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Rough integrators on Banach manifolds

We introduce a notion of p-rough integrator on any Banach manifolds which plays the role of weak geometric Hölder p-rough paths in the usual Banach space setting, for any p ě 1. The awaited results on rough differential equations driven by such objects are proved, and a canonical representation is given if the manifold is equipped with a connection.

Introduction

One of the most basic and illustrative example of a rough path is associated with the following 2-dimensional spinning signal

h n t "
1 n `cospn 2 tq, sinpn 2 tq ˘, 0 ď t ď 1.

Although h n converges uniformly to 0, this path sweeps an area t in any time interval r0, ts, independantly of n, suggesting that this sequence of paths may be really different from the zero signal. As a matter of fact, given any two vector fields V 1 , V 2 on R d , of class C 3 b , it is remarkable that the solution path x n ' to the ordinary controlled differential equation 9 x n t " `9 h n t ˘iV i `xn t converges uniformly to the solution path x ' to the ordinary differential equation

9 x t " " V 1 , V 2 ‰ px t q.
This is due to the fact that the canonical lift of h n ' as a weak geometric Hölder p-rough path, for any 2 ă p ă 3, converges in a rough paths sense to the pure area rough path with area process pt ´sq ˆ0 1 ´1 0 ˙we refer the reader to the lecture notes [START_REF] Caruana | Differential equations driven by rough paths[END_REF][START_REF] Bailleul | A flow-based approach to rough differential equations[END_REF] and [START_REF] Friz | A course on rough paths. With an introductions to regularity structures[END_REF][START_REF] Baudoin | Diffusion processes and Stochastic calculus[END_REF] for basics on rough paths and rough differential equations. This elementary example makes it clear that, when understood as controls, smooth paths may have a richer structure than expected at first sight, as the above constant path with non-trivial area process shows. Smooth paths have canonical lifts as rough paths; a smooth path in R whose rough path lift is non-canonical will be called a spinning path. While this may not be obvious, we shall see in this note that it actually makes perfect sense to talk of a spinning manifold-valued path, as an example of a manifold valued 'rough path'. One should keep in mind, however, that the classical notion of rough path only becomes really interesting when understood as a control in some differential equation. Does it make sense to think of a manifold-valued smooth path as a control? Yes. It is indeed common, in physics and differential geometry, to be given a bundle B over some manifold M , together with a connection, given by a T B-valued 1-form H on M . Lifting a smooth M -valued path γ ' into a smooth horizontal B-valued smooth path e ' is a basic procedure in which γ is used as a control in the ordinary differential equation 9 e t " Hpe t q 9 γ t defining the path e ' . What would happen if γ were a kind of spinning smooth Mvalued path? What about spinning geodesics in a Riemannian setting? The notion of p-rough integrator introduced below, and the results proved, provide a framework where one can answer such questions.

So far there has been only a few works dealing with rough paths in a geometrical setting, starting with the work [START_REF] Lyons | Flow equations on spaces of rough paths[END_REF] of Lyons and Qian. This seminal work investigated the well-posedness problem for the ordinary differential equation on the path space of a compact manifold generated by Itô vector fields, with an eye on probabilistic applications related to path space versions of the Cameron-Martin theorem and Driver's flow equation. It was enriched by the work [START_REF] Li | Smoothness of Itô maps and diffusion process on path spaces[END_REF] of Li and Lyons, showing that the Itô-Lyons solution map to a Young differential equation is Fréchet regular under appropriate conditions, when the driving signal has finite p-variation, with 1 ă p ă 2, and by the work [START_REF] Bailleul | Regularity of the Itô-Lyons map[END_REF] of the author providing a general regularity result for the Itô-Lyons solution map, for any p ě 2, in the setting of controlled paths. Another work [START_REF] Lyons | Stochastic Jacobi fields and vector fields induced by varying area on path spaces[END_REF] of Lyons and Qian addressed well-posedness issues for ordinary differential equations on path space associated with Itô vector fields obtained by varying the driving rough signal -see also [START_REF] Bailleul | Regularity of the Itô-Lyons map[END_REF] for similar results.

