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The Second-order Parametric Consensus Protocol

In this paper we extend the parametric consensus protocol recently introduced by the author, to more realistic agents modeled as double integrators and interacting over an undirected communication network. The stability properties of the new protocol in terms of the real parameter "s"ar estudied for some relevant graph topologies, and the connection with the notion of bipartite consensus is highlighted. The theory is illustrated with the help of two worked examples, dealing with the coordination of a team of quadrotor UAVs and with cooperative temperature measurement in an indoor environment.

I. INTRODUCTION

A. Motivation and related work

In recent years, a large body of research has started to explore the system-theoretic properties of the consensus protocol [START_REF] Mesbahi | Graph Theoretic Methods in Multiagent Networks[END_REF], such as its robustness against communication delays, noisy measurements and switching topologies [START_REF] Olfati-Saber | Consensus problems in networks of agents with switching topology and time-delays[END_REF], [START_REF] Kar | Distributed Consensus Algorithms in Sensor Networks With Imperfect Communication: Link Failures and Channel Noise[END_REF], and by introducing suitable input/output signalsits controllability and observability properties with applications to formation control and network reconstruction/security (see, e.g., [START_REF] Egerstedt | Interacting with Networks: How Does Structure Relate to Controllability in Single-Leader, Consensus Networks?[END_REF]- [START_REF] Sundaram | Distributed function calculation and consensus using linear iterative strategies[END_REF] and the references therein). In particular, considerable effort has been invested in relating these properties to the topology of the underlying communication network. However, the set of behaviors unfolding from the interaction of system-and graph-theoretic properties has not been yet fully investigated, and a general theory has remained so far elusive.

Following this vibrant line of research and going a step further toward the development of such a theory, recent works of the author [START_REF] Morbidi | The deformed consensus protocol[END_REF], [START_REF] Morbidi | The Laplacian Pencil and its Application to Consensus Theory[END_REF], have opened the doors to the study of the so-called parametric consensus protocols, i.e. continuoustime consensus protocols whose stability properties depend on the value of a real parameter "s" which scales the information coming from the neighbors of each node in the network. In this class of protocols, the inter-node couplings are not diffusive (cf. [START_REF] Zhang | Upper and lower bounds for controllable subspaces of networks of diffusively coupled agents[END_REF]), and parameter "s" can be regarded as an "external input" that can be utilized to trigger different behaviors in the multi-agent system, thus giving the designer enhanced freedom. As shown in [START_REF] Morbidi | The deformed consensus protocol[END_REF], this is particularly useful when the motion of a team of autonomous vehicles needs to be coordinated by a (human) supervisor, or when a wireless sensor network needs to adapt its operation over time in response to changes in the environment.

B. Original contributions and organization

In this work, we extend the results in [START_REF] Morbidi | The Laplacian Pencil and its Application to Consensus Theory[END_REF] to agents modeled as double integrators. The double integrator can be used, indeed, to model numerous real systems: in fact, the simplified dynamics of a quadrotor UAV (Unmanned The author is with the "Networked Controlled System" (NeCS) team, Inria Grenoble Rhône-Alpes, 655 Avenue de l'Europe, 38334 Montbonnot Saint Martin, France. Email: fabio.morbidi@inria.fr Aerial Vehicle), or the dynamics of a unicycle robot (after being dynamically feedback linearized) comply with this model. The stability properties of the second-order parametric consensus protocol are studied for some special families of undirected graphs, in terms of parameter "s". The case of bipartite graphs and its connection with the properties of the signless Laplacian matrix [START_REF] Cvetković | Signless Laplacians of finite graphs[END_REF], [START_REF] Zhang | Cluster Anticonsensus of Multi-agent Systems Based on the Q-Theory[END_REF], is also discussed. Although the analysis for general graph topologies is challenging, the matrix pencil formalism introduced in [START_REF] Morbidi | The Laplacian Pencil and its Application to Consensus Theory[END_REF] appears still useful for shedding some light into the stability properties of the new protocol.

