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Abstract. In alpine regions, wind-induced snow transport
strongly influences the spatio-temporal evolution of the snow
cover throughout the winter season. To gain understanding
on the complex processes that drive the redistribution of
snow, a new numerical model is developed. It directly cou-
ples the detailed snowpack model Crocus with the atmo-
spheric model Meso-NH. Meso-NH/Crocus simulates snow
transport in saltation and in turbulent suspension and in-
cludes the sublimation of suspended snow particles. The cou-
pled model is evaluated against data collected around the ex-
perimental site of Col du Lac Blanc (2720 ma.s.l., French
Alps). First, 1-D simulations show that a detailed represen-
tation of the first metres of the atmosphere is required to
reproduce strong gradients of blowing snow concentration
and compute mass exchange between the snowpack and the
atmosphere. Secondly, 3-D simulations of a blowing snow
event without concurrent snowfall have been carried out. Re-
sults show that the model captures the main structures of at-
mospheric flow in alpine terrain. However, at 50 m grid spac-
ing, the model reproduces only the patterns of snow erosion
and deposition at the ridge scale and misses smaller scale
patterns observed by terrestrial laser scanning. When acti-
vated, the sublimation of suspended snow particles causes
a reduction of deposited snow mass of 5.3 % over the calcu-
lation domain. Total sublimation (surface + blowing snow) is
three times higher than surface sublimation in a simulation
neglecting blowing snow sublimation.

1 Introduction

Wind-induced snow transport is an important component
of the interaction between the cryosphere and the atmo-
sphere. It occurs in regions seasonally or permanently cov-
ered by snow. In alpine terrain, snow transport creates in-
homogeneous snow depth distribution, strongly influenced
by the local topography (e.g.Durand et al., 2005; Mott
et al., 2010). Snow is eroded in areas exposed to strong
wind (crest for example) and is deposited in areas sheltered
from the wind. This has a major influence on the evolution
of the avalanche danger (Schweizer et al., 2003). Cornices
and wind slabs result indeed from the deposition of small
rounded grains during blowing snow events and their for-
mation affects the snowpack stability (Meister, 1989). Wind-
induced snow transport has also hydrological consequences.
Part of the transported snow mass is indeed lost by sublima-
tion (e.g. Groot Zwaaftink et al., 2011, hereafter referred to
as GZ11) and differential melt patterns are produced by drifts
and scours affecting the springtime runoff patterns (e.g. Win-
stral et al., 2013).

Wind-induced snow transport occurs when the wind speed
exceeds a threshold value that depends on the snow type at
the surface (e.g. Guyomarc’h and Mérindol, 1998). Three
modes of snow transport are generally identified: reptation,
saltation and turbulent suspension. Reptation corresponds to
the rolling of particles over the surface of the snowpack
and its contribution is negligible compared to the other pro-
cesses (Kosugi et al., 1992). It is commonly neglected in
blowing snow models. In saltation, particles follow ballistic
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trajectories in a shallow layer close to the ground. When re-
turning to the surface, they may rebound and/or eject new
grains. Turbulent suspension occurs in the atmosphere above
the saltation layer where snow grains are transported by tur-
bulent eddies without contact with the surface. Distances of
transport are limited by the sedimentation and sublimation of
snow grains. The latter process modifies the vertical profiles
of temperature and humidity in the surface boundary layer
(Schmidt, 1982; Déry et al., 1998).

Several models have been developed to simulate wind-
induced snow redistribution in alpine terrain and resulting
snow-depth pattern (e.g. Naaim et al., 1998; Gauer, 1999;
Durand et al., 2005; Liston et al., 2007; Lehning et al., 2008;
Schneiderbauer and Prokop, 2011). These models are gen-
erally made of two components: (i) a snowpack component
to estimate the threshold wind speed for snow transport and
the erodible snow mass and (ii) an atmospheric component
to simulate at high resolution the spatial and temporal evolu-
tion of the wind field and the resulting snow transport. They
cover a wide range of complexity depending if they are ded-
icated to simulate single blowing snow event or the entire
snow season (Liston et al., 2007).

Simulating wind-induced snow transport in alpine terrain
requires primarily a good knowledge of the high-resolution
wind field over complex topography. Crest speed-up, flow
channelling or the formation of recirculation zone are indeed
the driving mechanisms behind the inhomogeneous snow
distribution resulting from blowing snow events (e.g. Mott
and Lehning, 2010). To reproduce such features, the more
advanced snow transport models use three-dimensional wind
fields. They are computed by models of computational fluid
dynamics (Gauer, 1999; Schneiderbauer and Prokop, 2011)
or atmospheric models run in the Large Eddy Simulation
(LES) mode. Bernhardt et al. (2010) combined for example
wind fields from the MM5 atmospheric model (Grell et al.,
1995) at an horizontal resolution of 200 m with the snow-
transport model of Liston et al. (2007). They used kinematic
downscaling to refine MM5 wind fields from 200 to 30 m.
The atmospheric model ARPS (Xue et al., 2000) provided
wind fields at an horizontal grid spacing down to 5 m (Mott
and Lehning, 2010; Mott et al., 2010) to drive the snow trans-
port module of Alpine3D (Lehning et al., 2008).

In alpine terrain, the atmospheric models previously men-
tioned are used to drive snow transport models but do not
simulate drifting and blowing snow in a coupled mode. The
driving wind fields are extracted from wind field libraries
and kept constant for a given time step (1 h for example in
the model of Lehning et al., 2008). Until now, the coupled
simulation of snow transport has been only implemented in
regional climate models applied over large areas at horizon-
tal resolution higher than 5 km (Gallée et al., 2001; Lenaerts
et al., 2012). However, previous works have shown that at-
mospheric models can be run at high resolution in complex
terrain to simulate in coupled mode meteorological situa-
tions such as wildland fire (Mandel et al., 2011, resolution

of 100 m) or scalar dispersion (Michioka and Chow, 2008,
resolution of 25 m). These studies were successful at captur-
ing the flow structures in complex terrain. As a consequence,
atmospheric models can be applied to the coupled simulation
of blowing snow events in alpine terrain.

In this study, we introduce a new coupled model to simu-
late blowing snow events in alpine terrain and resulting snow
redistribution. The atmospheric component is made of the
atmospheric model Meso-NH (Lafore et al., 1998) to sim-
ulate the evolution of meteorological conditions and result-
ing snow transport. At the bottom of the atmosphere, the lat-
est version of the detailed snowpack model Crocus (Vion-
net et al., 2012) describes snowpack properties. Examples of
problems that can be better investigated with fully coupled
snowpack/atmosphere simulations of blowing snow events
in alpine terrain include (1) the importance of blowing snow
sublimation and its feedback on the atmospheric boundary
layer (GZ11), (2) the use of grid nesting techniques to pro-
vide realistic boundary conditions to local atmospheric sim-
ulation (resolution≈ 50 m) (e.g. Talbot et al., 2012) and (3)
the relative contribution of preferential deposition of snow-
fall and wind-induced snow transport to the spatial variability
of the mountainous snowcover (Mott et al., 2010).

Our paper describes the new snow transport model Meso-
NH/Crocus. It is evaluated against a set of observations col-
lected during two blowing snow events at the experimental
site of Col du Lac Blanc (French Alps). Our paper is or-
ganised as follows. Section 2 describes the two components
of the coupled snowpack/atmosphere model. Then, Sect. 3
presents the new drifting and blowing snow scheme included
in the coupled model. Section 4 gives additional informa-
tion regarding Col du Lac Blanc and the evaluation strategy.
Model results in 1-D configurations are shown in Sect. 5. The
3-D simulation of a blowing snow event is then evaluated in
Sect. 6. The influence of blowing snow sublimation is also
presented in this section. Finally, model results are discussed
in Sect. 7.

2 Model descriptions

2.1 Atmospheric model

We use the mesoscale, nonhydrostatic atmospheric model
Meso-NH. This model has been jointly developed by
CNRM (Météo-France) and Laboratoire d’Aérologie
(CNRS) (Lafore et al., 1998). Meso-NH can simulate fine
scale (LES type) to synoptic scale (horizontal resolution
ranging from a few metres to several tens of kilometres)
and can run in two-way nested mode. For high-resolution
simulations, the scheme of Cuxart et al. (2000) allows
the computation of 3-D turbulence. Cloud dynamics and
resulting precipitation (rainfall and snowfall) are simulated
by the bulk microphysical scheme of Pinty and Jabouille
(1998).
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Meso-NH has been previously applied in alpine terrain
during the Mesoscale Alpine Programme (e.g. Stein, 2004).
Studies were carried out at sub-kilometre resolutions (0.3–
1 km) and focused on Foehn flow (Beffrey et al., 2004)
or orographic precipitations (Lascaux et al., 2006). More
recently, Amory (2012) showed that Meso-NH is suitable
to simulate high-resolution wind field (down to 12 m) over
complex terrain.

2.2 Snow model

Meso-NH is coupled to the surface platform SURFEX which
handles energy and mass fluxes between the atmosphere
and the surface (Masson et al., 2013). SURFEX includes
in particular the land surface scheme ISBA (Interactions be-
tween Soil, Biosphere, and Atmosphere, Noilhan and Plan-
ton, 1989) which represents the snowpack through several
schemes of increasing complexity. In this study, we use
SURFEX/ISBA-Crocus (referred later as Crocus), the lat-
est version of the snowpack scheme Crocus (Brun et al.,
1989, 1992) which has been recently implemented in SUR-
FEX (Vionnet et al., 2012). Crocus has been run opera-
tionally for avalanche forecasting over the French mountains
for 20 yr (Durand et al., 1999).

