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1 Motivations

We consider the common bi-dimensional density estimation problem where
(Xi, Yi)i∈N is a sequence of independent and identically distributed random
vectors defined on a probability space (Ω,A,P), with continuous density h :
[a, b]2 → [0,∞) with a < b. The goal is to estimate h from the n random
vectors (X1, Y1), . . . , (Xn, Yn). Numerous and various nonparametric methods
exist (see, e.g., Simonof (1996) and Tsybakov (2004)).

Instead of estimating h directly, one can use the Sklar Theorem (see Sklar
(1959)): there exists an unique function c : [0, 1]2 → [0,∞), called copula
density, such that

h(x, y) = f(x)g(y)c(F (x), G(y)), (1)
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where f is the density of X1, g the density of Y1, F is the distribution function
of X1 and G is the distribution function of Y1. In this expression, c measures
the dependence between X1 and Y1 (examples of copula densities can be found
in Nelsen (1999)). Then a natural estimator for h(x, y) is

ĥ(x, y) = f̂(x)ĝ(y)ĉ(F̂ (x), Ĝ(y)), (2)

where f̂ , ĝ, ĉ, F̂ and Ĝ are estimators of f , g, c, F and G respectively. Such
“plug-in estimator” has been investigated in, e.g., Liebscher (2005), Bouez-
marni and Rombouts (2008) and Faugeras (2009) via non-adaptive kernel
methods. Their mean integrated squared error (MISE) properties, uniform
strong consistency and asymptotic normality was proved. Among the existing
results, the following one deserves to be highlighted: if f , g are twice differ-
entiable and c is Lipschitz continuous, the estimator developed in Liebscher
(2005) is robust to the well known curse of dimensionality problem; it has sim-
ilar performances to its analog for the standard univariate density estimation
problem.

The following question arises: what is the precise influence of the nature
of c in the estimation of h? This paper provides an element of answer. First,
assuming that c is known and satisfies a Hölder condition (including the Lip-
schitz one), we prove a general result on the MISE properties of (2). Then
we develop an adaptive estimator based on (1), wavelets and a block thresh-
olding technique elaborated by Hall et al. (1998, 1999). The great advantages
of wavelet methods over the concurrences are to reach the goal of adaptivity
and to be efficient for a wide class of unknown functions (see, e.g., Härdle et
al. (1998)). We prove that our estimator attains a fast rate of convergence
under the MISE over a wide class of functions for f and g (including twice
differentiable functions). A consequence of our result is that whenever the de-
pendence structure is “too complex” in terms of smoothness of c relatively
to the smoothness of f and g, then the curse of dimensionality still occurs.
Finally, a short simulation study illustrates the performances of our wavelet es-
timator. In particular, the numerical tests indicate that our block thresholding
estimator compares favorably to standard kernel-based methods.

The paper is organized as follows. Section 2 is devoted to our general
method and the main MISE result. Our wavelet estimator and its rate of
convergence under the MISE are presented in Section 3. The simulation study
can be found in Section 4. Technical proofs are collected in Section 5.

2 Upper bound for the MISE

2.1 Assumptions on the model

For any p ≥ 1, we set

L
p([a, b]) =







v : [0, 1] → R; ||v||p =

(

∫ b

a

|v(x)|pdx

)1/p

<∞







.
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We formulate the following assumptions.

(H1) There exists a constant C1 > 0 such that

sup
x∈[a,b]

f(x) ≤ C1.

(H2) There exists a constant C2 > 0 such that

sup
y∈[a,b]

g(y) ≤ C2.

(H3) The copula density c : [0, 1]2 → [0,∞) is known and there exist two
constants C3 ≥ 0 and θ ∈ (0, 1] such that, for any (x, y, u, v) ∈ [0, 1]4,

|c(x, y)− c(u, v)| ≤ C3(|x− u|θ + |y − v|θ).

The boundedness assumptions (H1) and (H2) are a bit restrictive but
standard for the density estimation problem. See, e.g., Simonof (1996) and
Tsybakov (2004).

