqB2xvVpt, x, qq
‰

“ 0.

(69)

Now we look for a constant B ą 0 such that

Vpt, x, qq “ Vpx, qq “ B
xp`bk

qbk
, (70)

solves the parameterized master equation (69) on the set tx ě qu. Under the additional condition that
a ` b “ p, B must be the solution of the equation

p ´ 1

p
E´1{pp´1q

`

Bpp ` bkq
˘p{pp´1q ` c

kb
´ γBbk ` σ2

2
Bppp ´ 1q “ 0.

The condition (67) reads

γ “
´Bpp ` bkq

E

¯1{pp´1q
,

so that the above equation for B becomes

pp ` bkq1{pp´1qE´1{pp´1q
`

p ´ 1 ´ bk

p

˘

Bp{pp´1q ` σ2

2
ppp ´ 1qB ` c

kb
“ 0.

which always admits a solution if ppp ´ 1q ă bk. The fact that (69) is satisfied for x ě q is enough to prove
that

ˆ

VpX̂t, q̂tq `
ż t

0

f
`

X̂s, µ̂s, γX̂s

˘

ds

˙

0ďtďT

, with µ̂s “ µpq̂sq for s P r0, T s,
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is a martingale, whenever
dX̂t “ γX̂tdt ` σX̂tdW

0
t , t P r0, T s,

with X̂0 „ µq̂0 , and pq̂tq0ďtďT also solves (68). The reason is that X̂t ą q̂t for any t P r0, T s (equality X̂t “ q̂t
holds along scenarios for which X̂0 “ q̂0, which are of zero probability).

The martingale property is a part of the verification Proposition 4.1 for proving the optimality of
pX̂tq0ďtďT when pµ̂tq0ďtďT is the flow of conditional measures, but this is not sufficient. We must evaluate V
along a pair pXt, q̂tq0ďtďT , pXtq0ďtďT denoting a general controlled process satisfying (61). Unfortunately,
things then become more difficult as Xt might not be larger than q̂t. In other words, we are facing the
fact that V satisfies the PDE (69) on the set tx ě qu only. In order to circumvent this problem, a strategy
consists in replacing V by

Vpx, qq “ Bxp
´xbk

qbk
^ 1

¯

,

for the same constant B as above. Obviously, the PDE (69) is not satisfied when x ă q, but V defines a
subsolution on the set t0 ď x ă qu, as (69) holds but with “ 0 replaced by ě 0. Heuristically, this should
show that

ˆ

VpXt, q̂tq `
ż t

0

f
`

Xs, µ̂s, αs

˘

ds

˙

0ďtďT

(71)

is a submartingale when pXtq0ďtďT is an arbitrary controlled process driven by the control pαtq0ďtďT . Still,
the justification requires some precaution as the function V is not C2 (which is the standard framework to
apply Itô’s expansion), its first-order derivatives being discontinuous on the diagonal tx “ qu. The argument
for justifying the Itô expansion is a bit technical so that we just give a sketchy proof of it. Basically, we can
write VpXt, q̂tq “ BpXtqprϕpXt{q̂tqsbk, with ϕprq “ minp1, rq. The key point is that pXt{q̂tq0ďtďT is always
a bounded variation process, so that the expansion of pφpXt{q̂tqq0ďtďT , for some function φ, only requires
to control φ1 and not φ2. Then, we can regularize ϕ by a sequence pϕnqně1 such that pϕnq1prq “ 0, for
r ď 1 ´ 1{n, pϕnq1prq “ 1, for r ě 1 and pϕnq1prq P r0, 1s for r P r1 ´ 1{n, 1s. The fact that pϕnq1prq is
uniformly bounded in n permits to expand pBpXtqprϕnpXt{q̂tqsbkq0ďtďT and then to pass to the limit.

