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Abstract

We develop an arbitrary-order locking-free method for linear elasticity on general
(polyhedral, possibly nonconforming) meshes without nodal unknowns. The key idea
is to reconstruct the relevant differential operators in terms of the (generalized) degrees of
freedom by solving an inexpensive local problem inside each element. The symmetric gra-
dient and the divergence operators are reconstructed separately. The divergence operator
satisfies a commuting diagram property, yielding robustness in the quasi-incompressible
limit. Locking-free error estimates are derived for the energy norm and for the L?-norm
of the displacement, with optimal convergence rates for smooth solutions. The theoretical
results are confirmed numerically, and the CPU cost is evaluated on both standard and
general polygonal meshes.

Keywords Linear elasticity, general meshes, arbitrary order, locking-free methods

1 Introduction

Let Q < R d e {2,3}, denote a bounded connected polygonal domain. We consider the
isotropic linear elasticity problem

—Vag=f in
g =2uVsu + A(Vu)ly  inQ, (1)
u=0 on o€,

with £ > 0 and A = 0 scalar Lamé coefficients and Vg denoting the symmetric part of
the gradient operator (in short, the symmetric gradient) applied to vector-valued fields. We
consider homogeneous Dirichlet boundary conditions on the displacement for simplicity. More
general boundary conditions can be handled with straightforward modifications. For X < Q,
we denote by (-,-)x and |-|x respectively the standard inner product and norm of L?(X),
with the convention that the index is omitted if X = Q. A similar notation is used for L?(X)?
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and L*(X)¥? With f e L?(Q)? the weak formulation of problem consists in finding
uelU:= H&(Q)d such that, for all v € Uy,

(2uVsu, Vsv) + (AV-u, V-v) = (f,v). (2)

It is known that the accurate approximation of problem in the incompressible limit
A — +0 requires the discrete space to be able to accurately represent nontrivial divergence-
free vector-valued fields. When considering primal approximations where the displacement
field is the sole unknown, this essentially amounts to having at hand a divergence operator
that satisfies a suitable commuting diagram property. Combined with the regularity result
on the displacement field and its divergence (see Eq. below), the commuting diagram
property allows one to prove error estimates uniform with respect to A. In the work of
Brenner and Sung [6], this property is obtained for the pure-displacement problem using the
nonconforming element of Crouzeix and Raviart [7]. Therein, stability hinges on the use of
the Navier—Cauchy formulation. When considering more general boundary conditions, one
possibility to restore stability is to penalize the jumps of the discrete displacement field across
interfaces in a least-squares fashion, as do Hansbo and Larson [16].

All of the above-mentioned approaches apply to standard simplicial or parallelepipedal
meshes. In recent years, a large effort has been devoted to the development and analysis
of discretization methods that apply to more general meshes possibly featuring polygonal
or polyhedral elements and nonconforming interfaces. In this context, we can mention the
lowest-order method of Beirdao da Veiga, Gyrya, Lipnikov, and Manzini [4] and the work of
Di Pietro and Lemaire [12], which introduces a generalization of the lowest-order Crouzeix—
Raviart space and, correspondingly, of the methods of [0 [16]. Closer to the classical finite
element spirit is the work of Tabarraei and Sukumar [22], where Lagrangian shape functions
for convex polygonal elements are constructed. More recently, arbitrary-order methods on
general polygonal or polyhedral meshes have received an increasing attention. We cite here,
in particular, the work of Beirdo da Veiga, Brezzi, and Marini [3], where the authors introduce
a Virtual Element method for planar linear elasticity featuring vertex, edge, and element
unknowns. The adjective virtual refers to the fact that the resulting discretization can be
interpreted as a Finite Element method where the basis functions are not explicitly known.
The incompressible limit is dealt with by introducing a suitable projection of the divergence.

In this work, we propose a different approach to designing an arbitrary-order method for
quasi-incompressible linear elasticity on general meshes in space dimension d € {2, 3} based
on the ideas of [10]. For a fixed polynomial degree k > 1, we select as degrees of freedom
(DOFs) vector-valued polynomials at mesh elements and faces up to degree k. The associated
interpolation (reduction) operator maps displacements to their moments up to degree k at
mesh elements and faces. The definition of the method then proceeds in three steps: (i) we
reconstruct a discrete symmetric gradient operator of order k. This requires the solution of
an inexpensive local pure-traction problem inside each element; (ii) we reconstruct a discrete
divergence operator that satisfies by construction the commuting diagram property (this is
the main purpose of reconstructing the divergence separately from the symmetric gradient);
(iii) we devise a least-squares stabilization that weakly enforces the matching of element- and
face-based DOFs; this stabilization remains local to one element (unlike that of [12]) and at
the same time ensures coercivity while providing optimal approximation properties for smooth
solutions. An important feature of the proposed method is the absence of nodal unknowns,
which yields a compact stencil (especially in three dimensions) and simplifies data exchange



in parallel implementations. This, together with the fact that the stabilization is local to one
element, classically allows for an efficient implementation where the global problem is solved
in terms of face unknowns only. Another salient feature of the method is the simultaneous
use of element- and face-based DOFs, which are connected through the local reconstructions
of differential operators and the stabilization term. More precisely, element-based DOFs can
be regarded as intermediate variables used in the local reconstruction problems which do not
appear (after static condensation) in the global system. Face-based DOFs establish inter-
element connections at interfaces and can be used to strongly enforce essential boundary
conditions at boundary faces.

