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The Second-order Parametric Consensus Protocol

Fabio Morbidi

Abstract—In this paper we extend the parametric consensus
protocol recently introduced by the author, to more realistic
agents modeled as double integrators and interacting over an
undirected communication network. The stability properties of
the new protocol in terms of the real parameter “s” are studied
for some relevant graph topologies, and the connection with the
notion of bipartite consensus is highlighted. The theory is illus-
trated with the help of two worked examples, dealing with the
coordination of a team of quadrotor UAVs and with cooperative
temperature measurement in an indoor environment.

I. INTRODUCTION

A. Motivation and related work

In recent years, a large body of research has started to ex-

plore the system-theoretic properties of the consensus proto-

col [1], such as its robustness against communication delays,

noisy measurements and switching topologies [2], [3], and

− by introducing suitable input/output signals − its con-

trollability and observability properties with applications

to formation control and network reconstruction/security

(see, e.g., [4]–[8] and the references therein). In particu-

lar, considerable effort has been invested in relating these

properties to the topology of the underlying communication

network. However, the set of behaviors unfolding from the

interaction of system- and graph-theoretic properties has not

been yet fully investigated, and a general theory has remained

so far elusive.

Following this vibrant line of research and going a step fur-

ther toward the development of such a theory, recent works of

the author [9], [10], have opened the doors to the study of the

so-called parametric consensus protocols, i.e. continuous-

time consensus protocols whose stability properties depend

on the value of a real parameter “s” which scales the

information coming from the neighbors of each node in the

network. In this class of protocols, the inter-node couplings

are not diffusive (cf. [5]), and parameter “s” can be regarded
as an “external input” that can be utilized to trigger different

behaviors in the multi-agent system, thus giving the designer

enhanced freedom. As shown in [9], this is particularly useful

when the motion of a team of autonomous vehicles needs to

be coordinated by a (human) supervisor, or when a wireless

sensor network needs to adapt its operation over time in

response to changes in the environment.

B. Original contributions and organization

In this work, we extend the results in [10] to agents

modeled as double integrators. The double integrator can

be used, indeed, to model numerous real systems: in fact,

the simplified dynamics of a quadrotor UAV (Unmanned
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Aerial Vehicle), or the dynamics of a unicycle robot (af-

ter being dynamically feedback linearized) comply with

this model. The stability properties of the second-order

parametric consensus protocol are studied for some special

families of undirected graphs, in terms of parameter “s”.
The case of bipartite graphs and its connection with the

properties of the signless Laplacian matrix [11], [12], is also

discussed. Although the analysis for general graph topologies

is challenging, the matrix pencil formalism introduced in [10]

appears still useful for shedding some light into the stability

properties of the new protocol.

Research on second-order consensus algorithms has been

active since the publication of the seminal contributions of

Ren et al. [13] and Yu et al. [14]. In this paper, some of the

results in [13] are revisited in a more general setting. Two

worked examples, dealing with the coordination of a team of

quadrotor UAVs and with cooperative temperature measure-

ment in a bounded environment, are provided to illustrate

the proposed theory and show its applicative potential.

The rest of this paper is organized as follows. Sect. II

presents some preliminaries on algebraic graph theory and

introduces the notation. Sect. III is devoted to the problem

formulation, and the main theoretical results of the paper are

provided in Sect. IV. The worked examples are discussed in

Sect. V. Finally, Sect. VI summarizes the main contributions

of the paper and outlines possible future research directions.

II. PRELIMINARIES

In this section we briefly review some basic notions

of algebraic graph theory and introduce the notation used

through the paper. Let G = (V, E) be a graph where
V = {1, . . . , n} is the set of nodes, and E is the set of

edges. All G are assumed to be “schlicht” graphs, i.e., finite
undirected graphs without self-loops and multiple edges.

