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Abstract. The chapter presents ReaderBench, a multi-lingual and flexible 
environment that integrates text mining technologies for assessing a wide 
range of learners’ productions and for supporting teachers in several ways. 
ReaderBench offers three main functionalities in analyzing texts: cohesion-
based assessment, reading strategies identification, and textual complexity 
evaluation. All of these have been object to empirical validations. 
ReaderBench may be used during an entire educational scenario, starting 
from the initial complexity assessment of the reading materials, the 
assignment of texts to learners, the detection of reading strategies reflected 
in one’s self-explanations, and comprehension evaluation fostering learner’s 
self-regulation process. 

1 Introduction 

Recent NLP techniques, as well as the ever-growing computer power, enable the 
design and implementation of new systems that automatically deliver summative 
and formative assessments to learners, using multiple sets of data (e.g., textual 
material, behavior tracks, meta-cognitive explanations). New automatic evaluation 
processes allow teachers and learners to have immediate information on how they 
learn or understand. Furthermore, computer-based systems can be integrated into 
pedagogical scenarios providing activity flows that foster learning. 

ReaderBench is a fully functional framework based on text mining technologies 
[1] that can be seen as a cohesion-based integrated approach which addresses 
multiple dimensions of learner comprehension, including the identification of 
reading strategies, textual complexity assessment and even CSCL, with emphasis 
on participant involvement and collaboration [2] – this latter facility will not be 
introduced in this chapter for readability’s sake. ReaderBench provides teachers 
and learners information on their reading/writing activities: initial textual 



complexity assessment, assignment of texts to learners, capture of self-
explanations reflected in pupil’s textual verbalizations, and reading strategies 
assessment [2]. 

The remainder of this chapter is as follows. The next section introduces a 
general perspective over data and text mining approaches used in educational 
applications. The third section is an overview on how learner comprehension can 
be modeled and predicted. The fourth section presents the core text feature from 
which almost all ReaderBench measures are computed: cohesion. The next four 
sections present the main functionalities of our system: topic extraction, cohesion 
analysis, reading strategies analysis and textual complexity assessment. The ninth 
section introduces an educational scenario that gives substance and real-world use 
of ReaderBench. 

2 Data and Text Mining for Educational Applications 

Learning analytics aims at measuring, collecting, analyzing and “reporting data 
about learners and their contexts, for purposes of understanding and optimizing 
learning and the environments in which it occur” (Society for Learning Analytics 
Research, http://www.solaresearch.org/). While the main focus of this approach is 
to gather data about learners (e.g., their behavior, opinions, affects, social 
interactions), very few research is performed to infer what learners actually 
understand and the learning contexts are rarely taken into account (e.g., which 
learning material is used, to what pedagogical intent, within which educational 
scenario) [3]. 

Educational data analyzed from computer-based approaches typically comes 
from two wide categories: knowledge (e.g., textual material from course 
information) and behavior (e.g., learners’ behavior in LMSs from log analysis). 
Whereas a substantial amount of research is centered on behavioral data [4], 
relatively few research encompasses the analysis of textual materials, presented 
beforehand to learners. Raw data is ideally and easily computable with data 
mining techniques [5], but inferences from these data to uncover learners’ 
cognitive processes are far more complex and involve comparisons to human 
experts judgments. 

Our approach stems from a very broad idea. Cohesion, seen as the relatedness 
between different parts of texts, is a major determinant of text coherence and has 
been shown to be an important predictor of reading comprehension [6]. In turn, 
cohesion analyses can be applied in a wide range of data analyses in educational 
contexts: text readability and difficulty, knowledge relatedness, chat or forum 
group replies. The next section addresses learner comprehension, its relationships 
with textual complexity, and how it can be inferred from learner’s self-
explanations. 



3 Predicting Learner Comprehension 

Learner’s comprehension of textual materials during reading depends both on text 
properties and on the learner’s reading skills. It has long been recognized that the 
comprehension performance differs according to lexical and syntactical 
complexity, as well as to the thematic content and to how information is structured 
[7, 8]. Of particular importance are the cohesion and coherence properties of texts 
that can help or impair [9] and, moreover, interact with reader’s personal 
characteristics [8, 10]. On the reader’s side, her background knowledge and the 
reading strategies she is able to use to process information are also strong 
predictors of reading comprehension, in addition to her word recognition ability 
and semantic skills [11, 12, 13]. The remainder of this section elaborates more on 
the two main factors of text understanding: textual features (through textual 
complexity), and readers’ abilities (through reading strategies). 

  
3.1 Textual Complexity Assessment for Comprehension Prediction 

Teachers usually need valid and reliable measures of textual complexity for their 
day-to-day instruction in order to select materials appropriate to learners’ reading 
level. This proves to be a challenging and cumbersome activity since different 
types of texts (narrative, argumentative or expository) place different demands on 
different reading skills [14, 15]. For example, McNamara and her colleagues [15] 
found that narrative texts contain more familiar words than scientific texts, but 
that they have more complex syntactic sentences, as well. Narratives were also 
found to be less cohesive than science expository texts, the latter more strongly 
requiring background knowledge. In conclusion, different skills must be involved 
in comprehending different types of text and the same reader can be more or less 
able to comprehend a text corresponding to her reading and/or grade level.  

Two approaches usually compete for the automated assessment of text 
complexity: 1/ using simple statistical measures that mostly rely on word 
difficulty (from already-made scales) and sentence length; 2/ using a combination 
of multiple factors ranging from lexical indicators as word frequency, to syntactic 
and semantic levels (e.g., textual cohesion) [16]. 