Research on second-order consensus algorithms has been active since the publication of the seminal contributions of Ren et al. [START_REF] Ren | Distributed multi-vehicle coordinated control via local information exchange[END_REF] and Yu et al. [START_REF] Yu | Some necessary and sufficient conditions for second-order consensus in multi-agent dynamical systems[END_REF]. In this paper, some of the results in [START_REF] Ren | Distributed multi-vehicle coordinated control via local information exchange[END_REF] are revisited in a more general setting. Two worked examples, dealing with the coordination of a team of quadrotor UAVs and with cooperative temperature measurement in a bounded environment, are provided to illustrate the proposed theory and show its applicative potential.

The rest of this paper is organized as follows. Sect. II presents some preliminaries on algebraic graph theory and introduces the notation. Sect. III is devoted to the problem formulation, and the main theoretical results of the paper are provided in Sect. IV. The worked examples are discussed in Sect. V. Finally, Sect. VI summarizes the main contributions of the paper and outlines possible future research directions.

II. PRELIMINARIES

In this section we briefly review some basic notions of algebraic graph theory and introduce the notation used through the paper. Let G =( V, E) b eag r a p hw h e r e V = {1,...,n} is the set of nodes, and E is the set of edges. All G are assumed to be "schlicht" graphs, i.e., finite undirected graphs without self-loops and multiple edges.

Definition 1 (Bipartite graph): AgraphG is called bipartite if its set of nodes V can be divided into two disjoint sets V 1 and V 2 , such that every edge connects a node in

V 1 to one in V 2 .I fG is connected, its bipartition {V 1 ,V 2 } is unique.
⋄ Definition 2( κ-regular graph): Ag r a p hG is called κ-regular, when every node has precisely κ ≤ n -1 neighbors.

⋄ Definition 3 (Adjacency matrix A): The adjacency matrix A =[ a ij ] of graph G is an n × n matrix defined as a ij =1if {i, j}∈E and a ij =0otherwise.

⋄ Definition 4 (Laplacian matrix L): The Laplacian matrix of graph G is an n×n symmetric positive semidefinite matrix defined as L = D -A where D = diag(A1) is the degree matrix and 1 is a column vector of n ones. ⋄ Definition 5 (Signless Laplacian matrix Q [START_REF] Cvetković | Signless Laplacians of finite graphs[END_REF]):

The signless Laplacian matrix of graph G is an n × n matrix defined as

Q = D + A. ⋄
As L, the signless Laplacian Q is a symmetric positive semidefinite matrix, but it is not necessarily singular.

Property 1 (Spectral properties of Q [START_REF] Cvetković | Signless Laplacians of finite graphs[END_REF], [START_REF] Goldberg | On the sign patterns of the smallest signless Laplacian eigenvector[END_REF]):

1) Let G be a κ-regular graph.T h e np L (λ)= (-1) n p Q (2κλ) where p L (λ) denotes the characteristic polynomial of the Laplacian L.

If G is a bipartite graph,t h e np L (λ)=p Q (λ).

2) The least eigenvalue of Q of a connected graph is equal to 0 if and only if the graph is bipartite.I nt h i s case, 0 is a simple eigenvalue and the corresponding

eigenvector is v =[ v k ] where v i =1 , i ∈ V 1 and v j = -1, j ∈ V 2 ,b e i n g{V 1 ,V 2 } the bipartition of G.
3) In any graph, the multiplicity of the eigenvalue 0 of Q is equal to the number of bipartite connected components of G. ⋄ In a sense, the least eigenvalue of Q can be interpreted as a measure of how close G is to being a bipartite graph. A similar idea has been utilized for the second-smallest eigenvalue of L, which is known as the algebraic connectivity of G [START_REF] Brouwer | Spectra of graphs[END_REF]. For this reason, the authors of [START_REF] Fallat | Bipartiteness and the least eigenvalue of signless Laplacian of graphs[END_REF] call the least eigenvalue of Q the algebraic bipartiteness of G.