These works only use rough paths as an ingredient to construct some dynamics in a geometric configuration space. Cass, Litterer and Lyons made a step further in putting rough paths theory in a geometrical setting and proposed in [START_REF] Cass | Rough paths on manifolds. New trends in stochastic analysis and related topics[END_REF] a notion of rough path on a manifold extending the classical notion defined in a linear setting. In the same way as a vector field on a manifold M can be understood in an analytic/algebraic setting as a differentiation in the ring of smooth functions on the manifold M , a rough path is abstractly defined as a linear form on the space of sufficiently regular 1-forms on M , which is required to have some continuity property; call it an integrator. This functional analytic definition rests on a basic chain rule which eventually enables to understand their notion of rough path on a manifold as an equivalence class of classical rough paths, related by some chain rule under change of coordinates. This situation is exactly similar to representing a tangent vector on a d-dimensional manifold as an equivalence class of vectors in R d , indexed by local diffeomorphisms of a neighbourhood of 0 (that is local changes of coordinates), and related by a change of coordinate rule which exactly balances the changes in the numerical representation of a given 1-form α on M associated with local coordinates, so the quantity αpuq is independent of any choice of coordinates used to compute it. Their approach rests however on a notion of Lip-γ manifold which prevents its easy use even with non-compact finite dimensional manifolds, not to speak about infinite dimensional manifolds.

The ideas of [START_REF] Cass | Rough paths on manifolds. New trends in stochastic analysis and related topics[END_REF] have been reloaded in a different and more accessible form in the recent work [START_REF] Cass | Constrained rough paths[END_REF] by Cass, Driver and Litterer, in which they define a weak geometric Hölder p-rough path on a finite dimensional compact embedded submanifold of R d as an integrator, obtained by "projection" of a weak geometric Hölder p-rough path in the ambiant Euclidean space, for 2 ď p ă 3 only. Nothing is lost in working with submanifolds, and this notion is eventually shown to be independent of the embedding of the manifold in its environment, while these objects can be used to define and solve uniquely rough differential equations driven by weak geometric Hölder p-rough paths on compact manifolds. They can construct parallel transport along manifold-valued rough paths in their sense, and use it to show a one-to-one correspondence between rough paths on a finite d-dimensional manifold and rough paths on d-dimensional Euclidean space. The recent work [START_REF] Boutaib | On Lipschitz maps and their flows[END_REF][START_REF] Boutaib | A new definition of rough paths on manifolds[END_REF] of Boutaib and Lyons follow the original intuition of [START_REF] Cass | Rough paths on manifolds. New trends in stochastic analysis and related topics[END_REF] and clarify the geometric notion of Lipscthiz manifold needed to make it work. On the other hand, Driver and Semko adapt in [START_REF] Semko | Controlled Rough Paths on Manifolds I[END_REF] Gubinelli's notion of controlled path to a manifold setting, to deal with p-rough paths on manifolds with 2 ď p ă 3, by using a formalism very close to the second order calculus developed by Schwartz in his analysis of Itô calculus on manifoldssee for instance Meyer expository article [START_REF] Meyer | Géométrie stochastique sans larmes[END_REF], or Emery's book [START_REF] Emery | Stochastic Calculus in Manifolds[END_REF].

We propose in this note an elementary and flexible notion of weak geometric Hölder p-rough path on Banach manifolds that goes beyond the previous works. Roughly speaking, a weak geometric Hölder p-rough path on a manifold M is a triple made up of a vector field valued 1-form F defined on some Banach space U, a weak geometric Hölder p-rough path X over U, and the maximal solution to the rough differential on M constructed from F and X. The data of these three objects is sufficient to define and solve uniquely rough differential equations driven by "manifold-valued" rough paths, or better, by p-rough integrators. The abovementionned spinning smooth paths on M are precisely those p-rough integrators whose associated M -valued paths are smooth. Nothing else than the (smooth) manifold structure is needed to make sense of a p-rough integrator. One shows in section 3.2 that these objects have a canonical representation if the tangent bundle of M is equipped with a connection, in which case one can always choose for Banach space U in the preceeding description of a p-rough integrator the Banach space on which the manifold is modelled.

