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Rough integrators on Banach manifolds

I. BAILLEUL1

Abstract. We introduce a notion of p-rough integrator on any Banach manifolds
which plays the role of weak geometric Hölder p-rough paths in the usual Banach
space setting, for any p ě 1. The awaited results on rough differential equations driven
by such objects are proved, and a canonical representation is given if the manifold is
equipped with a connection.

1 Introduction

One of the most basic and illustrative example of a rough path is associated with
the following 2-dimensional spinning signal

hnt “
1

n

`

cospn2tq, sinpn2tq
˘

, 0 ď t ď 1.

Although hn converges uniformly to 0, this path sweeps an area t in any time
interval r0, ts, independantly of n, suggesting that this sequence of paths may be
really different from the zero signal. As a matter of fact, given any two vector fields
V1, V2 on Rd, of class C3

b , it is remarkable that the solution path xn‚ to the ordinary
controlled differential equation

9xnt “
`

9hnt
˘i
Vi
`

xnt
˘

converges uniformly to the solution path x‚ to the ordinary differential equation

9xt “
“

V1, V2

‰

pxtq.

This is due to the fact that the canonical lift of hn‚ as a weak geometric Hölder
p-rough path, for any 2 ă p ă 3, converges in a rough paths sense to the pure area

rough path with area process pt ´ sq

ˆ

0 1
´1 0

˙

– we refer the reader to the lecture

notes [1, 2] and [3, 4] for basics on rough paths and rough differential equations.

This elementary example makes it clear that, when understood as controls, smooth
paths may have a richer structure than expected at first sight, as the above con-
stant path with non-trivial area process shows. Smooth paths have canonical lifts
as rough paths; a smooth path in R` whose rough path lift is non-canonical will be
called a spinning path. While this may not be obvious, we shall see in this note
that it actually makes perfect sense to talk of a spinning manifold-valued path, as
an example of a manifold valued ’rough path’. One should keep in mind, however,
that the classical notion of rough path only becomes really interesting when under-
stood as a control in some differential equation. Does it make sense to think of a
manifold-valued smooth path as a control? Yes. It is indeed common, in physics and
differential geometry, to be given a bundle B over some manifold M , together with
a connection, given by a TB-valued 1-form H on M . Lifting a smooth M -valued
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path γ‚ into a smooth horizontal B-valued smooth path e‚ is a basic procedure in
which γ is used as a control in the ordinary differential equation

9et “ Hpetq 9γt

defining the path e‚. What would happen if γ were a kind of spinning smooth M -
valued path? What about spinning geodesics in a Riemannian setting? The notion
of p-rough integrator introduced below, and the results proved, provide a framework
where one can answer such questions.

So far there has been only a few works dealing with rough paths in a geometrical
setting, starting with the work [5] of Lyons and Qian. This seminal work investigated
the well-posedness problem for the ordinary differential equation on the path space
of a compact manifold generated by Itô vector fields, with an eye on probabilistic
applications related to path space versions of the Cameron-Martin theorem and
Driver’s flow equation. It was enriched by the work [6] of Li and Lyons, showing
that the Itô-Lyons solution map to a Young differential equation is Fréchet regular
under appropriate conditions, when the driving signal has finite p-variation, with
1 ă p ă 2, and by the work [7] of the author providing a general regularity result
for the Itô-Lyons solution map, for any p ě 2, in the setting of controlled paths.
Another work [8] of Lyons and Qian addressed well-posedness issues for ordinary
differential equations on path space associated with Itô vector fields obtained by
varying the driving rough signal – see also [7] for similar results.