The submartingale property shows that

ż

Rd

Vpx, q̂0qdµq̂0pxq ď inf
pαtq0ďtďT

„
ż T

0

fpXt, q̂t, αtqdt ` VpXT , q̂T q


, (72)

which, together with the martingale property along pX̂tq0ďtďT , shows that equality holds and that the Pareto
distributions pµ̂tq0ďtďT form a MFG equilibrium, provided g is chosen as V. This constraint on the choice
of g can be circumvented by choosing T “ 8, as done in [10], in which case f must be replaced by e´rtf

for some discount rate r ą 0.
The analysis in the case T “ 8 can be done in the following way. In the proof of the martingale and

submartingale properties, V must replaced by e´rtV. Plugging e´rtV and e´rtf in (69) instead of V and f ,
we understand that V must now satisfy (69) but with an additional ´rV in the left-hand side. Then, we
can repeat the previous argument in order to identify the value of B in (70). Finally, if r is large enough,
Ere´rTVpX̂T , q̂T qs tends to 0 as T tends to the infinity in the martingale property (71). Similarly, if we
restrict ourselves to a class of feedback controls with a suitable growth, Ere´rTVpXT , q̂T qs tends to 0 in (72),
which permits to conclude.

5.4 Control of McKean-Vlasov Equations

A similar framework could be used for considering the control of McKean-Vlasov equations. The analog
of the strategy exposed in the previous paragraph would consist in limiting the optimization procedure to
controlled processes in (61) driven by controls pαtq0ďtďT of the form pαt “ γtXtq0ďtďT for some deterministic
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pγtq0ďtďT . Using an obvious extension of (63), this would force the conditional marginal distributions of
pXtq0ďtďT to be Pareto distributed. Exactly as above, this would transform the problem into a finite
dimensional problem. Precisely, this would transform the problem into a finite dimensional optimal control
problem. In that perspective, the corresponding master equation could be reformulated as an HJB equation
in finite dimension. In comparison with, we emphasize, once again, that the master equation (69) for the
mean field game is not a HJB equation.

6 Appendix: A Generalized Form of Itô’s Formula

Our derivation of the master equation requires the use of a form of Itô formula in a space of probability
measures. This subsection is devoted to the proof of such a formula.

6.1 Notion of Differentiability

In Section 4, we alluded to a specific notion of differentiability for functions of probability measures. The
choice of this notion is dictated by the fact that 1) the probability measures we are dealing with appear
as laws of random variables; 2) in trying to differentiate functions of measures, the infinitesimal variations
which we consider are naturally expressed as infinitesimal variations in the linear space of those random
variables. The relevance of this notion of differentiability was argued by P.L. Lions in his lectures at the
Collège de France [15]. The notes [1] offer a readable account, and [2] provides several properties involving
empirical measures. It is based on the lifting of functions P2pRdq Q µ ÞÑ Hpµq into functions H̃ defined
on the Hilbert space L2pΩ̃;Rdq over some probability space pΩ̃, F̃ , P̃q by setting H̃pX̃q “ HpLpX̃qq, for
X̃ P L2pΩ̃;Rdq, Ω̃ being a Polish space and P̃ an atomless measure.

Then, a function H is said to be differentiable at µ0 P P2pRdq if there exists a random variable X̃0 with
law µ0, in other words satisfying LpX̃0q “ µ0, such that the lifted function H̃ is Fréchet differentiable at
X̃0. Whenever this is the case, the Fréchet derivative of H̃ at X̃0 can be viewed as an element of L2pΩ̃;Rdq
by identifying L2pΩ̃;Rdq and its dual. It turns out that its distribution depends only upon the law µ0 and
not upon the particular random variable X̃0 having distribution µ0. See Section 6 in [1] for details. This
Fréchet derivative rDH̃spX̃0q is called the representation of the derivative of H at µ0 along the variable X̃0.
It is shown in [1] that, as a random variable, it is of the form h̃pX̃0q for some deterministic measurable
function h̃ : Rd Ñ R

d, which is uniquely defined µ0-almost everywhere on R
d. The equivalence class of

h̃ in L2pRd, µ0q being uniquely defined, it can be denoted by BµHpµ0q (or BHpµ0q when no confusion is
possible). It is then natural to call BµHpµ0q the derivative of H at µ0 and to identify it with a function
BµHpµ0qp ¨ q : Rd Q x ÞÑ BµHpµ0qpxq P R

d.
This procedure permits to express rDH̃spX̃0q as a function of any random variable X̃0 with distribution

µ0, irrespective of where this random variable is defined.

