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Abstract The estimation of a bi-dimensional density in the case of knowl-
edge of the copula density is investigated. We propose a general estimator
and study its performance under the mean integrated squared error (MISE).
Then we derive an adaptive estimator based on wavelets. Under some smooth-
ness assumptions, we show that it attains the standard unidimensional rate
of convergence for a large class of unknown functions. We also report a short
simulation study to support our theoretical findings.
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1 Motivations

We consider the bi-dimensional density estimation problem described as fol-
lows. Let (Xi, Yi)i∈N be a sequence of independent and identically distributed
random variables defined on a probability space (Ω,A,P), with continuous
density h : [a, b]2 → [0,∞) with a < b. Following the Sklar Theorem (see Sklar
(1959)), there exists an unique function c : [0, 1]2 → [0,∞), called copula
density, such that

h(x, y) = f(x)g(y)c(F (x), G(y)), (1)
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where f is the density of X1, g the density of Y1, F is the distribution func-
tion of X1 and G is the distribution function of Y1. In this expression, c mea-
sures the dependence between X1 and Y1. Examples of copula densities can
be found in Nelsen (1999). We aim to estimate h from the n random variables
(X1, Y1), . . . , (Xn, Yn) under the assumption that c is known. As mentioned
in Segers et al. (2008) and Einmahl and Van den Akker (2011), the knowl-
edge of c is artificial but provides an important step toward the solution of
more realistic problems, as the estimation of h when c belongs to a parametric
family.

In the first part of this note, following the idea of Faugeras (2009), we
develop a general ”plug-in estimator“ for the estimation of h. We evaluate
its performance by considering the mean integrated squared error (MISE). A
result providing sharp upper bound for the MISE is proved. A second part is
devoted to an adaptive wavelet version of our estimator. It is based on the
wavelet block thresholding elaborated by Hall et al. (1998, 1999). We prove
that it attains a fast rate of convergence under the MISE over a wide class of
unknown functions: the Besov balls. In particular, we show that, under some
smoothness assumptions on f , g and c, our estimator attains the standard
unidimensional rate of convergence. This result provides a contribution to the
so called ”curse of dimensionality“, also studied in other estimation copula
contexts by Segers et al. (2008) and Einmahl and Van den Akker (2011).

The paper is organized as follows. Section 2 is devoted to our general
method and the main MISE result. Our wavelet estimator and its rate of
convergence under the MISE over Besov balls are presented in Section 3. Sim-
ulation results are presented in Section 4. Technical proofs are collected in
Section 5.

2 Upper bound for the MISE

2.1 Assumptions on the model

For any p ≥ 1, we set

L
p([a, b]) =







v : [0, 1] → R; ||v||p =

(

∫ b

a

|v(x)|pdx

)1/p

<∞







.

We formulate the following assumptions.

(H1) There exists a constant C1 > 0 such that

sup
x∈[a,b]

|f(x)| ≤ C1.

(H2) There exists a constant C2 > 0 such that

sup
y∈[a,b]

|g(y)| ≤ C2.
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(H3) The copula density c : [0, 1]2 → [0,∞) is known and there exist two
constants C3 ≥ 0 and θ ∈ (0, 1] such that, for any (x, y, u, v) ∈ [0, 1]4,

|c(x, y)− c(u, v)| ≤ C3(|x− u|θ + |y − v|θ).

The assumptions (H3) characterizes the smoothness of c. It is satisfied for
numerous copula densities. For instance

– If c(x, y) = 1 (i.e., the independent case), then (H3) is satisfied with C3 = 0
(and any θ ∈ (0, 1]),

– If c is the Farlie-Gumbel-Morgenstern copula density, i.e., c(x, y) = 1 +
υ(2x−1)(2y−1) with υ ∈ [−1, 1] (see Nelsen (1999)), then (H3) is satisfied
with C3 = 8υ and θ = 1.

2.2 MISE result

Theorem 1 presents an estimator for h and shows an upper bound for its MISE.