As an in-depth perspective, text cohesion, seen as the relatedness between 
different parts of texts, is a major determinant for building a coherent 
representation of discourse and has been shown to be an important predictor of 
reading comprehension [6]. Cohesiveness understanding (e.g., referential, causal 
or temporal) is central to the process of building textual coherence at local level, 
which, in turn, allows the textual content to be reorganized into its macrostructure 
and situation model at global level. Highly cohesive texts are more beneficial to 
low-knowledge readers than to high-knowledge ones [17]. Hence, textual 
cohesion is a feature of textual complexity (through some semantic characteristics 
of the read text) that might interfere with reading strategies (through the inferences 
made by a reader). Moreover, inference skills and the ability to plan and organize 



information have been shown to be strongly tied to the comprehension 
performance of more complex texts [14]. These findings let us consider cohesion 
as one of the core determinants of textual complexity. 

3.2 The Impact of Reading Strategies extracted from Self-Explanations for 
Comprehension Assessment 

Expert readers are strategic readers. They monitor their reading, being able to 
know at every moment their level of understanding. When faced with a difficulty, 
learners can call upon regulation procedures, also called reading strategies [18]. 
Reading strategies have been studied extensively with adolescent and adult readers 
using the think-aloud procedure that engages the reader to auto-explain at specific 
breakpoints while reading, therefore providing insight in terms of the 
comprehension mechanisms they call upon to interpret the information they are 
reading. In other words, reading strategies are defined here as “the mental 
processes that are implicated during reading, as the reader attempts to make sense 
of the printed words” [19, p. 40]. 

Four types of reading strategies are mainly used by expert readers [20]. 
Paraphrasing allows the reader to express what she understood from the explicit 
content of the text, and can be considered the first and essential step in the process 
of coherence building. Text-based inferences, for example causal and bridging 
strategies build explicit relationships between two or more pieces of information 
in texts. On the other hand, knowledge-based inferences build relationships 
between the information in text and the reader’s own knowledge and are essential 
to the situation model building process. Control strategies refer to the actual 
monitoring process when the reader is explicitly expressing what she has or has 
not understood. The diversity and richness of the strategies a reader carries out 
depend on many factors, either personal (proficiency, level of knowledge, 
motivation), or external (textual complexity). 

We recently performed an experiment [21] to extend the assessment of reading 
strategies with children ranging from 3rd to 5th grade (8–11 years old). Children 
read aloud two stories and were asked at predefined moments to self-explain their 
impressions and thoughts about the reading material. An adapted annotation 
methodology was devised starting from McNamara’s [20] coding scheme, 
covering the following strategy items: paraphrases, textual inferences, knowledge 
inferences, self-evaluations, and “other”. The “other” category is very close to the 
“irrelevant” category [20] as it aggregates irrelevant, as well as unintelligible 
statements. Two dominant strategies were identified: paraphrases and text-based 
inferences; text-based inferences frequency increases from grade 3 to 5, while 
erroneous paraphrases frequency decreases; knowledge-based inferences remain 
rare, but their frequency doubled from grade 3 to 5, amounting from 4 to 8% of 
the identified reading strategies within the appropriate verbalizations. 

Three results are noteworthy. Firstly, self-explanations are a useful tool to 
access the reading strategies of young children (8–11 years old) who already 



dispose of all the strategies older children carry out. Secondly, we found a relation 
between the ability to paraphrase and to use text-based inferences, on one hand, 
and comprehension and extraction of internal text coherence traits, on the other. A 
better comprehension in this age range is tied to less false paraphrases and more 
text-based inferences (R² = .18 for paraphrases and R² = .16 for text-based 
inferences). Thirdly, mediation models [22] showed that verbal ability partially 
mediates the effect of text-based inferences and that age moderates this mediating 
effect. The effect of text-based inferences on reading comprehension is mediated 
by verbal ability for the younger students while it becomes a direct effect for older 
students. 

Starting from the previous experiments and literature findings, one of the goals 
of ReaderBench is to enable the usage of new texts with little or no human 
intervention, providing both textual complexity assessments on these texts, and a 
fully automatic identification of reading strategies as a support for teachers. The 
textual complexity assessment aims at calibrating texts before providing them to 
learners. 

4 Cohesion-Based Discourse Analysis 

4.1 Construction of the Coherence Graph 

Text cohesion, viewed as lexical, grammatical and semantic relationships that link 
together textual units, is defined within our implemented model in terms of: 1/ the 
inverse normalized distance between textual elements expressed in terms of the 
number of textual analysis elements in-between; 2/ lexical proximity that is easily 
identifiable through identical lemmas and semantic distances within ontologies 
[23]; 3/ semantic similarity measured through Latent Semantic Analysis (LSA) 
[24] and Latent Dirichlet Allocation (LDA) [25]. Additionally, specific natural 
language processing techniques [26] are applied to reduce noise and improve the 
system’s accuracy: spell-checking (optional) [27, 28], tokenizing, splitting, part of 
speech tagging [29, 30], parsing [31, 32], stop words elimination, dictionary-only 
words selection, stemming [33], lemmatizing [34], named entity recognition [35] 
and co-reference resolution [36, 37]. 

In order to provide a multi-lingual analysis platform with support for both 
English and French, ReaderBench integrates both WordNet [38] and a transposed 
and serialized version of Wordnet Libre du Français (WOLF) [39]. Due to the 
intrinsic limitations of WOLF, in which concepts are translated from English while 
their corresponding glosses are only partially translated, making a mixture of 
French and English definitions, only three frequently used semantic distances 
were applicable to both ontologies: path length, Wu–Palmer [40] and Leacock–
Chodorow’s normalized path length [41]. 