Definition 1 (Bipartite graph): A graph G is called bipar-
tite if its set of nodes V can be divided into two disjoint

sets V1 and V2, such that every edge connects a node in

V1 to one in V2. If G is connected, its bipartition {V1, V2}
is unique. ⋄
Definition 2 (κ-regular graph): A graph G is called

κ-regular, when every node has precisely κ ≤ n − 1
neighbors. ⋄
Definition 3 (Adjacency matrix A): The adjacency ma-

trix A = [aij ] of graph G is an n × n matrix defined as

aij = 1 if {i, j} ∈ E and aij = 0 otherwise. ⋄
Definition 4 (Laplacian matrix L): The Laplacian matrix

of graph G is an n×n symmetric positive semidefinite matrix
defined as L = D−A where D = diag(A1) is the degree
matrix and 1 is a column vector of n ones. ⋄
Definition 5 (Signless Laplacian matrix Q [11]):

The signless Laplacian matrix of graph G is an n×n matrix
defined as Q = D+A. ⋄



As L, the signless Laplacian Q is a symmetric positive

semidefinite matrix, but it is not necessarily singular.
Property 1 (Spectral properties of Q [11], [15]):

1) Let G be a κ-regular graph. Then pL(λ) =
(−1)n pQ(2κ − λ) where pL(λ) denotes the charac-
teristic polynomial of the Laplacian L.

If G is a bipartite graph, then pL(λ) = pQ(λ).

2) The least eigenvalue of Q of a connected graph is

equal to 0 if and only if the graph is bipartite. In this
case, 0 is a simple eigenvalue and the corresponding
eigenvector is v = [vk] where vi = 1, i ∈ V1 and

vj = −1, j ∈ V2, being {V1, V2} the bipartition of G.

3) In any graph, the multiplicity of the eigenvalue 0

of Q is equal to the number of bipartite connected

components of G. ⋄

In a sense, the least eigenvalue of Q can be interpreted

as a measure of how close G is to being a bipartite graph.

A similar idea has been utilized for the second-smallest

eigenvalue of L, which is known as the algebraic connectivity

of G [16]. For this reason, the authors of [17] call the least
eigenvalue of Q the algebraic bipartiteness of G.
Notation: In the reminder of the paper, k �

[−1, 1,−1, 1, . . . , (−1)n−1, (−1)n]T ∈ IRn, 0n will denote

the n× n zeros matrix, In the n× n identity matrix, Jm×n

them×n ones matrix,⊗ the Kronecker product, ⌊·⌋ the floor
function which maps a real number to the largest previous

integer, |B| the cardinality of the set B, and deg[p(s)] the
degree of the polynomial with real coefficients p(s). ⋄

III. PROBLEM FORMULATION

For agents modeled by

ẋi = ui, i ∈ {1, . . . , n}, (1)

where xi ∈ IR is the state of agent i and ui ∈ IR its input,

a first-order consensus protocol was proposed in [2], as

ui =
∑

j ∈N (i)

(xj − xi), i ∈ {1, . . . , n}, (2)

whereN (i) denotes the set of nodes adjacent to node i in the
undirected communication graph G. By applying control (2),
equation (1) can be rewritten in matrix form as ẋ = −Lx

where x � [x1, . . . , xn]
T ∈ IRn. If the graph G is con-

nected, it is well known that x asymptotically converges to
1
n

∑n
i=1 xi(0) = 1

n xT
0 1, where x0 � [x1(0), . . . , xn(0)]

T

is the vector of initial states. In this paper, we consider a

double-integrator model for the agents,

ẋi = νi, ν̇i = ui, i ∈ {1, . . . , n}, (3)

where [xi, νi]
T ∈ IR2 is the state vector of agent i and

ui ∈ IR its input, and inspired by [10], [13] we propose the

following second-order parametric consensus protocol:

ui =
∑

j ∈N (i)

[(s xj−xi) + γ (s νj−νi)], i ∈ {1, . . . , n}, (4)

where γ is a positive constant and s is a real parameter.
By applying control (4), system (3) can be rewritten in

compact form as:
[

ẋ

ν̇

]

= −Γ(s)

[

x

ν

]

, (5)

where ν � [ν1, . . . , νn]
T ∈ IRn,

Γ(s) =

[

0n −In

Lp(s) γ Lp(s)

]

,

and Lp(s) = D − sA is called the parametric Lapla-

cian [10]. Note that Lp(s) ∈ IRn×n is a symmetric matrix

(but not positive semidefinite as L, in general), and that

Lp(1) = L, Lp(−1) = Q. Assuming that the graph G is

connected, our objective is to study the stability properties

of system (5) in terms of the real parameter s. We will say
that consensus is reached asymptotically if,

lim
t→∞

|xj(t)− xi(t)| = 0, lim
t→∞

|νj(t)− νi(t)| = 0, ∀ j 	= i,

for any initial conditions x0 and ν0 � [ν1(0), . . . , νn(0)]
T .