Crocus is a one-dimensional multi-layer snowpack
scheme. It simulates the evolution of the snowpack as a func-
tion of energy and mass-transfer between the snowpack and
the atmosphere (radiative balance, turbulent heat and mois-
ture transfer, precipitation) and the snowpack and the ground
below (ground heat flux). One important feature of the model
is its ability to simulate snow metamorphism through a com-
prehensive set of semi-empirical laws. The type and size of
the crystals of each layer of the snowpack are prognostic vari-
ables, which control the surface albedo and the compaction
rate of the different layers. A complete description of the
model can be found in Vionnet et al. (2012).

3 Treatment of drifting and blowing snow

We have implemented new specific routines within the cou-
pled system Meso-NH/Crocus to handle wind-induced snow
transport. As in earlier-developed models (e.g. Gauer, 1999;
Durand et al., 2005; Liston et al., 2007; Lehning et al.,
2008), snow transport is divided into turbulent suspension
and saltation. Figure 1 shows an overview of the new blowing
snow scheme which is made of three main components: (i)
a specific scheme implemented in Meso-NH simulates snow
transport in turbulent suspension, (ii) dedicated routines in
SURFEX determine blowing snow occurrence and simulate
snow transport in saltation and (iii) mass exchange between
the snowpack and the atmosphere are computed through an
adapted version of the surface boundary layer (SBL) scheme
Canopy (Masson and Seity, 2009). Details concerning each
component are given in the following subsections while Ap-

pendix A contains a summary of the variables and units used
by the model.

3.1 Suspension layer

3.1.1 Double-moment scheme

Several field experiments have shown that the size distribu-
tion of blown snow particles in the atmosphere is satisfyingly
represented by a two-parameter gamma distribution (Budd,
1966; Dover, 1993; Nishimura and Nemoto, 2005; Naaim-
Bouvet et al., 2011). The snow particle size distribution
(PSD) follows:

n(r) =
Nsρairr

α−1exp(−r/β)

βαŴ(α)
(1)

whereNs is the total number of particles per unit of mass
(kg−1), ρair the air density (kgm−3), r the particle radius (m)
andŴ the Gamma function.α (–) andβ (m) denote the shape
and scale parameters of the distribution. The average radius,
rm, is given byrm = αβ.

In our model we consider blown snow particles as spher-
ical and use a double-moment scheme to represent the tem-
poral and spatial evolution of the two-parameter gamma dis-
tribution of snow in suspension (Déry and Yau, 2001). Such
approach predicts the evolution of the number concentration
per unit of mass,Ns, and mixing ratio,qs, of blown snow
particles and requires a specified value ofα. At Col du Lac
Blanc, Naaim-Bouvet et al. (2011) have reported values ofα

ranging from 3 to 4. In the rest of the paper, we takeα = 3
for the use of Meso-NH/Crocus in alpine terrain.

The equations forNs andqs depend on space variablesxi

and timet according to:

∂Ns

∂t
+uj

∂Ns

∂xj︸ ︷︷ ︸
Adv

=−
∂

∂xj

(
N ′

su
′
j

)

︸ ︷︷ ︸
Turb

+
∂

∂xj

(
NsVNδj3

)

︸ ︷︷ ︸
Sedim

+ SN︸︷︷︸
Subl

(2)

∂qs

∂t
+ uj

∂qs

∂xj︸ ︷︷ ︸
Adv

= −
∂

∂xj

(
q ′

su
′
j

)

︸ ︷︷ ︸
Turb

+
∂

∂xj

(
qsVqδj3

)

︸ ︷︷ ︸
Sedim

+ Sq︸︷︷︸
Subl

(3)

where Adv denotes the advection term and Turb the turbu-
lence term. Sedim indicates the sedimentation term and Subl
represents the sink term associated to sublimation forNs and
qs. u is the 3-D wind vector,VN andVq are the number- and
mass-weighted mean particle fall speeds.

The advection ofNs and qs is handled by specific rou-
tines of Meso-NH dedicated to the advection of mete-
orological variables. It relies on the Piecewise Parabolic
Method (Colella and Woodward, 1984; Carpenter et al.,
1990). The flux limiter of Skamarock (2006) ensures mono-
tonicity preservation.

The 3-D turbulence scheme of Meso-NH (Cuxart et al.,
2000) computes the turbulent diffusion ofNs and qs. This
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Fig. 1.Components of the blowing snow scheme in Meso-NH/Crocus.Ns denotes the number concentration per unit of mass of blown snow
particles andqs the blowing snow mixing ratio.

scheme solves a prognostic equation for the turbulent kinetic
energy,eTKE. Turbulent fluxes are then computed following
a 1.5 order closure. In our model, turbulent fluxes of blow-
ing snow variables are proportional to the turbulent fluxes of
scalar variables. We defineζ as the ratio between the diffu-
sion coefficient of scalar variables,KSca, and blowing snow
variables,KSnw. Thus, the turbulent fluxq ′

su
′
j is written:

q ′
su

′
j= −KSnw

∂qs

∂xj

=−
KSca

ζ

∂qs

∂xj

with KSca=
2

3

Lm

CS
e

1/2
TKE9j (4)

whereCS and the stability functions9j are taken from Re-
delsperger and Sommeria (1981).Lm denotes the mixing
length. For 3-D simulations at high horizontal resolution
(≤ 200m), it depends on the mesh size and is limited by the
mixing length of Deardorff (1972) in stable cases. Close to
the surface,Lm follows the formulation of Redelsperger et al.
(2001). A sensitivity study showed that the valueζ = 0.25
allows to reproduce vertical profiles of blowing snow fluxes
measured at Col du Lac Blanc over a large range of wind
speeds as discussed in Vionnet (2012).

Sedimentation terms in Eqs. (2) and (3) require the com-
putation of the number-weighted and mass-weighted mean
particle fall speeds. These velocities depend on the PSD fol-
lowing:

VN =
∫ ∞

0 v(r)n(r)dr∫ ∞
0 n(r)dr

(5)

Vq =
∫ ∞

0 v(r)r3n(r)dr∫ ∞
0 r3n(r)dr

(6)

wherev(r) denotes the fall speed for a particle of radiusr.
v(r) follows a quadratic equation derived by Dover (1993)

based on a balance between the gravitational force acting on
a spherical particle and the drag force using the drag coeffi-
cient proposed by Carrier (1953):

v(r) = −
A

r
+

√(
A

r

)2

+ Br with A =
6.203νair

2
(7)

andB =
5.516ρice

4ρair
g

whereνair (m2s−1) is the air viscosity andg (ms−2) the ac-
celeration due to gravity. This expression forv(r) represents
the transition from laminar regime where Stokes Law applies
(1 ≤ r ≤ 30 µm) to turbulent regime. It is therefore suitable
for blowing snow particles since it covers their typical range
of radius (20–200 µm, e.g. Budd, 1966). Using Eq. (7) for
v(r), no analytical solution can be found forVN andVq so
that the integrals in Eqs. (5) and (6) are solved numerically.
To save computational time when 3-D simulations are per-
formed, a model option allows to use pre-computed look-up
tables ofVN andVq function of the average radiusrm and the
air pressurePair.

3.1.2 Blowing snow sublimation

Sublimation terms appear in Eqs. (2) and (3). Indeed, when
transported, suspended snow particles undergo sublimation if
the ambient air is unsaturated with respect to ice. The subli-
mation of blowing snow acts as a sink of snow mass, a source
of water vapour and a sink of sensible heat in the atmosphere.
Several blowing snow models calculate sublimation rates of
blown snow particles and account for the loss of mass due
to sublimation (e.g. Déry et al., 1998; Bintanja, 2000; Lis-
ton et al., 2007, GZ11). They all rely on the formulation
of Thorpe and Mason (1966) that gives the mass change rate
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for a single ice sphere. Wever et al. (2009) showed that this
formulation can be transferred to an ensemble of snow parti-
cles. Our model follows the same formulation.

Ignoring the influence of solar radiation, the sublimation
rate of an ice sphere of radiusr is:

dm

dt
=

2πrσ

Ls
KairTairNu

(
Ls

RvTair
− 1

)
+ RvTair

DvesiSh

=
2πrσNu

A(Tair,Pair)
(8)

whereσ = (e − esi)/esi is the water vapour deficit with re-
spect to ice, withe and esi the vapour pressure and its
value at saturation over ice (Pa) at air temperatureTair (K).
Rv denotes the gas constant for water vapour (Jkg−1K−1),
Dv is the molecular diffusivity of water vapour in air
(m2s−1), Kair is the molecular thermal conductivity of the air
(Jm−1s−1K−1), Ls is the latent heat of sublimation (J kg−1).
Nu and Sh are, respectively, the Nusselt and Sherwood num-
bers. Expressions forDv andKair are taken from Pruppacher
et al. (1998).

The Nusselt and Sherwood numbers represent the heat and
mass transfer between the ice particle and the atmosphere.
They are related to the particle Reynolds numberRe (Lee,
1975):

Nu = Sh=
{

1.79+ 0.606
√

Re for 0.7 < Re ≤ 10
1.88+ 0.580

√
Re for 10< Re < 200

(9)

with Re =
2rVv

νair

whereVv is the ventilation speed defined as the relative speed
between the snow particle and the air. It is taken equal to the
settling velocity of the particle given by Eq. (7) (Schmidt,
1982; Déry et al., 1998). This approach neglects ventilation
effects associated with turbulence (Dover, 1993; Bintanja,
2000).

The total mass sublimation rate,Sq (kgkg−1s−1), in
Eq. (3), is then obtained through integration over the parti-
cle size spectrum (Déry and Yau, 1999):

Sq =
qsNu(rm)σ

2ρicer2
mA(Tair,Pair)

(10)

where Nu(rm) is computed as in Eq. (9) withrm for the radius
andVq for the settling velocity. The total number sublimation
rate,SN (kg−1s−1), is given by:SN = SqNs/qs (Déry and
Yau, 2001). Sublimation feedbacks on the air are represented
through additional terms proportional toSb in the prognos-
tic equations for vapor mixing ratio and potential tempera-
ture (Déry and Yau, 2001, GZ11).