Afterwards, LSA and LDA semantic models were trained using three specific 
corpora: “TextEnfants” [42] (approx. 4.2M words), “Le Monde” (French 
newspaper, approx. 24M words) for French, and “Touchstone Applied Science 



Associates” (TASA) corpus (approx. 13M words) for English. Moreover, 
improvements have been enforced on the initial models: the reduction of inflected 
forms to their lemmas, the annotation of each word with its corresponding part of 
speech through a NLP processing pipe (only for English as for French it was 
unfeasible to apply to the entire training corpus due to the limitations of the 
Stanford Core NLP in parsing French) [43, 44, 45], the normalization of 
occurrences through the use of term frequency-inverse document frequency (Tf-
Idf) [26] and distributed computing for increasing speedup [46, 47]. 

LSA and LDA models extract semantic closeness relations from underlying 
word co-occurrences and are based on the bag-of-words hypothesis. Our 
experiments have proven that LSA and LDA models can be used to complement 
one other, in the sense that underlying semantic relationships are more likely to be 
identified, if both approaches are combined after normalization. Therefore, LSA 
semantic spaces are generated after projecting the arrays obtained from the 
reduced-rank Singular Value Decomposition of the initial term-doc array and can 
be used to determine the proximity of words through cosine similarity [24]. From 
a different viewpoint, LDA topic models provide an inference mechanism of 
underlying topic structures through a generative probabilistic process [25]. In this 
context, similarity between concepts can be seen as the opposite of the Jensen-
Shannon dissimilarity [26] between their corresponding posterior topic 
distributions. 

From a computational perspective, the LSA semantic spaces were trained using 
a Tagged LSA engine [43] that preprocesses all training corpora (stop-words 
elimination, POS tagging, lemmatization) [44, 45], applies Tf-Idf and uses a 
distributed architecture [46, 48] to perform the Singular Values Decomposition. 
With regards to LDA, the parallel topics model used iterative Gibbs sampling over 
the training corpora [47] with 10,000 iterations and 100 topics, as recommended 
by [25]. Overall, in order to better grasp cohesion between textual fragments, we 
have combined information retrieval specific techniques, mostly reflected in word 
repetitions and normalized number of occurrences, with semantic distances 
extracted from ontologies or from LSA- or LDA-based semantic models. 

In order to have a better representation of discourse in terms of underlying 
cohesive links, we introduced a cohesion graph [2, 49] that can be seen as a 
generalization of the previously proposed utterance graph [50, 51, 52]. More 
formally, we are building a multi-layered mixed graph consisting of three types of 
nodes [53]: 1/ a central node, the document that represents the entire reading 
material, 2/ blocks, a generic entity that can reflect paragraphs from the initial text 
and 3/ sentences, the main units of analysis, seen as collections of words and 
grammatical structures obtained after the initial NLP processing. 

In terms of edges, hierarchical links are enforced through inclusion functions 
(sentences within a block, blocks within the document) and two types of links are 
introduced between analysis elements of the same level: mandatory and relevant 
links. Mandatory links are established between adjacent blocks or sentences and 



are used for best modeling the information flow throughout the discourse, 
therefore making possible the identification of cohesion gaps.  

 
Fig. 1. The cohesion graph as underlying discourse structure. 

Moreover, adjacency links are enforced between the previous block and the first 
sentence of the next block and, symmetrically, between the last sentence of the 
current block with the next block. This is performed in order to ensure 
cohesiveness between structures at different levels within the cohesion graph, 
disjoint with regards to the previous inclusion function, and for augmenting the 
importance of the first/last sentence of the current block, in accordance with the 
assumption that topic sentences are usually at the beginning of the paragraph and 
in most cases ensure a transition from the previous paragraph [54]. 

Additional optional relevant links are added to the cohesion graph for 
highlighting fine-grained and subtle relations between distant analysis elements. In 
our experiments, the use as threshold of the sum of mean and standard deviation 
of all cohesion values from within a higher-level analysis element provided 
significant additional links into the proposed discourse structure.  

In contrast, as cohesion can be regarded as the sum of semantic links that hold a 
text together and give it meaning, the mere use of semantically related words in a 
text does not directly correlate with its complexity. In other words, whereas 
cohesion in itself is not enough to distinguish texts in terms of complexity, the 
lack of cohesion may increase textual complexity, as a text’s proper understanding 
and representation become more difficult to achieve. In order to better highlight 
this perspective, two measures for textual complexity were defined, later to be 
assessed: inner-block cohesion as the mean value of all the links from within a 
block (adjacent and relevant links between sentences) and inter-block cohesion 
that highlights semantic relationships at global document level. 

4.2 Validation of the Cohesion Measure 

As validation, we have used 10 stories in French for which sophomore students in 
educational sciences (French native speakers) were asked to evaluate the semantic 



relatedness between adjacent paragraphs on a Likert scale of [1; 5]; each pair of 
paragraphs was assessed by more than 10 human evaluators for limiting inter-rater 
disagreement. Due to the subjectivity of the task and the different personal scales 
of perceived cohesion, the average values of intra-class correlations per story were 
ICC-average measures = .493 and ICC-single measures = .167. In the end, 540 
individual cohesion scores were aggregated and then used to determine the 
correlation between different semantic measures and the gold standard. On the two 
training corpora used (Le Monde and TextEnfants), the correlations were: 
Combined–Le Monde (r = .54), LDA-Le Monde (r = .42), LSA–Le Monde 
(r = .28), LSA–TextEnfants (r = .19), Combined–TextEnfants (r = .06), Wu–
Palmer (r = –.06), Path Similarity (r = –.13), LDA–TextEnfants (r = –.13) and 
Leacock–Chodorow (r = –.40). All these correlations are non-significant, but the 
inter-rater correlations are on a similar range and are smaller than the Combined-
Le Monde score. 