Note that in the special case of s = 1, we have the
following result (cf. Lemma 4.1 and 4.2 in [13]).

Lemma 1: If s = 1, system (5) achieves consensus

asymptotically for any γ > 0. In particular, for large t,
we have that,

x(t) →
1

n
11

T (x0 + ν0 t) and ν(t) →
1

n
11

T
ν0.

�

In fact, the eigenvalues of Lp(s) and Γ(s) are closely
related, as shown by the next lemma (see [13, p. 1007]).

Lemma 2: Let ̺i(s) be the i-th eigenvalue of −Lp(s).
Then, the eigenvalues of −Γ(s) are:

λi±(s) =
γ ̺i(s)±

√

γ2̺2i (s) + 4 ̺i(s)

2
, i ∈ {1, . . . , n},

where λi+(s) and λi−(s) are the eigenvalues of −Γ(s)
associated to ̺i(s). �

Another special case worth mentioning is the following

(cf. [12, Th. 5] and recall item 2 of Property 1).

Proposition 1: Consider the system ẋ = −Qx. If the

graph G is connected and bipartite with bipartition {V1, V2},
we have that,

lim
t→∞

i∈V1

xi(t) = − lim
t→∞

j ∈V2

xj(t) =
1

n

(

∑

i∈V1

xi(0)−
∑

j ∈V2

xj(0)
)

,

and the quantity
∑

i∈V1
xi(t) −

∑

j ∈V2
xj(t) is time

invariant. �

This behavior is referred to as bipartite consensus in [18]

and cluster anticonsensus in [12]: in fact the states of the

nodes in V1 and V2 asymptotically assume the same absolute

value but have opposite signs.

In the next section, we will focus on some special families

of graphs for which the eigenvalues and eigenvectors of

Γ(s) can be computed in closed form and thus the stability

properties of system (5) can be easily established.

IV. STABILITY CONDITIONS FOR SOME SPECIAL

FAMILIES OF GRAPHS

This section presents a sequence of seven propositions,

providing stability conditions for system (5) in the case of

path, cycle,m-cube (or hypercube), Petersen, complete, com-
plete bipartite, and Hamming graphs (the reader is referred

to [16], [19] for a precise definition of these graphs).



Proposition 2 (Path graph Pn): For the path graph Pn

with n ≥ 2 nodes (we number the nodes from 1 to n in

the natural order from left to right), we have that:

• For |s| < 1, system (5) is asymptotically stable.

• For |s| > 1, system (5) is unstable.

• For s = −1 and for large t we have that:

x(t) →
1

n
kk

T (x0 + ν0 t) and ν(t) →
1

n
kk

T
ν0. (6)

Proof: Using the Sturm sequence property, it has been

shown in [10] that the eigenvalues ̺i(s) of −Lp(s) are
strictly negative for |s| < 1. But from Lemma 2, being

|γ ̺i(s)| >
∣

∣

√

γ2̺2i (s) + 4 ̺i(s)
∣

∣ for ̺i(s) < 0, i ∈
{1, . . . , n}, it follows that the eigenvalues λi±(s) of −Γ(s)
have negative real parts for |s| < 1, thus proving the
first two items of the statement. The third item follows

from Prop. 1. �

Proposition 3 (Cycle graph Cn): For the cycle graph Cn

with n > 2 nodes (we number the nodes from 1 to n in the
natural order, moving counterclockwise), we have that:

• If n is even:

– For |s| < 1, system (5) is asymptotically stable.

– For |s| > 1, system (5) is unstable.

– For s = −1 and for large t, the state vector of
system (5) obeys (6).

• If n is odd, let µ � 1/ cos
(

n+1
n π

)

. Then:

– For s ∈ (µ, 1), system (5) is asymptotically stable.

– For s < µ or s > 1, system (5) is unstable.

– For s = µ, the components of the state subvector ν
of system (5) asymptotically converge, in general,

to n different values.