Theorem 1 We consider the bi-dimensional density estimation problem de-
scribed in Section 1 under (H1), (H2) and (H3). We introduce the following
estimator for h (1):

ĥ(x, y) = f̂(x)ĝ(y)c(F̂ (x), Ĝ(y)), (2)

where f̂ denotes an arbitrary estimator for f in L
2([a, b]), ĝ denotes an arbi-

trary estimator for g in L
2([a, b]),

F̂ (x) =
1

n

n
∑

i=1

1{Xi≤x}, Ĝ(y) =
1

n

n
∑

i=1

1{Yi≤y}

and 1 denotes the indicator function.

Then there exists a constant C > 0 such that

E

(

∫ b

a

∫ b

a

(ĥ(x, y)− h(x, y))2dxdy

)

≤ C

(

E(||ĝ − g||22) + E(||f̂ − f ||22) + E(||f̂ − f ||22||ĝ − g||22) +
C2

3

nθ

)

,

(where θ refers to H3).

The general estimator (2) is derived from the estimator introduced by Faugeras
(2009) for another statistical problem. The proof of Theorem 1 is based on a

suitable decomposition of ĥ− h and moment properties of F̂ and Ĝ.
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Remark 1 If the estimators f̂ and ĝ are bounded from above, we can bound
the MISE of ĥ by the MISE’s of f̂ and ĝ; we have

E

(

∫ b

a

∫ b

a

(ĥ(x, y)− h(x, y))2dxdy

)

≤ C

(

max

(

E(||ĝ − g||22),E(||f̂ − f ||22),
1

nθ

))

,

In the next section, we will introduce basics on wavelets and the considered
wavelet estimators. Further details and discussions on wavelets in nonpara-
metric statistics can be found in, e.g., Antoniadis (1997), Vidakovic (1999)
and Härdle et al. (1998).

3 Adaptive wavelet estimation

Before introducing our wavelet estimators, let us present some basics on wavelets.
For the sake of simplicity in the notations, we work on the interval [0, 1] (so
a = 0 and b = 1).

3.1 Wavelet basis on [0,1]

Let us briefly recall the construction of wavelet basis on the interval [0, 1]
introduced by Cohen et al. (1993). Let N be a positive integer, φ and ψ be
the initial wavelets of the Daubechies orthogonal wavelets db2N . We set

φj,k(x) = 2j/2φ(2jx− k), ψj,k(x) = 2j/2ψ(2jx− k).

With appropriate treatments at the boundaries, there exists an integer τ sat-
isfying 2τ ≥ 2N such that the collection S = {φτ,k(.), k ∈ {0, . . . , 2τ −
1}; ψj,k(.); j ∈ N − {0, . . . , τ − 1}, k ∈ {0, . . . , 2j − 1}}, is an orthonormal
basis of L2([0, 1]).

Any v ∈ L
2([0, 1]) can be expanded on S as

v(x) =

2τ−1
∑

k=0

ατ,kφτ,k(x) +

∞
∑

j=τ

2j−1
∑

k=0

βj,kψj,k(x), x ∈ [0, 1],

where αj,k and βj,k are the wavelet coefficients of v defined by

αj,k =

∫ 1

0

v(x)φj,k(x)dx, βj,k =

∫ 1

0

v(x)ψj,k(x)dx. (3)
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3.2 Besov balls

We work with the sequential version of Besov balls defined as follows. Let
M > 0, s > 0, p ≥ 1 and r ≥ 1. A function v belongs to Bs

p,r(M) if and only
if there exists a constant M∗ > 0 (depending on M) such that the associated
wavelet coefficients (3) satisfy

2τ(1/2−1/p)

(

2τ−1
∑

k=0

|ατ,k|
p

)1/p

+







∞
∑

j=τ






2j(s+1/2−1/p)





2j−1
∑

k=0

|βj,k|
p





1/p






r





1/r

≤ M∗.

In this expression, s is a smoothness parameter and p and r are norm param-
eters. For a particular choice of s, p and r, Bs

p,r(M) contains standard balls of
function spaces, as the Hölder and Sobolev balls. See, e.g., Devore and Popov
(1988), Meyer (1992) and Härdle et al. (1998).