The previous results show that the proposed combined method of integrating 
multiple semantic similarity measures outperforms all individual metrics, that a 
larger corpus leads to better results and that Wu–Palmer, besides its corresponding 
scaling to the [0; 1] interval (relevant when integrating measurements with LSA 
and LDA), behaves best in contrast to the other ontology based semantic 
distances. Moreover, the significant increase in correlation between the aggregated 
measure of LSA, LDA and Wu–Palmer, in comparison to the individual scores, 
proves the benefits of combining multiple complementary approaches in terms of 
the reduction of errors that can be induced by using a single method. 

5 Topics Extraction 

The identification of covered topics or keywords is of particular interest within our 
analysis model because it enables us to grasp an overview of a document, but also 
in observing emerging points of interest or shifts of focus. Tightly connected to 
the cohesion graph, topics can be extracted at different levels and from different 
constituent elements of the analysis (e.g., the entire document or conversation, a 
paragraph or all the interventions of a participant). The relevance of each concept 
mentioned in the discussion and represented by its lemma is determined by 
combining a multitude of factors: 

1. Individual normalized term frequency –1+log(no_occurrences) [55]; in the end, 
we opted for eliminating inverse document frequency, as this factor is related to 
the training corpora and we wanted to grasp the specificity of each analyzed 
text. 

2. Semantic similarities through the cohesion function (LSA cosine similarity and 
inverse of LDA Jensen–Shannon divergence) with the analysis element and to 
the whole document for ensuring global resemblance and significance. 

3. A weighted similarity with the corresponding semantic chain multiplied by the 
importance of the chain; semantic chains are obtained by merging lexical 



chains determined from the disambiguation graph modeled through semantic 
distances from WordNet and WOLF [56] through LSA and LDA semantic 
similarities and each chain’s importance is computed as its normalized length 
multiplied with the cohesion function between the chain, seen as an entity 
integrating all semantically related concepts, and the entire document. 

In addition, as an empirical improvement and as the previous list of topics is 
already pre-categorized by corresponding parts of speech, the selection of only 
nouns provided more accurate results in most cases due to the fact that nouns tend 
to better grasp the conceptualization of the document. In terms of a document’s 
visualization, the initial text is split into paragraphs, cohesion measures are 
displayed in-between adjacent blocks and the list of sorted topics with their 
corresponding relevance scores is presented to the user, allowing him to filter the 
displayed results by number and by corresponding part of speech. As an example, 
Fig. 2 depicts an excerpt from [57] presented to 1st year master students during the 
Natural Language Processing Course 2011-2012. 

 

Fig. 2. ReaderBench main interface for visualizing documents and topics. 

A very interesting extension to topics identification is the visualization of the 
corresponding semantic space that can also be enlarged with semantically similar 
concepts, not mentioned within the discourse and referred to in our analysis as 
inferred concepts. Therefore, an inferred concept does not appear in the document 
or in the conversation, but is semantically related to it. From a computational 
perspective, the list of additional inferred concepts identified by ReaderBench is 
obtained in two steps. The first stage consists of merging lists of similar concepts 
for each topic, determined through synonymy and hypernymy relations from 



WordNet/WOLF and through semantic similarity in terms of LSA and LDA, while 
considering the entire semantic spaces. Secondly, all the concepts from the 
merged list are evaluated based on the following criteria: semantic relatedness 
with the list of identified topics and with the analysis element, plus a shorter path 
to the ontology root for emphasizing more general concepts. 

The overall generated network of concepts, including both topics from the 
initial discourse and inferred concepts, takes into consideration the aggregated 
cohesion measure between concepts (LSA and LDA similarities above a 
predefined threshold) and, in the end, displays only the dominant connected graph 
of related concepts (outliers or unrelated concepts that do not satisfy the cohesion 
threshold specified within the user interface are disregarded). The visualization 
uses a Force Atlas layout from Gephi [58] and the dimension of each concept is 
proportional with its betweenness score [59] from the generated network. 

 

Fig. 3. Network of concepts visualization from and inferred from [57]. 

Although the majority of displayed concepts make perfect sense and really seem 
close to the given initial text, in most cases there are also some dissonant words 
that appear to be off-topic at a first glimpse. In the example presented in Fig. 3, 
“campaigner” might induce such an effect, but its occurrence in the list of inferred 
concepts is determined by its synonymy relationship from WordNet to 
“candidate”, a concept twice encountered in the initial text fragment that has a 
final relevance of 2.14. Moreover, the concept has only 7 occurrences in the 



TASA training corpus for LSA and LDA, therefore increasing the chance of 
making incorrect associations in the semantic models as no clear co-occurrence 
pattern can emerge. 

In this context, additional improvements must be made to the previous 
identification method in order to reduce the fluctuations of the generated inferred 
concepts, frequent if the initial topics list is quite limited or the initial text is rather 
small, and to diminish the number of irrelevant generated terms, by enforcing 
additional filters. Currently, the identification of inferred concepts was not subject 
to a formal validation due to the noise detected in smaller text fragments, but all 
the previously proposed mechanisms were fine-tuned after detailed analyses on 
different evaluation scenarios and on different types of texts (stories, assigned 
reading materials and chat conversations), generating in the end an extensible and 
comprehensive method of extracting topics and inferred concepts. 