Proof: Since the eigenvalues of −Lp(s) are (cf. [10]),

2 cos
( 2 π (i−1)

n

)

s − 2, i ∈ {1, . . . , n}, invoking Lemma 2,
we have that the eigenvalues of −Γ(s) are, for i ∈
{1, . . . , n}:

γ
[

cos
( 2π (i−1)

n

)

s− 1
]

±
√

γ2cos2
( 2π(i−1)

n

)

s2+ 2(1− γ2) cos
( 2π(i−1)

n

)

s+ γ2− 2.
(7)

From a systematic study of (7) for variable s, the first two
bullets of each item in the statement are immediately proved.

Finally, if n is even and s = −1 we can utilize Prop. 1, and
if n is odd and s = µ, for large t we have that:

exp(−Γ(µ) t) →

[

M M t
0n M

]

,

M = 2
n circ

[

cos
(

2π ⌊n/2⌋·0
n

)

, cos
(

2π ⌊n/2⌋·1
n

)

,

cos
(

2π ⌊n/2⌋·2
n

)

, . . . , cos
(

2 π ⌊n/2⌋·(n−1)
n

)]

,

and circ[ · ] denotes a circulant matrix [20], i.e. each subse-
quent row of the matrix is simply the row above shifted one

element to the right (and wrapped around, i.e. modulo n). �
Proposition 4 (m-cube Qm): For the m-cube (or hyper-

cube) graph Qm with n = 2m > 4 nodes, we have that:

• For |s| < 1, system (5) is asymptotically stable.

• For |s| > 1, system (5) is unstable.

• For s = −1 and for large t, the state vector of system (5)
obeys (6).

Proof: Since the eigenvalues of −Lp(s) are in this

case, −m + s (m − 2ℓ) with multiplicity
(m

ℓ

)

,

ℓ ∈ {0, . . . , m}, from Lemma 2, we have that the

eigenvalues of −Γ(s) are [γ (−m + s(m − 2ℓ)) ±
√

γ2(−m+ s(m− 2ℓ))2 + 4(−m+ s(m− 2ℓ))]/2 with

multiplicity
(m

ℓ

)

. It is easy to verify that these eigenvalues

are all negative only for |s| < 1, which proves the first two
items of the statement. For the third item, we can rely on

Prop. 1, after a suitable labeling of the nodes of Qm. �

Proposition 5 (Petersen graph J(5, 2, 0)):
For the Petersen graph, we have that:

• For s ∈ (−3/2, 1), system (5) is asymptotically stable.

• For s > 1 or s < −3/2, system (5) is unstable.

• For s = −3/2, the components of the state subvector
ν of system (5) asymptotically converge, in general, to

ten different values.

Proof: Since the eigenvalues of −Lp(s) are in this case,
3s − 3 with multiplicity 1, s − 3 with multiplicity 5
and −2s − 3 with multiplicity 4, from Lemma 2 we

have that the eigenvalues of −Γ(s) are [γ(3s − 3) ±
√

γ2(3s− 3)2 + 4(3s− 3)]/2 with multiplicity 1, [γ (s −
3) ±

√

γ2(s− 3)2 + 4(s− 3)]/2 with multiplicity 5, and

[−γ(2s+3)±
√

γ2(2s+ 3)2 − 4(2s+ 3)]/2 with multiplic-
ity 4, from which the first two items of the statement follow.

For the third item, by numbering the nodes from 1 to 5 and

from 6 to 10 in the natural order moving counterclockwise

along the external and internal “ring” of the graph, (cf. [19,

Fig. 1.8]), we have that for large t,

exp(−Γ(−3/2)t) →

[

1
3 (N+ 1

5J10×10)
1
3 (N+ 1

5J10×10)t

010
1
3 (N+ 1

5J10×10)

]

,

where

N =

[

circ[1, −1, 0, 0, −1] −I5
−I5 circ[1, 0, −1, −1, 0]

]

,

being circ[ · ] a circulant matrix as defined in Prop. 3. �

Proposition 6 (Complete graph Kn): For the complete

graph Kn with n > 2 nodes, we have that:

• For s ∈ (−(n − 1), 1), system (5) is asymptotically

stable.

• For s < −(n− 1) or s > 1, system (5) is unstable.

• For s = −(n−1), the components of the state subvector
ν of system (5) asymptotically converge, in general, to

n different values.