Remark 6.1. Since it is customary to identify a Hilbert space to its dual, we will identify L2pΩ̃q with its
dual, and in so doing, any derivative DH̃pX̃q will be viewed as an element of L2pΩ̃q. In this way, the
derivative in the direction Ỹ will be given by the inner product rDH̃pX̃qs ¨ Ỹ . Accordingly, the second Frechet
derivative D2H̃pX̃q which should be a linear operator from L2pΩ̃q into itself because of the identification with
its dual, will be viewed as a bilinear form on L2pΩ̃q. In particular, we shall use the notation D2H̃pX̃qrỸ ¨ Z̃s
for

`

rD2H̃pX̃qspỸ q
˘

¨ Z̃.
Remark 6.2. The following result (see [2] for a proof) gives, though under stronger regularity assumptions
on the Fréchet derivatives, a convenient way to handle this notion of differentiation with respect to probability
distributions. If the function H̃ is Fréchet differentiable and if its Fréchet derivative is uniformly Lipschitz
(i.e. there exists a constant c ą 0 such that }DH̃pX̃q ´ DH̃pX̃ 1q} ď c|X̃ ´ X̃ 1| for all X̃, X̃ 1 in L2pΩ̃q), then
there exists a function BµH

P2pRdq ˆ R
d Q pµ, xq ÞÑ BµHpµqpxq
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such as |BµHpµqpxq ´ BµHpµqpx1q| ď c|x ´ x1| for all x, x1 P R
d and µ P P2pRdq, and for every µ P P2pRdq,

BµHpµqpX̃q “ DH̃pX̃q almost su if µ “ LpX̃q.

6.2 Itô’s Formula along a Flow of Conditional Measures

In the derivation of the master equation, the value function is expanded along a flow of conditional measures.
As already explained in Subsection 4.3, this requires a suitable construction of the lifting.

Throughout this section, we assume that pΩ,F ,Pq is of the form pΩ0ˆΩ1,F0 bF1,P0bP
1q, pΩ0,F0,P0q

supporting the common noise W 0, and pΩ1,F1,P1q the idiosyncratic noise W . So an element ω P Ω
can be written as ω “ pω0, ω1q P Ω0 ˆ Ω1, and functionals Hpµpω0qq of a random probability measure
µpω0q P P2pRdq with ω0 P Ω0, can be lifted into H̃pX̃pω0, ¨qq “ HpLpX̃pω0, ¨qqq, where X̃pω0, ¨q is an element
of L2pΩ̃1, F̃1,P1;Rdq with µpω0q as distribution, pΩ̃1, F̃1, P̃1q being Polish and atomless. Put it differently,
the random variable X̃ is defined on pΩ̃ “ Ω0 ˆ Ω̃1, F̃ “ F0 b F̃1, P̃ “ P

0 b P̃
1q.

The objective is then to expand pH̃pχ̃tpω0, ¨qqq0ďtďT , where pχ̃tq0ďtďT is the copy so constructed, of an
Itô process on pΩ,F ,Pq of the form:

χt “ χ0 `
ż t

0

βsds `
ż t

0

ż

Ξ

ς0s,ξW
0pdξ, dsq `

ż t

0

ςsdWs,

for t P r0, T s, assuming that the processes pβtq0ďtďT , pςtq0ďtďT and pς0t,ξq0ďtďT,ξPΞ are progressively measur-

able with respect to the filtration generated by W and W 0 and square integrable, in the sense that

E

ż T

0

ˆ

|βt|2 ` |ςt|2 `
ż

Ξ

|ς0t,ξ |2dνpξq
˙

dt ă `8. (73)

Denoting by pW̃tq0ďtďT , pβ̃tq0ďtďT , pς̃tq0ďtďT and pς̃0t,ξq0ďtďT,ξPΞ the copies of pWtq0ďtďT , pβtq0ďtďT , pςtq0ďtďT

and pς0t,ξq0ďtďT,ξPΞ, we then have

χ̃t “ χ̃0 `
ż t

0

β̃sds `
ż t

0

ż

Ξ

ς̃0s,ξW
0pdξ, dsq `

ż t

0

ς̃sdW̃s,

for t P r0, T s. In this framework, we emphasize that it makes sense to look at H̃pχ̃tpω0, ¨qq, for t P r0, T s,
since

E
0
Ẽ
1
“

sup
0ďtďT

|χ̃t|2
‰

“ E
0
E
1
“

sup
0ďtďT

|χt|2
‰

ă `8,

where E
0, E1 and Ẽ

1 are the expectations associated to P
0, P1 and P̃

1 respectively.
In order to simplify notations, we let χ̌tpω0q “ χ̃tpω0, ¨q for t P r0, T s, so that pχ̌tq0ďtďT is L2pΩ̃1, F̃1, P̃1;Rdq-

valued, P0 almost surely. Similarly, we let β̌tpω0q “ β̃tpω0, ¨q, ς̌tpω0q “ ς̃tpω0, ¨q ς̌t,ξpω0q “ ς̃t,ξpω0, ¨q, for
t P r0, T s and ξ P Ξ. We then claim