These works only use rough paths as an ingredient to construct some dynamics
in a geometric configuration space. Cass, Litterer and Lyons made a step further
in putting rough paths theory in a geometrical setting and proposed in [9] a no-
tion of rough path on a manifold extending the classical notion defined in a linear
setting. In the same way as a vector field on a manifold M can be understood in
an analytic/algebraic setting as a differentiation in the ring of smooth functions on
the manifold M , a rough path is abstractly defined as a linear form on the space
of sufficiently regular 1-forms on M , which is required to have some continuity
property; call it an integrator. This functional analytic definition rests on a basic
chain rule which eventually enables to understand their notion of rough path on
a manifold as an equivalence class of classical rough paths, related by some chain
rule under change of coordinates. This situation is exactly similar to representing a
tangent vector on a d-dimensional manifold as an equivalence class of vectors in Rd,
indexed by local diffeomorphisms of a neighbourhood of 0 (that is local changes of
coordinates), and related by a change of coordinate rule which exactly balances the
changes in the numerical representation of a given 1-form α on M associated with
local coordinates, so the quantity αpuq is independent of any choice of coordinates
used to compute it. Their approach rests however on a notion of Lip-γ manifold
which prevents its easy use even with non-compact finite dimensional manifolds, not
to speak about infinite dimensional manifolds.

The ideas of [9] have been reloaded in a different and more accessible form in the
recent work [10] by Cass, Driver and Litterer, in which they define a weak geometric
Hölder p-rough path on a finite dimensional compact embedded submanifold of Rd

as an integrator, obtained by ”projection” of a weak geometric Hölder p-rough path
in the ambiant Euclidean space, for 2 ď p ă 3 only. Nothing is lost in working
with submanifolds, and this notion is eventually shown to be independent of the
embedding of the manifold in its environment, while these objects can be used to
define and solve uniquely rough differential equations driven by weak geometric



3

Hölder p-rough paths on compact manifolds. They can construct parallel transport
along manifold-valued rough paths in their sense, and use it to show a one-to-one
correspondence between rough paths on a finite d-dimensional manifold and rough
paths on d-dimensional Euclidean space. The recent work [11, 12] of Boutaib and
Lyons follow the original intuition of [9] and clarify the geometric notion of Lipscthiz
manifold needed to make it work. On the other hand, Driver and Semko adapt in
[13] Gubinelli’s notion of controlled path to a manifold setting, to deal with p-rough
paths on manifolds with 2 ď p ă 3, by using a formalism very close to the second
order calculus developed by Schwartz in his analysis of Itô calculus on manifolds –
see for instance Meyer expository article [14], or Emery’s book [15].

We propose in this note an elementary and flexible notion of weak geometric
Hölder p-rough path on Banach manifolds that goes beyond the previous works.
Roughly speaking, a weak geometric Hölder p-rough path on a manifold M is a
triple made up of a vector field valued 1-form F defined on some Banach space
U, a weak geometric Hölder p-rough path X over U, and the maximal solution to
the rough differential on M constructed from F and X. The data of these three
objects is sufficient to define and solve uniquely rough differential equations driven
by ”manifold-valued” rough paths, or better, by p-rough integrators. The above-
mentionned spinning smooth paths on M are precisely those p-rough integrators
whose associated M -valued paths are smooth. Nothing else than the (smooth)
manifold structure is needed to make sense of a p-rough integrator. One shows in
section 3.2 that these objects have a canonical representation if the tangent bundle
of M is equipped with a connection, in which case one can always choose for Banach
space U in the preceeding description of a p-rough integrator the Banach space on
which the manifold is modelled.

The interest of working with Banach manifolds comes from the fact that they
naturally pop up in a number of geometric situations, as path or loop spaces over
some finite dimensional manifold, as in the works [16, 17] of Brzezniak, Carroll and
Elworthy, or the works [18, 19] of Inahama and Kawabi, or as manifolds of maps of a
given finite dimensional manifold, as in the works [20, 21] of Elworthy and Brzezniak,
to mention but a few works from the probability community. Note however that
many interesting infinite dimensional manifolds are Fréchet manifolds, for which
no theory of rough paths is presently available. As a matter of fact, working with
Banach manifolds will not bring any additional difficulty along the way, as compared
to working with finite dimensional manifolds. We refer the reader to the books [22]
of Lang, and [23] of Abraham, Marsden and Ratiu, for the basics of differential
geometry in an infinite dimensional setting. Let just recall that it makes perfect
sense in a manifold setting to say that a (Banach space or real-valued) function f of
class Ck, defined on the domain of some local chart ϕ of M , has bounded derivatives
if the function f ˝ ϕ´1, defined on a neighbourood of 0 in some Banach space, has
bounded derivatives; the bounded character will indeed not depend on the precise
chart used to define it, while the bounds themselves will depend on ϕ.