Proof: Since the eigenvalues of −Lp(s) are in this case,
(n − 1)s − (n − 1) with multiplicity 1, and −s − (n − 1)
with multiplicity n − 1, from Lemma 2 we have that

the eigenvalues of −Γ(s) are [γ((n − 1)s − (n − 1)) ±
√

γ2((n− 1)s− (n− 1))2 + 4((n− 1)s− (n− 1))]/2
with multiplicity 1, and [γ(−s − (n − 1)) ±
√

γ2(−s− (n− 1))2 + 4(−s− (n− 1))]/2 with mul-

tiplicity n − 1, from which the first two items of the

statement are immediately proved. For the third item, it is

sufficient to observe that for large t,

exp(−Γ(−(n−1)) t) →

[

In − 1
n Jn×n (In − 1

n Jn×n) t

0n In − 1
n Jn×n

]

.

�



Proposition 7 (Complete bipartite graph Km,n): For the

complete bipartite graph Km,n = (V1 ∪ V2, E), where
|V1| = m, |V2| = n, with m ≥ 1, n ≥ 2 (we number the
nodes in V1 from 1 to m and the nodes in V2 from m + 1
to m+ n), we have that:

• For |s| < 1, system (5) is asymptotically stable.

• For |s| > 1, system (5) is unstable.

• For s = −1 and for large t we have that:

x(t) →
1

m+ n

[

Jm×m −Jm×n

−Jn×m Jn×n

]

(x0 + ν0 t),

ν(t) →
1

m+ n

[

Jm×m −Jm×n

−Jn×m Jn×n

]

ν0.

Proof: Since the m + n eigenvalues of −Lp(s) are −n
with multiplicity m − 1, −m with multiplicity n − 1,
and − 1

2 (n+m) ± 1
2

√

(n−m)2 + 4mns2 with multiplic-
ity 1, from Lemma 2 we conclude that the 2(m + n)
eigenvalues of −Γ(s) are [−γ n ±

√

(γ n)2 − 4n]/2 and
[−γ m±

√

(γ m)2 − 4m]/2 with multiplicitym−1 and n−1,
respectively, and

γ
[

− n−m±
√

(n−m)2 + 4mns2
]

/4

±
1

2

√

γ2 mns2 + (∓
γ2

2
(n+m)± 2)

√

(n−m)2 + 4mns2

+
γ2

2
(n2 +m2)− 2(n+m) ,

with multiplicity 1. By noticing that all the eigenvalues are

negative only for |s| < 1, we obtain the first two items of
the statement. The third item follows from Prop. 1. �

Proposition 8 (Hamming graph H(d, q)): For the Ham-
ming graph H(d, q), with n = qd nodes and d ≥ 1, q ≥ 2,
we have that:

• For s ∈ (−(q − 1), 1), system (5) is asymptotically

stable.

• For s < −(q − 1) or s > 1, system (5) is unstable.

• For s = −(q − 1):

– If q = 2, for large t the state vector of system (5)

obeys (6).

– If q > 2, the components of the state subvector ν
of system (5) asymptotically converge, in general,

to n different values.

Proof: Since the n eigenvalues of the adjacency matrix of
the Hamming graph are (q − 1)d − qk with multiplicity

Π(k) =
(

d
k

)

(q − 1)k, k ∈ {0, 1, . . . , d} [16, Sect. 12.4.1]
and the graph is d(q−1)-regular, the eigenvalues of −Lp(s)
are −d(q−1)+((q−1)d−qk)s with multiplicity Π(k). Then,
from Lemma 2, the eigenvalues of −Γ(s) are [γ(−d(q−1)+
((q − 1)d− qk)s) ±

√

γ2(−d(q − 1) + ((q − 1)d− qk)s)2

+4 (−d(q − 1) + ((q − 1)d− qk)s)]/2, again with multi-

plicity Π(k). By noticing that all these eigenvalues are

negative only for s ∈ (−(q − 1), 1), we obtain the first
two items of the statement. For the first bullet of the third

item, note that H(d, 2) = Qd, and for the second bullet that

H(1, q) = Kq with q > 2 (cf. [21, Sect. 9.2]). �

For the reader’s convenience, all the main results found in

this section are summarized in Table I.