Proposition 6.3. On the top of the assumption and notation introduced right above, assume that H̃ is twice
continuously Fréchet differentiable. Then, we have P

0 almost surely, for all t P r0, T s,

H̃
`

χ̌t

˘

“ H̃
`

χ̌0

˘

`
ż t

0

DH̃
`

χ̌s

˘

¨ β̌sds `
ż t

0

ż

Ξ

DH̃
`

χ̌s

˘

¨ ς̌0s,ξ W 0pdξ, dsq

` 1

2

ż t

0

ˆ

D2H̃pχ̃sq
“

ς̌sG̃, ς̌sG̃
‰

`
ż

Ξ

D2H̃
`

χ̌s

˘“

ς̌0s,ξ, ς̌
0
s,ξ

‰

dνpξq
˙

ds.

(74)

where G̃ is an N p0, 1q-distributed random variable on pΩ̃1, F̃1, P̃1q, independent of pW̃tqtě0.
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Remark 6.4. Following Remark 6.2 above, one can specialize Itô’s formula to a situation with smoother
derivatives. See [7] for a more detailed account. Indeed, if one assumes that

1. the function H is C1 in the sense given above and its first derivative is Lipschitz;

2. for each fixed x P R
d, the function µ ÞÑ BµHpx, µq is differentiable with Lipschitz derivative, and

consequently, there exists a function

pµ, x1, xq ÞÑ B2µHpx, µqpx1q P R
dˆd

which is Lipschitz in x1 uniformly with respect to x and µ and such that B2µHpx, µqpX̃q gives the Fréchet

derivative of µ ÞÑ BµHpx, µq for every x P R
d as long as LpX̃q “ µ;

3. for each fixed µ P P2pRdq, the function x ÞÑ BµHpx, µq is differentiable with Lipschitz derivative, and
consequently, there exists a bounded function px, µq ÞÑ BxBµHpx, µq P R

dˆd giving the value of its
derivative.

Then, the second order term appearing in Itô’s formula can be expressed as the sum of two explicit operators
whose interpretations are more natural. Indeed, the second Fréchet derivative D2H̃pX̃q can be written as
the linear operator Ỹ ÞÑ AỸ on L2pΩ̃1, F̃1,P1;Rdq defined by

rAỸ spω̃1q “
ż

Ω̃1

B2µH
`

X̃pω̃1q,LpX̃q
˘`

X̃ 1pω1q
˘

Ỹ pω1q dP̃1pω1q ` BxBµH
`

LpX̃q, X̃pω1q
˘

Ỹ pω1q.

The derivation of the master equation actually requires a more general result than Proposition 6.3.
Indeed one needs to expand pH̃pXt, χ̌tqq0ďtďT for a function H̃ of px, X̃q P R

d ˆ L2pΩ̃1, F̃1, P̃1;Rdq. As
before, pχ̌tq0ďtďT is understood as pχ̃tpω0, ¨qq0ďtďT . The process pXtq0ďtďT is assumed to be another Itô
process, defined on the original space pΩ,F ,Pq “ pΩ0 ˆ Ω1,F0 b F1,P0 b P

1q, with dynamics of the form

Xt “ X0 `
ż t

0

bsds `
ż t

0

ż

Ξ

σ0
s,ξW

0pdξ, dsq `
ż t

0

σsdWs,

for t P r0, T s, the processes pbtq0ďtďT , pσtq0ďtďT and pσ0
t,ξq0ďtďT,ξPΞ being progressively-measurable with

respect to the filtration generated by W and W 0, and square integrable as in (73). Under these conditions,
the result of Proposition 6.3 can be extended to:

Proposition 6.5. On the top of the above assumptions and notations, assume that H̃ is twice continuously
Fréchet differentiable on R

d ˆ L2pΩ̃1, F̃1, P̃1;Rdq. Then, we have P almost surely, for all t P r0, T s,

H̃
`

Xt, χ̌t

˘

“ H̃
`

X0, χ̌0

˘

`
ż t

0

´

xBxH̃
`

Xs, χ̌s

˘

, bsy ` DµH̃
`

χ̌s

˘

¨ β̌s
¯

ds `
ż t

0

xBxH̃
`

Xs, χ̌s

˘

, σsydWs

`
ż t

0

ż

Ξ

´

xBxH̃
`

Xs, χ̌s

˘

, σ0
s,ξy ` DµH̃

`

Xs, χ̌s

˘

¨ ς̌0s,ξ
¯

W 0pdξ, dsq

` 1

2

ż t

0

ż

Ξ

´

trace
“

B2xH̃
`

Xs, χ̌s

˘

σ0
s,ξpσ0

s,ξq:
‰

` D2
µH̃

`

Xs, χ̌s

˘“

ς̌0s,ξ, ς̌
0
s,ξ

‰

¯

dνpξqds

` 1

2

ż t

0

ˆ

trace
“

B2xH̃
`

Xs, χ̌s

˘

σspσsq:
‰

` D2
µH̃

`

Xs, χ̌s

˘“

ς̌sG̃, ς̌sG̃
‰

˙

ds

`
ż t

0

ż

Ξ

@

BxDµH̃
`

Xs, χ̌s

˘

¨ ς̌0s,ξ , σ0
s,ξ

D

dνpξqds.
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where G̃ is an N p0, 1q-distributed random variable on pΩ̃1, F̃1, P̃1q, independent of pW̃tqtě0. The partial
derivatives in the infinite dimensional component are denoted with the index ‘µ’. In that framework, the
term xBxDµH̃pXs, χ̌sq ¨ ς̌0s,ξ, σ0

s,ξy reads

d
ÿ

i“1

tBxi
DµH̃pXs, χ̌sq ¨ ς̌0s,ξu

`

σ0
s,ξ

˘

i
.

6.3 Proof of Itô’s Formula

We only provide the proof of Proposition 6.3 as the proof of Proposition 6.5 is similar.

By a standard continuity argument, it is sufficient to prove that Equation (74) holds for any t P r0, T s
P
0-almost surely. In particular, we can choose t “ T . Moreover, by a standard approximation argument, it

is sufficient to consider the case of simple processes pβtq0ďtďT , pςtq0ďtďT and pς0t,ξq0ďtďT,ξ of the form

βt “
M´1
ÿ

i“0

βi1rτi,τi`1qptq, ςt “
M´1
ÿ

i“0

ςi1rτi,τi`1qptq, ς0t,ξ “
M´1
ÿ

i“0

N
ÿ

j“1

ς0i,j1rτi,τi`1qptq1Aj
pξq,

where M,N ě 1, 0 “ τ0 ă τ1 ă ¨ ¨ ¨ ă τM “ T , pAjq1ďjďN are piecewise disjoint Borel subsets of Ξ and
pβi, ςi, ς0i,jq1ďjďN are bounded Fτi -measurable random variables.

The strategy is taken from [7] and consists in splitting H̃pχ̌T q ´ H̃pχ̌0q into

H̃pχ̌T q ´ H̃pχ̌0q “
K´1
ÿ

k“0

`

H̃pχ̌tk`1
q ´ H̃pχ̌tkq

˘

,

where 0 “ t0 ă ¨ ¨ ¨ ă tK “ T is a subdivision of r0, T s of step h such that, for any k P t0, . . . ,K ´ 1u, there
exists some i P t0, . . . ,M ´ 1u such that rtk, tk`1q Ă rτi, τi`1q. We then start with approximating a general
increment H̃pχ̌tk`1

q ´ H̃pχ̌tkq, omitting to specify the dependence upon ω0. By Taylor’s formula, we know
that we can find some δ P r0, 1s such that

H̃pχ̌tk`1
q ´ H̃pχ̌tkq

“ DH̃pχ̌tkq ¨ pχ̌tk`1
´ χ̌tkq ` 1

2
D2H̃

`

χ̌tk ` δpχ̌tk`1
´ χ̌tkq

˘`

χ̌tk`1
´ χ̌tk , χ̌tk`1

´ χ̌tk

˘

“ DH̃pχ̌tkq ¨ pχ̌tk`1
´ χ̌tkq ` 1

2
D2H̃pχ̌tkq

`

χ̌tk`1
´ χ̌tk , χ̌tk`1

´ χ̌tk

˘

`
“

D2H̃
`

χ̌tk ` δpχ̌tk`1
´ χ̌tkq

˘

´ D2H̃
`

χ̌tk

˘‰`

χ̌tk`1
´ χ̌tk , χ̌tk`1

´ χ̌tk

˘

.