3.2 Lower boundary condition and snowpack evolution

3.2.1 Occurrence of snow transport

The occurrence of snow transport is determined by the for-
mulation of Guyomarc’h and Mérindol (1998) which gives

the 5 m threshold wind speed,U5t, as a function of snow
grain type at the surface. The presence of a wet layer or
a crust layer at the top of the snowpack prevents snow drift-
ing. Vionnet et al. (2013) found that this formulation pre-
dicts satisfactorily the occurrence of blowing snow events at
an alpine site over a 10 yr period provided the mechanical
fragmentation of snow grains during blowing snow events
is taken into account.U5t is then converted into a threshold
friction velocityu∗th using the same method as Durand et al.
(2005). Blowing snow occurs at grid points where the friction
velocity u∗ is higher thanu∗th. u∗ is computed in SURFEX
as a function wind speed at level of atmospheric forcing and
transfer coefficient for momentum,CD : u∗ =

√
CDUSurf.

The expression ofCD accounts for thermal buoyancy ef-
fects (Louis, 1979) and does not include particle buoyancy
effects (Bintanja, 2000; Gallée et al., 2001).

3.2.2 Saltation layer

The saltation layer develops where snow transport occurs. In
our model, the saltation layer contributes to the total snow
transport and acts as a lower boundary condition for the sus-
pension layer.

Sørensen (2004) proposed a physically-based formulation
for the horizontal transport rate,QSalt (kgm−1s−1), of any
particle in saltation:

QSalt =
ρairu

3
∗

g
(1− V −2)[a + bV −2 + cV −1] (11)

where V = u∗/u∗t . Constantsa, b and c must be deter-
mined from observations (M. Sørensen, personal commu-
nication, 2012). For snow particles, we used the measure-
ments of Nishimura and Hunt (2000) and found thata = 2.6,
b = 2.5 and c = 2 allow to reproduce their observations.
Doorschot and Lehning (2002) have similarly found that an
earlier version of Eq. (11) (Sørensen, 1991) gives mass fluxes
in a good agreement with those simulated by their saltation
model and those observed by Nishimura and Hunt (2000).

QSalt is a stationary transport rate. Nemoto and Nishimura
(2004) suggested that a time of 1–2 s is necessary to reach
a steady state in the saltation layer. This corresponds to typ-
ical lengths of 1–20 m for wind speed close to the surface
ranging from 1 to 10 ms−1. These lengths are lower than the
targeted horizontal resolution of Meso-NH/Crocus (50 m in
this study, see Sect. 6.1) so that we can use a stationary mass
flux. The model of Lehning et al. (2008) uses a similar as-
sumption and manages to reproduce snow distribution down
to an horizontal resolution of 5 m (Mott et al., 2010).

Mass exchange between the saltation layer and the sus-
pension layer requires the computation of a reference
concentration,cSalt (kgm−3), at the top of the saltation
layer. The thickness of this layer is given by:hSalt =
0.08436u1.27

∗ (Pomeroy and Male, 1992).cSalt is then com-
puted assuming an exponential decay of the mass flux in the
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saltation layer (Nishimura and Hunt, 2000):

cSalt =
QSalt

upart

λg

u2
∗

exp

(
−

λhSaltg

u2
∗

)
(12)

where λ is a dimensionless parameter (0.45 for snow,
Nishimura and Hunt, 2000).upart denotes the horizontal
particle velocity within the saltation layer which only de-
pends on state of surface snow:upart = 2.8u∗t (Pomeroy and
Gray, 1990). The corresponding number concentration,Ñsalt
(m−3), is then computed fromcsalt assuming a two-parameter
gamma distribution in the saltation layer and a fixed value
for the average radius of particles in saltation,rmSalt. For
the model application in alpine terrain, we determinedrmSalt
using data collected at Col du Lac Blanc by Naaim-Bouvet
et al. (2011). The average radius in the saltation layer has not
been measured but values in the suspension layer (between
25 and 29 cm) varies from 65 to 90 µm. Assuming thatrm fol-
lows a power lawrm = azb with b ≈ −0.25 (Schmidt, 1982),
we found values forrmSalt ranging from 100 to 137 µm. We
finally chosermSalt= 110µm. Note that the limitations of the
formulations of the saltation layer are discussed in Sect. 7.2.

3.2.3 Snow erosion and accumulation

At each grid point, Meso-NH/Crocus computes a net mass
flux, FNet (kgm−2s−1), between the snowpack and the at-
mosphere:

FNet = FSalt+ FSusp+ FPrecip (13)

whereFSalt andFSusp denote the contribution of the trans-
port in saltation and in turbulent suspension, respectively.
FPrecip represents snowfall simulated by the micro-physical
scheme of Meso-NH (Pinty and Jabouille, 1998). Figure 2
summarized the mass exchange between the snowpack and
the atmosphere. The model of Lehning et al. (2008) sim-
ulates snow erosion and deposition in a similar way. This
method lacks the feedback of the suspension on the saltation
concentration. A prognostic equation for snow concentration
in saltation would be required to overcome this limitation as
in Gauer (1999). The current version of the model uses the
steady state assumption for the saltation layer.

The contribution from saltation corresponds to the diver-
gence of the vector transport in saltationQ:

FSalt = ∇.Q with Q = QSalt
uMNH

‖uMNH‖
(14)

whereuMNH is the wind vector at the first level of Meso-NH.
FSuspis a net mass flux between the saltation layer and the

lowest level of the atmosphere. It follows:

FSusp= FSed− FTurb (15)

whereFSed is the sedimentation flux from the atmosphere
andFTurb the turbulent flux of blown snow particles towards

Crocus 

Meso-NH

Canopy

FSed FTurb FSuspFSalt - =

FNetK

FPrecip

QSalt

Fig. 2.Mass exchange between the different components of the cou-
pled model Meso-NH/Crocus. The model accounts for snow trans-
port in saltation (FSalt) and turbulent suspension (FSusp) and snow-
fall (FPrecip).

the atmosphere.FSed corresponds to a loss of mass for the
atmosphere:

FSed= cSurfVq (16)

wherecSurf denotes the near-surface concentration of blown
snow particles (see Sect. 3.3) andVq the mass-weighted
mean fall speed at this level. The second term of Eq. (15)
FTurb follows the expression of Gallée et al. (2001):

FTurb = USurfCD (cSalt− cSurf) (17)

where USurf denotes the near-surface wind speed (see
Sect. 3.3). Similar fluxes are computed for the number con-
centration using̃NSalt and the near-surface number concen-
trationÑSurf (see Sect. 3.3).

Erosion occurs whereFNet < 0 and snow layers are re-
moved from the snowpack profile simulated by Crocus.
Therefore, snow layers with different characteristics may
be exposed successively at the top of the snowpack dur-
ing a blowing snow event. Snow accumulation is simulated
where FNet > 0. Deposited snow is added to the existing
snowpack using the routines of Crocus handling the layer-
ing of the snowpack. The current version of the model uses
fixed values for the characteristics of deposited snow (den-
sity: 250 kgm−3, dendricity: 0.3 and sphericity: 0.85). A fu-
ture version of the model will account for the evolution of
snow grain characteristics under snow transport.

3.3 Surface/atmosphere coupling

Mass fluxes between the snowpack and the atmosphere
(Eqs. 16 and 17) require the estimation of near-surface vari-
ables (wind speed,USurf, and number and mass concentra-
tion,ÑSurf andcSurf). However, the vertical profile of blowing
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snow concentration exhibits strong gradient close to the sur-
face (e.g. Budd, 1966; Mann, 1998; Nishimura and Nemoto,
2005). 1-D blowing snow models (e.g. Déry and Yau, 1999;
Mann, 1998) use a vertical grid with a very high resolution
close to the ground to reproduce this gradient of concentra-
tion. For example, the model of Mann (1998) has a stretched
grid with a first level at 10 cm above the surface and 70 levels
in the lowest 100 m of the atmosphere. A similar configura-
tion can be achieved with Meso-NH. However, such config-
uration is not suitable to simulate 3-D atmospheric flow in
alpine terrain where the presence of large slopes generates
large vertical velocities and requires small time steps to avoid
numerical instabilities.

An alternative solution is offered by the one-dimensional
surface boundary layer (SBL) scheme Canopy (Masson and
Seity, 2009). Canopy is implemented in SURFEX and in-
cludes prognostic atmospheric layers between the surface
and the first level of Meso-NH. The evolution of SBL vari-
ables (wind, temperature, specific humidity and TKE) is re-
solved prognostically, taking into account large-scale forc-
ing, turbulence, and, if any, drag and canopy forces and sur-
face fluxes. These fluxes are computed between the surface
and the lowest level of Canopy and sent back to the atmo-
sphere. Therefore, Canopy allows to increase the vertical res-
olution near the ground in the surface scheme without the
drawback of smaller time steps. As a consequence, blowing
snow variablesNs andqs have been implemented in Canopy
to compute mass exchange between the snowpack and the at-
mosphere. The impact of this implementation is illustrated in
Sect. 5.