The interest of working with Banach manifolds comes from the fact that they naturally pop up in a number of geometric situations, as path or loop spaces over some finite dimensional manifold, as in the works [START_REF] Brzezniak | Stochastic Differential Equations on Banach Manifolds; applications to diffusions on loop spaces[END_REF][START_REF] Brzezniak | Approximations of the Wong-Zakai type for stochastic differential equations in M-type 2 Banach spaces with applications to loop spaces[END_REF] of Brzezniak, Carroll and Elworthy, or the works [START_REF] Inahama | Large deviations for heat kernel measures on loop spaces via rough paths[END_REF][START_REF] Inahama | On asymptotics of Banach space-valued Itô functionals of Brownian rough paths[END_REF] of Inahama and Kawabi, or as manifolds of maps of a given finite dimensional manifold, as in the works [START_REF] Elworthy | Stochastic Differential Equations On Manifolds[END_REF][START_REF] Brzezniak | Stochastic flows of diffeomorphisms for stochastic differential equations[END_REF] of Elworthy and Brzezniak, to mention but a few works from the probability community. Note however that many interesting infinite dimensional manifolds are Fréchet manifolds, for which no theory of rough paths is presently available. As a matter of fact, working with Banach manifolds will not bring any additional difficulty along the way, as compared to working with finite dimensional manifolds. We refer the reader to the books [START_REF] Lang | Differential and Riemannian manifolds[END_REF] of Lang, and [START_REF] Abraham | Manifolds, tensors, analysis, and applications[END_REF] of Abraham, Marsden and Ratiu, for the basics of differential geometry in an infinite dimensional setting. Let just recall that it makes perfect sense in a manifold setting to say that a (Banach space or real-valued) function f of class C k , defined on the domain of some local chart ϕ of M , has bounded derivatives if the function f ˝ϕ´1 , defined on a neighbourood of 0 in some Banach space, has bounded derivatives; the bounded character will indeed not depend on the precise chart used to define it, while the bounds themselves will depend on ϕ.

Notations. We gather here a few notations that will be used throughout the note.

' We shall denote by U a generic Banach space; the notation T rps pUq will be used for the truncated tensor product of order rps, completed for some choice of tensor norms. The letter X will stand for a weak geometric Hölder prough path over U, for some p ě 2, and for the above choice of tensor norm on T rps pUq.

' We shall denote by M a Banach manifold modelled on some Banach space E. The set of continuous linear homomorphisms of E will be denoted by LpEq, and the set of continuous linear isomorphisms of E will be denoted by GLpEq.

Rough integrators on Banach manifolds

We define in this section what will play the role in a manifold setting of weak geometric Hölder p-rough paths. Rough integrators are basically defined as a triple, consisting of a traditional weak geometric Hölder p-rough path with values in some Banach space U, a T M -valued vector field valued 1-form on U, and a solution to an associated rough differential equation on the manifold. This definition, given in section 2.2, requires that we recall some facts on rough differential equations with values in manifolds; this is done in section 2.1. We explain in section 2.3 how rough integrators can be used to define and solve rough differential equations.

Rough differential equations

We adopt in this work the definition of a solution path to an M -valued rough differential equation given in [START_REF] Bailleul | Rough differential equations driven by Banach-space valued rough paths[END_REF] in a Banach space setting, as it is perfectly suited for our needs. (This definition was also adopted in Cass and Weidner's work [START_REF] Cass | s theorem for rough differential equations on manifolds[END_REF] on Hörmander's theorem for rough differential equations on manifolds.) It essentially amounts to requiring from a solution path that it satisfies some uniform Taylor-Euler expansion formulas, in the line of Davie' seminal work [START_REF] Davie | Differential equations driven by rough paths: an approach via discrete approximation[END_REF]. Let U be a Banach space, and F be a 1-form on U with values in the space of vector fields on a Banach manifold M , of class C rps`1 . Given u P U, we identify the vector field Fp¨; uq on M with its associated first order differential operator F b puq, and extend the definition of F to T rps pUq setting Fp1q " Id, and Fpu 1 b ¨¨¨b u k q " Fpu 1 q ¨¨¨Fpu k q, for 1 ď k ď rps, and u i P U, and by linearity; so Fpu 1 b ¨¨¨b u k q is a differential operator of order k. Given a weak geometric Hölder p-rough path X over U, recall that an M -valued continuous path px t q 0ďtăζ is said to solve the rough differential equation

dx t " F `xt ; Xpdtq ˘(1)
if there exists a constant a ą 1 such that, for any 0 ď s ă ζ, there exists an open neighbourhood V s of x s such that we have the Taylor-Euler expansion