Notation: In the reminder of the paper, k [-1, 1, -1, 1,...,(-1) n-1 , (-1) n ] T ∈ IR n , 0 n will denote the n × n zeros matrix, I n the n × n identity matrix, J m×n the m×n ones matrix, ⊗ the Kronecker product, ⌊•⌋ the floor function which maps a real number to the largest previous integer, |B| the cardinality of the set B, and deg[p(s)] the degree of the polynomial with real coefficients p(s). ⋄

III. PROBLEM FORMULATION For agents modeled by

ẋi = u i ,i ∈{1,...,n}, (1) 
where x i ∈ IR is the state of agent i and u i ∈ IR its input, a first-order consensus protocol was proposed in [START_REF] Olfati-Saber | Consensus problems in networks of agents with switching topology and time-delays[END_REF], as

u i = j ∈N(i) (x j -x i ),i ∈{1,...,n}, (2) 
where N (i) denotes the set of nodes adjacent to node i in the undirected communication graph G. By applying control (2), equation ( 1) can be rewritten in matrix form as ẋ = -Lx where

x [x 1 ,...,x n ] T ∈ IR n . If the graph G is con- nected, it is well known that x asymptotically converges to 1 n n i=1 x i (0) = 1 n x T 0 1,w h e r ex 0 [x 1 (0), ..., x n (0)
] T is the vector of initial states. In this paper, we consider a double-integrator model for the agents,

ẋi = ν i , νi = u i ,i ∈{1,...,n}, (3) 
where [x i ,ν i ] T ∈ IR 2 is the state vector of agent i and u i ∈ IR its input, and inspired by [START_REF] Morbidi | The Laplacian Pencil and its Application to Consensus Theory[END_REF], [START_REF] Ren | Distributed multi-vehicle coordinated control via local information exchange[END_REF] we propose the following second-order parametric consensus protocol:

u i = j ∈N(i) [(sx j -x i )+γ (sν j -ν i )],i ∈{1,...,n}, (4) 
where γ is a positive constant and s is a real parameter. By applying control (4), system (3) can be rewritten in compact form as:

ẋ ν = -Γ(s) x ν , (5) 
where

ν [ν 1 ,...,ν n ] T ∈ IR n , Γ(s)= 0 n -I n L p (s) γ L p (s) ,
and L p (s)=D -sA is called the parametric Laplacian [START_REF] Morbidi | The Laplacian Pencil and its Application to Consensus Theory[END_REF]. Note that L p (s) ∈ IR n×n is a symmetric matrix (but not positive semidefinite as L, in general), and that L p (1) = L, L p (-1) = Q. Assuming that the graph G is connected, our objective is to study the stability properties of system (5) in terms of the real parameter s. We will say that consensus is reached asymptotically if,

lim t→∞ |x j (t) -x i (t)| =0, lim t→∞ |ν j (t) -ν i (t)| =0, ∀ j = i,
for any initial conditions x 0 and ν 0 [ν 1 (0),...,ν n (0)] T . Note that in the special case of s =1 ,w eh a v et h e following result (cf. Lemma 4.1 and 4.2 in [START_REF] Ren | Distributed multi-vehicle coordinated control via local information exchange[END_REF]).

Lemma 1: If s =1 , system (5) achieves consensus asymptotically for any γ>0. In particular, for large t, we have that,

x(t) → 1 n 11 T (x 0 + ν 0 t) and ν(t) → 1 n 11 T ν 0 .
In fact, the eigenvalues of L p (s) and Γ(s) are closely related, as shown by the next lemma (see [13, p. 1007]). Lemma 2: Let ̺ i (s) be the i-th eigenvalue of -L p (s). Then, the eigenvalues of -Γ(s) are:

λ i± (s)= γ̺ i (s) ± γ 2 ̺ 2 i (s)+4̺ i (s) 2 ,i ∈{1,...,n},
where λ i + (s) and λ i -(s) are the eigenvalues of -Γ(s) associated to ̺ i (s).

Another special case worth mentioning is the following (cf. [START_REF] Zhang | Cluster Anticonsensus of Multi-agent Systems Based on the Q-Theory[END_REF]Th. 5] and recall item 2 of Property 1).