The evolutions ofNs andqs in Canopy are governed by
the following one-dimensional equations:

∂Ns

∂t
=

(
∂Ns

∂t

)

Adv
+

∂

∂z

(
−N ′

sw
′ + VNNs

)
+ SN (18)

∂qs

∂t
=

(
∂qs

∂t

)

Adv
+

∂

∂z

(
−q ′

sw
′ + Vqqs

)
+ Sq (19)

The terms in these equations are equivalent to the terms ap-
pearing in Eqs. (2) and (3). The contribution of advection
at each Canopy level is computed through the advection
in Meso-NH of the total mass and total number of blown
snow particles in Canopy. This procedure is detailed in Ap-
pendix B. The sublimation termsSN andSq are computed
as a function of temperature and specific humidity at each
Canopy levels. Feedbacks on the SBL are included by adding
the contribution of blowing snow sublimation in Canopy to
the sensible and latent heat fluxes emitted towards the atmo-
sphere. This modifies in return the temperature and humidity
at the lowest levels of Meso-NH and, therefore, at Canopy
levels.

Equations (18) and (19) are solved over the stretched grid
of Canopy. For our application, it is made of 5 levels with
a lowest level at 15 cm above the snowpack. When Canopy

is activated,USurf, ÑSurf and cSurf are taken at the lowest
level of Canopy while the net mass flux at the top of Canopy,
FNetκ , is sent to Meso-NH (Fig. 2).

4 Study site and evaluation strategy

Our study site is the experimental site of Col du Lac Blanc
near the Alpe d’Huez ski resort, French Alps (Fig. 3). Due to
the surrounding topography, the pass may be considered as
a natural wind tunnel where 90 % of observed wind blows
from two directions: northeast and south (Vionnet et al.,
2013).

In the following sections, we propose a first evaluation of
Meso-NH/Crocus using data collected at Col du Lac Blanc
during two northern blowing snow events in 2011. Their
main characteristics are given in Table 1. In-situ measure-
ments collected during both events include: (i) meteorologi-
cal conditions (wind speed and direction, air temperature) at
three automatic weather stations (AWS) located around the
pass, (ii) vertical profile (up to 3.5 m) of wind speed on a
meteorological mast at the pass and (iii) vertical profiles of
fluxes and radius of blown snow particles using three Snow
Particles Counters (SPC, Sato et al., 1993) at the pass. Ad-
ditionally, the evolution of snow depth was followed for the
first event using data from a Terrestrial Laser Scanner (TLS,
Prokop, 2008). Snow depths were measured over an area of
0.54 km2 around the pass before (17 February 2011) and after
(28 February 2011) the first event. Note that TLS measure-
ments are not available for the second event.

The evaluation of Meso-NH/Crocus follows two steps. Re-
sults of 1-D simulations are firstly compared with vertical
profiles of radius and fluxes of blown snow particles mea-
sured by the SPC during the 22–26 February event (Sect. 5).
This allows us to discuss some of the model’s features. 3-
D simulations of the 18–19 March event are then presented
and evaluated (Sect. 6). Figure 4 describes the meteorolog-
ical conditions observed at Col du Lac Blanc for the 18–19
March event. 30 cm of fresh snow accumulated with a moder-
ate wind during the night from 16 to 17 March have been re-
distributed by an intense wind blowing from the north. Light
snowfall occurred on 19 March between 03:00 and 08:00.
We selected the 18–19 March event as a case study for two
main reasons: (i) the shorter duration of this event compared
to the 22–26 February event (Table 1) makes it less computa-
tionally expensive to simulate in 3-D and (ii) the occurrence
of snow transport without concurrent snowfall during most
of the event allows us to focus the validation on the blowing
snow scheme detailed in this paper. Simulation of blowing
snow events with concurrent snowfall will be considered in
future studies.
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Table 1.Main characteristics of the blowing snow events used for the evaluation of Meso-NH/Crocus.U andDir represent, respectively, the
average 5 m wind speed and direction at Lac Blanc AWS (Fig. 3).

Event Beginning End Duration (h) U (ms−1) Dir (◦)

1 2011/02/22 5 p.m 2011/02/26 8 a.m 95 11.0 24.5
2 2011/03/18 2 p.m 2011/03/19 8 a.m 30 11.1 22.0
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Fig. 3. Location of the study site Col du Lac Blanc (CLB) in the French Alps and orography of the surrounding area. Red crosses indicates
automatic weather stations. Meteorological mast and SPC are located at Col du Lac Blanc (black dot). The black isolines correspond to
1z = 50m.

5 1-D simulations

5.1 Model configuration

In the following 1-D simulations are set up to discuss the
impact of the vertical resolution of the model and the sensi-
tivity to the complexity of the parameterization of blowing
snow sublimation. We simulate with Meso-NH/Crocus the
vertical profile of radius and fluxes of blown snow particles
for different wind conditions. The evaluation dataset consists
of vertical profiles of radius and fluxes of blown snow par-
ticles measured by three SPC (10 min average) between 0.1
and 3.3 m during the 22–26 February event. Measured pro-
files have been divided into six categories of 5 m wind speed
(width: 1 ms−1) covering the range 11–16 ms−1.

In the atmosphere the initial wind profile is logarithmic
with a 5 m wind speed depending on the category and a
roughness lengthz0 = 1.3× 10−4 m. This value is based on
observations collected at Col du Lac Blanc during north-
ern blowing snow events (Vionnet, 2012). The initial near-
surface pressure is set to 730 hPa. The atmospheric boundary
layer is stably stratified with potential temperature increasing
gradually with height (vertical gradient: 0.005 Km−1, Brunt-
Väisälä frequency: 0.013 s) from a near surface value taken
as the average potential temperature during the blowing snow
event (288.5 K). Finally, the initial profile of relative humid-
ity with respect to ice decreases logarithmically from 100 %
at the surface to 50 % at 100 m. Above that level relative hu-

midity is constant. At the bottom of the atmosphere the snow
surface has a 5 m threshold wind speed equal to 10 ms−1.

Three sets of 1-D simulations have been carried out with
different vertical resolutions. Configuration LR (Low Res-
olution) uses a stretched vertical grid of 70 layers with 19
layers in the lowest 100 m of the atmosphere (lowest level:
3 m) while configuration HR (High Resolution) has 150 lev-
els with 70 layers in the lowest 100 m of the atmosphere
(lowest level: 0.15 m). Canopy is not activated in configu-
rations LR and HR and the near-surface variables used in
Eqs. (16) and (17) are taken at the first atmospheric level
of Meso-NH. Finally, configuration LRC (Low Resolution
Canopy) has the same vertical grid as configuration LR but
uses Canopy which increases the vertical resolution close to
the ground by adding 5 atmospheric layers (lowest Canopy
level: 0.15 m). Each simulation last 20 min until stationary
profiles are reached and blowing snow sublimation is not ac-
tivated. The model time step is 0.1 s in configuration HR and
0.5 s in configuration LR and LRC.

Two additional sets of 1-D simulations in configuration
LRC have been run to illustrate the impact of the param-
eterization of blowing snow sublimation. The first method
(referred as DBL) computes the sublimation rate (Eq. 10) as
a function of the PSD given by the double-moment scheme.
The second set of simulations used the method described in
GZ11 (referred as REP). A representative radius for blow-
ing snow particles is used instead of the PSD simulated
by the double-moment scheme. This representative radius
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Fig. 4. Times series of observed wind direction (top) and speed
(middle) and precipitation (bottom) at Col du Lac Blanc during
3.5 days around our case study (shown in gray). Precipitation are
provided by the SAFRAN meteorological analysis system (Durand
et al., 1993).

corresponds to the single particle size that would give the
same total sublimation rate for an equal concentration as an
ensemble of particles based on a gamma size distribution
with mean radius of 35 µm andα = 3. This results in a par-
ticle size of 62.5 µm. Note that this value is the same as the
one used by GZ11 despite different values for the ventila-
tion velocity and forα. Simulations including sublimation
last 60 min.

5.2 Model results

Figure 5 (Right) shows the vertical profile of blowing snow
fluxes for three categories of 5 m wind speed. In config-
uration LR Meso-NH/Crocus simulates unrealistically high
blowing snow fluxes and overestimates the total snow mass
in suspension. When configuration HR is used simulated
fluxes are in a better agreement with measurements for the
three categories and the model captures the strong gradient
of blowing snow flux in the lowest metres of the atmosphere.
Therefore, the current parameterization of mass exchange be-
tween the snowpack and the atmosphere in Meso-NH/Crocus
requires a very detailed vertical layering of the first 10 m of
the atmosphere and a first atmospheric level close enough to
the surface (0.15 m in configuration HR). If not present, the

QLRC = 7.5 10-3QHR = 8.4 10-3

QHR = 2.2 10-2
QLRC = 2.2 10-2

QHR = 4.1 10-2
QLRC = 4.3 10-2

Fig. 5. Vertical profile of mean radius (Left) and fluxes (Right) of
blown snow particles measured by SPC and simulated by Meso-
NH/Crocus 1-D for 3 categories of 5 m wind speed and 3 model
configurations: LR (Low Resolution), HR (High Resolution) and
LRC (Low Resolution Canopy) (see Sect. 5.1 for more details).
QHR andQLRC (in bold) designate the vertically integrated trans-
port rate of suspended snow over the lowest 100 m of the atmo-
sphere (in kgm−1s−1).

model overestimates the amount of suspended snow in the
atmosphere.

In configuration HR the model also reproduces the ob-
served decrease in mean radius with height (Fig. 5, Left).
This is a direct benefit from the double-moment scheme
which allows size-sorting. However, simulated mean radius
above 1 m are smaller than observations. This may be asso-
ciated with the overestimation of low mean radius by the
SPC which does not detect snow particles of radius lower
than 25 µm (Nishimura and Nemoto, 2005). Note also that
the model does not reproduce all the variability of mean ra-
dius close to the surface. This results from the assumption of
a constant mean radius in the saltation layer.