The assumption (H3) is a Hölder condition where the parameter θ charac-
terizes the smoothness of c. A simple example is the copula density c(x, y) = 1
(i.e., the independent case), where (H3) is satisfied with C3 = 0 (and θ = 1).
Another less trivial example is the copula density investigated by Huang and
Kotz (1999), which is an extension of the Farlie-Gumbel-Morgenstern copula,
i.e.,

c(x, y) = 1 + υ(1− (a+ 1)xa)(1− (a+ 1)ya), (x, y) ∈ [0, 1]2, (3)

with a ∈ (0, 1], υ ∈ (−1, (1/a)), which satisfies (H3) with the parameter
θ = a. Other examples of polynomial-type copula densities satisfying (H3)
can be found in (Balakrishnan and Lai 2009, Chapter 2).

Finally, note that it includes the Lipschitz condition on c considered in
(Liebscher 2005, Assumption C with t1 = t2) or (Bouezmarni and Rombouts
2008, Assumption P1).

2.2 MISE result

Theorem 1 shows an upper bound for the MISE of ĥ (2) under mild assump-

tions on f , g, c, f̂ and ĝ.

Theorem 1 We consider the bi-dimensional density estimation problem de-
scribed in Section 1 under (H1), (H2) and (H3), and the following estimator
for h (1):

ĥ(x, y) = f̂(x)ĝ(y)c(F̂ (x), Ĝ(y)), (4)
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where f̂ denotes an arbitrary estimator for f in L
2([a, b]), ĝ denotes an arbi-

trary estimator for g in L
2([a, b]),

F̂ (x) =
1

n

n
∑

i=1

1{Xi≤x}, Ĝ(y) =
1

n

n
∑

i=1

1{Yi≤y}

and 1 denotes the indicator function.
Then there exists a constant C > 0 such that

E

(

∫ b

a

∫ b

a

(ĥ(x, y)− h(x, y))2dxdy

)

≤ C

(

E(||ĝ − g||22) + E(||f̂ − f ||22) + E(||f̂ − f ||22||ĝ − g||22) +
C2

3

nθ

)

,

(where θ refers to H3).

The proof of Theorem 1 is based on a suitable decomposition of ĥ − h and
moment properties of F̂ and Ĝ.

Theorem 1 shows the non negligible influence of the smoothness parameter
θ in the estimation of h by ĥ (4). In particular, if the estimators f̂ and ĝ are
bounded from above (as most of the kernel density estimators), we have

E

(

∫ b

a

∫ b

a

(ĥ(x, y)− h(x, y))2dxdy

)

≤ C

(

max

(

E(||ĝ − g||22),E(||f̂ − f ||22),
1

nθ

))

.

In the next section, we aim to exhibit fast rates of convergence for ĥ. To
reach this goal, we construct wavelet adaptive estimators for f̂ and ĝ. Further
details and discussions on wavelets in nonparametric statistics can be found
in, e.g., Antoniadis (1997), Vidakovic (1999) and Härdle et al. (1998).

3 Adaptive wavelet estimation

Before introducing our wavelet estimators, let us present some basics on wavelets.
For the sake of simplicity in the notations, we work on the interval [0, 1] (so
a = 0 and b = 1).

3.1 Wavelet basis on [0,1]

Let us briefly recall the construction of wavelet basis on the interval [0, 1]
introduced by Cohen et al. (1993). Let N be a positive integer, φ and ψ be
the initial wavelets of the Daubechies orthogonal wavelets db2N . We set

φj,k(x) = 2j/2φ(2jx− k), ψj,k(x) = 2j/2ψ(2jx− k).
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With appropriate treatments at the boundaries, there exists an integer τ sat-
isfying 2τ ≥ 2N such that the collection S = {φτ,k(·), k ∈ {0, . . . , 2τ −
1}; ψj,k(·); j ∈ N − {0, . . . , τ − 1}, k ∈ {0, . . . , 2j − 1}}, is an orthonormal
basis of L2([0, 1]).