Notations. We gather here a few notations that will be used throughout the note.

‚ We shall denote by U a generic Banach space; the notation T rpspUq will be
used for the truncated tensor product of order rps, completed for some choice
of tensor norms. The letter X will stand for a weak geometric Hölder p-
rough path over U, for some p ě 2, and for the above choice of tensor norm
on T rpspUq.



4

‚ We shall denote by M a Banach manifold modelled on some Banach space E.
The set of continuous linear homomorphisms of E will be denoted by LpEq,
and the set of continuous linear isomorphisms of E will be denoted by GLpEq.

2 Rough integrators on Banach manifolds

We define in this section what will play the role in a manifold setting of weak
geometric Hölder p-rough paths. Rough integrators are basically defined as a triple,
consisting of a traditional weak geometric Hölder p-rough path with values in some
Banach space U, a TM -valued vector field valued 1-form on U, and a solution to
an associated rough differential equation on the manifold. This definition, given in
section 2.2, requires that we recall some facts on rough differential equations with
values in manifolds; this is done in section 2.1. We explain in section 2.3 how rough
integrators can be used to define and solve rough differential equations.

2.1 Rough differential equations

We adopt in this work the definition of a solution path to an M -valued rough
differential equation given in [25] in a Banach space setting, as it is perfectly suited
for our needs. (This definition was also adopted in Cass and Weidner’s work [26] on
Hörmander’s theorem for rough differential equations on manifolds.) It essentially
amounts to requiring from a solution path that it satisfies some uniform Taylor-Euler
expansion formulas, in the line of Davie’ seminal work [24]. Let U be a Banach space,
and F be a 1-form on U with values in the space of vector fields on a Banach manifold
M , of class Crps`1. Given u P U, we identify the vector field Fp¨ ;uq on M with its
associated first order differential operator Fbpuq, and extend the definition of F to

T rpspUq setting Fp1q “ Id, and

Fpu1 b ¨ ¨ ¨ b ukq “ Fpu1q ¨ ¨ ¨Fpukq,

for 1 ď k ď rps, and ui P U, and by linearity; so Fpu1 b ¨ ¨ ¨ b ukq is a differential
operator of order k. Given a weak geometric Hölder p-rough path X over U, recall
that an M -valued continuous path pxtq0ďtăζ is said to solve the rough differential
equation

dxt “ F
`

xt ; Xpdtq
˘

(1)

if there exists a constant a ą 1 such that, for any 0 ď s ă ζ, there exists an open
neighbourhood Vs of xs such that we have the Taylor-Euler expansion

fpxtq “
`

F
`

Xts

˘

f
˘

pxsq `O
`

|t´ s|a
˘

for all t close enough to s for xt to belong to Vs, and any function f of class Crps`1

defined on Vs, where it has bounded derivatives. The results of [25] show that
such a rough differential equation has a unique maximal solution started from any
given point, as awaited. It also follows from the results of [25], or other classical
works, that the solution path x‚ depends continuously on the driving signal X in
the following sense. Fix T ă ζ and cover the compact support of the path pxtq0ďtďT
by finitely many local chart domains pO1iq1ďiďN and pOiq1ďiďN , with O1i Ă Oi for
all 1 ď i ď N . Then, there exists a positive constant δ such that for Y δ-close to
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X in the Hölder rough path distance, the solution path y‚ to the rough differential
equation

dyt “ F
`

yt ; Ypdtq
˘

started from x0, will be well-defined on the time interval r0, T s and will remain in

the open neighbourhood
ŤN
i“1Oi of the support of pxtq0ďtďT , with yt in Oi whenever

xt is in O1i.