The use of Canopy (configuration LRC) allows the model
to simulate profiles of flux and radius similar to configuration
HR close to the surface (0.15–2 m). Differences at higher lev-
els are associated with the coarser vertical resolution in the
range 2–10 m in configuration LRC. However, these differ-
ences have little consequences in terms of snow transport rate
integrated over the lowest 100 m of the atmosphere (values
QHR andQLRC reported on Fig. 5, Right). Therefore Canopy
appears as an efficient tool to reproduce the strong gradi-
ent of blowing snow fluxes observed close to the surface.
The vertical profile of blowing snow variables is still solved
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prognostically as in configuration HR but without the draw-
back of having a very fine vertical grid in the atmospheric
model. The computational cost is divided by 8 in configura-
tion LRC compare to configuration HR.

Examples of local sublimation rates are shown on Fig. 6.
They are maximum close to the ground for both methods
(REP and DBL) which is a consequence of the large num-
ber of snow particles in this region. Method REP predicts
higher sublimation rates than method DBL below 1 m. This
results from the fact that method REP computes a sublima-
tion rate representative of an ensemble of particle based on a
gamma size distribution withrm = 35 µm whilerm is higher
than 35 µm below 1 m (Fig. 5, Left). Method DBL accounts
for this effect on the sublimation rate while method REP
does not. This has consequences on the hourly sublimation
rate (vertically integrated over the lower 100 m of the at-
mosphere). It is multiplied by 2.20, 1.65 and 1.46 for 5 m
wind speed of 12, 14 and 16 ms−1, respectively, when us-
ing method REP instead of method DBL. Therefore, using a
double-moment scheme allows to represent the observed de-
crease of mean radius with increasing height and to account
for its consequences on the sublimation rate of blowing snow.

6 Real case study: 3-D simulations

6.1 Model configuration

We carried out two 3-dimensional simulations for our case
study: one with the sublimation of blowing snow (simula-
tion SUBL) and one without (simulation CTRL). Both sim-
ulations started on 18 March at 01:00 and lasted until 18
March at 23:00. They covered the period of intense snow
transport without concurrent snowfall (Fig. 4). The simula-
tion domain was centred at Col du Lac Blanc and covered
3× 3 km at an horizontal resolution of 50 m (Fig. 3). Meso-
NH uses a vertical grid similar to the one used in configura-
tion LRC (Sect. 5.1) with 20 layers in the lowest 200 m of
the atmosphere. The height of the lowest level ranged from
1.9 to 3.1 m due to the terrain-following coordinates. Canopy
added 5 extra atmospheric layers (lowest level: 15 cm above
the snowpack). The snowpack was discretized in Crocus by
20 layers. The value for surface roughness was the same as
the one used for 1-D simulations (z0 = 1.3× 10−4 m). The
model time step was 1.5 s.

The Meso-NH model was initialized on 18 March at 01:00
using a vertical atmospheric sounding. This sounding is first
vertically interpolated on the model vertical grid and then
distributed homogeneously over the simulation domain. A fi-
nal adjustment allows the 3-D wind to fulfill the anelastic
constraint and the free-slip boundary condition. This final
wind field is used as initial field for the Meso-NH model. The
vertical sounding is taken from a Meso-NH simulation at an
horizontal resolution of 450 m at the grid point correspond-
ing to Col du Lac Blanc. Input and forcing for this simulation
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Fig. 6. Vertical profile of local sublimation rate simulated after
20 min forU5m = 16 ms−1. Two different formulations of the sub-
limation rate are tested: DBL (double-moment) and REP (represen-
tative radius) (see Sect. 5.1 for more details).

comes from the analysis of the operational model AROME.
Near-surface wind in the sounding is adjusted to match the
observed wind field at Col du Lac Blanc. This operation is
repeated each hour to produce updated boundary conditions
for the atmospheric model. This aims at reproducing the ob-
served temporal evolution of wind speed at Col du Lac Blanc.
This initialization method is only suitable for blowing snow
event without snowfall. Accurately simulating cloud dynam-
ics and resulting precipitations requires indeed grid-nesting
techniques.

The Crocus snowpack model was initialized using an
horizontally homogeneous snowpit. 30 cm of erodible snow
(U5th = 9ms−1) cover a layer of non-erodible snow as ob-
served at the experimental site before the event. Such method
allows to reduce model uncertainties about the initial snow-
pack but does not reproduce snowpack variability as a func-
tion of altitude, slope and aspect.

6.2 Atmospheric flow

The most sensitive transport modelling parameter in com-
plex terrain is the driving wind field (e.g.Gauer, 1999; Lehn-
ing et al., 2008; Schneiderbauer and Prokop, 2011). In this
section, we present an evaluation of the spatial and temporal
evolution of the near-surface atmospheric flow simulated by
Meso-NH. Figure 7a shows the modelled near-surface wind
field at 07:00 on 18 March 2011 when maximum wind speed
has been measured at Col du Lac Blanc (Fig. 4).

Figure 7a illustrates how topography exerts a strong con-
trol on the wind direction and speed. The atmospheric flow
is locally channeled along a north–south axis at Col du
Lac Blanc (in between AWS Lac Blanc and Muzelle). The
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Fig. 7. (a) Wind field at 1st level of Meso-NH (variable height: 1.9–3.1 m) on 18 March 2011 at 07:00: arrow indicates wind direction
while colour indicates wind speed. Properties of wind field in dashed and dashed-dotted areas are discussed in the text. The black isolines
correspond to1z = 50m. (b) Comparison between averaged vertical profiles of wind speed simulated by the model and measured on
a meteorological mast located at Col du Lac Blanc. Averaged vertical profiles have been computed for 4 categories of 2 m wind speed.
Canopy levels refer to the five lowest levels of the model.

presence of ridges also modifies the flow (area A1 and A2 on
Fig. 7a). Along theses ridges, the wind direction is normal
to the ridge axis and the wind speed increases locally. Crest
speedup is especially important in area A1 where the near-
surface wind speed reaches 33 ms−1. We believe that the
model tends to over-estimate the wind speed in this region.
Mott et al. (2010) identified similar over-estimation of crest
speed-up in high-resolution (5 m) simulations. They associ-
ated it with an insufficient geometrical resolution of sharp
crests in the model. Finally, the model simulates the forma-
tion of recirculation zones (area R1, R2 and R3 on Fig. 7a)
in some leeward regions. In these areas, the wind direction is
variable and may be opposed to the main flow while the wind
speed is low. Therefore, Meso-NH is able to reproduce the
main characteristics of wind flow in complex terrain (Rader-
schall et al., 2008): wind channelling, crest speedup and for-
mation of recirculation zone downwind of the ridge. Such
small scale flow features are the driving mechanisms behind
the inhomogeneous snow distribution resulting from blowing
snow events.

Wind speed and direction have been measured at three
AWS around Col du Lac Blanc (Fig. 3). Table 2 shows that
the model compares relatively well to the observations for
the 2 AWS located on both side of the pass (Lac Blanc and
Muzelle). Therefore, the radio-sounding method to initialise
the atmosphere and to provide lateral boundary conditions
allows the model to reproduce the evolution of wind speed
at the pass during the blowing snow event. The main flow
direction is also satisfactorily reproduced even if the model
does not capture the eastern component of the wind at the
Lac Blanc AWS. Results are different at the Dome AWS
where the model represents well the wind direction but over-
estimates the wind speed. At this station, the atmospheric

flow is highly turbulent compared to the two other stations.
The averaged gust factors (defined as the ratio of maximum
wind speed to average wind speed per period of 15 min) mea-
sured during the period of intense snow transport (02:00 to
18:00) are 2.08, 1.31 and 1.35 at AWS Dome, Muzelle and
Lac Blanc, respectively. Meso-NH does not represent well
this highly turbulent flow and predicts instead a flow with
high wind speed. This will influence the intensity of snow
redistribution.

The vertical profiles of wind speed close to the surface
simulated by the model have been compared to wind speed
profiles measured on a 4 m meteorological mast located at the
pass (Fig. 7b). For this comparison, measured 15 min mean
vertical profiles of wind speed were averaged into four 2 m
wind speed bins (1 ms−1) ranging between 13 and 16 ms−1.
The same treatment has been applied to simulated profiles.
Figure 7b shows that the model reproduces satisfactorily the
near-surface vertical profile of wind speed for each category.
Canopy turned out to be an adapted tool to refine the vertical
profile of wind speed close to the snowpack. This is of prime
importance to estimate with accuracy blowing snow fluxes.

6.3 Blowing snow fluxes

Meso-NH/Crocus simulates snow transport as a function of
the type of surface snow and the wind forcing described at
the previous section. Therefore, it is highly variable in space
and time. Blowing snow fluxes have been measured at two
levels above the surface (1.19 and 3.27 m on average) by two
SPCs located at the pass. Fluxes at 1.19 m are roughly one
order of magnitude higher than fluxes at 3.27 m (Fig. 8a).
A qualitative comparison between modelled and observed
fluxes shows that Meso-NH/Crocus captures the temporal
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Table 2.Root-mean-square error (RMSE) and bias for wind speed,
U , and direction, Dir, between simulation CTRL and measurements
at three AWS located around Col du Lac Blanc (Fig. 7). Modelled
wind speed was scaled to measurement height of AWS assuming
a logarithmic wind profile.

U (ms−1) Dir (◦)

Station RMSE Bias RMSE Bias

Lac Blanc 1.23 0.42 17.30 −13.88
Muzelle 1.31 −0.35 9.58 1.61
Dome 7.50 6.67 13.63 5.30

evolution of blowing snow fluxes at both levels. Simulated
snow transport stops at 17:00 when the wind speed drops be-
low the threshold wind speed (Fig. 8b).