6 Cohesion-Based Scoring Mechanism of the Analysis 
Elements 

A central component in the evaluation process of each sentence’s importance is 
our bottom-up scoring method. Although tightly related to the cohesion graph [60] 
that is browsed from bottom to top and is used for augmenting the importance of 
the analysis elements, the initial assessment of each element is based on its topics 
coverage and their corresponding relevance, with respects to the entire document. 
Therefore, topics are used to reflect the local importance of each analysis element, 
whereas cohesive links are used to transpose the local impact upon other inter-
linked elements. 

In terms of the scoring model, each sentence is initially assigned an individual 
score equal to the normalized term frequency of each concept, multiplied by its 
relevance that is assigned globally during the topics identification process 
presented in the previous section. In other words, we measure to what extent each 
sentence conveys the main concepts of the overall conversation, as an estimation 
of on-topic relevance. Afterwards, at block level (utterance or paragraph), 
individual sentence scores are weighted by cohesion measures and summed up in 
order to define the inner-block score. This process takes into consideration the 
sentences’ individual scores, the hierarchical links reflected in the cohesions 
between each sentence and its corresponding block and all inner-block cohesive 
links between sentences. By going further into our discourse decomposition model 
(document > block > sentence), inter-block cohesive links are used to augment the 
previous inner-block scores, by also considering all block-document similarities as 
a weighting factor of block importance. Moreover, as it would have been a 
discrepancy in the evaluation in terms of the first and the last sentence of each 
block for which there were no previous or next adjacency links within the current 
block, their corresponding scores are increased through the cohesive link enforced 
to the previous, respectively next block. This augmentation of individual sentence 



scores is later on reflected in our bottom-up approach all the way to the document 
level in order to maintain an overall consistency, as each higher level analysis 
element score should be equal to a weighted sum of constituent element scores. 

In the end, all block scores are combined at document level by using the block-
document hierarchical link’s cohesion as weight, in order to determine the overall 
score of the reading material or of the conversation. In this manner, all links from 
the cohesion graph are used in an analogous manner for reflecting the importance 
of analysis element; in other words, from a computational perspective, hierarchical 
links are considered weights and are characterized as a spread of information into 
subsequent analysis elements, whereas adjacency or relevant links between 
elements of the same level of the analysis are used to augment their local 
importance through cohesion to all inter-linked sentences or blocks. 

Fig. 4 presents the main user interface of ReaderBench highlighting the 
following elements: block scores (in square brackets after each paragraph), 
demarcation with bold of sentences considered most important according to the 
summarization facility and document topics and identified topics ordered by 
relevance. Although the block score can be elevated (e.g., “hélas, …”), it is a 
combination of individual sentence scores; therefore, underlying sentences might 
not be selected in the summarization process. 

 

Fig. 4. Reading material visualization. 

In addition, starting from tutors’ general observations that an extractive 
summarization facility, combined with the demarcation of the most important 
sentences, is useful for providing a quick overview of the reading material, we 
envisioned an extractive summarization facility within ReaderBench. This 



functionality can be considered a generalization of the previous scoring 
mechanism built on top of the cohesion graph and can be easily achieved by 
considering the sentence importance scores, in descending order, as we are 
enforcing a deep discourse structure, topics coverage and the cohesive links 
between analysis elements. Overall, the proposed unsupervised extraction method 
is similar to some extent to TextRank [61] that also used an underlying graph 
structure based on the similarities between sentences. Nevertheless, our approach 
can be considered more elaborate from two perspectives: 1/ instead of simple 
word co-occurrences we use a generalized cohesion function and 2/ instead of 
computing all similarities between all pairs of sentences, resulting in highly 
connected graph, inapplicable for large text, we propose a multi-layered graph that 
resembles the core structure of the initial texts in terms of blocks or paragraphs. 

As preliminary validation we have performed experiments on two narrative 
texts in French: “Miguel de la faim” [62] and “La pharmacie des éléphants” [63], 
starting from the measurements initially performed by [64] in which 330 high 
school (9th–12th grade) students and 25 tutors were asked to manually highlight the 
most important 3 to 5 sentences from the two presented stories [64]. The inter-
rater agreement scores were rather low, as the ICC (Intraclass Correlation 
Coefficient) values were of .13, respectively .23, highlighting the subjectivity of 
the task at hand. 

Afterwards, as suggested by [65], four equivalence classes were defined, taking 
into consideration the mean – standard deviation, mean and mean + standard 
deviation of each distribution as cut-out values. In this context, two measurements 
of agreement were used: exact agreement (EA) that reflects precision and adjacent 
agreement (AA) that allows a difference of one between the class index 
automatically retrieved and the one evaluated by the human raters. By considering 
the use of the equivalence classes, we notice major improvements in our 
evaluation (see Table 1) as both documents have the best agreements with the 
tutors, suggesting that our cohesion-based scoring process entails a deeper 
perspective of the discourse structure reflected in each sentence’s importance. 

Table 1. Exact and Adjacent Agreement between automatic and manual sentence selection 
using equivalence classes. 