(75)

By Kolmogorov continuity theorem, we know that, P
0 almost surely, the mapping r0, T s Q t ÞÑ χ̃t P

L2pΩ̃1, F̃1, P̃1;Rdq is continuous. Therefore, P0 almost surely, the mapping ps, t, δq ÞÑ D2H̃pχ̌t ` δpχ̌s ´ χ̌tqq
is continuous from r0, T s2ˆr0, 1s to the space of bounded operators from L2pΩ̃1, F̃1, P̃1;Rdq into itself, which
proves that, P0 almost surely,

lim
hŒ0

sup
s,tPr0,T s,|t´s|ďh

sup
δPr0,1s

~D2H̃
`

χ̌t ` δpχ̌t`h ´ χ̌tq
˘

´ D2H̃
`

χ̌t

˘

~
2,Ω̃1 “ 0,

~ ¨ ~
2,Ω̃1 denoting the operator norm on the space of bounded operators on L2pΩ̃1, F̃1, P̃1;Rdq. Now,

ˇ

ˇ

ˇ

ˇ

K´1
ÿ

k“0

“

D2H̃
`

χ̌tk ` δpχ̌tk`1
´ χ̌tkq

˘

´ D2H̃
`

χ̌tk

˘‰`

χ̌tk`1
´ χ̌tk , χ̌tk`1

´ χ̌tk

˘

ˇ

ˇ

ˇ

ˇ

ď sup
s,tPr0,T s,|t´s|ďh

sup
δPr0,1s

~D2H̃
`

χ̌t ` δpχ̌s ´ χ̌tq
˘

´ D2H̃
`

χ̌t

˘

~
2,Ω̃1

K´1
ÿ

k“0

}χ̌tk`1
´ χ̌tk}2

L2pΩ̃q
.
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Since

E
0

„K´1
ÿ

k“0

}χ̌tk`1
´ χ̌tk}2

L2pΩ̃q



ď C

K´1
ÿ

k“0

`

tk`1 ´ tk
˘

ď CT,

we deduce that

ˇ

ˇ

ˇ

ˇ

K´1
ÿ

k“0

“

D2H̃
`

χ̌tk ` δpχ̌tk`1
´ χ̌tkq

˘

´ D2H̃
`

χ̌tk

˘‰

¨
`

χ̌tk`1
´ χ̌tk , χ̌tk`1

´ χ̌tk

˘

ˇ

ˇ

ˇ

ˇ

Ñ 0 (76)

in P
0 probability as h tends to 0. We now compute the various terms appearing in (75). We write

DH̃pχ̌tkq ¨ pχ̌tk`1
´ χ̌tkq “ DH̃pχ̌tkq ¨

ż tk`1

tk

β̃spω0, ¨qds

` DH̃pχ̌tkq ¨
„ˆ

ż tk`1

tk

ż

Ξ

ς̃0s,ξW
0pdξ, dsq

˙

pω0, ¨q


` DH̃pχ̌tkq ¨
„ˆ

ż tk`1

tk

ς̃sdW̃s

˙

pω0, ¨q.

Assume that, for some 0 ď i ď M ´ 1, τi ď tk ă tk`1 ď τi`1. Then,

DH̃pχ̌tkq ¨
ż tk`1

tk

β̃spω0, ¨qds “
`

tk`1 ´ tk
˘

DH̃pχ̌tkq ¨ β̃tkpω0, ¨q. (77)

Note that the right-hand side is well-defined as βtk is bounded. Similarly, we notice that

DH̃pχ̌tkq ¨
„ˆ

ż tk`1

tk

ς̃sdW̃s

˙

pω0, ¨q


“
`

tk`1 ´ tk
˘

DH̃pχ̌tkq ¨
“

ς̃tkpω0, ¨q
`

W̃tk`1
´ W̃tk

˘‰

.