Note here that the rough path setting allows to work with any Banach manifold,
without any restriction on the Banach space on which it is modelled, unlike what
needs to be done in a stochastic setting where a robust theory of stochastic integra-
tion is only available for some special types of Banach spaces, the so-called M-type
2 and UMD spaces, see [27, 28].

Examples. 1. Developping a spinning straight line. Pick 2 ď p ă 3 and
let M be a Riemannian surface; denote by H1 and H2 the canonical horizontal
vector fields on the orthonormal frame bundle OM of M , equipped with Levi-Civita
connection. Denote by V12 the unique canonical vertical vector field and denote by
Ω the (scalar-valued) curvature (tensor). Let pε1, ε2q stand for the canonical basis
of R2, and let X be the weak geometric Hölder p-rough path with first level pt´ sqε1

and area process pt ´ sq

ˆ

0 1
´1 0

˙

; this path was called above the spinning straight

line. Denote by H the TOM -valued 1-form u P R2 ÞÑ u1H1 ` u2H2. Then the
OM -valued solution path to the rough differential equation

det “ H
`

et; Xpdtq
˘

(2)

is actually the solution path to the ordinary differential equation

9et “
`

H1 ` ΩV12

˘

petq.

2. Finding back a geodesic. Assume for simplicity that Ω is constant, and
take as a rough path in equation (2) the weak geometric Hölder q-rough path Y, with
4 ă q ă 5, whose logarithm is given by

log Yts “ pt´ sq
´

ε1 ‘ rε1, ε2s ‘
”

´ ε1,
“

ε1, rε1, ε2s
‰

ı¯

.

Then the solution path to the rough differential equation

det “ H
`

et; Ypdtq
˘

also solves the ordinary differential equation

9et “ H1petq,

that is, this path is the canonical lift to OM of a geodesic. This can be seen di-
rectly from the definition, or by appealing to the results proved in [29] by Friz and
Oberhauser.

3. Rough differential equations with values in Banach Lie groups. Let
G be a Banach Lie group, with Lie algebra LiepGq. Think for instance to the loop
groups, made up of Ck maps from some finite dimensional manifold M0 to some finite
dimensional Lie group G0, with pointwise multiplication and inversion operations.
Their Lie algebra is the set Ck

`

M0, g0

˘

of Ck maps from M0 to the Lie algebra g0 of

G0, with bracket defined pointwise by the relation
“

u, v
‰

pxq :“
“

upxq, vpxq
‰

, for any

u, v in Ck
`

M0, g0

˘

and x P M0. These groups are extensively used in gauge theory
or quantum field theory.
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Write Lg for the left translation by g in G. One defines a continuous linear map
from LiepGq to the space of smooth vector fields on G setting

Fpg ;uq :“
´

DIdLg

¯

puq,

for any g P G and u P LiepGq; so Fp¨ ;uq is for any u P LiepGq a smooth left invariant
vector field on G. It is elementary to proceed as in the proof of theorem 4.20 in [10]
and see that for any weak geometric Hölder p-rough path X over LiepGq, defined on
some interval r0, T q, for some 0 ď T ď 8, the solution path to equation (3) cannot
explode before time T .

2.2 Rough integrators on Banach manifolds

The definition of a p-rough integrator given below is best understood in the light of
the following example. Given a 1-form α on a d-dimensional manifold M equipped

with a connection, how can one define the integral
ş1
0 αp˝dxtq, of α along an M -

valued continuous semimartingale pxtq0ďtď1? The classical answer consists in show-
ing that x‚ can always be constructed as the projection in M of a GLpM q-valued
path petq0ďtď1 obtained by solving a stochastic differential equation in GLpM q in-
volving the horizontal vector fields associated with the connection and some Rd-
valued semimartingale pwtq0ďtď1 – see for instance Chapter 2 in the book [30] of

Hsu. One then defines
ş1
0 αp˝dxtq in terms of w only, setting

ż 1

0
αp˝dxtq “

ż 1

0

`

α ˝ e´1
t

˘

˝dwt.