3.3 Block thresholding estimators

Let n be a positive integer, (an) be a sequence of positive integers such that
limn→∞ an = ∞ and W = (W1, . . . ,Wan

) be a random vector of an i.i.d.
random variables with common density v. We define the v̂ by

v̂(x,W ) =

2j0−1
∑

k=0

α̂j0,kφτ,k(x) +

j1
∑

j=j0

∑

K∈Aj

∑

k∈Uj,K

β̂j,k1{|b̂j,K |≥κλj}ψj,k(x), (4)

where

α̂j0,k =
1

an

an
∑

i=1

φj0,k(Wi), β̂j,k =
1

an

an
∑

i=1

ψj,k(Wi),

b̂j,K =





∑

k∈Uj,K

β̂2
j,k





1/2

,

2j0 = L, 2j1 = [n/L], Aj = {1, . . . , 2j/L} et Uj,K = {k ∈ {0, . . . , 2j − 1};

(K−1)L ≤ k ≤ KL−1}, κ is a positive constant, λn =
√

L/an and L = [ln an].
This estimator was introduced by Hall et al. (1998, 1999) and improved by

Chicken and Cai (2005). It is of interest thanks to his adaptivity and its good
asymptotic performances in terms of MISE. In particular, the following result
determines the rate of convergence attained by this estimator under the MISE
over Besov balls.

Theorem 2 Let v̂ be (4). Suppose that v is bounded from above and v ∈
Bs

p,r(M) with M > 0, s ∈ (0, N), p ≥ 1 and r ≥ 1. Then there exists a
constant C > 0 such that

E(||v̂(.,W )− v||22) ≤ Cϕ(an, s, p),
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where

ϕ(an, s, p) =











a−2s/(2s+1)
n if p ≥ 2 and s ∈ (0, N),
(

ln an
an

)2s/(2s+1)

if p ∈ [1, 2) and s ∈ (1/p,N).

The details of the proof can be found in Chesneau (2010) taking w(x) =
µ = 1.

Note that the rate of convergence ϕn is the near optimal one in the minimax
sense. The only difference is a logarithmic term for the case p ∈ [1, 2) (see,
e.g., Härdle et al. (1998) and Tsybakov (2004)).

Let us now consider the bi-dimensional density estimation problem de-
scribed in Section 1.

– Let Wo = (X1, . . . , X[n/2]) and v̂ be (4). We define f̂ as

f̂(x) = v̂(x,Wo),

with an = [n/2].
– Let W• = (Y[n/2]+1, . . . , Yn) and v̂ be (4). We define ĝ as

ĝ(y) = v̂(y,W•),

with an = bn = n− [n/2].

Finally we consider the following estimator for h (1):

ĥ(x, y) = f̂(x)ĝ(y)c(F̂ (x), Ĝ(y)), (5)

where

F̂ (x) =
1

n

n
∑

i=1

1{Xi≤x}, Ĝ(y) =
1

n

n
∑

i=1

1{Yi≤y}.

Remark 2 Since f̂ is defined withWo, ĝ is defined withW• and (X1, Y1), . . . , (Xn, Yn)

are independent, f̂ and ĝ are independent.

Remark 3 If Xi and Yi are independent, i.e. c(x, y) = 1, we can consider ĥ

with f̂ defined withWo = (X1, . . . , Xn) and ĝ defined withW• = (Y1, . . . , Yn).

In this case, f̂ and ĝ are always independent.

3.4 Rate of convergence

Theorem 3 investigates the rate of convergence attained by ĥ under the MISE
over Besov balls.

Theorem 3 We consider the bi-dimensional density estimation problem de-
scribed in Section 1 under (H1), (H2) and (H3). Let ĥ be (5). Suppose that
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– f ∈ Bs1
p1,r1(M1) with M1 > 0, r1 ≥ 1, either {p1 ≥ 2 and s1 ∈ (0, N)} or

{p1 ∈ [1, 2) and s1 ∈ (1/p1, N)},
– g ∈ Bs2

p2,r2(M2) with M2 > 0, r2 ≥ 1, either {p2 ≥ 2 and s2 ∈ (0, N)} or
{p2 ∈ [1, 2) and s2 ∈ (1/p2, N)}.