Proposition 1: Consider the system ẋ = -Qx.I ft h e graph G is connected and bipartite with bipartition {V 1 ,V 2 }, we have that,

lim t→∞ i ∈ V1 x i (t)=-lim t→∞ j ∈ V2 x j (t)= 1 n i ∈ V1 x i (0) - j ∈ V2
x j (0) , and the quantity

i ∈ V1 x i (t) - j ∈ V2 x j (t) is time invariant.
This behavior is referred to as bipartite consensus in [START_REF] Altafini | Consensus problems on networks with antagonistic interactions[END_REF] and cluster anticonsensus in [START_REF] Zhang | Cluster Anticonsensus of Multi-agent Systems Based on the Q-Theory[END_REF]: in fact the states of the nodes in V 1 and V 2 asymptotically assume the same absolute value but have opposite signs.

In the next section, we will focus on some special families of graphs for which the eigenvalues and eigenvectors of Γ(s) can be computed in closed form and thus the stability properties of system (5) can be easily established.

IV. STABILITY CONDITIONS FOR SOME SPECIAL

FAMILIES OF GRAPHS

This section presents a sequence of seven propositions, providing stability conditions for system [START_REF] Zhang | Upper and lower bounds for controllable subspaces of networks of diffusively coupled agents[END_REF] in the case of path, cycle, m-cube (or hypercube), Petersen, complete, complete bipartite, and Hamming graphs (the reader is referred to [START_REF] Brouwer | Spectra of graphs[END_REF], [START_REF] Godsil | Algebraic graph theory[END_REF] for a precise definition of these graphs).

Proposition 2 (Path graph P n ): For the path graph P n with n ≥ 2 nodes (we number the nodes from 1 to n in the natural order from left to right), we have that:

• For |s| < 1, system ( 5) is asymptotically stable.

• For |s| > 1, system (5) is unstable.

• For s = -1 and for large t we have that:

x(t) → 1 n kk T (x 0 + ν 0 t) and ν(t) → 1 n kk T ν 0 . ( 6 
)
Proof: Using the Sturm sequence property, it has been shown in [START_REF] Morbidi | The Laplacian Pencil and its Application to Consensus Theory[END_REF] that the eigenvalues ̺ i (s) of -L p (s) are strictly negative for |s| < 1. But from Lemma 2, being

|γ̺ i (s)| > γ 2 ̺ 2 i (s)+4̺ i (s) for ̺ i (s) < 0, i ∈ {1,.
..,n}, it follows that the eigenvalues λ i± (s) of -Γ(s) have negative real parts for |s| < 1, thus proving the first two items of the statement. The third item follows from Prop. 1.

Proposition 3 (Cycle graph C n ): For the cycle graph C n with n>2 nodes (we number the nodes from 1 to n in the natural order, moving counterclockwise), we have that:

• If n is even: -For |s| < 1, system ( 5) is asymptotically stable.

-For |s| > 1, system ( 5) is unstable.

-For s = -1 and for large t, the state vector of system ( 5) obeys [START_REF] Parlangeli | On the reachability and observability of path and cycle graphs[END_REF].

• If n is odd, let µ 1/ cos n+1
n π . Then: -For s ∈ (µ, 1), system ( 5) is asymptotically stable.

-For s<µor s>1, system (5) is unstable.

-For s = µ, the components of the state subvector ν of system (5) asymptotically converge, in general, to n different values. Proof: Since the eigenvalues of -L p (s) are (cf. [START_REF] Morbidi | The Laplacian Pencil and its Application to Consensus Theory[END_REF]), 2c o s 2 π (i-1) n s -2, i ∈{ 1,..., n}, invoking Lemma 2, we have that the eigenvalues of -Γ(s) are, for i ∈ {1,..., n}:

γ cos 2π (i-1) n s -1 ± γ 2 cos 2 2π(i-1) n s 2 +2(1-γ 2 )cos 2π(i-1) n s + γ 2 -2.
(7) From a systematic study of [START_REF] Ren | Noise bridges dynamical correlation and topology in coupled oscillator networks[END_REF] for variable s,t h efirst two bullets of each item in the statement are immediately proved. Finally, if n is even and s = -1 we can utilize Prop. 1, and if n is odd and s = µ,f o rl a r g et we have that:

exp(-Γ(µ) t) → MM t 0 n M , M = 2 n circ cos 2 π ⌊n/2⌋•0 n , cos 2 π ⌊n/2⌋•1 n , cos 2 π ⌊n/2⌋•2 n ,..., cos 2 π ⌊n/2⌋•(n-1) n ,
and circ[ • ] denotes a circulant matrix [START_REF] Davis | Circulant Matrices[END_REF], i.e. each subsequent row of the matrix is simply the row above shifted one element to the right (and wrapped around, i.e. modulo n). Proposition 4( m-cube Q m ): For the m-cube (or hypercube) graph Q m with n =2 m > 4 nodes, we have that:

• For |s| < 1, system (5) is asymptotically stable.

• For |s| > 1, system (5) is unstable.

• For s = -1 and for large t, the state vector of system ( 5) obeys [START_REF] Parlangeli | On the reachability and observability of path and cycle graphs[END_REF].

Proof: Since the eigenvalues of -L p (s) are in this case, -m + s (m -2ℓ) with multiplicity m ℓ , ℓ ∈{ 0, ..., m}, from Lemma 2, we have that the eigenvalues of -Γ

(s) are [γ (-m + s(m -2ℓ)) ± γ 2 (-m + s(m -2ℓ)) 2 +4 ( -m + s(m -2ℓ
))]/2 with multiplicity m ℓ . It is easy to verify that these eigenvalues are all negative only for |s| < 1, which proves the first two items of the statement. For the third item, we can rely on Prop. 1, after a suitable labeling of the nodes of Q m .

Proposition 5 (Petersen graph J(5, 2, 0)): For the Petersen graph, we have that:

• For s ∈ (-3/2, 1), system ( 5) is asymptotically stable.

• For s>1 or s<-3/2, system (5) is unstable.

• For s = -3/2, the components of the state subvector ν of system (5) asymptotically converge, in general, to ten different values. Proof: Since the eigenvalues of -L p (s) are in this case, 3s -3 with multiplicity 1, s -3 with multiplicity 5 and -2s -3 with multiplicity 4, from Lemma 2 we have that the eigenvalues of -Γ(s) are [γ(3s -3) ± γ 2 (3s -3) 2 +4(3s -3)]/2 with multiplicity 1, [γ (s -3) ± γ 2 (s -3) 2 +4(s -3)]/2 with multiplicity 5, and [-γ(2s +3)± γ 2 (2s +3) 2 -4(2s +3)]/2 with multiplicity 4, from which the first two items of the statement follow. For the third item, by numbering the nodes from 1 to 5 and from 6 to 10 in the natural order moving counterclockwise along the external and internal "ring" of the graph, (cf. [19, Fig. 1.8]), we have that for large t,

exp(-Γ(-3/2)t) → 1 3 (N+ 1 5 J 10×10 ) 1 3 (N+ 1 5 J 10×10 )t 0 10 1 3 (N+ 1 5 J 10×10 )
,

where

N = circ[1, -1, 0, 0, -1] -I 5 -I 5 circ[1, 0, -1, -1, 0] ,
being circ[ • ] a circulant matrix as defined in Prop. 3. Proposition 6 (Complete graph K n ): For the complete graph K n with n>2 nodes, we have that:

• For s ∈ (-(n -1), 1), system (5) is asymptotically stable. • For s<-(n -1) or s>1, system (5) is unstable.