Graph name Asympt. stab. for :

Path graph Pn, n ≥ 2 |s| < 1

Cycle graph Cn, n > 2, n even |s| < 1

Cycle graph Cn, n > 2, n odd s ∈ (µ, 1)

m-cube, Qm, n = 2m > 4 |s| < 1

Petersen graph J(5, 2, 0) s ∈ (−3/2, 1)

Complete graph Kn, n > 2 s ∈
(

− (n− 1), 1
)

Complete bipartite graph Km,n, m ≥ 1, n ≥ 2 |s| < 1

Hamming graph H(d, q), d ≥ 1, q ≥ 2 s ∈
(

− (q − 1), 1
)

TABLE I

SUMMARY OF THE STABILITY PROPERTIES OF SYSTEM (5) FOR SEVEN

SPECIAL FAMILIES OF GRAPHS. CONSENSUS IS REACHED

ASYMPTOTICALLY IN ALL CASES FOR s = 1.

Remark 1 (The second-order Laplacian pencil): In order

to study the stability properties of system (5) for general

graphs G, it is convenient to interpret Γ(s) as a matrix pencil
in the indeterminate s: note, in fact, that we can rewrite
Γ(s) as,

Γ(s) =

[

0n −In

D γD

]

− s

[

0n 0n

A γA

]

,

which we call the second-order Laplacian pencil to distin-

guish it from the Laplacian pencil Lp(s) studied in [10]. It is
easy to verify that:

• The second-order Laplacian pencil is a regular pencil

(in fact, we always have det(Γ(s)) = det(D) 	= 0 for
s = 0, cf. [22, Def. 4.7]).

• Let spec[ · ] denote the spectrum of a matrix pencil

and specF[ · ] the spectrum of a matrix pencil without

the eigenvalues at infinity. Then, according to [22,

Prop. 4.6], we have that:

spec[Γ(s)] = specF[−Lp(s)] ∪ (∞)r ∪ (−∞)n, (8)

where r = n − deg[det(Lp(s))] and ( · )r indicates
an eigenvalue with algebraic multiplicity r. Since the
Laplacian pencil has all real eigenvalues then from (8)

also the second-order Laplacian pencil has all real

eigenvalues.

It has been shown in [10], that if the graph G is regular,
the smallest and second smallest eigenvalue in modulus of

the negated Laplacian pencil, are the values of s for which
the system ẋ = −Lp(s)x is marginally stable, and that it is
asymptotically stable for all s between these two values. We
have not found so far counterexamples to this property for

system (5): however, a formal proof of this statement is the

subject of ongoing research. ⋄

V. WORKED EXAMPLES

The theory presented in the previous section is here

illustrated with the help of two numerical examples.
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Fig. 1. Example 1 − coordination of a team of UAVs: (a), (c) time evolution of the positions, and (b), (d) evolution of the velocities of the 6 UAVs
interacting via the communication graph K3,3: in (a)-(b), we set s = −1, in (c)-(d) we set s = 0, at all times. In (b), (d), the initial velocities of the
vehicles are marked with circles: note that in (a), (c) the same color convention as in (b), (d) has been adopted.

A. Example 1: coordination of a team of quadrotor UAVs

Consider a team of n quadrotor UAVs modeled as

p̈i = ui, i ∈ {1, . . . , n}, where pi = [pix, piy, piz]
T ∈ IR3

denotes the 3-D position of the i-th UAV in a fixed global

reference frame and ui ∈ IR3 its acceleration input. The col-

lective dynamics of the n UAVs adopting control (4), can be
written in compact form as

q̇ = (−Γ(s) ⊗ I3)q , (9)

where q = [pT
1 , ν

T
1 , . . . ,p

T
n , ν

T
n ]

T ∈ IR6n and νi =
[νix, νiy , νiz ]

T ∈ IR3 is the velocity vector of the i-th UAV.
Figs. 1(a)-(b) show the time history of the positions and

the velocity profiles of n = 6 UAVs communicating over
the graph K3,3: in the simulation, the damping parameter

γ = 20, s = −1 at all times, and the initial condition q0 has

been chosen at random. Figs. 1(c)-(d) report again the time-

history of the positions and the velocity profiles of the UAVs,

but now s = 0 at all times (q0 and all the other simulation

parameters have been left unchanged). As it is evident from

Fig. 1, in the case of s = −1 the velocities of UAVs 1, 2
and 3 converge to ν

∗ = [0.396, −0.0702, 1.128]T and the

velocities of UAVs 4, 5, and 6 converge to −ν
∗ (cf. Prop. 1):

for s = 0, instead, all the velocities converge to zero being
system (9) asymptotically stable (cf. Prop. 7).