The paper is organized as follows. In Section [2, we recall the definition of admissible mesh
sequences in the spirit of [9] as well as some useful results, and we define the interpolation
operator. In Section [3] we introduce the symmetric gradient and divergence reconstruction
operators mapping DOFs to polynomial functions, and identify the key properties of these
operators when combined with the interpolation operator. In Section ] we define the sta-
bilized discrete bilinear form, state the discrete problem, and show its well-posedness. In
Section [p] we perform the error analysis of the method and prove locking-free error estimates
with convergence rate of order (k + 1) in the energy norm and (k + 2) in the L?-norm for
smooth solutions. In Section [0, we discuss implementation aspects, present numerical exam-
ples on polygonal meshes confirming our theoretical results, and evaluate the efficiency of the
proposed method in terms of CPU cost.

2 Setting

2.1 Admissible mesh sequences

In this section we briefly recall the notion of admissible mesh sequence of [9, Chapter 1].
Let H < R} denote a countable set of meshsizes having 0 as its unique accumulation point.
We focus on sequences (Tp)nen where, for all h € H, Tp, is a finite collection of nonempty
disjoint open polyhedra (called elements or cells) 7, = {T} such that Q = UTeTh T and
h = maxge7;, hr (hr stands for the diameter of 7). A hyperplanar closed connected subset
F of Q) is called a face if it has positive (d—1)-dimensional measure and (i) either there exist
Ty, T5 € Tp, such that F' = 011 n 0T, (and F' is an interface) or (ii) there exists 7' € 7}, such
that F' = 0T n 0 (and F is a boundary face). The set of interfaces is denoted by .7:}“ the
set of boundary faces by ]-"}E’, and we let Fj, := F}l V) ]-“};. The diameter of a face F' € Fp, is
denoted by hp. For all T € Ty, Fp := {F € F, | F < 0T} denotes the set of faces lying on
the boundary of T and, for all F' € Fr, we denote by nyp the normal to F' pointing out of 7'
The m-dimensional Lebesgue measure, m € {0...d}, is denoted by ||

Definition 1 (Admissible mesh sequence). We say that the mesh sequence (Tp)new is ad-
missible if, for all h € H, Tn admits a matching simplicial submesh %y and there exists a
real number o > 0 (the mesh regularity parameter) independent of h such that the following
conditions hold: (1) for all h € H and all simplex S € T}, of diameter hsg and inradius rg,
ohs < rg (shape-reqularity) and (ii) for allh € H, all T € Ty, and all S € T}, such that S < T,
ohr < hg (contact-regularity).

In what follows, we consider meshes belonging to an admissible mesh sequence. We recall
two useful geometric results that hold in this framework. Owing to [9, Lemma 1.42], for all



heH,all T e Ty, and all F € Fp, hg is comparable to hp in the sense that
0*hr < hy < hr. (3)

Moreover, owing to [0, Lemma 1.41], there exists an integer Ny = (d + 1) (depending on p)
such that the maximum number of faces of one element is bounded,

VheH, max card(Fr) < Np. (4)

TeT,
In what follows, we often abbreviate as a < b the inequality a < Cb with C > 0 independent
of h, u, and A, but possibly depending on the mesh-regularity parameter g. Tracking the

dependence on Lamé’s parameters of the constant appearing in the inequalities allows one to
investigate the properties of the method in the incompressible limit.

2.2 Basic results

In this section we recall some basic results on admissible mesh sequences. There exist real
numbers Cf, and Cj, . depending on p but independent of h such that the following discrete
trace inequalities hold for all T" € Tp, cf. [l Lemmata 1.46 and 1.49]:

lollr < Cuhp oz Vv e PY(T), YF € Fr, (5)
_ 1
[0|or < Cire(hp |03 + b |Vo|2)  Yoe HY(T), (6)

where P&(T ) denotes the space spanned by the restrictions to T of d-variate polynomials of
total degree < [. Using [9, Lemma 1.40] together with the results of [14], it can be proved
that there exists a real number C,p, depending on ¢ but independent of h such that, for all
T € Ty, denoting by 7k the L2-orthogonal projector on ]P’fi(T), the following inequality holds:
Forall T e Ty, all se {1,...,(I+ 1)}, and all ve H*(T),

lv — WlTv|Hm(T) + h¥2|v — TrITU|Hm(aT) < Capphy "'V 5 (1) Vme{0,...,(s—1)}. (7)
The following Poincaré inequality is valid for all T € 7, and all v € H'(T)) such that §.v = 0:
[vllr < Cehr|Volr, (8)

where Cp = 7! for convex elements (cf. [2]), while, for more general element shapes, Cp can
be estimated in terms of the mesh-regularity parameter ¢. For all T € Ty, we set