Now, using the specific form of DH̃, DH̃pχ̌tkpω0qq “ pω̃1 ÞÑ BµHpχ̃tkpω0, ω̃1qqq appears to be a F̃tk -
measurable random variable, and as such, it is orthogonal to ς̃tkpω0, ¨qpW̃tk`1

´ W̃tkq, which shows that

DH̃pχ̌tkq ¨
„ˆ

ż tk`1

tk

ς̃sdW̃s

˙

pω0, ¨q


“ 0. (78)

Finally,

DH̃pχ̌tkq ¨
„ˆ

ż tk`1

tk

ż

Ξ

ς̃0s,ξW
0pdξ, dsq

˙

pω0, ¨q


“ DH̃pχ̌tkq ¨
„ N
ÿ

j“1

ς̃0i,jpω0, ¨qW 0
`

Aj ˆ rtk, tk`1q
˘

pω0q


.

Now, W 0
`

Aj ˆ rtk, tk`1q
˘

pω0q behaves as a constant in the linear form above. Therefore,

DH̃pχ̌tkq ¨
„ˆ

ż tk`1

tk

ż

Ξ

ς̃0s,ξW
0pdξ, dsq

˙

pω0, ¨q


“
N
ÿ

j“1

DH̃pχ̌tkq ¨ ς̃0i,jpω0, ¨qW 0
`

Aj ˆ rtk, tk`1q
˘

pω0q

“
„
ż tk`1

tk

ż

Ξ

 

DH̃pχ̌tkq ¨ ς̃0s,ξpω0, ¨q
(

W pdξ, dsq


pω0q.

(79)
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Therefore, in analogy with (76), we deduce from (77), (78) and (79) that

K´1
ÿ

k“0

DH̃pχ̌tkq ¨ pχ̌tk`1
´ χ̌tkq Ñ

ż T

0

DH̃pX̃sq ¨ β̌sds `
ż T

0

ż

Ξ

 

DH̃pχ̌sq ¨ ς̌0s,ξ
(

W pdξ, dsq,

in P
0 probability as h tends to 0.

We now reproduce this analysis for the second order derivatives. We need to compute:

Γk :“ D2H̃pχ̌tkq
”

β̃tkpω0, ¨q
`

tk`1 ´ tk
˘

` ς̃tkpω0, ¨q
`

W̃tk`1
´ W̃tk

˘

`
N
ÿ

j“1

ς̃0i,jpω0, ¨qW 0
`

rtk, tk`1q ˆ Aj

˘

pω0q,

β̃tkpω1, ¨q
`

tk`1 ´ tk
˘

` ς̃tkpω0, ¨q
`

W̃tk`1
´ W̃tk

˘

`
N
ÿ

j“1

ς̃0i,jpω0, ¨qW 0
`

rtk, tk`1q ˆ Aj

˘

pω0q
ı

.

Clearly, the drift has very low influence on the value of Γk. Precisely, for investigating the limit (in P
0

probability) of
řK´1

k“0
Γk, we can focus on the ‘reduced’ version of Γk:

Γk :“ D2H̃pχ̌tkq
”

ς̃tkpω0, ¨q
`

W̃tk`1
´ W̃tk

˘

`
N
ÿ

j“1

ς0i,jpω0, ¨qW 0
`

rtk, tk`1q ˆ Aj

˘

pω0q,

ς̃tkpω0, ¨q
`

W̃tk`1
´ W̃tk

˘

`
N
ÿ

j“1

ς0i,jpω0, ¨qW 0
`

rt, t ` hs ˆ Aj

˘

pω0q
ı

.

We first notice that

D2H̃pχ̌tkq
“

ς̃tkpω0, ¨q
`

W̃tk`1
´ W̃tk

˘

, ς̃0i,jpω0, ¨qW 0
`

rtk, tk`1q ˆ Aj

˘

pω0q
‰

“ 0,

the reason being that

D2H̃pχ̌tkq
“

ς̃tkpω0, ¨q
`

W̃tk`1
´ W̃tk

˘

, ς̃0i,jpω0, ¨qW 0
`

rtk, tk`1q ˆ Aj

˘

pω0q
‰

“ lim
ǫÑ0

ǫ´1
“

DH̃
`

χ̌tk ` ǫς̃0i,jpω0, ¨qW 0
`

rtk, tk`1q ˆ Aj

˘

pω0q
˘

´ DH̃pχ̌tkq
‰“

ς̃tkpω0, ¨q
`

W̃tk`1
´ W̃tk

˘‰

,

which is zero by the independence argument used in (78). Following the proof of (79),

D2H̃pχ̌tkq
”

N
ÿ

j“1

ς̃0i,jpω0, ¨qW 0
`

rtk, tk`1q ˆ Aj

˘

pω0q,
N
ÿ

j“1

ς̃0i,jpω0, ¨qW 0
`

rtk, tk`1q ˆ Aj

˘

pω0q
ı

“
N
ÿ

j,j1“1

D2H̃pχ̌tkq
“

ς̃0i,jpω0, ¨q, ς̃0i,j1pω0, ¨q
‰

W 0
`

rtk, tk`1q ˆ Aj

˘

pω0qW 0
`

rtk, tk`1q ˆ Aj1

˘

pω0q.