B. Example 2: network of temperature sensors

Consider a static network of n sensors in a 2-D bounded
environment Q, locally measuring temperatures xi (in C

◦)

and gradients of temperatures νi, i ∈ {1, . . . , n} (see the
illustration in Fig. 2). Sensor i collects noisy measurements
with variance σ2

i and interacts with the other sensors through

the visibility graph Gvis: in this connected undirected graph,
two sensors are neighbors if they are visible to each other,

i.e. {i, j} ∈ E if the closed segment from i to j is

contained in Q. The set of neighbors of agent i in Gvis is
denoted by Nvis(i). By taking the variance of the measure-
ments into account, the state vector [xi, νi]

T of sensor i
can be updated according to the following inverse-variance

1

2

3

4 5

6

7 8

9
10

11

Gvis
Q

Fig. 2. Example 2 − cooperative temperature measurement: the sensors
are marked with black disks and dashed lines indicate the communication
pattern in the bounded environment Q (e.g., the plan of a museum).
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time [s]

Fig. 3. Example 2: time evolution of the Euclidean norm of the state
subvector ν(t) of system (11), for different values of variance σ2 .

weighted sum-like criterion:

ẋi = νi, i ∈ {1, . . . , n},

ν̇i =
[

∑

j ∈Nvis(i)

( 1

σ2
j

+
1

σ2
i

)]−1 ∑

j ∈Nvis(i)

[( 1

σ2
j

xj −
1

σ2
i

xi

)

+ γ
( 1

σ2
j

νj −
1

σ2
i

νi

)]

.

(10)

If we now assume for simplicity that σi = 1, σj = σ, ∀ j 	= i,
and define s � 1/σ2, then (10) reduces to:

ẋi = νi, i ∈ {1, . . . , n},

ν̇i =
1

|Nvis(i)| (s+ 1)

∑

j ∈Nvis(i)

[(s xj − xi) + γ (s νj − νi)].

By collecting the dynamics of all sensors together, we end

up with the following system:

[

ẋ

ν̇

]

= −

[

0n −In
1

s+1 Lrw(s)
γ

s+1 Lrw(s)

]

[

x

ν

]

, (11)

where x = [x1, . . . , xn]
T , ν = [ν1, . . . , νn]

T and Lrw(s) =
In − D−1A s. For s = 1, Lrw(s) is referred to as the
normalized Laplacian in [23], and as the subscript suggests

it is closely related to a random walk (in fact, the transition

probability matrix of a random walk on Gvis is D−1A). Note

that unless Gvis is regular, matrix Lrw(s) is non-symmetric.
Fig. 3 shows the time evolution of the Euclidean

norm of ν(t) for five different values of variance σ2,

for the 11-node visibility graph Gvis reported in

Fig. 2. The initial condition is x0 = 21 · 1, ν0 =
[1.1706, 0.4759, 1.4122, 0.0226,−0.0479, 1.7013,−0.5097,
−0.0029, 0.9199, 0.1498, 1.4049]T chosen at random,

and γ = 1.5. Note that for σ2 = 1 and for large t,
‖ν(t)‖2 → ‖1wT

ν0‖2 ≃ 1.622 where w ∈ IRn is a non-

negative left eigenvector of −Lrw(1) associated with the zero
eigenvalue and wT

1 = 1. Instead, for σ2 ∈ {2, 10, 100}
system (11) is asymptotically stable, and for σ2 = 2/3 the
system is unstable.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have presented an extension of the

parametric consensus protocol to agents modeled as double

integrators. The stability properties of the new protocol in

terms of the real parameter “s”, have been studied for some
relevant graph topologies and the theory has been illustrated

with the help of two worked examples.

In future research, as mentioned in Remark 1, we aim

at establishing general stability conditions for arbitrary

(weighted) undirected communication networks, and at ad-

dressing the more challenging case of directed topologies.

We are also interested in studying the robustness of the

proposed protocol when the states νj of the neighbors of
node i are not perfectly known.
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