More quantitative results can be obtained by considering
the total snow mass transported at both levels during our
case study (Table 3). Meso-NH/Crocus tends to underesti-
mate this snow mass at both levels (−11.0 % at 1.19 m and
−44.4 % at 3.27 m). A potential explanation for this under-
estimation is the lower mean wind speed simulated by the
model compared to observations (Fig. 8b and Table 3). To
better understand the model’s behaviour as a function of the
wind speed, the averaged simulated and observed blowing
snow fluxes have been computed at both levels for five 2 m
wind speed bins (1 ms−1) ranging between 12 and 16 ms−1.
Results are presented on Table 4. Meso-NH/Crocus simu-
lates higher fluxes than the observations at 1.19 m. The rel-
ative bias between model and observations decreases when
the wind speed increases (from 4.6 at 12 ms−1 to 1.2 at 15–
16 ms−1). At 3.27 m, the model simulates higher fluxes in the
range 12-14 ms−1 (mean relative bias of 2.3 for these 3 cate-
gories) and lower fluxes in the range 15–16 ms−1 (mean rel-
ative bias of 0.9 for these 2 categories). This analysis shows
that model errors in term of total transported snow mass re-
sult from two main sources: (i) the simulation of the wind
evolution during the blowing snow event and (ii) the blowing
snow scheme itself which defines the quantity snow trans-
ported as a function of the wind speed. For our case study
the underestimation of the total snow mass transport at both
levels (Table 3) results from an underestimation of the wind
speed at the location of the SPC.

6.4 Patterns of snow erosion and deposition

Figure 9 shows how snow has been redistributed in Meso-
NH/Crocus during this blowing snow event. We present here
a map of difference of snow water equivalent (SWE) between
the end and the beginning of this event. The model simulates
the formation of successive areas of snow erosion and de-
position. This map is consistent with what is qualitatively
expected from the wind field structure (Fig. 7a). Snow ero-
sion is simulated on windward areas and deposition occurs in

Uth

a)

b)

Fig. 8. (a)Blowing snow fluxes simulated by Meso-NH/Crocus and
measured by SPC at two levels above the snowpack. Each flux sim-
ulated by the model has been interpolated using a power law at
the height of the considered SPC. This latter changed during the
blowing snow event due to snow erosion and accumulation below
SPC. Particles fluxes higher than 100 part cm−2s−1 are considered
as non-negligible.(b) 2 m wind speed simulated by Meso-NH and
measured close to the SPC. The dashed-dotted black line indicates
the threshold wind speed,Uth.

regions of decreasing wind speed. Areas of erosion are gen-
erally larger than the corresponding areas of deposition.

Maps of snow depth difference measured by TLS mea-
surements have been used in recent studies to evaluate the
quality of the snow redistribution simulated by models (Mott
et al., 2010; Schneiderbauer and Prokop, 2011). However,
this map is not available for our case study as mentioned in
Sect. 4. Therefore, instead of a direct comparison, we pro-
pose here a qualitative analysis in term of typical patterns of
erosion and deposition around Col du Lac Blanc for northern
blowing snow events. For this purpose, we used the TLS data
available for the 22–26 February event. This event presents
similar conditions to our case study in terms of mean wind
speed and direction (Table1). Schirmer et al. (2011) have
shown that individual storms arriving from the same direc-
tion produce similar patterns of snow depth changes at the
Wannengrat catchment (Swiss Alps). The comparison pre-
sented in this section cannot be considered as a formal eval-
uation of the model ability to simulate snow redistribution
but aims rather at exploring what is possible with the current
model resolution of 50 m.

Figure 10a shows the map of snow depth difference for
the event of 22–26 February 2011. This map illustrates the
presence of fine scale structures of erosion and deposition.
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Table 3.Total snow mass (kgm−2) transported at two levels above
the snowpack and mean wind speed (ms−1) observed and simulated
at the location of SPC. Total snow mass represents the cumulative
blowing snow flux over the period of snow transport.

Variable Total mass Total mass Mean wind speed
Height 0.9–1.41 m 2.8–3.38 m 2 m

Observations 101.9 16.2 14.2
Model 90.7 9.0 12.9

Erosion is mostly observed on the northern side of the pass
where areas of snow deposition are also present. Their forma-
tion is related to topographic features such as cross-loaded
slope (arrow 1) and slope change (arrow 2) responsible for
the formation of a local recirculation zone on the windward
side of the pass. On the southern side, deposition is gen-
erally observed with maxima of snow deposition at a steep
slope break (arrow 3) and at the bottom of west-facing cliffs
(arrow 4). Averaging to an horizontal resolution of 50 m
(Fig. 10b) reduces greatly the variability of snow depth dif-
ference but preserves the general structure of erosion and de-
position. Erosion is observed on the northern side of the pass
while deposition occurred mainly on the southern side.

Figure 10c shows that the model simulated erosion on
northern side of the pass and deposition on the southern side
for our case study. The location of the main deposition area
(arrows 5, 6 and 7) is satisfactorily captured but their exten-
sion tends to be over-estimated (arrows 5 and 6). The forma-
tion of these area of deposition is generated by slope breaks
that locally modified the atmospheric flow. A detailed analy-
sis shows that these local topographic features are not present
in the 50 m model orography. Therefore, the model at 50 m
grid spacing reproduced satisfactorily the large-scale vari-
ability of snow depth difference around the pass (ridge scale)
but missed smaller scale erosion and deposition patterns.

6.5 Influence of blowing snow sublimation

We carried out a second simulation of our case study includ-
ing blowing snow sublimation (simulation SUBL). A com-
parison with the reference simulation (simulation CTRL) al-
lows us to discuss the influence of blowing snow sublimation.

As explained in Sect. 3.1.2, blowing snow sublimation acts
as a sink of snow mass and modifies in return near-surface
meteorological variables. Figure 11 illustrates the effects of
blowing snow sublimation on near-surface variables simu-
lated by Meso-NH/Crocus at Col du Lac Blanc. Account-
ing for sublimation reduces suspended snow concentration of
4 % on average in the first 3 m of the atmosphere. During this
event, sublimation rate ranges from 0 to−2.7 mmSWEday−1.
It is maximal at 07:00 when blowing snow concentration
reaches its highest value. The evolution of near-surface vari-
ables also controls the sublimation rate. For a given snow
concentration in the atmosphere, the decrease of humidity at

0 500 1000 m

SWE difference (mm
SWE )

Fig. 9. Map of snow water equivalent (SWE, mmSWE) difference
simulated by Meso-NH/Crocus between 23:00 and 01:00 on 18
March 2011. Black isolines correspond to1z = 25m and black
box designates the area where data from terrestrial laser scanner
are available.

the beginning of the event (03:00–09:00) changes the subli-
mation rate. It increases from−1 mmSWEday−1 at 04:00 to
−2.5 mmSWEday−1 at 08:20 for the same snow concentra-
tion (1.5 gm−3) and a relative humidity dropping from 83 to
58 %.

Sublimation effects on the surface boundary layer are il-
lustrated in Fig. 11c and d. It leads to an increase of relative
humidity with respect to ice. It is larger close to the surface
with +9.5 % at 0.15 m and+3.6 % at 3.2 m on 18 March at
07:00. Blowing snow sublimation also affects potential tem-
perature with a maximum decrease of−0.66 K at 0.15 m. The
vertical gradient of potential temperature becomes stronger
and increases the stability of the SBL at Col du Lac Blanc.
Turbulent fluxes between the snowpack and the atmosphere
are eventually modified. The detailed mass balance of a de-
position area (Table 5) shows that the increase of relative
humidity reduces surface sublimation by 29.7 %. Such re-
duction has been observed by Wever et al. (2009) in wind
tunnel experiments. Overall, Meso-NH/Crocus simulates to-
tal sublimation (surface + blowing snow) loss of 1.46 mm for
simulation SUBL and 0.47 mm for simulation CTRL. There-
fore, for this case study and for the selected deposition area,
the total sublimation is multiplied by 3 when accounting for
blowing snow sublimation which becomes the main source
of transfer of water vapour to the atmosphere (78 % of total
sublimation).

Finally, blowing snow sublimation reduces snow concen-
tration in the atmosphere and changes in snow redistribution
are expected. Table 5 indicates that snow accumulation is re-
duced by 5.7 % for a deposition area covering 0.17 km2 on
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Fig. 10.Maps of snow cover evolution during northern blowing snow events around Col du Lac Blanc (black box on Fig. 9):(a) snow depth
difference measured by TLS at an horizontal resolution of 1 m between 28 February 2011 and 17 February 2011,(b) same as(a) but averaged
at an horizontal resolution of 50 m and(c) SWE difference simulated by Meso-NH/Crocus between 23:00 and 01:00 on 18 March 2011. The
arrow indicate example of snow deposition patterns discussed in the text. Note the difference of colourbars. The spatial coordinates are in m
and the dashed isolines correspond to1z = 10m.

Table 4.Average blowing snow fluxes (10−4 kgm−2s−1) simulated by the model (Mod.) and measured by SPC (Obs.) at two levels above
the snowpack. Average fluxes have been computed for 5 categories of 2 m wind speed. Relative bias (Rel. bias) appears in italic and is
calculated as ratio of modelled and observed average flux.