f px t q " `F`X ts ˘f ˘px s q `O`| t ´s| a for
all t close enough to s for x t to belong to V s , and any function f of class C rps`1 defined on V s , where it has bounded derivatives. The results of [START_REF] Bailleul | Rough differential equations driven by Banach-space valued rough paths[END_REF] show that such a rough differential equation has a unique maximal solution started from any given point, as awaited. It also follows from the results of [START_REF] Bailleul | Rough differential equations driven by Banach-space valued rough paths[END_REF], or other classical works, that the solution path x ' depends continuously on the driving signal X in the following sense. Fix T ă ζ and cover the compact support of the path px t q 0ďtďT by finitely many local chart domains pO 1 i q 1ďiďN and pO i q 1ďiďN , with O 1 i Ă O i for all 1 ď i ď N . Then, there exists a positive constant δ such that for Y δ-close to X in the Hölder rough path distance, the solution path y ' to the rough differential equation dy t " F `yt ; Ypdtq started from x 0 , will be well-defined on the time interval r0, T s and will remain in the open neighbourhood Ť N i"1 O i of the support of px t q 0ďtďT , with y t in O i whenever x t is in O 1 i . Note here that the rough path setting allows to work with any Banach manifold, without any restriction on the Banach space on which it is modelled, unlike what needs to be done in a stochastic setting where a robust theory of stochastic integration is only available for some special types of Banach spaces, the so-called M-type 2 and UMD spaces, see [START_REF] Brzezniak | Stochastic differential equations on Banach manifolds[END_REF][START_REF] Van Neerven | Stochastic integration in Banach spaces -a review[END_REF].

Examples. 1. Developping a spinning straight line. Pick 2 ď p ă 3 and let M be a Riemannian surface; denote by H 1 and H 2 the canonical horizontal vector fields on the orthonormal frame bundle OM of M , equipped with Levi-Civita connection. Denote by V 12 the unique canonical vertical vector field and denote by Ω the (scalar-valued) curvature (tensor). Let p 1 , 2 q stand for the canonical basis of R 2 , and let X be the weak geometric Hölder p-rough path with first level pt ´sq 1 and area process pt ´sq ˆ0 1 ´1 0 ˙; this path was called above the spinning straight line. Denote by

H the T OM -valued 1-form u P R 2 Þ Ñ u 1 H 1 `u2 H 2 .
Then the OM -valued solution path to the rough differential equation

de t " H `et ; Xpdtq ˘(2)
is actually the solution path to the ordinary differential equation 9 e t " `H1 `Ω V 12 ˘pe t q.

2. Finding back a geodesic. Assume for simplicity that Ω is constant, and take as a rough path in equation (2) the weak geometric Hölder q-rough path Y, with 4 ă q ă 5, whose logarithm is given by log Y ts " pt ´sq

´ 1 ' r 1 , 2 s ' " ´ 1 , " 1 , r 1 , 2 s ‰ ı¯.
Then the solution path to the rough differential equation de t " H `et ; Ypdtq ȃlso solves the ordinary differential equation

9 e t " H 1 pe t q,
that is, this path is the canonical lift to OM of a geodesic. This can be seen directly from the definition, or by appealing to the results proved in [START_REF] Friz | Rough path limits of the Wong-Zakai type with a modified drift term[END_REF] by Friz and Oberhauser.

3. Rough differential equations with values in Banach Lie groups. Let G be a Banach Lie group, with Lie algebra LiepGq. Think for instance to the loop groups, made up of C k maps from some finite dimensional manifold M 0 to some finite dimensional Lie group G 0 , with pointwise multiplication and inversion operations. Their Lie algebra is the set C k `M0 , g 0 ˘of C k maps from M 0 to the Lie algebra g 0 of G 0 , with bracket defined pointwise by the relation " u, v ‰ pxq :" " upxq, vpxq ‰ , for any u, v in C k `M0 , g 0 ˘and x P M 0 . These groups are extensively used in gauge theory or quantum field theory.

Write L g for the left translation by g in G. One defines a continuous linear map from LiepGq to the space of smooth vector fields on G setting Fpg ; uq :" ´DId L g ¯puq, for any g P G and u P LiepGq; so Fp¨; uq is for any u P LiepGq a smooth left invariant vector field on G. It is elementary to proceed as in the proof of theorem 4.20 in [START_REF] Cass | Constrained rough paths[END_REF] and see that for any weak geometric Hölder p-rough path X over LiepGq, defined on some interval r0, T q, for some 0 ď T ď 8, the solution path to equation (3) cannot explode before time T .