So the datum of w and the horizontal vector fields are all we need to define x‚ and
use it as a control. The next definition adopts a similar point of view in the present
setting.

1. Definition – Let p ě 2 be given. A weak geometric Hölder p-rough path on M
is a a triple Θ “

`

pxtq0ďtăζ ,F,X
˘

, where

‚ X a weak geometric Hölder p-rough path over some Banach space U, defined
on the time interval r0, ζq,

‚ F is a continuous linear map from U to the space of vector fields on M of
class Crps`1,

‚ the path pxtq0ďtăζ solves the rough differential equation

dxt “ F
`

xt ; Xpdtq
˘

. (3)

We also call Θ a basic p-rough integrator.

Given a p-rough integrator Θ as above, the triple
`

pxtq0ďtďT ,F,X
˘

, with T ă ζ,
is also called a basic p-rough integrator. Let us insist on the fact that the Banach
space U in the above definition is not fixed a priori, and depends on the basic p-
rough integrator Θ on M . So any weak geometric Hölder p-rough path Y over some
Banach space V can be canonically seen as a weak geometric Hölder p-rough path
in the above sense by choosing U “ V and X “ Y, the identity map for F, and the
first level of the rough path Xt for xt. Note that we do not endow the set of basic
p-rough integrators with a topology or a distance as this is somewhat subtle and we
do not need it in the sequel.
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The definition of a solution to the rough differential equation (3) makes it clear
that if g is any sufficiently regular diffeomorphism between M and another manifold
M 1, one defines a weak geometric Hölder p-rough path on M 1 setting

g˚Θ :“
´

`

gpxtq
˘

0ďtăζ
, g˚F,X

¯

,

where g˚Fpy ;uq :“
`

Dg´1pyq

˘

g
´

F
`

g´1pyq ;u
˘

¯

, is the push forward on M 1 by g of

the vector field Fp¨ ;uq on M .

Definition 1 encompasses the characterization of a weak geometric Hölder p-rough
path on a submanifold of Rd given in [10], only for 2 ď p ă 3, in terms of a priori
extrinsic considerations. Roughly speaking, they define their class of weak geometric
p-rough paths on a compact submanifold M of Rd, for 2 ď p ă 3, as the class of all
weak geometric rough paths Y over Rd with the property that Y0 “ p1, y0, 0, . . . q
with y0 P M , and

dYt “ Qpytq dYt (4)

for some projector-valued sufficiently regular map Q such that Qpyq has range in-

cluded in TyM if y P M ; this equation ensures that yt P M . If M 1 Ă Rd
1

is
any other embedded compact manifold diffeomorphic to M through ϕ : M Ñ M 1,
equation (4) and the chain rule for rough integrals shows that one defines an image

rough path Z over Rd
1

setting

dZt “ dϕpdYtq

and that it satisfies the identity
ż 1

0
pϕ˚αqpdZtq “

ż 1

0
αpdYtq,

for any sufficiently regular 1-form α on TM . (The expression ϕ˚α stands for the
push-forward of the 1-form α by ϕ, and both integrals make sense because of con-
dition (4).) So the class of weak geometric p-rough paths is intrinsically defined as
a class of rough integrators, independently of any particular embedding of M , seen
as an abstract manifold. Note that they use general controls ωps, tq to measure the
size of their rough paths, while we simply use ωps, tq “ t ´ s and Hölder scales. A
weak geometric p-rough path in the sense of [10] is simply described in our terms
as a special kind of weak geometric p-rough path in the ambiant linear space via
equation (4). The interest of working with the intrinsic definition 1 is clear in an
infinite dimensional setting where embeddings of Banach manifolds into larger Ba-
nach spaces are less natural and rarely happen, unless M is parallelizable [31]. Note
however that the frame bundle of M is always parallelizable if TM is equipped with
a connection. See section 3.