Text Exact/Adjacent Agreement (EA/AA) Avg. 
EA/ 
AA 

9th 
grade 

10th 
grade 

11th 
grade 

12th 
grade 

Tutor 

Miguel de la faim .33/.83 .42/.75 .29/.88 .38/.88 .46/.88 .38/.84 
La pharmacie des 
éléphants 

.22/.83 .28/.89 .33/.78 .39/.94 .44/.89 .33/.87 

Moreover, our results became more cognitively relevant as they are easier to 
interpret by both learners and tutors – instead of a positive value obtained after 
applying the scoring mechanism, each sentence has an assigned importance class 
(1 – less important; 4 – the most important). In addition, we obtained 3 or 4 



sentences per document that were tagged with the 4th class, a result consistent with 
the initial annotation task of selecting the 3–5 most important sentences. 
Therefore, based on promising preliminary validation results, we can conclude 
that the proposed cohesion-based scoring mechanism is adequate and effective, as 
it integrates through cohesive links the local importance of each sentence, derived 
from topics coverage, into a global view of the discourse. 

7 Reading Strategies Identification Heuristics 

7.1 Heuristics used to identify Control, Causality, Paraphrasing, Bridging 
and Knowledge Inference 

Starting from the two previous studies and the five types of reading strategies used 
by [66], our aim was to integrate within ReaderBench automatic extraction 
methods designed to support tutors at identifying various strategies and to best fit 
the aligned annotation categories. The automatically identified strategies within 
ReaderBench comprise monitoring, causality, bridging, paraphrase and 
elaboration due to two observed differences. Firstly, very few predictions were 
used, perhaps due to the age of the pupils, compared to McNamara’s subjects; 
secondly, there is a distinction in ReaderBench between causal inferences and 
bridging, although a causal inference can be considered a kind of bridging, as well 
as a reference resolution, due to their different computational complexities. 
Moreover, our objective was to define a fine-grained analysis in which different 
valences generated by both the identification heuristics and the hand coding rules 
were taken into consideration when defining the strategies taxonomy. In addition, 
we have tested various methods of identifying reading strategies and we will focus 
solely on presenting the alternatives that provided in the end the best overall 
human-machine correlations. 

In ascending order of complexity, the simplest strategies to identify are 
causality (e.g., “parce que”, “pour”, “donc”, “alors”, “à cause de”, “puisque”) 
and control (e.g., “je me souviens”, “je crois”, “j’ai rien compris”, “ils racontent”) 
for which cue phrases have been used. Additionally, as causality assumes text-
based inferences, all occurrences of keywords at the beginning of a verbalization 
have been discarded, as such a word occurrence can be considered a speech 
initiating event (e.g., “Donc”), rather than creating an inferential link. Afterwards, 
paraphrases, that in the manual annotation were considered repetitions of the 
same semantic propositions by human raters, were automatically identified 
through lexical similarities. More specifically, words from the verbalization were 
considered paraphrases if they had identical lemmas or were synonyms (extracted 
from the lexicalized ontologies – WordNet/WOLF) with words from the initial 
text. In addition, we experimented identifying paraphrases as the overlap between 
segments of the dependency graph (combined with synonymy relations between 
homologous elements), but this was inappropriate for French as there is no support 
within the Stanford Log-linear Part-Of-Speech Tagger [29]. 



In the end, the strategies most difficult to identify are knowledge inference and 
bridging, for which semantic similarities have to be computed. An inferred 
concept is a non-paraphrased word for which the following three semantic 
distances were computed: the distance from word w1 from the verbalization to the 
closest word w2 from the initial text (expressed in terms of semantic distances in 
ontologies, LSA and LDA) and the distances from both w1 and w2 to the textual 
fragments in-between consecutive self-explanations. The latter distances had to be 
taken into consideration for better weighting the importance of each concept, with 
respect to the whole text. In the end, for classifying a word as inferred or not, a 
weighted sum of the previous three distances is computed and compared to a 
minimum imposed threshold which was experimentally set at 0.4 for maximizing 
the precision of the knowledge inference mechanism on the used sample of 
verbalizations. 

As bridging consists of creating connections between different textual segments 
from the initial text, cohesion was measured between the verbalization and each 
sentence from the referenced reading material. If more than 2 similarity measures 
were above the mean value and exceeded a minimum threshold experimentally set 
at 0.3, bridging was estimated as the number of links between contiguous zones of 
cohesive sentences. Compared to the knowledge inference threshold, the value had 
to be lowered, as a verbalization had to be linked to multiple sentences, not 
necessarily cohesive one with another, in order to be considered bridging. 
Moreover, the consideration of contiguous zones was an adaptation with regards 
to the manual annotation that considered two or more adjacent sentences, each 
cohesive with the verbalization, members of a single bridged entity. 

 

Fig. 5. Visualization of automatically identified reading strategies. 



Fig. 5 depicts the cohesion measures with previous paragraphs from the story in 
the last column and the identified reading strategies for each verbalization marked 
in the grey areas, coded as follows: control, causality, paraphrasing [index referred 
word from the initial text], inferred concept [*] and bridging over the inter-linked 
cohesive sentences from the reading material. The grey sections represent the 
pupil’s self-explanations, whereas the white blocks represent paragraphs from 
“Matilda” [67]. Causality, control and inferred concepts (that through their 
definition are not present within the original text) are highlighted only in the 
verbalization, whereas paraphrases are coded in both the self-explanation and the 
initial text for a clear traceability of lexical proximity or identity. Bridging, if 
present, is highlighted only in the original text for pinpointing out the textual 
fragments linked together through cohesion in the pupil’s meta-cognition. 

