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III-V/Si heterostructures are currently investigated for silicon photonics and solar energy

conversion. In particular, dilute nitride alloy GaAsPN grown on a GaP/Si platform exhibits lattice

match with Si and an optimal band gap configuration for tandem solar cell devices. However,

monolithic “coherent” growth of the GaP thin layer on Si suffers from the nucleation of extended

structural defects, which can hamper device operation as well as the GaP/Si interface level and

through their propagation inside the overall heterostructure. However, the effect of such structural

defects on optical and transport properties is actually not well understood in details. In this letter,

we investigate the anti phase domains defect (also called inversion domains) by means of ab initio

calculations giving insights into the alteration of optical and transport properties of GaP due to the

defective GaP/Si interface.VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4864421]

I. INTRODUCTION

Lattice matched III-V/Si heterostructures have attracted

a lot of attention recently since they constitute fundamental

building blocks for the integration of efficient optical func-

tions on silicon substrates. Development of energy efficient

optical interconnects and ultra-fast optoelectronic devices

via monolithic optoelectronic integrated circuits (OEICs) has

so far driven their studies.1 III-V/Si optoelectronic devices

aim at taking advantage of the excellent optical properties of

III-V semiconductors, for example, fast optical data commu-

nication, thus reducing the total length of intra and inter-chip

electrical interconnection. This growing research domain is

known as silicon photonics and is of interest for other more

recent applications, such as the target application of this arti-

cle: photovoltaic solar energy conversion.

On one hand, silicon has been the material of choice for

solar energy conversion because of its abundance and well

controlled technology, resulting during many years in the

best performance-to-cost ratio. Conventional silicon solar

cells (single Si crystal) yield �25% record solar to electrical

power conversion efficiencies,2 close to its 31% theoretical

limit (the so-called Shockley-Queisser limit for a single junc-

tion solar cell under unconcentrated sunlight illumination3)

despite its poor light harvesting capability originating from

its indirect band gap. On the other hand, III-V compounds

display tunable direct band gaps and lattice parameters, and

excellent optical properties. Ultimately, single crystal GaAs

solar cells hold the record conversion efficiency for single

junction devices at 28.8%.2

To surpass the Shockley-Queisser limit defined for a sin-

gle absorber material, novel device designs have been pro-

posed, such as, in particular, series-connected two junction

solar cells, also called tandem cells. In such a structure, two

absorber materials with different band gaps are stacked, and

convert light from their assigned part of the solar spectrum

thus reducing thermalization loss (for a description of loss

mechanisms in solar cells see, e.g., Ref. 4). It has been theoret-

ically demonstrated that a maximum 37% conversion effi-

ciency is achievable with a GaAsPN/Si tandem cell, exceeding

that of a single junction device5 while taking advantage of the

well established Si technology and excellent optical properties

of III-V compounds. Indeed, not only the GaAs0.09P0.87N0.04

dilute nitride alloy is lattice matched to Si5,6 but also this

GaAsPN/Si structure exhibits the optimal 1.7/1.1 eV band gap

combination for a tandem cell.5 However, the structural prop-

erties of the III-V layer grown onto Si are currently the limit-

ing factor for an optimal tandem solar cell operation.

The fabrication of an efficient monolithically integrated

GaAsPN/Si heterostructures requires defect free heteroepi-

taxy. Indeed, structural defects may form recombination cen-

ters leading to increased radiative loss in the solar cell, and

can also degrade transport properties. Despite fulfilling

lattice matching requirement, the heteroepitaxial growth of

III-V polar semiconductors on a non-polar Si (001) surface

can still generate detrimental structural defects. In particular,

Anti Phase Domains (APDs, also called Inversion Domains)

has been observed to develop in the polar region.6–14 These

kind of extended structural defects nucleate at Si surface

monoatomic height steps (the surface being not perfectly pla-

nar). When depositing atomic monolayers onto such a sur-

face in a [A-B-A-B…] type sequence, the monoatomic

height step induces a stacking fault, forming the Anti Phase

Boundary (APB). Therefore, a [A-B-A-B…] stacking pattern

on one side of the APB faces a [B-A-B-A…] pattern on the

other side, and the APB is composed by A-A and B-B bonds

called wrong bonds.