One of the nice features of the notion of rough integrator on a manifold proposed
in [9] and [10] is the possibility to push forward a rough integrator by a sufficiently
regular map g from M to another manifold N , giving as a result a rough integrator
on N . The rough integral of a 1-form α on N against the image rough integrator
is simply defined as the rough integral of α ˝ dg against the rough integrator on M .
A similar transport operation can be done in our framework, by seeing the push
forward of a p-rough integrator Θ on M by g : M Ñ N as the p-rough integrator
gΘ on M ˆN associated with pF, dg ˝ Fq and X.

It may happen that the vector fields Fp¨ ;uq and Fp¨ ; vq commute for any u, v P U,
and X has null first level, so the path x‚ is constant. We say in that case that Θ is
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a pure rough path. It can still give rise to some dynamics, when seen as a rough
integrator in a rough differential equation, as shown in the next section.

2.3 Weak geometric Hölder p-rough paths as integrators

Recall the construction of a line integral along a continuous semimartingale on
a manifold described at the beginning of section 2.2. The next proposition shows
that a weak geometric Hölder p-rough path on M can be used as an integrator in a
rough differential equation, which justifies calling it a p-rough integrator.

2. Definition – Let Θ be a weak geometric Hölder p-rough path on M in the sense of
definition 1. Let also π : B ÞÑ M be a smooth fiber bundle over M , equipped with
a connection, of class Crps`1, given under the form of a smooth TB-valued 1-form
H on M such that π˚ : TeB Ñ TπpeqM , is an isomorphism for every e P B. Given

a rough integrator Θ “
`

pxtq0ďtăζ ,F,X
˘

in M , and e0 P B with πpe0q “ x0, a path
petq0ďtăζ1 in B is said to be a lift of pxtq0ďtăζ1, if ζ 1 ď ζ and it is the solution path
to the B-valued rough differential equation

det “ H
´

F
`

πpetq; Xpdtq
˘

¯

(5)

started from e0. This equation ensures in particular that πpetq “ xt. The p-rough
integrator

`

petq0ďtăζ1 ,H˝F˝π,X
˘

is then said to be the lift of Θ to B started from
e0.

A commonly encountered situation is to have B “ MˆN , for some other Banach
manifold N , and a connection form defined for any p P TxM and y P N by the
formula

Hpx, yqp “
`

p,Gpy, x ; pq
˘

,

with T pM ˆ N q canonically identified with TM ˆ TN , and some function G :

N ˆ TM Ñ TN of class CrP s`1, with Gpy, x; pq P TyN , for each p P TxM , and
x P M . This definition is reminiscent of the approach chosen by Cass, Litterer and
Lyons, in section 5 of [9], to define in their setting rough differential equations driven
by manifold-valued rough paths. Note however that their theory requires the use of
the rigid and non-trivial notion of Lip´ γ manifold; no such constraint holds in our
setting.

The fact that the two vector fields
`

H˝F˝π
˘

p¨, ¨ ;uq and
`

H˝F˝π
˘

p¨, ¨ ; vq may not
commute while Fp¨ ;uq and Fp¨ ; vq may commute, for some u, v P U, explains why
pure rough paths can generate dynamics. The results on rough differential equations
recalled in the introduction of this section apply and show that

3. Proposition – The rough differential equation (5) has a unique maximal solution
started from any given point.

Solving successively some rough differential equations of the form (5) with some

basic p-rough integrators Θp1q “
``

x
p1q
t

˘

0ďtďt1
,Fp1q,Xp1q

˘

, . . . ,Θpkq, with x
pjq
0 “

x
pj´1q
tj´1

, y
pjq
0 “ y

pj´1q
tj´1

and tj´1 ă ζ 1j´1 ď ζj´1, for 2 ď j ď k, defines, whenever

this makes sense, the concatenation Θpkq ¨ ¨ ¨Θp1q of the basic p-rough integrators
Θpiq. We call such an object a p-rough integrator.
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3 Canonical representation of rough integrators

We show in this section that p-rough integrators have a canonical representation
when the tangent bundle of M is equipped with a connection. This representation
is the analogue of the representation of a regular path γ on M by a regular path in
Tγ0M using Cartan’s development map.