Any v ∈ L
2([0, 1]) can be expanded on S as

v(x) =
2τ−1
∑

k=0

ατ,kφτ,k(x) +
∞
∑

j=τ

2j−1
∑

k=0

βj,kψj,k(x), x ∈ [0, 1],

where αj,k and βj,k are the wavelet coefficients of v defined by

αj,k =

∫ 1

0

v(x)φj,k(x)dx, βj,k =

∫ 1

0

v(x)ψj,k(x)dx. (5)

3.2 Besov balls

In our statistical study, we will suppose that the unknown functions f and g
belong to a wide class of functions: the Besov balls. Let us now briefly present
their sequential versions.

Let M > 0, s > 0, p ≥ 1 and r ≥ 1. A function v belongs to Bs
p,r(M) if

and only if there exists a constant M∗ > 0 (depending on M) such that the
associated wavelet coefficients (5) satisfy

2τ(1/2−1/p)

(

2τ−1
∑

k=0

|ατ,k|
p

)1/p

+







∞
∑

j=τ






2j(s+1/2−1/p)





2j−1
∑

k=0

|βj,k|
p





1/p






r





1/r

≤ M∗.

In this expression, s is a smoothness parameter and p and r are norm param-
eters. For a particular choice of s, p and r, Bs

p,r(M) contains standard balls of
function spaces, as the Hölder and Sobolev balls. See, e.g., Devore and Popov
(1988), Meyer (1992) and Härdle et al. (1998).

3.3 Block thresholding estimator

Let us now present the considered family of wavelet estimators based on block
thresholding technique.

Let n be a positive integer, (an) be a sequence of positive integers such
that limn→∞ an = ∞ and W = (W1, . . . ,Wan

) be a random vector of an i.i.d.
random variables with common density v. We define the v̂ by

v̂(x,W ) =

2j0−1
∑

k=0

α̂j0,kφτ,k(x) +

j1
∑

j=j0

∑

K∈Aj

∑

k∈Uj,K

β̂j,k1{|b̂j,K |≥κλj}ψj,k(x), (6)
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where

α̂j0,k =
1

an

an
∑

i=1

φj0,k(Wi), β̂j,k =
1

an

an
∑

i=1

ψj,k(Wi),

b̂j,K =





∑

k∈Uj,K

β̂2
j,k





1/2

,

2j0 = L, 2j1 = [n/L], Aj = {1, . . . , 2j/L} et Uj,K = {k ∈ {0, . . . , 2j − 1};

(K−1)L ≤ k ≤ KL−1}, κ is a positive constant, λn =
√

L/an and L = [ln an].

The idea of v̂ is to select (β̂j,k)j,k by overlapping blocks of common length

L according to the magnitude of the ℓ2 norm of (β̂j,k)j,k in each block. It was
introduced by Hall et al. (1998, 1999) and improved by Chicken and Cai (2005).
It is of interest thanks to his adaptivity and its good asymptotic performances
in terms of MISE. In particular, the following result determines the rate of
convergence attained by this estimator under the MISE over Besov balls.

Theorem 2 Let v̂ be (6). Suppose that v is bounded from above and v ∈
Bs

p,r(M) with M > 0, s ∈ (0, N), p ≥ 1 and r ≥ 1. Then there exists a
constant C > 0 such that

E(||v̂(.,W )− v||22) ≤ Cϕ(an, s, p),

where

ϕ(an, s, p) =











a−2s/(2s+1)
n if p ≥ 2 and s ∈ (0, N),
(

ln an
an

)2s/(2s+1)

if p ∈ [1, 2) and s ∈ (1/p,N).

The details of the proof can be found in Chesneau (2010) taking w(x) =
µ = 1.

Note that the rate of convergence ϕn is the near optimal one in the minimax
sense. The only difference is a logarithmic term for the case p ∈ [1, 2) (see,
e.g., Härdle et al. (1998) and Tsybakov (2004)).

3.4 Main estimator

Let us now consider the bi-dimensional density estimation problem described
in Section 1.