Then there exists a constant C > 0 such that

E

(∫ 1

0

∫ 1

0

(ĥ(x, y)− h(x, y))2dxdy

)

≤ Cmax(ϑn, C
2
3n

−θ),

where

ϑn =











n−2s∗/(2s∗+1), if p ≥ 2 and s ∈ (0, N),
(

lnn

n

)2s∗/(2s∗+1)

, if p ∈ [1, 2) and s ∈ (1/p,N)

and s∗ = min(s1, s2).

The proof of Theorem 3 combines several elements of Theorems 1 and 2.
Let us remark that, when s1 = s2 and θ ∈ [2s1/(2s1 + 1), 1], the rate of

convergence ϑn is the near optimal one in the minimax sense for the unidimen-
sional density estimation problem under the MISE over Besov balls Bs∗

p,r(M)
(see, e.g., Tsybakov (2004) and Härdle et al. (1998)). Theorem 3 proves, with
some informations on c, our estimator escapes to the so-called “curse of di-
mension”; the bi-dimensionality of the considered estimation problem has no
influence on the performance of our estimator. This completes the studies of
Segers et al. (2008) and Einmahl and Van den Akker (2011) for other estima-
tion problems using copula.

4 Simulation

We now illustrate these theoretical results with a short simulation study. Since
our estimation method is adaptive, we have chosen a predetermined threshold
κ (universal threshold, see, e.g., Donoho et al. (1996)) for all the tests and the
Symmlet wavelet with 6 vanishing moments was used throughout all experi-
ments. The densities were evaluated at T = 2J equispaced points ti = 2ib/T ,
i = −T/2, . . . , T/2− 1 between −b and b, where J is the index of the highest
resolution level and T is the number of discretization points. The primary level
j0 = 3, T = 256 and the finest resolution level j1 used in all our simulations
was chosen to be the maximum resolution level allowed by the discretization.
All simulations have been implemented using Matlab.

We first consider the case in which Xi and Yi are independent, i.e. c(x, y) =
1. In order to satisfy the assumptions (H1) and (H2), we have choosen com-
pactly supported densities. More precisely, we consider the two-sided truncated
normal distribution on [a, b] denoted by N (µ, σ2, a, b), with density

f(x;µ, σ, a, b) =







1

σ
ϕ( x−µ

σ )
Φ( b−µ

σ )−Φ( a−µ
σ )

if a ≤ x ≤ b,

0 otherwise,
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(a) (b)

Fig. 1 (a) Theoretical density h. (b) Block thresholding estimator ĥ from a single simula-
tion.

(a) (b)

Fig. 2 (a) Theoretical density h. (c) Block thresholding estimator ĥ from a single simula-
tion.

where ϕ(x) = 1√
2π

exp
(

− 1
2x

2
)

is the probability density function of the stan-

dard normal distribution, Φ is its cumulative distribution function and the
parameters µ and σ are respectively the mean and the standard deviation of
the distribution.

Let us first consider an example where X1 ∼ N (0, 1,−2, 2) and Y1 ∼
N (1/5, 1,−2, 2) with n = 1000. A typical example of estimation is given in
Fig 1.

In our second example, we propose to illustrate our proposed estimator
with the FGM copula density with associated dependence parameter υ = 1
(i.e., c(x, y) = 1 + υ(2x − 1)(2y − 1)). Typical reconstructions from a single
simulation are depicted in Fig 2. In both examples, one can see that our
adaptive block thresholding estimator ĥ is effective to estimate the unknown
density h.
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5 Proofs

In this section, for the sake of simplicity, C denotes a generic constant; its
value may change from one term to another.

Proof of Theorem 1. For the sake of simplicity, we set

cx,y = c(F (x), G(y)), ĉx,y = c(F̂ (x), Ĝ(y)).