7.2 Strategies Identification Validation 

We ran an experiment with pupils aged from 9 to 11 who had to read aloud a 450 
word-long story, “Matilda” [67], and to stop in-between at six predefined markers 
and explain what they understood up to that moment. Their explanations were first 
recorded and transcribed, then annotated by two human experts (PhD in linguistics 
and in psychology), and categorized according to scoring scheme. Disagreements 
were solved by discussion after evaluating each self-explanation individually. In 
addition, automatic cleaning had to be performed in order to process the phonetic-
like transcribed verbalizations. 

Verbalizations from 12 pupils were transcribed and manually assessed as a 
preliminary validation. The results for the 72 verbalization extracts in terms of 
precision, recall and F1-score are as follows: causality (P = .57, R = .98, F = .72), 
control (P = 1, R = .71, F = .83), paraphrase (P = .79, R = .92, F = .85), inferred 
knowledge (P = .34, R = .43, F = .38) and bridging (P = .45, R = .58, F = .5). As 
expected, paraphrases, control and causality occurrences were much easier to 
identify than information coming from pupils’ experience [68]. 

Moreover we have identified multiple particular cases in which both 
approaches (human and automatic) covered a partial truth that in the end is 
subjective to the evaluator. For instance, many causal structures close to each 
other, but not adjacent, were manually coded as one, whereas the system considers 
each of them separately. For example, “fille” (“daughter”) does not appear in the 
text and is directly linked to the main character, therefore marked as an inferred 
concept by ReaderBench, while the evaluator considered it as a synonym. 
Additionally, when looking at manual assessments, discrepancies between 
evaluators were identified due to different understandings and perceptions of 
pupil’s intentions expressed within their metacognitions. Nevertheless, our aim 
was to support tutors and the results are encouraging (correlated also with the 
previous precision measurements and with the fact that a lot of noise existed in the 
transcriptions), emphasizing the benefits of a regularized and deterministic process 
of identification. 



8 Textual Complexity Assessment 

8.1 Multi-Dimensional Integrated Model for Assessing Textual Complexity 

Assessing textual complexity can be considered a difficult task due to different 
reader perceptions primarily caused by prior knowledge and experience, cognitive 
capability, motivation, interests or language familiarity (for non-native speakers). 
Nevertheless, from the tutor perspective, the task of identifying accessible 
materials plays a crucial role in the learning process since inappropriate texts, 
either too simple or too difficult, can cause learners to quickly lose interest. 

In this context, we propose a multi-dimensional analysis of textual complexity, 
covering a multitude of factors integrating classic readability formulas, surface 
metrics derived from automatic essay grading techniques, morphology and syntax 
factors [69], as well as new dimensions focused on semantics [60]. In the end, 
subsets of specific factors are aggregated through the use of Support Vector 
Machines [70], which has proven to be the most efficient [71, 72]. In order to 
provide an overview, the textual complexity dimensions, with their corresponding 
performance scores, are presented in Table 2, whereas the following paragraphs 
focus solely on the semantic dimension of the analysis. In other words, besides the 
factors presented in detail in [69] that were focused on a more shallow approach, 
of particular interest is how semantic factors correlate to classic readability 
measures [60]. 

Table 2. Textual complexity dimensions. 

Depth of metrics Factors for evaluation Avg. 
EA 

Avg. 
AA 

Surface Analysis Readability formulas .71 .994 
 Fluency factors .317 .57 
 Structure complexity factors .716 .99 
 Diction factors .545 .907 
 Entropy factors (words vs. characters) .297 .564 
 Word complexity factors .546 .926 
Morphology & 
Syntax 

Balanced CAF (Complexity, 
Accuracy, Fluency) 

.752 .997 

 Specific POS complexity factors .563 .931 
 Parsing tree complexity factors .416 .792 
Semantics Cohesion through lexical chains, LSA 

and LDA 
.526 .891 

 Named entity complexity factors .575 .922 
 Co-reference complexity factors .366 .738 
 Lexical chains  .363 .714 

 



Firstly, textual complexity is linked to cohesion in terms of comprehension; in 
other words, in order to understand a text, the reader must first create a well-
connected representation of the information withheld, a situation model [73]. This 
connected representation is based on linking related pieces of textual information 
that occur throughout the text. Therefore, cohesion reflected in the strength of 
inner-block and inter-block links extracted from the cohesion graph influences 
readability, as semantic similarities govern the understanding of a text. In this 
context, discourse cohesion is evaluated at a macroscopic level as the average 
value of all links in the constructed cohesion graph [2, 60]. 

Secondly, a variety of metrics based on the span and the coverage of lexical 
chains [56] provide insight in terms of lexicon variety and of cohesion, expressed 
in this context as the semantic distance between different chains. Moreover, we 
imposed a threshold of minimum of 5 words per lexical chain in order to consider 
it relevant in terms of overall discourse; this value was determined experimentally 
after running simulations with increasing values and observing the correlation 
with predefined textual complexity levels. 

Thirdly, entity-density features proved to influence readability as the number of 
entities introduced within a text is correlated to the working memory of the text’s 
targeted readers. In general, entities consisting of general nouns and named 
entities (e.g., people’s names, locations, organizations) introduce conceptual 
information by identifying, in most cases, the background or the context of the 
text. More specifically, entities are defined as a union of named entities and 
general nouns (nouns and proper nouns) contained in a text, with overlapping 
general nouns removed. These entities have an important role in text 
comprehension due to the fact that established entities form basic components of 
concepts and propositions on which higher level discourse processing is based 
[74]. Therefore, the entity-density factors focus on the following statistics: the 
number of entities (unique or not) per document or sentence, the percentages of 
named entities per document, the percentage of overlapping nouns removed or the 
percentage of remaining nouns in total entities. 