– Let Wo = (X1, . . . , X[n/2]) and v̂ be (6). We define f̂ as

f̂(x) = v̂(x,Wo),

with an = [n/2].



Density estimation with known copula density 7

– Let W• = (Y[n/2]+1, . . . , Yn) and v̂ be (6). We define ĝ as

ĝ(y) = v̂(y,W•),

with an = bn = n− [n/2].

Finally we consider the following estimator for h (1):

ĥ(x, y) = f̂(x)ĝ(y)c(F̂ (x), Ĝ(y)), (7)

where

F̂ (x) =
1

n

n
∑

i=1

1{Xi≤x}, Ĝ(y) =
1

n

n
∑

i=1

1{Yi≤y}.

Remark 1 Since f̂ is defined withWo, ĝ is defined withW• and (X1, Y1), . . . , (Xn, Yn)

are independent, f̂ and ĝ are independent.

Remark 2 If Xi and Yi are independent, i.e. c(x, y) = 1, we can consider ĥ

with f̂ defined withWo = (X1, . . . , Xn) and ĝ defined withW• = (Y1, . . . , Yn).

In this case, f̂ and ĝ are always independent.

3.5 Rate of convergence

Theorem 3 investigates the rate of convergence attained by ĥ (7) under the
MISE over Besov balls.

Theorem 3 We consider the bi-dimensional density estimation problem de-
scribed in Section 1 under (H1), (H2) and (H3). Let ĥ be (7). Suppose that

– f ∈ Bs1
p1,r1(M1) with M1 > 0, r1 ≥ 1, either {p1 ≥ 2 and s1 ∈ (0, N)} or

{p1 ∈ [1, 2) and s1 ∈ (1/p1, N)},
– g ∈ Bs2

p2,r2(M2) with M2 > 0, r2 ≥ 1, either {p2 ≥ 2 and s2 ∈ (0, N)} or
{p2 ∈ [1, 2) and s2 ∈ (1/p2, N)}.

Then there exists a constant C > 0 such that

E

(∫ 1

0

∫ 1

0

(ĥ(x, y)− h(x, y))2dxdy

)

≤ Cmax(ϑn, C
2
3n

−θ),

where

ϑn =











n−2s∗/(2s∗+1), if p ≥ 2 and s ∈ (0, N),
(

lnn

n

)2s∗/(2s∗+1)

, if p ∈ [1, 2) and s ∈ (1/p,N)

and s∗ = min(s1, s2).
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Fig. 1 Test densities.

The proof of Theorem 3 combines several elements of Theorems 1 and 2.

Let us remark that, when s1 = s2 and θ ∈ [2s1/(2s1 + 1), 1], the rate of
convergence ϑn in Theorem 3 is the near optimal one in the minimax sense
for the unidimensional density estimation problem (see, e.g., Tsybakov (2004)
and Härdle et al. (1998)). In this case, our estimator escapes to the so-called
“curse of dimensionality”; the bi-dimensionality of the considered estimation
problem has no influence on the performance of our estimator. This result can
be viewed as a generalization of the phenomenon exhibited by Liebscher (2005)
for θ = 1 with kernel methods. When θ ∈ (0, 2s1/(2s1 + 1)), ϑn becomes n−θ,
which is slower than the previous one. Note that, when θ ∈ [0, s1/(s1+1)], the
optimal rate of convergence for the bi-dimensional density estimation problem
is conserved; the curse of dimensionality still occurs.