Various methods have been proposed to limit APD gener-

ation during the III-V growth, such as Si surface preparation
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(bi-atomic step formation by step bunching, canceling the

stacking fault formation)6–8 and low temperature growth

(favoring APB self annihilation, e.g., {111} and {�111}

APBs running towards one another) on miscut Si (001) surfa-

ces.9,10 A number of experimental investigations have shed

some light on APB growth dynamics.11,12 However, while

successful III-V on Si overgrowth has been reported,13–16

most theoretical work has been restricted to the energetical

stability of such extended defects. Rubel et al. calculated APB

formation energies for different plane orientations in GaP and

GaAs, within the Density Functional Theory (DFT) frame-

work.17 Their work based on supercell calculations suggested

that {110} APBs exhibit the lowest formation energy because

{110} APBs are stoichiometric and contain the same number

of A-A and B-B wrong bonds. Hence, no excess charge is

present on the APB and no extra electric field develops in the

supercell, in opposition to the {111} and {001} cases. This

result compared favorably with earlier studies based on wrong

bond energy, charge transfer between wrong bonds, and

wrong bond counting in GaAs.18 Indeed, A-A and B-B wrong

bonds exhibit opposite excess charge and can be assimilated

to acceptor and donor centers. On a {110} APB, compensa-

tion occurs on the same APB, whereas in the non stoichiomet-

ric cases, compensation involves inter APB charge transfer or

is incomplete for distant APBs.18,19 However, these studies

focused on APBs formation only and optical properties were

not mentioned.

Therefore, in this article, we investigate {110} APBs in

GaP by means of advanced ab initio calculations based on

many body perturbation theory. Focus is set on determining

to which extent APBs will alter bulk optical and electronic

properties, which are of prime importance for an optimal

III-V/Si tandem solar cell operation.

II. CALCULATION PROCEDURE

Ab initio calculations on {110} APDs of GaP were

performed with the Projector Augmented Wave method

(PAW) implemented in the VASP package20,21 and using the

Generalized Gradient Approximation-Perdew-Burke-

Ernzerhof (GGA-PBE) exchange-correlation functional.

Gallium 3d electrons were only included in the atomic posi-

tions relaxation steps of the primitive cell and supercells.

Electronic structure calculations were carried out with the

perturbative one shot GW method (known as G0W0) imple-

mented in the VASP package.22–24 DFT has been used for

the relaxation procedures, and for the calculation of wave-

functions and energies entering the construction of GW

self-energies. The valence band splitting caused by

spin-orbit coupling (80meV25) is relatively small compared

with GaP band gap (2.2 eV25) and has therefore not been

accounted for in our calculations. The study of {110} APD

requiring a unit cell exhibiting a cell vector normal to {110},

the chosen unit cell vectors are given by (1=2,�1=2,0),
(1=2,1=2,0) and (0,0,1), and contains four atoms, twice the irre-

ducible atomic pattern.

The calculated bulk GaP lattice parameter is 5.5 Å, 1%

larger than the 0K reference,25 which is typical of GGA

functionals.26 The band gaps Ei
g and energy separations of

the conduction band valleys Ei
C � E

j
C i; j ¼ C; L;Xð Þ calcu-

lated with G0W0 show an overall satisfactory agreement

with reference data25 and with previous GW studies.27 The

use of advanced functionals, such as HSE06, did not improve

the valley separations (in particular, EX
C � EC

C) (see Table I).

III. RESULTS

APDs were modeled using supercells built from {110}

four atoms unit cells stacked along the (1=2,1=2,0) direction.
APB spacing has been set to half the width of the supercell,

so that each domain on both side of an APB has the same

size (see Fig. 1(a)). Distortion of atomic positions around

APBs due to wrong bonding (Ga-Ga and P-P bonds) is repro-

duced by atomic relaxation. The calculated shear domain

displacement (one domain shifted along (001) with respect

to the other) and boundary expansion (longer bond length

around APBs) are, 9% and 2% of the calculated ideal Ga-P

bond length, respectively, in excellent agreement with TEM

TABLE I. Bulk GaP calculation results compared with experimental data

compiled in Ref. 25. All energies are given in eV.

This work (G0W0) This work (HSE06) Experimental data25

EC

g 2.76 2.58 2.86

EL
g 2.57 2.43 2.72

EX
g 2.20 2.35 2.35

EL
C � EC

C �0.19 �0.15 �0.14

EX
C � EC

C �0.56 �0.23 �0.51

FIG. 1. (a) Sketch of a {110} supercell containing an APD. APBs are indi-

cated by thick vertical lines (b) Calculated bulk GaP GW band structures

using the irreducible unit cell (thick solid lines), and for a 15.5 Å APB spac-

ing supercell (dots). Quasi-particle energy level labeling scheme at C is indi-

cated. Shaded areas correspond to energy space occupied by bulk states.

063502-2 Tea et al. J. Appl. Phys. 115, 063502 (2014)

 [This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to ] IP:

129.175.97.14 On: Fri, 04 Apr 2014 08:23:31



measurements.28 All following results refer to relaxed

supercells.