Rough integrators on Banach manifolds

The definition of a p-rough integrator given below is best understood in the light of the following example. Given a 1-form α on a d-dimensional manifold M equipped with a connection, how can one define the integral ş 1 0 αp˝dx t q, of α along an Mvalued continuous semimartingale px t q 0ďtď1 ? The classical answer consists in showing that x ' can always be constructed as the projection in M of a GLpM q-valued path pe t q 0ďtď1 obtained by solving a stochastic differential equation in GLpM q involving the horizontal vector fields associated with the connection and some R dvalued semimartingale pw t q 0ďtď1 -see for instance Chapter 2 in the book [START_REF] Hsu | Stochastic analysis on manifolds[END_REF] of Hsu. One then defines ş 1 0 αp˝dx t q in terms of w only, setting ż 1 0

αp˝dx t q " ż 1 0 `α ˝e´1 t ˘˝dw t .
So the datum of w and the horizontal vector fields are all we need to define x ' and use it as a control. The next definition adopts a similar point of view in the present setting.

1. Definition -Let p ě 2 be given. A weak geometric Hölder p-rough path on M is a a triple Θ " `px t q 0ďtăζ , F, X ˘, where ' X a weak geometric Hölder p-rough path over some Banach space U, defined on the time interval r0, ζq, ' F is a continuous linear map from U to the space of vector fields on M of class C rps`1 , ' the path px t q 0ďtăζ solves the rough differential equation

dx t " F `xt ; Xpdtq ˘. (3) 
We also call Θ a basic p-rough integrator.

Given a p-rough integrator Θ as above, the triple `px t q 0ďtďT , F, X ˘, with T ă ζ, is also called a basic p-rough integrator. Let us insist on the fact that the Banach space U in the above definition is not fixed a priori, and depends on the basic prough integrator Θ on M . So any weak geometric Hölder p-rough path Y over some Banach space V can be canonically seen as a weak geometric Hölder p-rough path in the above sense by choosing U " V and X " Y, the identity map for F, and the first level of the rough path X t for x t . Note that we do not endow the set of basic p-rough integrators with a topology or a distance as this is somewhat subtle and we do not need it in the sequel.

The definition of a solution to the rough differential equation (3) makes it clear that if g is any sufficiently regular diffeomorphism between M and another manifold M 1 , one defines a weak geometric Hölder p-rough path on M 1 setting g ˚Θ :" ´`gpx t q ˘0ďtăζ , g ˚F, X ¯, where g ˚Fpy ; uq :" `Dg ´1pyq ˘g´F `g´1 pyq ; u ˘¯, is the push forward on M 1 by g of the vector field Fp¨; uq on M .

Definition 1 encompasses the characterization of a weak geometric Hölder p-rough path on a submanifold of R d given in [START_REF] Cass | Constrained rough paths[END_REF], only for 2 ď p ă 3, in terms of a priori extrinsic considerations. Roughly speaking, they define their class of weak geometric p-rough paths on a compact submanifold M of R d , for 2 ď p ă 3, as the class of all weak geometric rough paths Y over R d with the property that Y 0 " p1, y 0 , 0, . . . q with y 0 P M , and dY t " Qpy t q dY t (4)

for some projector-valued sufficiently regular map Q such that Qpyq has range included in T y M if y P M ; this equation ensures that 4) and the chain rule for rough integrals shows that one defines an image rough path Z over R d 1 setting dZ t " dϕpdY t q and that it satisfies the identity

y t P M . If M 1 Ă R d 1 is any other embedded compact manifold diffeomorphic to M through ϕ : M Ñ M 1 , equation ( 
ż 1 0 pϕ ˚αqpdZ t q " ż 1 0 αpdY t q,
for any sufficiently regular 1-form α on T M . (The expression ϕ ˚α stands for the push-forward of the 1-form α by ϕ, and both integrals make sense because of condition (4).) So the class of weak geometric p-rough paths is intrinsically defined as a class of rough integrators, independently of any particular embedding of M , seen as an abstract manifold. Note that they use general controls ωps, tq to measure the size of their rough paths, while we simply use ωps, tq " t ´s and Hölder scales. A weak geometric p-rough path in the sense of [START_REF] Cass | Constrained rough paths[END_REF] is simply described in our terms as a special kind of weak geometric p-rough path in the ambiant linear space via equation ( 4). The interest of working with the intrinsic definition 1 is clear in an infinite dimensional setting where embeddings of Banach manifolds into larger Banach spaces are less natural and rarely happen, unless M is parallelizable [START_REF] Eells | Open embeddings of certain Banach manifolds[END_REF]. Note however that the frame bundle of M is always parallelizable if T M is equipped with a connection. See section 3.