• For s = -(n-1), the components of the state subvector ν of system (5) asymptotically converge, in general, to n different values. Proof: Since the eigenvalues of -L p (s) are in this case, (n -1)s -(n -1) with multiplicity 1, and -s -(n -1) with multiplicity n -1, from Lemma 2 we have that the eigenvalues of -Γ(s) are

[γ((n -1)s -(n -1)) ± γ 2 ((n -1)s -(n -1)) 2 +4((n -1)s -(n -1))]/2 with multiplicity 1, and [γ(-s -(n -1)) ± γ 2 (-s -(n -1)) 2 +4(-s -(n - 1 
))]/2 with multiplicity n -1, from which the first two items of the statement are immediately proved. For the third item, it is sufficient to observe that for large t,

exp(-Γ(-(n-1)) t) → I n -1 n J n×n (I n -1 n J n×n ) t 0 n I n -1 n J n×n . Proposition 7 (Complete bipartite graph K m,n ): For the complete bipartite graph K m,n =( V 1 ∪ V 2 ,E),w h e r e |V 1 | = m, |V 2 | = n, with m ≥ 1, n ≥ 2 (
we number the nodes in V 1 from 1 to m and the nodes in V 2 from m +1 to m + n), we have that:

• For |s| < 1, system ( 5) is asymptotically stable.

• For |s| > 1, system (5) is unstable.

• For s = -1 and for large t we have that:

x(t) → 1 m + n J m×m -J m×n -J n×m J n×n (x 0 + ν 0 t), ν(t) → 1 m + n J m×m -J m×n -J n×m J n×n ν 0 .
Proof: Since the m + n eigenvalues of -L p (s) are -n with multiplicity m -1, -m with multiplicity n -1, and

-1 2 (n + m) ± 1 2
(nm) 2 +4mns 2 with multiplicity 1, from Lemma 2 we conclude that the 2(m + n) eigenvalues of -Γ(s) are [-γn ± (γn) 2 -4n]/2 and [-γm± (γm) 2 -4m]/2 with multiplicity m-1 and n-1, respectively, and

γ -n -m ± (n -m) 2 +4mns 2 /4 ± 1 2 γ 2 mns 2 +(∓ γ 2 2 (n + m) ± 2) (n -m) 2 +4mns 2 + γ 2 2 (n 2 + m 2 ) -2(n + m) ,
with multiplicity 1. By noticing that all the eigenvalues are negative only for |s| < 1, we obtain the first two items of the statement. The third item follows from Prop. 1. Proposition 8 (Hamming graph H(d, q)): For the Hamming graph H(d, q), with n = q d nodes and d ≥ 1, q ≥ 2, we have that:

• For s ∈ (-(q -1), 1), system (5) is asymptotically stable. • For s<-(q -1) or s>1, system (5) is unstable.

• For s = -(q -1):

-If q =2,f o rl a r g et the state vector of system ( 5) obeys ( 6). -If q>2, the components of the state subvector ν of system (5) asymptotically converge, in general, to n different values. Proof: Since the n eigenvalues of the adjacency matrix of the Hamming graph are (q -1)dqk with multiplicity Π(k)= d k (q -1) k , k ∈{ 0, 1,...,d} [16, Sect. 12.4.1] and the graph is d(q -1)-regular, the eigenvalues of -L p (s) are -d(q-1)+((q-1)d-qk)s with multiplicity Π(k). Then, from Lemma 2, the eigenvalues of -Γ(s) are [γ(-d(q-1)+ ((q -1)dqk)s) ± γ 2 (-d(q -1) + ((q -1)dqk)s) 2 +4(-d(q -1) + ((q -1)dqk)s)]/2, again with multiplicity Π(k). By noticing that all these eigenvalues are negative only for s ∈ (-(q -1), 1), we obtain the first two items of the statement. For the first bullet of the third item, note that H(d, 2) = Q d , and for the second bullet that H(1,q)=K q with q>2 (cf. [21, Sect. 9.2]).

For the reader's convenience, all the main results found in this section are summarized in Table I.