Fig. 1(b) shows the calculated GW band structure for a

supercell with 15.5 Å APB spacing along a path in reciprocal

space (C-X parallel to the APB, C-K normal to the APB).

Since {110} APBs are stoichiometric, no electric field is

present. The macroscopic potentials (DFT energy reference)

have therefore been averaged over the primitive and super

cells and aligned,29 for bulk and APD band structures com-

parison. Aside the expected band folding along (001) C-X

direction, the band structure exhibits several striking fea-

tures. (i) Band folding also occurs along the (110) C-K direc-

tion, due to the construction of the supercell. Indeed, the

presence of APBs breaks the unit cell (110) translation sym-

metry and only the supercell (110) translation symmetry is

conserved. The supercell being built from stacking four

atoms unit cells in the (110) direction, the longer the super-

cell the more folding occurs. (ii) While the Conduction Band

Minimum (CBM) energy seems unchanged (conduction

bands within the shaded area), the Valence Band Maximum

(VBM) experiences a dramatic upward shift (typically

0.5–0.6 eV) leading to band gap reduction. (iii) The three-

fold degeneracy of bulk VBM (without spin orbit coupling)

has been lifted due to symmetry breaking caused by the

APD.

Calculated quasi-particle energies at C for various APB

spacings are plotted in Fig. 2. Their labeling scheme is indi-

cated in Fig. 1(b) (in increasing energy order:… V-2, V-1,

VBM, CBM, Cþ 1, Cþ 2…). Calculated VBM shifts with

respect to the bulk VBM are indicated on Fig. 2. Focus will

be put on the calculated quasi-particle energy levels at C

and, in particular, those located inside the bulk C optical

band gap shown in Fig. 1, which will be called In-Gap (IG)

states.

The valence bands pushed above the bulk VBM exhibit

dispersion in directions parallel to APB planes (as along the

(001) C-X direction) and can be assimilated to surface or

interface bands. However, they do not exhibit dispersion in

the direction normal to the {110} APB plane ((110) C-K

direction) which indicates real space localization. Fig. 3(a)

shows the VBM partial charge density integrated in the

planes parallel to APBs for various APB spacings. APB cou-

pling caused by finite size of supercells induces a large

delocalization of wavefunctions. However, for large APB

spacing, VBM partial charge density clearly reveals localiza-

tion on the APB planes as the density drops between APBs.

Meanwhile VBM shifts shown on Fig. 2 are found to hardly

vary. Therefore, the calculated VBM shifts are attributed to

the presence of the APBs themselves and not to supercell fi-

nite size effects. Fig. 3(b) shows the partial charge density

for some IG states for 31.1 Å APB spacing. We emphasize

that these states are not related to point defects but are part

of electronic bands. Valence IG states are localized on the

APB planes, whereas conduction IG states exhibit a weak

localization. Moreover, the calculated CBM energies are

close to the bulk values, suggesting that the conduction

bands may only be weakly affected by the APBs. Therefore,

the CBM is most likely to originate from band folding

caused by the system geometry ({110} unit cell building

blocks). This is confirmed by inspecting the projection of

wavefunctions as used in supercell unfolding procedures.30

The projection of the supercell CBM on the bulk wavefunc-

tion evaluated at X is larger than the same projection on the

FIG. 2. Calculated quasi-particle energies at C versus APB spacing are indi-

cated by thin horizontal lines for the relaxed configurations. Thick horizontal

lines indicate the calculated VBM and C-CBM. Shaded energy regions are

populated by bulk conduction (CBM around X) and valence (VBM at C)

bands. Bulk GaP results are shown at zero APB spacing for comparison.

Calculated effective band gaps and VBM shifts are indicated.

FIG. 3. IG states partial charge density

evaluated at the C point, integrated in

the planes parallel to APBs. (a) VBM

for various APB spacings. (b) Some IG

states for 31.1 Å APB spacing. APB

positions are indicated by vertical

dashed lines.

063502-3 Tea et al. J. Appl. Phys. 115, 063502 (2014)
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bulk C wavefunction by two orders of magnitude. However,

the CBM has an X “character” because it “originates” from

X due to band folding. Indeed, one cannot “strictly unfold”

the supercell because of the breaking of the crystal symme-

tries caused by the APB itself. Nevertheless, for large APB

spacing, one expects the material to exhibit bulk properties.

Hence, the defective material should exhibit an effective

indirect band gap.