One of the nice features of the notion of rough integrator on a manifold proposed in [START_REF] Cass | Rough paths on manifolds. New trends in stochastic analysis and related topics[END_REF] and [START_REF] Cass | Constrained rough paths[END_REF] is the possibility to push forward a rough integrator by a sufficiently regular map g from M to another manifold N , giving as a result a rough integrator on N . The rough integral of a 1-form α on N against the image rough integrator is simply defined as the rough integral of α ˝dg against the rough integrator on M . A similar transport operation can be done in our framework, by seeing the push forward of a p-rough integrator Θ on M by g : M Ñ N as the p-rough integrator gΘ on M ˆN associated with pF, dg ˝Fq and X.

It may happen that the vector fields Fp¨; uq and Fp¨; vq commute for any u, v P U, and X has null first level, so the path x ' is constant. We say in that case that Θ is a pure rough path. It can still give rise to some dynamics, when seen as a rough integrator in a rough differential equation, as shown in the next section.

Weak geometric Hölder p-rough paths as integrators

Recall the construction of a line integral along a continuous semimartingale on a manifold described at the beginning of section 2.2. The next proposition shows that a weak geometric Hölder p-rough path on M can be used as an integrator in a rough differential equation, which justifies calling it a p-rough integrator.

2. Definition -Let Θ be a weak geometric Hölder p-rough path on M in the sense of definition 1. Let also π : B Þ Ñ M be a smooth fiber bundle over M , equipped with a connection, of class C rps`1 , given under the form of a smooth T B-valued 1-form H on M such that π ˚: T e B Ñ T πpeq M , is an isomorphism for every e P B. Given a rough integrator Θ " `px t q 0ďtăζ , F, X ˘in M , and e 0 P B with πpe 0 q " x 0 , a path pe t q 0ďtăζ 1 in B is said to be a lift of px t q 0ďtăζ 1 , if ζ 1 ď ζ and it is the solution path to the B-valued rough differential equation

de t " H ´F`π pe t q; Xpdtq ˘¯(5)
started from e 0 . This equation ensures in particular that πpe t q " x t . The p-rough integrator `pe t q 0ďtăζ 1 , H ˝F ˝π, X ˘is then said to be the lift of Θ to B started from e 0 .

A commonly encountered situation is to have B " M ˆN , for some other Banach manifold N , and a connection form defined for any p P T x M and y P N by the formula Hpx, yqp " `p, Gpy, x ; pq ˘, with T pM ˆN q canonically identified with T M ˆT N , and some function G : N ˆT M Ñ T N of class C rP s`1 , with Gpy, x; pq P T y N , for each p P T x M , and x P M . This definition is reminiscent of the approach chosen by Cass, Litterer and Lyons, in section 5 of [START_REF] Cass | Rough paths on manifolds. New trends in stochastic analysis and related topics[END_REF], to define in their setting rough differential equations driven by manifold-valued rough paths. Note however that their theory requires the use of the rigid and non-trivial notion of Lip ´γ manifold; no such constraint holds in our setting.

The fact that the two vector fields `H˝F˝π ˘p¨, ¨; uq and `H˝F˝π ˘p¨, ¨; vq may not commute while Fp¨; uq and Fp¨; vq may commute, for some u, v P U, explains why pure rough paths can generate dynamics. The results on rough differential equations recalled in the introduction of this section apply and show that 3. Proposition -The rough differential equation (5) has a unique maximal solution started from any given point.

Solving successively some rough differential equations of the form (5) with some basic p-rough integrators Θ p1q " ``x p1q t ˘0ďtďt 1 , F p1q , X p1q ˘, . . . , Θ pkq , with x pjq 0 " x pj´1q t j´1 , y pjq 0 " y pj´1q t j´1 and t j´1 ă ζ 1 j´1 ď ζ j´1 , for 2 ď j ď k, defines, whenever this makes sense, the concatenation Θ pkq ¨¨¨Θ p1q of the basic p-rough integrators Θ piq . We call such an object a p-rough integrator.