We have

ĥ(x, y)− h(x, y) = f̂(x)ĝ(y)ĉx,y − f(x)g(y)cx,y

= f(x)(ĝ(y)− g(y))(ĉx,y − cx,y) + g(y)(f̂(x)− f(x))(ĉx,y − cx,y)

+ cx,y(f̂(x)− f(x))(ĝ(y)− g(y)) + f(x)g(y)(ĉx,y − cx,y) + f(x)cx,y(ĝ(y)− g(y))

+ g(y)cx,y(f̂(x)− f(x)) + (f̂(x)− f(x))(ĝ(y)− g(y))(ĉx,y − cx,y).

It follows from (H3) that

|ĉx,y − cx,y| ≤ C3(|F̂ (x)− F (x)|θ + |Ĝ(y)−G(y)|θ).

Using (H1), (H2), cx,y ≤ C due to (H3), and the previous inequalities,
we obtain

|ĥ(x, y)− h(x, y)|

≤ C
(

|ĝ(y)− g(y)|+ |f̂(x)− f(x)|+ |f̂(x)− f(x)||ĝ(y)− g(y)|

+ C3|F̂ (x)− F (x)|θ + C3|Ĝ(y)−G(y)|θ
)

.

The elementary inequality (
∑5

i=1 ai)
2 ≤ 5

∑5
i=1 a

2
i and an integration of [0, 1]2

yield

E

(

∫ b

a

∫ b

a

(ĥ(x, y)− h(x, y))2dxdy

)

≤ C
(

E(||ĝ − g||22) + E(||f̂ − f ||22) + E(||f̂ − f ||22||ĝ − g||22)

+ C2
3 sup
x∈[a,b]

E
(

(F̂ (x)− F (x))2θ
)

+ C2
3 sup
y∈[a,b]

E
(

(Ĝ(y)−G(y))2θ
))

.

Since θ ∈ (0, 1], E(F̂ (x)) = F (x) and V(F̂ (x)) = (1/n)F (x)(1 − F (x)) ≤
1/(4n), the Hölder inequality yields

sup
x∈[a,b]

E
(

(F̂ (x)− F (x))2θ
)

≤ sup
x∈[a,b]

(

V
(

F̂ (x)
)

)θ

≤
1

(4n)θ
.

Similarly, we have

sup
y∈[a,b]

E
(

(Ĝ(y)−G(y))2θ
)

≤
1

(4n)θ
.
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Therefore the MISE of ĥ can be bounded as

E

(

∫ b

a

∫ b

a

(ĥ(x, y)− h(x, y))2dxdy

)

≤ C

(

E(||ĝ − g||22) + E(||f̂ − f ||22) + E(||f̂ − f ||22||ĝ − g||22) +
C2

3

nθ

)

.

Theorem 1 is proved.

�

Proof of Theorem 3. It follows from Theorem 2 that

– If f ∈ Bs1
p1,r1(M1) with M1 > 0, r1 ≥ 1, either {p1 ≥ 2 and s1 ∈ (0, N)}

or {p1 ∈ [1, 2) and s1 ∈ (1/p1, N)}, there exist two constants C > 0 and
C∗ > 0 such that

E(||f̂ − f ||22) ≤ Cϕ(an, s1, p1) ≤ C∗ϑn,

with an = [n/2].
– If g ∈ Bs2

p2,r2(M2) with M2 > 0, r2 ≥ 1, either {p2 ≥ 2 and s2 ∈ (0, N)}
or {p2 ∈ [1, 2) and s2 ∈ (1/p2, N)}, there exist two constants C > 0 and
C∗ > 0 such that

E(||ĝ − g||22) ≤ Cϕ(bn, s2, p2) ≤ C∗ϑn,

with bn = n− [n/2].

Moreover, using the independence between f̂ and ĝ, we get

E(||f̂ − f ||22||ĝ − g||22) = E(||f̂ − f ||22)E(||ĝ − g||22) ≤ Cϑn.

Theorems 1 yields

E

(∫ 1

0

∫ 1

0

(ĥ(x, y)− h(x, y))2dxdy

)

≤ C

(

E(||ĝ − g||22) + E(||f̂ − f ||22) + E(||f̂ − f ||22||ĝ − g||22) +
C2

3

nθ

)

≤ C(ϑn +
C2

3

nθ
) ≤ Cmax(ϑn, C

2
3n

−θ).

This ends the proof of Theorem 3.

�
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