The second line reads as a the bracket of a discrete stochastic integral. Letting ς̌0i,jpω0q “ ς̃0i,jpω0, ¨q, it is
quite standard to check

K´1
ÿ

k“0

N
ÿ

j,j1“1

D2H̃pχ̌tkq
“

ς̌0i,j, ς̌
0

i,j1

‰

W 0
`

rtk, tk`1q ˆ Aj

˘

W 0
`

rtk, tk`1q ˆ Aj1

˘

´
K´1
ÿ

k“0

N
ÿ

j“1

D2H̃pχ̌tkq
“

ς̌0i,j, ς̌
0
i,j

‰`

tk`1 ´ tk
˘

νpAjq Ñ 0
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in P
0 probability as h tends to 0. Noticing that

K´1
ÿ

k“0

N
ÿ

j“1

D2H̃pχ̌tkq
“

ς̌0i,j, ς̌
0
i,j

‰`

tk`1 ´ tk
˘

νpAjq “
K´1
ÿ

k“0

ż tk`1

tk

ż

Ξ

D2H̃pχ̌tkq
“

ς̌0s,ξ, ς̌
0
s,ξ

‰

dνpξqds,

we deduce that

K´1
ÿ

k“0

N
ÿ

j,j1“1

D2H̃pχ̌tkq
“

ς̌0i,j, ς̌
0

i,j1

‰

W 0
`

rtk, tk`1q ˆ Aj

˘

W 0
`

rtk, tk`1q ˆ Aj1

˘

´
ż T

0

ż

Ξ

D2H̃pχ̌sq
“

ς̌0s,ξ, ς̌
0
s,ξ

‰

dνpξqds Ñ 0

in P
0 probability as h tends to 0. It remains to compute

D2H̃pχ̌tkq
“

ς̃tkpω0, ¨q
`

W̃tk`1
´ W̃tk

˘

, ς̃tkpω0, ¨q
`

W̃tk`1
´ W̃tk

˘‰

.

Recall that this is the limit

lim
εÑ0

1

ε2

“

H̃
`

χ̃tkpω0, ¨q ` ες̃tkpω0, ¨qpW̃tk`1
´ W̃tkq

˘

` H̃
`

χ̃tkpω0, ¨q ´ ες̃tk pω0, ¨qpW̃tk`1
´ W̃tkq

˘

´ 2H̃
`

χ̃tkpω0, ¨q
˘‰

,

which is the same as

lim
εÑ0

1

ε2

“

H̃
`

χ̃tkpω0, ¨q ` ες̃tkpω0, ¨q
a

tk`1 ´ tkG̃
˘

´ H̃
`

χ̃tkpω0, ¨q
˘‰

,

where G̃ is independent of pW̃tq0ďtďT , and N p0, 1q distributed. Therefore,

D2H̃pχ̌tkq
“

ς̌tk
`

W̃tk`1
´ W̃tk

˘

, ς̌tk
`

W̃tk`1
´ W̃tk

˘‰

“
`

tk`1 ´ tk
˘

D2H̃pχ̌tkq
“

ς̌tkG̃, σ̌tk G̃
‰

,

which is enough to prove that

K´1
ÿ

k“0

D2H̃pχ̌tkq
“

ς̌tk
`

W̃tk`1
´ W̃tk

˘

, ς̌tk
`

W̃tk`1
´ W̃tk

˘‰

Ñ
ż T

0

D2H̃pχ̌sq
“

ς̌sG̃, ς̌sG̃
‰

ds

in P
0 probability as h tends to 0.
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[12] J.M. Lasry and P.L. Lions. Jeux à champ moyen I. Le cas stationnaire. Comptes Rendus de l’Académie des
Sciences de Paris, ser. A, 343(9), 2006.
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