Canonical representation of rough integrators

We show in this section that p-rough integrators have a canonical representation when the tangent bundle of M is equipped with a connection. This representation is the analogue of the representation of a regular path γ on M by a regular path in T γ 0 M using Cartan's development map.

Cartan's moving frame method

Let M be a manifold of finite dimension d. One owes to E. Cartan the introduction in differential geometry of the moving frame method, which provides a chart for the set of M -valued paths of class C 1 based at some fixed starting point, in terms of C 1 paths in R d started from 0. Its construction requires the use of a connection on T M and of the frame bundle of M ; it can basically be described as follows. Given a C 1 path γ ' " pγ t q 0ďtď1 on M and a frame e 0 at γ 0 , its parallel transport along the path γ ' defines a section pe t q 0ďtď1 of the frame bundle above γ ' . One can use these frames to describe 9 γ t at any time in terms of its coordinates `9 u i t ˘1ďiďd in e t . The R d -valued path u ' defined by the formula u t :"

ż t 0 9 u i s ds
is called the anti-development of the path γ. One finds back the M -valued path γ ' from the R d -valued u ' and px 0 , e 0 q as the projection on M of the unique solution of the ordinary differential equation in the frame bundle ∇ 9 γt e t " 0, 9 γ t :" e t `9 u t ˘.

The interest of Cartan's moving frame method is that it somehow provides an optimal coding of all paths in M in terms of vector space-valued paths living in a space of minimal dimension. Here is a trivial illustration of this fact. Let u ' be an R 10 -valued path and γ t " ř 10 i"1 u i t be an R-valued path. The coding of γ ' by the 10 components of u ' is optimized by coding it with its real value at each time. Replacing R 10 and R by infinite dimensional Banach spaces emphasizes the importance of such parcimonious representations.

Get back to the general setting and recall that M is modelled on some Banach space E. Under some additional mild condition, one can give a parcimonious description of weak geometric Hölder p-rough paths on M similar to the above one, providing a description of these objects in terms of weak geometric Hölder p-rough paths in the tensor space T rps pEq, as opposed to the a priori unrelated Banach space U involved in the primary definition of a weak geometric Hölder p-rough path, see definition 1. As in Cartan's moving frame method, this requires the tangent bundle T M Ñ M to be equipped with a connection; this is a non-trivial assumption in an infinite dimensional setting, linked to the fact that there exists some Banach spaces that do not even admit a smooth partition of unity. No such pathology happens in finite dimension, and finite dimensional manifolds can always be endowed with an arbitrary connection; so the results of the forthcoming section 3.2 always hold for rough integrators on finite dimensional manifolds.

The frame bundle GLpM q of M will have a crucial role in that play. This is the collection of all bi-continuous isomorphisms from E to T m M , for m P M ; it has a natural manifold structure modelled on GLpEq ˆE. We shall denote by e a generic element of GLpM q, and by VGLpM q the vertical sub-bundle of T GLpM q, canonically identified with the Lie algebra glpEq " LpEq of GLpEq. The connection ∇ on the bundle T M Ñ M is naturally lifted into a connection on the bundle π : GLpM q Ñ M , still denoted by the same symbol. Remark that π ˚is a bicontinuous isomorphism between the horizontal sub-bundle H ∇ GLpM q in T GLpM q and T M . The horizontal destribution H ∇ GLpM q in T GLpM q can be used to define a continuous linear map H ∇ from E to the space of horizontal vector fields on T GLpM q, defined by the requirement that H ∇ pe ; aq P T e GLpM q is horizontal and corresponds to epaq P T M , for any a P E and e P GLpM q. This vector field valued 1-form H ∇ on E is called the canonical horizontal 1-form.

Once again, we refer the reader to the nice books [START_REF] Lang | Differential and Riemannian manifolds[END_REF] and [START_REF] Abraham | Manifolds, tensors, analysis, and applications[END_REF] for the basics of differential geometry on Banach manifolds.