3.1 Cartan’s moving frame method

Let M be a manifold of finite dimension d. One owes to E. Cartan the introduction
in differential geometry of the moving frame method, which provides a chart for the
set of M -valued paths of class C1 based at some fixed starting point, in terms of
C1 paths in Rd started from 0. Its construction requires the use of a connection on
TM and of the frame bundle of M ; it can basically be described as follows. Given
a C1 path γ‚ “ pγtq0ďtď1 on M and a frame e0 at γ0, its parallel transport along
the path γ‚ defines a section petq0ďtď1 of the frame bundle above γ‚. One can use
these frames to describe 9γt at any time in terms of its coordinates

`

9uit
˘

1ďiďd
in et.

The Rd-valued path u‚ defined by the formula

ut :“

ż t

0
9uis ds

is called the anti-development of the path γ. One finds back the M -valued path
γ‚ from the Rd-valued u‚ and px0, e0q as the projection on M of the unique solution
of the ordinary differential equation in the frame bundle

∇ 9γtet “ 0, 9γt :“ et
`

9ut
˘

.

The interest of Cartan’s moving frame method is that it somehow provides an op-
timal coding of all paths in M in terms of vector space-valued paths living in a
space of minimal dimension. Here is a trivial illustration of this fact. Let u‚ be an
R10-valued path and γt “

ř10
i“1 u

i
t be an R-valued path. The coding of γ‚ by the 10

components of u‚ is optimized by coding it with its real value at each time. Replac-
ing R10 and R by infinite dimensional Banach spaces emphasizes the importance of
such parcimonious representations.

Get back to the general setting and recall that M is modelled on some Banach
space E. Under some additional mild condition, one can give a parcimonious de-
scription of weak geometric Hölder p-rough paths on M similar to the above one,
providing a description of these objects in terms of weak geometric Hölder p-rough
paths in the tensor space T rpspEq, as opposed to the a priori unrelated Banach space
U involved in the primary definition of a weak geometric Hölder p-rough path, see
definition 1. As in Cartan’s moving frame method, this requires the tangent bundle
TM Ñ M to be equipped with a connection; this is a non-trivial assumption in an
infinite dimensional setting, linked to the fact that there exists some Banach spaces
that do not even admit a smooth partition of unity. No such pathology happens in
finite dimension, and finite dimensional manifolds can always be endowed with an
arbitrary connection; so the results of the forthcoming section 3.2 always hold for
rough integrators on finite dimensional manifolds.

The frame bundle GLpM q of M will have a crucial role in that play. This is
the collection of all bi-continuous isomorphisms from E to TmM , for m P M ; it
has a natural manifold structure modelled on GLpEq ˆ E. We shall denote by e a
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generic element of GLpM q, and by VGLpM q the vertical sub-bundle of TGLpM q,
canonically identified with the Lie algebra glpEq “ LpEq of GLpEq. The connection
∇ on the bundle TM Ñ M is naturally lifted into a connection on the bundle
π : GLpM q Ñ M , still denoted by the same symbol. Remark that π˚ is a bi-
continuous isomorphism between the horizontal sub-bundle H∇GLpM q in TGLpM q

and TM . The horizontal destribution H∇GLpM q in TGLpM q can be used to
define a continuous linear map H∇ from E to the space of horizontal vector fields on
TGLpM q, defined by the requirement that H∇pe ; aq P TeGLpM q is horizontal and
corresponds to epaq P TM , for any a P E and e P GLpM q. This vector field valued
1-form H∇ on E is called the canonical horizontal 1-form.

Once again, we refer the reader to the nice books [22] and [23] for the basics of
differential geometry on Banach manifolds.

3.2 Canonical representation of rough integrators

Theorem 4 below gives a canonical and parcimonious representation of a given
weak geometric Hölder p-rough path, seen as a rough integrator. We assume for that
purpose that the manifold M is endowed with a connection ∇. Given a 1-form F on
U with values in the space of vector fields on M as in the above definition of a weak
geometric Hölder p-rough path on M , we denote by F∇ its lift to a 1-form with
values in the space of ∇-horizontal vector fields on GLpM q. Parallel translation
along a weak geometric Hölder p-rough path Θ “

`

pxtq0ďtăζ ,F,X
˘

is defined as
the solution path to the rough differential equation in GLpM q

det “ F∇`et,Xpdtq
˘

started from any given frame e0 P GLpM q above x0. It is elementary to see that
the paths e‚ and x‚ are defined on the same maximal interval.