Graph name

Asympt. stab. for :

Path graph Pn, n ≥ 2 |s| < 1 Cycle graph Cn, n>2, n even |s| < 1 Cycle graph Cn, n>2, n odd s ∈ (µ, 1) m-cube, Qm, n =2 m > 4 |s| < 1 Petersen graph J(5, 2, 0) s ∈ (-3/2, 1) Complete graph Kn, n>2 s ∈ -(n -1), 1 Complete bipartite graph Km,n, m ≥ 1, n ≥ 2 |s| < 1
Hamming graph H(d, q), d ≥ 1, q ≥ 2 s ∈ -(q -1), 1 Remark 1 (The second-order Laplacian pencil): In order to study the stability properties of system (5) for general graphs G, it is convenient to interpret Γ(s) as a matrix pencil in the indeterminate s: note, in fact, that we can rewrite Γ(s) as,

Γ(s)= 0 n -I n D γ D -s 0 n 0 n A γ A ,
which we call the second-order Laplacian pencil to distinguish it from the Laplacian pencil L p (s) studied in [START_REF] Morbidi | The Laplacian Pencil and its Application to Consensus Theory[END_REF]. It is easy to verify that:

• The second-order Laplacian pencil is a regular pencil (in fact, we always have det(Γ(s)) = det(D) =0for s =0, cf. [START_REF] Demmel | U. von Luxburg. A tutorial on spectral clustering[END_REF]Def. 4.7]). • Let spec[ • ] denote the spectrum of a matrix pencil and spec F [ • ] the spectrum of a matrix pencil without the eigenvalues at infinity. Then, according to [START_REF] Demmel | U. von Luxburg. A tutorial on spectral clustering[END_REF]Prop. 4.6], we have that:

spec[Γ(s)] = spec F [-L p (s)] ∪ (∞) r ∪ (-∞) n , (8) 
where r = ndeg[det(L p (s))] and ( • ) r indicates an eigenvalue with algebraic multiplicity r. Since the Laplacian pencil has all real eigenvalues then from ( 8) also the second-order Laplacian pencil has all real eigenvalues.

It has been shown in [START_REF] Morbidi | The Laplacian Pencil and its Application to Consensus Theory[END_REF], that if the graph G is regular, the smallest and second smallest eigenvalue in modulus of the negated Laplacian pencil, are the values of s for which the system ẋ = -L p (s) x is marginally stable, and that it is asymptotically stable for all s between these two values. We have not found so far counterexamples to this property for system (5): however, a formal proof of this statement is the subject of ongoing research. ⋄

V. W ORKED EXAMPLES

The theory presented in the previous section is here illustrated with the help of two numerical examples. 

* ν 1 ν 2 ν 3 ν 4 ν 5 ν 6 ν ix [m/s] ν iy [m/s] ν iz [m/s] (d) 

A. Example 1: coordination of a team of quadrotor UAVs

Consider a team of n quadrotor UAVs modeled as pi = u i , i ∈{1,...,n},wherep i =[p ix ,p iy ,p iz ] T ∈ IR 3 denotes the 3-D position of the i-th UAV in a fixed global reference frame and u i ∈ IR 3 its acceleration input. The collective dynamics of the n UAVs adopting control (4), can be written in compact form as

q =( -Γ(s) ⊗ I 3 ) q , (9) 
where q =[ p T 1 , ν T 1 ,...,p T n , ν T n ] T ∈ IR 6n and ν i = [ν ix ,ν iy ,ν iz ] T ∈ IR 3 is the velocity vector of the it h UAV.

Figs. 1(a)-(b) show the time history of the positions and the velocity profiles of n =6UAVs communicating over the graph K 3,3 : in the simulation, the damping parameter γ =20, s = -1 at all times, and the initial condition q 0 has been chosen at random. Figs. 1(c)-(d) report again the timehistory of the positions and the velocity profiles of the UAVs, but now s =0at all times (q 0 and all the other simulation parameters have been left unchanged). As it is evident from Fig. 1, in the case of s = -1 the velocities of UAVs 1, 2 a n d3c o n v e r g et oν * =[ 0 .396, -0.0702, 1.128] T and the velocities of UAVs 4, 5, and 6 converge to -ν * (cf. Prop. 1): for s =0 , instead, all the velocities converge to zero being system (9) asymptotically stable (cf. Prop. 7).