Canonical representation of rough integrators

Theorem 4 below gives a canonical and parcimonious representation of a given weak geometric Hölder p-rough path, seen as a rough integrator. We assume for that purpose that the manifold M is endowed with a connection ∇. Given a 1-form F on U with values in the space of vector fields on M as in the above definition of a weak geometric Hölder p-rough path on M , we denote by F ∇ its lift to a 1-form with values in the space of ∇-horizontal vector fields on GLpM q. Parallel translation along a weak geometric Hölder p-rough path Θ " `px t q 0ďtăζ , F, X ˘is defined as the solution path to the rough differential equation in GLpM q de t " F ∇ `et , Xpdtq started from any given frame e 0 P GLpM q above x 0 . It is elementary to see that the paths e ' and x ' are defined on the same maximal interval.

Given another Banach manifold N , and a 1-form G : N ˆT M Ñ T N , as used above to write down a rough differential equation in definition 2, define G on GLpM q ˆN ˆU by the formula Gpe, y ; uq :" ´F∇ pe ; uq, G `y, πpeq ; π ˚F∇ pe ; uq ˘¯, and G ∇ on GLpM q ˆN ˆE by the formula G ∇ pe, y ; aq :" ´H∇ pe ; aq, G `y, πpeq ; π ˚H∇ pe ; aq ˘¯.

(Insist on the fact that the one-form H ∇ depends only on the connection ∇ on T M .) 4. Theorem -Let M be a Banach manifold modeled on the Banach space E, and endowed with a connection ∇. Let Θ " `px t q 0ďtăζ , F, X ˘be a basic p-rough integrator on M .

(a) Given e 0 P GLpM q, one defines a weak geometric Hölder p-rough path Z over E, on the time interval r0, ζq, by solving the rough differential equation de t " F `et ; Xpdtq ˘, dZ t " Z t b e ´1 t F `πpe t q ; Xpdtq ˘.

in GLpM q ˆT rps pEq, started from pe 0 , Idq.

(b) The solution paths pe t , y t q and pf t , z t q in GLpM qˆN to the rough differential equations dpe t , y t q " G `et , y t ; Xpdtq ˘, dpf t , z t q " G ∇ `ft , z t ; Zpdtq ˘,

coincide if they start from the same initial condition.

It is elementary to state an analogue of this theorem when M ˆN is replaced by a fiber bundle B over M , equipped with a regular connection G. There is no more difficulties in stating a similar result for any p-rough integrator Θ " Θ pkq ¨¨¨Θ p1q instead of basic p-rough integrators. The interesting point is that although the rough paths in each Θ piq may be defined on different Banach spaces, the canonical representation of the concatenation of the Θ piq only involves a rough path over E.

Proof -The first claim follows from general principles. For the second point, pick p ă p 1 ă rps `1. Using the continuity result for the Itô map recalled in section 2.1, in the topology of Hölder p 1 -rough path, together with the continuous embedding of the space W G p pUq of weak geometric Hölder p-rough paths in U into the space G p 1 pUq of geometric Hölder p 1 -rough paths in U, and the continuous embedding of G p 1 pUq into W G p 1 pUq, we see that it suffices to prove the claim when X is the weak geometric Hölder (p 1 -) rough path associated with a smooth U-valued control. The result is clear in that case as it appears as a rephrasing of Cartan's moving frame method, described above in section 3.1.

So one can always understand the solution of a rough differential equation driven by a p-rough integrator Θ as the solution to another rough differential equation driven by a p-rough integrator involving a weak geometric Hölder p-rough path over the model space E, and the canonical horizontal 1-form H ∇ . The dependence on F in the original p-rough integrator is hidden in the definition of Z in this reformulation, equation [START_REF] Li | Smoothness of Itô maps and diffusion process on path spaces[END_REF]. Given e 0 P GLpM q above x 0 , the "GLpM q-valued" p-rough integrator `pe t q 0ďtăζ , H ∇ , Z ˘is said to be the canonical representation of Θ. This result echoes one of the main results of [START_REF] Cass | Constrained rough paths[END_REF], corollary 6.19, where a one-to-one correspondence between the classes of weak geometric rough path on a given finite d-dimensional manifold, weak geometric horizontal rough paths on its frame bundle, and classical weak geometric rough paths on R d , is proved in their setting, using Cartan's development map as an essential ingredient; Theorem 4 has wider scope; applications of our setting will be developed in a forthcoming work.

1

This research was partially supported by the program ANR "Retour Post-Doctorants", under the contract ANR 11-PDOC-0025. The author thanks the U.B.O. for their hospitality.