4 A short simulation study

In this section, since it is new in the literature, we aim to illustrate the numer-
ical performances of the adaptive wavelet estimator ĥ (7). We have compared
its performance to the traditional kernel estimator based on the same plug-ing
approach on several densities. All experiments were conducted using a Gaus-
sian kernel and we have been focused on a global bandwidth selector: the rule
of thumb (ROT) bandwidth selector (see, e.g., Silverman (1986)). Thus, the
optimal bandwidth is given by bROT = 1.06min(σ̂, Q/1.34)n−1/5, where σ̂ is
the sample standard deviation and Q is the interquartile range. For both esti-
mation methods we used the first half and the last half of the data to estimate
f and g respectively. We have considered the copula densities (3) with associ-
ated dependence parameter υ = 1 and a = 1/2 and the Gaussian copula with
correlation coefficient ρ = 0.9. Four true distributions are considered, three
for f : “SeparatedBimodal”, “Trimodal” and “Claw”, initially introduced in
Marron and Wand (1992) and the Gaussian distribution for g (see Figure.1).

Since our estimation method is adaptive, we have chosen a predetermined
threshold κ (universal threshold, see, e.g., Donoho et al. (1996)) for all the
tests and the Symmlet wavelet with 6 vanishing moments was used through-
out all experiments. For numerical implementation, we consider an interval
[a1, a2] that cover the range of the data and the marginal density estimates
were evaluated at M = 2r equally spaced points ti = a1 + (a2 − a1)/M ,
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Fig. 2 Huang and Kotz copula density. (a) Theoretical densities h. (b) Block thresholding
estimators. (c) Kernel estimators. From left to right SeparatedBimodal, Trimodal and Claw.

i = 0, 1, . . . ,M − 1, between a1 and a2, with r = 6, a2 = −a1 = 4 and M = 64
is the number of discretization points. The primary level j0 = 3 and the finest
resolution level j1 used in all our simulations was chosen to be the maximum
resolution level allowed by the discretization.

Note that ĥ may sometimes be negative (especially on the tails and on
the regions where the sample is sparse) and fail to integrate to 1. To solve
this problem, we have truncated the estimate to its positive part and then
renormalized the truncation.

Typical reconstructions from a single simulation with n = 1000 are de-
picted in Fig. 2 and Fig. 3 for Huang and Kotz (1999) and Gaussian copula

respectively. One can see that our adaptive block thresholding estimator ĥ is
effective to estimate the unknown density h and provides very competitive
results in comparison to the kernel ones.

For each distribution, 100 data sets of sample size n = 500, 1000 and 2000
were simulated. The root mean squared error (RMSE) from 100 repetitions
are tabulated in Table 1. It shows that our wavelet-based estimator clearly
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Fig. 3 Gaussian copula density. (a) Theoretical densities h. (b) Block thresholding estima-
tors. (c) Kernel estimators. From left to right SeparatedBimodal, Trimodal and Claw.

Table 1 1000×RMSE values from 100 replications.

SeparatedBimodal Trimodal Claw
n 500 1000 2000 500 1000 2000 500 1000 2000

Huang and Kotz Copula, υ = 1, a = 1/2
Wavelet 7.57 6.15 5.66 6.84 5.71 4.89 17.91 11.09 7.79
Kernel 20.62 17.78 14.72 8.77 7.68 7.05 18.93 18.44 18.12

Gaussian Copula, ρ = 0.9
Wavelet 10.48 8.69 7.55 10.82 9.33 7.79 32.88 19.18 15.16
Kernel 29.95 25.41 19.99 13.11 11.20 10.42 35.96 34.74 34.70

outperforms the kernel estimator for all considered densities and all sample
sizes of the simulation study. Furthermore, as expected, for both methods, and
in all cases, the RMSE is decreasing as the sample size increases.
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5 Proofs

In this section, for the sake of simplicity, C denotes a generic constant; its
value may change from one term to another.

Proof of Theorem 1. For the sake of simplicity, we set

cx,y = c(F (x), G(y)), ĉx,y = c(F̂ (x), Ĝ(y)).

We have

ĥ(x, y)− h(x, y) = f̂(x)ĝ(y)ĉx,y − f(x)g(y)cx,y

= f(x)(ĝ(y)− g(y))(ĉx,y − cx,y) + g(y)(f̂(x)− f(x))(ĉx,y − cx,y)

+ cx,y(f̂(x)− f(x))(ĝ(y)− g(y)) + f(x)g(y)(ĉx,y − cx,y) + f(x)cx,y(ĝ(y)− g(y))

+ g(y)cx,y(f̂(x)− f(x)) + (f̂(x)− f(x))(ĝ(y)− g(y))(ĉx,y − cx,y).