B. Example 2: network of temperature sensors

Consider a static network of n sensors in a 2-D bounded environment Q, locally measuring temperatures x i (in C • ) and gradients of temperatures ν i , i ∈{ 1,...,n} (see the illustration in Fig. 2). Sensor i collects noisy measurements with variance σ 2 i and interacts with the other sensors through the visibility graph G vis : in this connected undirected graph, two sensors are neighbors if they are visible to each other, i.e. {i, j}∈E if the closed segment from i to j is contained in Q. The set of neighbors of agent i in G vis is denoted by N vis (i). By taking the variance of the measurements into account, the state vector [x i ,ν i ] T of sensor i can be updated according to the following inverse-variance weighted sum-like criterion:

σ 2 = 100 σ 2 =1 0 σ 2 =2 σ 2 =1 σ 2 =2 /3 ν(t) 2 [C • /s] time [s]
ẋi = ν i ,i ∈{1,...,n}, νi = j ∈Nvis(i) 1 σ 2 j + 1 σ 2 i -1 j ∈Nvis(i) 1 σ 2 j x j - 1 σ 2 i x i + γ 1 σ 2 j ν j - 1 σ 2 i ν i .
(10) If we now assume for simplicity that σ i =1, σ j = σ, ∀ j = i, and define s 1/σ 2 , then [START_REF] Morbidi | The Laplacian Pencil and its Application to Consensus Theory[END_REF] [(sx jx i )+γ (sν jν i )].

By collecting the dynamics of all sensors together, we end up with the following system:

ẋ ν = - 0 n -I n 1 s+1 L rw (s) γ s+1 L rw (s) x ν , (11) 
where x =[ x 1 ,...,x n ] T , ν =[ ν 1 ,...,ν n ] T and L rw (s)= I n -D -1 A s.F o rs =1 , L rw (s) is referred to as the normalized Laplacian in [23], and as the subscript suggests it is closely related to a random walk (in fact, the transition probability matrix of a random walk on G vis is D -1 A). Note that unless G vis is regular, matrix L rw (s) is non-symmetric. Fig. 3 shows the time evolution of the Euclidean norm of ν(t) for five different values of variance σ 2 , for the 11-node visibility graph G vis reported in Fig. 2. The initial condition is x 0 =2 1 • 1, ν 0 = [1.1706, 0.4759, 1.4122, 0.0226, -0.0479, 1.7013, -0.5097, -0.0029, 0.9199, 0.1498, 1.4049] T chosen at random, and γ =1 .5. Note that for σ 2 =1and for large t, ν(t) 2 → 1 w T ν 0 2 ≃ 1.622 where w ∈ IR n is a nonnegative left eigenvector of -L rw (1) associated with the zero eigenvalue and w T 1 =1 . Instead, for σ 2 ∈{ 2, 10, 100} system (11) is asymptotically stable, and for σ 2 =2 /3 the system is unstable.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have presented an extension of the parametric consensus protocol to agents modeled as double integrators. The stability properties of the new protocol in terms of the real parameter "s", have been studied for some relevant graph topologies and the theory has been illustrated with the help of two worked examples.

In future research, as mentioned in Remark 1, we aim at establishing general stability conditions for arbitrary (weighted) undirected communication networks, and at addressing the more challenging case of directed topologies. We are also interested in studying the robustness of the proposed protocol when the states ν j of the neighbors of node i are not perfectly known.

Fig. 1 .

 1 Fig. 1. Example 1coordination of a team of UAVs: (a), (c) time evolution of the positions, and (b), (d) evolution of the velocities of the 6 UAVs interacting via the communication graph K 3,3 : in (a)-(b), we set s = -1, in (c)-(d) we set s =0 , at all times. In (b), (d), the initial velocities of the vehicles are marked with circles: note that in (a), (c) the same color convention as in (b), (d) has been adopted.

Fig. 2 .

 2 Fig. 2. Example 2cooperative temperature measurement: the sensors are marked with black disks and dashed lines indicate the communication pattern in the bounded environment Q (e.g., the plan of a museum).

Fig. 3 .

 3 Fig. 3. Example 2: time evolution of the Euclidean norm of the state subvector ν(t) of system (11), for different values of variance σ 2 .

  reduces to:ẋi = ν i ,i ∈{1,...,n}, νi = 1 |N vis (i)| (s +1) j ∈Nvis(i)