Wind speed Level 0.9–1.41 m Level 2.83–3.38 m

category (ms−1) Obs Mod. Rel. Bias Obs Mod Rel. Bias

12 1.41 6.52 4.61 0.21 0.52 2.50
13 2.45 10.03 4.09 0.30 0.85 2.83
14 6.09 15.73 2.58 1.05 1.58 1.51
15 18.88 22.97 1.22 2.76 2.35 0.85
16 30.76 38.89 1.26 4.50 4.21 0.96

the southern side of Col du Lac Blanc. Figure 12 confirms
these results and shows that blowing snow sublimation re-
duces snow accumulation in areas of deposition identified on
Fig. 9. The averaged deposited snow mass within our model
domain is reduced by 5.3 % during this event in simulation
SUBL compared to simulation CTRL. However, Fig. 12 also
shows points where SWE at the end of the event is higher
in simulation SUBL than simulation CTRL. To gain under-
standing on this unexpected increase, we computed the mass
balance of a region located on the northern side of Col du
Lac Blanc (green box on Fig. 12). It corresponds to an area of

snow erosion (Fig. 9). Mean SWE difference between simu-
lations SUBL and CTRL is+0.38 mm. 87 % of this increase
is explained by a reduction of erosion flux resulting from
a decrease of wind speed associated with higher atmospheric
stability. The remaining 13 % are explained by the decrease
of surface sublimation in simulation SUBL. Therefore, slight
modifications of near-surface variables explain the increase
of SWE observed at some points at the end of simulation
SUBL compared to simulation CTRL.

The Cryosphere, 8, 395–415, 2014 www.the-cryosphere.net/8/395/2014/



V. Vionnet et al.: The coupled snowpack/atmosphere model Meso-NH/Crocus 409

Table 5.Mass balance (in mmSWE) of a deposition area (0.17 km2)
located on the southern side of Col du Lac Blanc for the case study.
Its location is given on Fig. 12. A positive value indicates accumu-
lation. Bold values refers to relative difference in % compared to
simulation CTRL.

Simulation Blowing snow Surface Total
deposition sublimation

CTRL +19.99 −0.47 +19.52
SUBL +18.86 −0.33 +18.53

SUBL-CTRL −1.13 (−5.7%) +0.14 (+29.7%) −0.99 (−5.1%)

7 Discussion

7.1 Blowing snow sublimation

The influence of blowing snow sublimation has been es-
timated in a simulation including all sublimation feed-
backs between snow and atmospheric dynamics. Results
of this simulation can be compared with those from pre-
vious studies. Simulated sublimation rate range from 0
to −2.7 mmSWEday−1. They are in the range of val-
ues measured by Pomeroy and Essery (1999) (−1.2
to −1.8 mmSWEday−1) and Schmidt (1982) (−0.51 and
−5.27 mmSWEday−1). Blowing snow sublimation results in
an increase of relative humidity of+9.5 % close to the sur-
face. This increase is smaller than the maximum increase
of 15 % simulated by GZ11 for a 43 h blowing snow event
occurring over the Wannengrat catchment (2.4 km2, Swiss
Alps). This difference may be explained by the formulation
used by GZ11 which tends to give higher sublimation rates
than the formulation used in Meso-NH/Crocus (Sect.5.2).
Note also that drier air was found for the period of max-
imum sublimation in their case study increasing blowing
snow sublimation. Nonetheless, our results and those ob-
tained by GZ11 are similar in a sense that they do not show
saturation of the lowest levels of the atmosphere when blow-
ing snow sublimation is activated. The significant increase of
relative humidity near the snow surface with blowing snow
sublimation mentioned by Déry et al. (1998) is not simulated
in 3-D models in alpine terrain. This may be explained by the
advection effects included in 3-D models and which are miss-
ing in 1-D unless explicitly included like in Bintanja (2001).

In simulation SUBL, we found that blowing snow subli-
mation causes a reduction of deposited snow mass of 5.3 %
over the calculation domain. This value is higher than the
2.3 % found by GZ11 over the Wannengrat catchment. This
difference can be explained by the meteorological conditions
and the model formulation as mentioned before. The sim-
ulations also differ in terms of horizontal resolution (50 m
in our study compared to 10 m in GZ11). Bernhardt et al.
(2010) showed that their model predicts significantly smaller
total amount of blowing snow sublimation over a winter sea-
son when decreasing horizontal grid spacing from 200 m to

30 m. This is due to the fact that crests where high subli-
mations rates are simulated have a smaller spatial extent at
30 m. Over our simulation domain, a finer horizontal resolu-
tion would probably result in a reduction of sublimation rates
at the crests for the same reasons as in Bernhardt et al. (2010).
However, quantifying this effect falls beyond the scope of
this study and will require additional simulations that will be
carried out in a future study.

Other studies focused on the impact of blowing snow sub-
limation over a whole winter at different spatial scales. For
the Berchtesgaden park in Germany (210 km2), Strasser et al.
(2008) have found that 4.1 % of snowfall is lost by blowing
snow sublimation. When including gravitational snow trans-
port, the seasonal average loss is lowered to 1.6 % of annual
snowfall for the same area (Bernhardt et al., 2012). In the
Canadian Rocky Mountains, MacDonald et al. (2010) esti-
mated that sublimation losses reach 17 to 19 % along a moun-
tain crest (length: 210 m). Based on our results for a single
event (reduction in snow deposition by 5.3 %), we can ex-
pect lower seasonal sublimation rates at Col du Lac Blanc
since blowing snow events occur only during a fraction of
the total time (10 % on average at Col du Lac Blanc, Vion-
net et al., 2013). Groot Zwaaftink et al. (2013) confirmed this
statement for the Wannengrat alpine catchment. They found
that only 0.1 % of snowfall is lost by blowing snow sublima-
tion over a winter while snow deposition can be reduced by
2.3 % for a single blowing snow event (GZ11).

7.2 Limitations in the coupled model

The fully coupled simulation of snow redistribution with
Meso-NH/Crocus requires to run the model at a sufficiently
high resolution for a time period covering the total duration
of a blowing snow event (19 h on average at Col du Lac
Blanc, Vionnet et al., 2013). In this study, we managed to
simulate a 22 h blowing snow event in a fully coupled way
at 50 m grid spacing. Results show that this configuration al-
lows the model to capture the patterns of snow erosion and
deposition at the ridge scale (Fig. 9). However, the detailed
structures measured by TLS are not reproduced (Fig. 10).
This constitutes the main limitation of the current version
of the model. Indeed, the 50 m model orography does not
represent local topographic features which modify the at-
mospheric flow and generate snow erosion and deposition.
Mott and Lehning (2010) found similar results at the Gaud-
ergrat ridge (Swiss Alps) where their model at an horizontal
resolution of 50 m reproduced patterns of snow deposition
at the ridge scale but missed smaller scale deposition pat-
terns. These patterns were partially reproduced using hor-
izontal resolutions of 10 and 5 m. Using similar horizon-
tal resolutions,Mott et al. (2010) and Schneiderbauer and
Prokop (2011) concluded that simulated snow redistribution
compared satisfactorily with TLS measurements.

Capturing the small-scale erosion and deposition patterns
will require to run Meso-NH/Crocus at 10 m grid spacing.
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a)

b)

c)

d)

Fig. 11.Times series simulated at Col du Lac Blanc of(a) average
concentration of blowing snow in Canopy;(b) vertically integrated
sublimation rate in Canopy;(c) relative humidity with respect to ice
at two levels and(d) potential temperature at two levels. Plain and
dashed lines refers respectively to simulation CTRL and SUBL. The
total thickness of Canopy is 3.05 m at Col du Lac Blanc.

Meso-NH can be used at this resolution in alpine terrain
thanks to its 3-D turbulence scheme but there are some con-
straints linked to its dynamics. Due to the anelastic con-
straint, the pressure is diagnosed by solving an elliptic equa-
tion. In presence of steep orography, the convergence of the
pressure solver is more difficult to reach. Specifically, the
major limitation of this system is in terms of slope discon-
tinuity: the topography used in the model must avoid a cliff-
type behaviour. The second constraint is linked to the eule-
rian numerical schemes, that limit the time step due to the
Courant number. Amory (2012) ran Meso-NH at 12 m grid
spacing around Col du Lac Blanc with a time step of 0.025 s.
His simulation lasted 45 min which is not long enough to
simulate the total duration of a blowing snow event. Further-
more, he showed that the border of the computational do-
main must be carefully chosen to avoid slope discontinuities.
Therefore, the key issue to simulate snow redistribution at
10 m grid spacing lies in the ability of Meso-NH of running
at this resolution for a time period covering a blowing snow
event. This will be made possible by the on-going develop-
ment of more efficient numerical schemes in Meso-NH.

Model limitations have been identified in the formulation
of the saltation layer. As detailed in Table 4 the model tends

0 500 1000 m
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Fig. 12. Difference of SWE (mmSWE) at the end of the blowing
snow event between simulations SUBL and CTRL. The black box
delineates the area whose mass balance is given in Table 5 while
features of the region surrounded by the green box are discussed in
the text. The spatial coordinates are in m and the dashed isolines
correspond to1z = 50m.

to overestimate blowing snow fluxes at 1.19 m. This may re-
sult from an overestimation of the mass concentration in the
saltation layer which acts as a lower boundary condition for
the suspension layer. The adaptation to snow of the formu-
lation of Sørensen (2004) presented in Sect. 3.2.2 is based
on a limited number of measurements and may not cover
the whole range of threshold velocity. The formulation for
the height of the saltation layer is also questionable. Meso-
NH/Crocus uses the empirical formulation of Pomeroy and
Male (1992) which tends to give lower values compared to
the formulation used by Lehning et al. (2008) in alpine ter-
rain (4.4 cm against 8.2 cm for example foru∗ = 0.6 ms−1).
Using this formulation would decrease the concentration in
the saltation layer for a given wind speed. The model also as-
sumes that snow particle velocity in the saltation layer does
not depend on the wind speed following the field measure-
ments of Pomeroy and Gray (1990). However, more recent
observations collected in wind tunnel showed that the par-
ticle velocity increases with increasing friction velocity for
sand grains (Creyssels et al., 2009). Tominaga et al. (2013)
showed that the ratio of snow particle velocity to wind ve-
locity was about 40 % in the saltation layer. Using wind-
dependent velocities for particles in the saltation layer would
result in higher velocities and a decrease of snow concen-
tration for a given mass flux. Overall, the current version
of Meso-NH uses a simple description of the saltation layer
which must be eventually replaced by a physically-based
saltation model (e.g. Kok and Renno, 2009).
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The computation of blowing snow sublimation in Meso-
NH/Crocus has also several limitations. Firstly, the model as-
sumes that the ventilation velocity is equal to the settling ve-
locity of suspended particles and neglects ventilation effects
associated to turbulence (Dover, 1993; Bintanja, 2000). Fur-
thermore, the effect of solar radiation is not included in the
computation of the sublimation rate of an ice sphere. Mea-
surements in a wind-tunnel (Wever et al., 2009) show that
solar radiation may increase sublimation by 50 %. Finally,
our model assumes that suspended snow particles are spheri-
cal. Based on the results of Thorpe and Mason (1966), Wever
et al. (2009) estimated that the efficiency of the mass and en-
ergy exchange increased a factor 2.5 to 5 for dendritic shapes
compared to hexagonal plates. The highest sublimation rates
are observed with crystals composed of very fine branches.
We estimate this effect is only active at the onset of blowing
snow events before fragmentation modifies particles shape
towards more rounded particles (Clifton et al., 2006; Vionnet
et al., 2013). All these limitations lead to a probable under-
estimation of blowing snow sublimation rates by the model.