It follows from (H3) that

|ĉx,y − cx,y| ≤ C3(|F̂ (x)− F (x)|θ + |Ĝ(y)−G(y)|θ).

Using (H1), (H2), cx,y ≤ C due to (H3), and the previous inequalities,
we obtain

|ĥ(x, y)− h(x, y)|

≤ C
(

|ĝ(y)− g(y)|+ |f̂(x)− f(x)|+ |f̂(x)− f(x)||ĝ(y)− g(y)|

+ C3|F̂ (x)− F (x)|θ + C3|Ĝ(y)−G(y)|θ
)

.

The elementary inequality (
∑5

i=1 ai)
2 ≤ 5

∑5
i=1 a

2
i and an integration of [0, 1]2

yield

E

(

∫ b

a

∫ b

a

(ĥ(x, y)− h(x, y))2dxdy

)

≤ C
(

E(||ĝ − g||22) + E(||f̂ − f ||22) + E(||f̂ − f ||22||ĝ − g||22)

+ C2
3 sup
x∈[a,b]

E
(

(F̂ (x)− F (x))2θ
)

+ C2
3 sup
y∈[a,b]

E
(

(Ĝ(y)−G(y))2θ
)

.

Since θ ∈ (0, 1], E(F̂ (x)) = F (x) and V(F̂ (x)) = (1/n)F (x)(1 − F (x)) ≤
1/(4n), the Hölder inequality yields

sup
x∈[a,b]

E
(

(F̂ (x)− F (x))2θ
)

≤ sup
x∈[a,b]

(

V
(

F̂ (x)
)

)θ

≤
1

(4n)θ
.

Similarly, we have

sup
y∈[a,b]

E
(

(Ĝ(y)−G(y))2θ
)

≤
1

(4n)θ
.
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Therefore the MISE of ĥ can be bounded as

E

(

∫ b

a

∫ b

a

(ĥ(x, y)− h(x, y))2dxdy

)

≤ C

(

E(||ĝ − g||22) + E(||f̂ − f ||22) + E(||f̂ − f ||22||ĝ − g||22) +
C2

3

nθ

)

.

Theorem 1 is proved.

�

Proof of Theorem 3. It follows from Theorem 2 that

– If f ∈ Bs1
p1,r1(M1) with M1 > 0, r1 ≥ 1, either {p1 ≥ 2 and s1 ∈ (0, N)}

or {p1 ∈ [1, 2) and s1 ∈ (1/p1, N)}, there exist two constants C > 0 and
C∗ > 0 such that

E(||f̂ − f ||22) ≤ Cϕ(an, s1, p1) ≤ C∗ϑn,

with an = [n/2].
– If g ∈ Bs2

p2,r2(M2) with M2 > 0, r2 ≥ 1, either {p2 ≥ 2 and s2 ∈ (0, N)}
or {p2 ∈ [1, 2) and s2 ∈ (1/p2, N)}, there exist two constants C > 0 and
C∗ > 0 such that

E(||ĝ − g||22) ≤ Cϕ(bn, s2, p2) ≤ C∗ϑn,

with bn = n− [n/2].

Moreover, using the independence between f̂ and ĝ, we get

E(||f̂ − f ||22||ĝ − g||22) = E(||f̂ − f ||22)E(||ĝ − g||22) ≤ Cϑn.

Theorems 1 yields

E

(∫ 1

0

∫ 1

0

(ĥ(x, y)− h(x, y))2dxdy

)

≤ C

(

E(||ĝ − g||22) + E(||f̂ − f ||22) + E(||f̂ − f ||22||ĝ − g||22) +
C2

3

nθ

)

≤ C(ϑn +
C2

3

nθ
) ≤ Cmax(ϑn, C

2
3n

−θ).

This ends the proof of Theorem 3.

�
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