Given another Banach manifold N , and a 1-form G : N ˆ TM Ñ TN , as
used above to write down a rough differential equation in definition 2, define G on
GLpM q ˆN ˆU by the formula

Gpe, y ;uq :“
´

F∇pe ;uq, G
`

y, πpeq ;π˚F
∇pe ;uq

˘

¯

,

and G∇ on GLpM q ˆN ˆ E by the formula

G∇pe, y ; aq :“
´

H∇pe ; aq, G
`

y, πpeq ;π˚H
∇pe ; aq

˘

¯

.

(Insist on the fact that the one-form H∇ depends only on the connection ∇ on TM .)

4. Theorem – Let M be a Banach manifold modeled on the Banach space E, and en-
dowed with a connection ∇. Let Θ “

`

pxtq0ďtăζ ,F,X
˘

be a basic p-rough integrator
on M .

(a) Given e0 P GLpM q, one defines a weak geometric Hölder p-rough path Z over
E, on the time interval r0, ζq, by solving the rough differential equation

det “ F
`

et ; Xpdtq
˘

,

dZt “ Zt b e
´1
t F

`

πpetq ; Xpdtq
˘

.
(6)

in GLpM q ˆ T rpspEq, started from pe0, Idq.
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(b) The solution paths pet, ytq and pft, ztq in GLpM qˆN to the rough differential
equations

dpet, ytq “ G
`

et, yt ; Xpdtq
˘

,

dpft, ztq “ G∇`ft, zt ; Zpdtq
˘

,
(7)

coincide if they start from the same initial condition.

It is elementary to state an analogue of this theorem when M ˆN is replaced by
a fiber bundle B over M , equipped with a regular connection G. There is no more
difficulties in stating a similar result for any p-rough integrator Θ “ Θpkq ¨ ¨ ¨Θp1q

instead of basic p-rough integrators. The interesting point is that although the
rough paths in each Θpiq may be defined on different Banach spaces, the canonical
representation of the concatenation of the Θpiq only involves a rough path over E.

Proof – The first claim follows from general principles. For the second point, pick
p ă p1 ă rps ` 1. Using the continuity result for the Itô map recalled in section
2.1, in the topology of Hölder p1-rough path, together with the continuous em-
bedding of the space WGppUq of weak geometric Hölder p-rough paths in U into
the space Gp1pUq of geometric Hölder p1-rough paths in U, and the continuous
embedding of Gp1pUq into WGp1pUq, we see that it suffices to prove the claim
when X is the weak geometric Hölder (p1-) rough path associated with a smooth
U-valued control. The result is clear in that case as it appears as a rephrasing
of Cartan’s moving frame method, described above in section 3.1. B

So one can always understand the solution of a rough differential equation driven
by a p-rough integrator Θ as the solution to another rough differential equation
driven by a p-rough integrator involving a weak geometric Hölder p-rough path over
the model space E, and the canonical horizontal 1-form H∇. The dependence on F
in the original p-rough integrator is hidden in the definition of Z in this reformu-
lation, equation (6). Given e0 P GLpM q above x0, the ”GLpM q-valued” p-rough
integrator

`

petq0ďtăζ ,H
∇,Z

˘

is said to be the canonical representation of Θ.
This result echoes one of the main results of [10], corollary 6.19, where a one-to-one
correspondence between the classes of weak geometric rough path on a given finite
d-dimensional manifold, weak geometric horizontal rough paths on its frame bundle,
and classical weak geometric rough paths on Rd, is proved in their setting, using
Cartan’s development map as an essential ingredient; Theorem 4 has wider scope;
applications of our setting will be developed in a forthcoming work.
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