8 Conclusions

In this paper, we introduced the coupled system Meso-
NH/Crocus dedicated to the study of snowpack/atmosphere
interactions and wind-induced snow redistribution during
blowing snow events. This system includes a blowing snow
scheme which makes the distinction between snow transport
in saltation and turbulent suspension and includes blowing
snow sublimation. In the atmosphere, blown snow particles
are represented by a double-moment scheme to capture the
spatial and temporal evolution of the particle size distribu-
tion. At the surface, the model computes mass flux in salta-
tion as a function of snow-surfaces properties given by Cro-
cus and near-surface meteorological conditions. The result-
ing snow erosion or deposition includes the contributions
of snow transport in saltation and turbulent suspension, and
snowfall simulated by Meso-NH.

Meso-NH/Crocus has been evaluated in alpine terrain
against data collected around the experimental site of Col
du Lac Blanc (2720 m a.s.l., French Alps). Results of 1-D
simulations indicate that the vertical resolution close to the
ground must be sufficient to reproduce strong gradients of
blowing snow concentration and compute mass exchange be-
tween the snowpack and the atmosphere. This is achieved in
our model using a SBL scheme at the interface between Cro-
cus and Meso-NH. The double-moment scheme for the sus-
pension layer allows the model to capture satisfactorily the
vertical profile of mean particle radius and to account for its
consequence on sublimation rates of blowing snow.

A 22 h blowing snow event without concurrent snowfall
was then selected and simulated in 3-D. At an horizontal
resolution of 50 m, Meso-NH is able to capture the main
features of near-surface atmospheric flow in alpine terrain

including crest speed-up and the formation of recirculation
zones. The total snow mass transported at two levels above
the snowpack is underestimated by the model. This results
from an underestimation of the wind speed at the location
where blowing snow fluxes are measured. Simulated areas
of erosion and deposition are consistent with what is quali-
tatively expected from the wind field structure: snow erosion
on windward areas and deposition in regions of decreasing
wind speed. However, at 50 m grid spacing, the model cap-
tures only the patterns of snow erosion and deposition at the
ridge scale and misses smaller scale patterns observed by a
terrestrial laser scanner around Col du Lac Blanc. Their for-
mation is governed by topographic features of scale lower
than 50 m.

In contrast with earlier-developed models, Meso-
NH/Crocus includes most important feed-back mechanisms
between snow and atmospheric dynamics, such as temper-
ature and humidity effects of blowing snow sublimation.
When activated for this case study, blowing snow sublima-
tion reduces the total amount of deposited snow by 5 %. It
also modifies the surface boundary layer in regions exposed
to drifting snow and downwind of these zones with an
increase of relative humidity by 5 to 9 % and a decrease
of potential temperature by 0.3 to 0.7 K. Advection effects
prevent the formation of a near-surface saturated layer.
During this blowing snow event, blowing snow sublimation
is the main source of water vapour transfer to the atmosphere
and represents 78 % of total sublimation (blowing snow +
surface).

Future developments will include the simulation of blow-
ing snow events at higher horizontal resolution (up to 10 m)
around Col du Lac Blanc to allow direct comparison with
measurement from a terrestrial laser scanner. This will be
made possible by the on-going development of more effi-
cient numerical schemes in Meso-NH. A second applica-
tion concerns the simulation of blowing snow events with
concurrent snowfall which represent 37 % of observed blow-
ing snow events at Col du Lac Blanc (Vionnet et al., 2013).
The explicit representation of snowfall and blowing snow in
the model will allow us to study the relative contribution of
ground snow transport and preferential deposition of snow-
fall (Mott et al., 2010) to the spatial variability of the snow-
pack. This will require the use of grid-nesting techniques to
produce atmospheric forcing from the synoptic scale down
to the local scale.

Meso-NH/Crocus is the first fully coupled snow-
pack/atmosphere model that can simulate wind-induced
snow transport at high-resolution in alpine terrain. It can also
be applied over other snow-covered terrain such as ice sheets
(Gallée et al., 2001) or over glaciers (Sauter et al., 2013). Its
applications can be also extended to other topics regarding
snowpack/atmosphere interactions such as the dynamics of
katabatic wind over glacier (e.g. Claremar et al., 2012) or the
influence of a patchy snow cover on the dynamics of the SBL
(Mott et al., 2013).
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Appendix A

Symbols and units

Symbol Units Description

CD (–) Transfer coefficient for momentum
Dv m2s−1 Molecular diffusivity of water vapour
FNet kgm−2s−1 Net mass flux between the snowpack and the atmosphere
FPrecip kgm−2s−1 Snowfall rate
FSalt kgm−2s−1 Contribution toFNet of snow transport in saltation
FSusp kgm−2s−1 Contribution toFNet of snow transport in turbulent suspension
Kair Jm−1s−1K−1 Molecular thermal conductivity of the air
KSca m2s−1 Coefficient of turbulent diffusion for passive scalar in Meso-NH
KSnw m2s−1 Coefficient of turbulent diffusion for blowing snow variables
Lm m Mixing length
Ls Jkg−1 Latent heat of sublimation for ice
Ns kg−1 Number concentration of particles per unit of mass
ÑSalt m−3 Number concentration per unit of volume at the top of the saltation layer
ÑSurf m−3 Number concentration per unit of volume at the bottom of Canopy
Nu (–) Nusselt number
Pair Pa Air pressure
QSalt kgm−1s−1 Horizontal transport rate in saltation
Re (–) Particle Reynods number
Rv Jkg−1K−1 Specific constant for water vapour
Sh (–) Sherwood number
SWE kgm−2 Snow water equivalent
SN kg−1s−1 Number sublimation rate
Sq kgkg−1s−1 Mass sublimation rate
Tair K Air temperature
USurf ms−1 Wind speed at the bottom of Canopy
Uxt ms−1 Threshold wind speed atx m
Ux ms−1 Wind speed atx m
VN ms−1 Number-weighted mean particle fall speed
Vq ms−1 Mass-weighted mean particle fall speed
Vv ms−1 Ventilation speed
cSalt kgm−3 Snow mass concentration in the saltation layer
cSurf kgm−3 Blowing snow mass concentration at the bottom of Canopy
e Pa Vapour pressure
esi Pa Vapour pressure at saturation over ice
eTKE m2s−2 Kinetic turbulent energy
g ms−2 Acceleration due to gravity
hSalt m Thickness of the saltation layer
qs kgkg−1 Blowing snow mixing ratio
r m Particle radius
rm m Mean particle radius
rmsalt m Mean particle radius in the saltation layer
upart ms−1 Particle speed in the saltation layer
uj ms−1 Wind speed in directionj
u∗ ms−1 Friction velocity
u∗t ms−1 Threshold friction velocity
z0 m Roughness length
Ŵ (–) Gamma function
α (–) Shape parameter of the gamma law
β m Scale parameter of the gamma law
ζ (–) KSca/KSnw
νair m2s−1 Air kinematic viscosity
ρair kgm−3 Air density
ρice kgm−3 Ice density
σ (–) Water vapour deficit with respect to ice (= (e − esi)/esi)
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Appendix B

Advection of blowing snow variables in Canopy

Canopy is a 1-D SBL scheme included in SURFEX (Mas-
son and Seity, 2009). Blowing snow variables have been in-
troduced in this scheme to reproduce the strong gradient of
blowing snow concentration close to the ground. The contri-
bution of advection at each Canopy levels is included through
specific terms appearing in Eqs. (18) and (19). We detailed
here the calculation steps for the blowing mixing ratio,qs
(writtenq in the following). The same method is used for the
number concentration per unit of mass,Ns. The procedure
follows:

1. The total mass flux in Canopy (kgm−1s−1) is com-
puted following QCano= ρair

∑
i qihiui where hi is

the thickness of Canopy layeri andui the wind speed
at leveli.

2. An equivalent concentration is deduced fromceq =
QCano/(hMNHuMNH) (kgm−3) where hMNH is the
thickness of the first atmospheric layer anduMNH the
wind speed at the first level of Meso-NH.

3. Meso-NH computes the advection at the first atmo-
spheric layer of the fieldreq = ceq/ρa and sends back
to Canopy the advected variablecadv.

4. The total snow mass in CanopyMCano(= ρair
∑

i qihi)
is updated following:M ′

Cano= MCano+ Madv− Meq
whereMadv = cadv/hMNH etMeq = ceq/hMNH .

5. The contribution of advection at each leveli is finally
computed as:
(

∂qi

∂t

)

Adv
= M ′

Cano/MCano− 1 (20)
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