Finally, another dimension focuses on the ability to resolve referential relations 
correctly [36, 75] as co-reference inference features also impact comprehension 
difficulty (e.g., the overall number of chains, the inference distance or the span 
between concepts in a text, number of active co-reference chains per word or per 
entity). 

8.2 Validation of Textual Complexity Assessment 

In order to train our complexity model, we have opted to automatically extract 
English texts from TASA, using its Degree of Reading Power (DRP) score, into 
six classes of complexity [15] of equal frequency, as no corpus was available for 
French (see Table 3). 



Table 3. Ranges of the DRP scores as a function of defining the six textual complexity 
classes [after 15].	

Complexity 
Class 

Grade 
Range 

DRP 
Minimum 

DRP 
Maximum 

1 K-1 35.38 45.99 
2 2-3 46.02 51.00 
3 4-5 51.00 56.00 
4 6-8 56.00 61.00 
5 9-10 61.00 64.00 
6 11-CCR 64.00 85.80 

This validation scenario consisting of approximately 1,000 documents was 
twofold: we wanted, on one hand, to prove that the complete model is adequate 
and reliable and, on the other, to demonstrate that high level semantic features 
provide relevant insight that can be used for automatic classification. In the end, k-
fold cross validation [76] was applied for extracting the following performance 
features (see Table 2): precision or exact agreement (EA) and adjacent agreement 
(AA) [71], as the percent to which the SVM was close to predicting the correct 
classification. 

By considering the granular factors, although simple in nature, readability 
formulas, the average number of words per sentence, the average length of 
sentences/words and balanced CAF provided the best alternatives at lexical and 
syntactic level; this was expected as the DRP score is based solely on shallow 
evaluation factors. From the perspective of word complexity factors, the average 
polysemy count and the average word syllable count correlated well with the DRP 
scores. In terms of parts of speech tagging, nouns, prepositions and adjectives had 
the highest correlation of all types of parts of speech, whereas depth and size of 
the parsing tree provided also a good insight of textual complexity. 

In contrast, semantic factors taken individually had lower scores because the 
evaluation process at this level is mostly based on cohesive or semantic links 
between analysis elements and the variance between complexity classes is lower 
in these cases. Moreover, while considering the evolution from the first class of 
complexity to the latest, these semantic features do not necessarily have an 
upward gradient; this can fundamentally affect a precise prediction if the factor is 
taken into consideration individually. Only 2 entity-density factors had better 
results, but their values are directly connected to the underlying part of speech 
(noun) that had the best EA and AA of all morphology factors. Also, the most 
difficult classes to identify were the second and the third because the differences 
between them were less noteworthy. 

Two additional measurements were performed in the end. Firstly, an integration 
of all metrics from all textual complexity dimensions proved that the SVMs results 
are compatible with the DRP scores (EA = .779 and AA = .997), and that they 
provide significant improvements as they outperform any individual dimension 



precisions. The second measurement (EA = .597 and AA = .943) used only 
morphology and semantic measures in order to avoid a circular comparison 
between factors of similar complexity, as the DRP score is based on shallow 
factors. This result showed a link between low-level factors (also used in the DRP 
score) and in-depth analysis factors, which can also be used to accurately predict 
the complexity of a reading material. 

ReaderBench enables tutors to assess the complexity of new reading materials 
based on the selected complexity factors and a pre-assessed corpus of texts, 
pertaining to different complexity dimensions. Moreover, by comparing multiple 
loaded documents, tutors can better grasp each evaluation factor, refine the model 
to best suit their interests in terms of the targeted measurements and perform new 
predictions using only their features (see Fig. 6). 

 
Fig. 6. Document complexity evaluation. 

9 An Educational Scenario 

ReaderBench can be used in a wide range of educational situations and plays the 
role of a Personal Learning Environment (PLE), allowing three kinds of work-
loops, in which teacher/learners can be freely involved, thus triggering self-
regulated activities [77]. It is worth noting that these three loops do not generate 
behavioral data per se, to be analyzed in turn in the software. The first loop is 
related to texts, the second and the third to both learners’ productions and 
strategies (see Fig. 7). 



 
Fig. 7. Learner centered educational scenario in ReaderBench. 

The first one is a reading loop: learners read some material (e.g., course text, 
narrative) and can, at any moment, get information about its textual organization 
from ReaderBench. The second one is a gist selection loop, which is a bit more 
interactive than the previous. Learners produce keywords or select main sentences 
of the read texts and submit their selection to ReaderBench, which prompts 
feedback. The third is a writing loop, which gives learners opportunity to develop 
at length what they understood from the text (e.g., summaries) or the way they 
understood (strategies self-explanation). Besides these three loops, the teacher can 
use ReaderBench to select appropriate textual materials according to learners’ 
level. 

10 Conclusion 

We introduced ReaderBench, a multi-lingual and multi-purpose system which 
allows learners and teachers to mine and analyze textual materials, learners’ 
productions and identify reading strategies. This system allows a large range of 
measures that have been carefully compared to human ones. Moreover, it infers 
cognitive processes engaged in understanding and can be integrated in several 
pedagogical scenarios. 

Further research will lead to the use of ReaderBench in classrooms by teachers 
and learners in order to validate the pedagogical scenarios. Moreover, the large 
range of raw data generated by ReaderBench will be subject to analysis in an 
educational data mining platform, like UnderTracks [78]. 
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