To assess the nature of the calculated effective band

gap, the optical properties of the IG states were investigated

by the calculation of their optical coupling strength as a

function of APB spacing. Results are summarized in

Table II. The calculated optical coupling strengths reveal

that the CBM and VBM are very weakly coupled. The

strongest coupling with the VBM actually involves a higher

conduction state whose energy lies the closest to the bulk

one at C (here called C-CBM, indicated by thick horizontal

lines in Fig. 2, and listed in Table II). As discussed in previ-

ous paragraph, the IG conduction states have “folded” char-

acter. Therefore, they are not allowed to optically couple to

the VBM which occurs at C. Hence, the IG conduction states

should not favor radiative recombination. Wavefunction pro-

jections reveal that the C-CBM is actually C-like and do not

originate from band folding. In the case of large APB spac-

ing, one would expect to have two bulk-like domains in the

supercell on each side of the APB. While APBs break the

bulk crystal symmetry, the fact that the CBM do not strongly

optically couple to the VBM suggests that the overall defec-

tive material (with APDs) still exhibits an indirect band gap

like bulk GaP. Examination of Fig. 2 also reveals that C-

CBM energies are actually pushed below their bulk values.

Added to the VBM shifts, this further reduces the C optical

band gap. This band gap reduction is illustrated on Fig. 4

which shows the imaginary part of the dielectric function ei.

These have been calculated directly from the wavefunctions

by integrating the optical coupling strength over all direct

optical transitions.31 The absorption onset appears at much

lower photon energies in the defective material (�1.7 eV)

compared with the bulk one (�2.8 eV). Photon absorption

(and hence emission) becomes much stronger when photon

energies are large enough to reach the C-CBM gaps (�2.0

and �3.0 eV for the defective and bulk materials, respec-

tively), especially when reaching the bulk C-CBM gap

energy. Examination of the amplitudes of ei reveals sub band

gap (bulk value) radiative loss in the defective material, but

not with an enhanced character.

Localization of the IG valence partial charge density

(over a few atomic layers, as shown on Fig. 3(b)) suggests

that charge carriers can be trapped on the APB planes,

which may be detrimental to solar cell operation. However,

APBs are not point defects, but structural planar defects.

Therefore, transport still occurs in APB planes. In the pres-

ence of APDs, an effective mass for the VBM (C-X direc-

tion) could then be calculated mAPD
001 ¼ 0:72m0 and found to

be larger than the bulk value mbulk
001 ¼ 0:48m0. This suggests

that APBs can be assimilated to quantum wells, forming

planar conduction channels for holes. Moreover, for small

APB spacing, APB coupling induces inter APB charge

transfer. Therefore, transport across APBs can take place

for very high APD densities. In any case, the VBM experi-

ences a large upward shift (0.5–0.6 eV) compared with bulk

GaP, and should be considered for band alignment purposes

and hole collection.

IV. CONCLUSION

In this article, we reported GW calculations of optoe-

lectronic properties of {110} APDs in GaP. The nature of

the effective band gap shows a strong indirect character.

Reduction of the indirect band gap has been evidenced, due

to a large (0.5–0.6 eV) VBM upward shift. Reduction of the

C optical band gap caused by the VBM upward shift and a

small C-CBM downward shift has also been evidenced.

Optical coupling strength calculation revealed that the

VBM and CBM are only weakly coupled. Calculation of

the imaginary part of the dielectric function for direct opti-

cal transitions did not show enhanced sub band gap radia-

tive coupling. The VBM partial charge density is localized

on the APB planes, therefore they can trap charge carriers.

However, transport in the APB planes can take place, and is

FIG. 4. Imaginary part of the calculated dielectric function for direct optical

transitions eiðq ! 0;xÞ. Results for bulk and defective materials are drawn

with solid and dashed lines, respectively. The inset shows the same data on a

log scale.

TABLE II. Optical coupling strength huV j � i�hrjuCi
2
between valence IG

states, the CBM, and the C-CBM for various APB spacings, in units of the

optical coupling strength of bulk GaP evaluated at C.

7.7 Å 15.5 Å 31.1 Å

APB spacing CBM Cþ 2 CBM Cþ 4 CBM Cþ 6

¯x from VBM (eV) 1.69 2.09 1.71 2.06 1.77 2.05

VBM 0.01 0.97 0.00 0.62 0.04 0.37

V-1 0.01 0.86 0.01 0.72 0.01 0.35

V-2 0.01 0.69 0.00 0.58 0.02 0.31

063502-4 Tea et al. J. Appl. Phys. 115, 063502 (2014)
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characterized by an effective mass larger than that of bulk.

APBs can be assimilated to effective quantum wells form-

ing planar conduction channels for holes. On the other

hand, the CBM wavefunction is mainly delocalized and

bulk-like.
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