U(T) = {veHl(T)d! Lv=0and JTVssv=0}, (9)

where Vg denotes the skew-symmetric part of the gradient operator. The following second
Korn inequality holds for all 7' € 7, and all v e U(T):

|Vulr < Ck 2| Vsulr, (10)

where Ck 2 > 0 is independent of h and can be estimated in terms of the mesh-regularity
parameter p, cf., e.g., [20} 18, [19] for the two-dimensional case. Combining and , we
infer that, for all T'€ Ty, and all v e U(T),

lvllr < Cxhr|Vsullr, (11)

with Cx = Ck 2Cp. The bound also holds if v € H'(T)? and there exists I' = 0T with
[T'|g—1 # 0 such that vjp = 0.



3 Discretization

3.1 Degrees of freedom
Let a polynomial degree k > 0 be fixed. For all T € T}, we define the local space of DOFs as

Ub. = BT { % u} U = B, () 12
FE]'—T

Let U(T) := HY(T)¢. The local interpolation operator Ik : U(T) — U% is such that, for all
ve U(T),

Ifv = (nfw, (Tho) pery). (13)
The global space is obtained by patching interface DOFs as follows:

Uk = { X P’;(T)d} X { X U’}}. (14)

TeT, FeFy

For all T € Ty, we denote by Ly the restriction operator that maps the global DOFs in Qﬁ to
the corresponding local DOFs in LJ’%. Letting U := H'(Q)?, the global interpolation operator
I}’f U — LJfL is such that, for all v e U, I,’fy = ((ﬂ%y)TGTh, (W%y)pefh), so that

Lrlfv = If(vr)  Yvel. (15)

The homogeneous Dirichlet boundary condition on the displacement can be enforced ex-
plicitly on the DOFs attached to faces. We set

U= {\l = (vr, (Vp)per,) e Uk [vp =0 VF € ]-',E’}. (16)

Letting Uy(T) := {y eU(T) | vyp=0YFeFrn .7-"};}, we observe that the restriction of the
interpolation operator I to Uy(T) maps onto LJ%O. Finally, we define the global space with
homogeneous Dirichlet boundary condition as

Up = {\lh = ((v1)reTs,, (VF)Fer,) € Uf |[vp =0 VF € F};} : (17)
and observe that the restriction of I,]f to Uy maps onto LJI;;,O.

3.2 Reconstructions of differential operators

In this section we define local and global symmetric gradient and divergence reconstructions
based on the DOF spaces and . The reason for defining a discrete divergence operator
independently is that we aim at satisfying the usual commuting diagram property in order to
achieve robustness in the quasi-incompressible limit.

3.2.1 Symmetric gradient

Let an element T € T, be fixed and set, for a polynomial degree [ > 1,

Up = PY(T)* n U(T), (18)



with Y(T') defined by @ The local discrete symmetric gradient operator g% : LJ'% — VSZL{{FH
is such that, for all v = (vr, (Vr)rer,) € LJ? and all w e Q{%H,

(EFv, Vsw)r := (Vevp, Vew)r + Y. (vr — vr, Vswnrr)p (19a)
FG]‘—T

= —(vr, V-Vaw)r + Y, (v, Vawnre)p. (19Db)
FE.FT

Observing that, by definition, there exists v € Q{%H such that é’:’ﬁy = Vv, computing é’i’ﬁy
amounts to solving the following pure-traction problem in v € Q[é‘i“: For all w e fol,

(Vsv, Vew)r = (Vevr, Vsw)r + Y (vr — vr, Vswnrp) . (20)
FeFr

Problem is well-posed as a result of —.

Remark 2 (Compatibility condition). Let

RM = {o+fz|acR% B R, 8+ 57 — 0} < [PI]", 1)

denote the space of rigid-body motions; RM is a three-dimensional space for d = 2 and a
siz-dimensional space for d = 3. For an element T € Ty, denote by RM(T') the space spanned
by the restrictions of functions in RM to T'. Combining the following classical facts:

ker(Vs) = RM and PEHY(T)? = Ul @ RM(T), (22)

we infer that and hold in fact for all w € IP’SH(T)d. This can be interpreted as the
right-hand side of the linear system (20)) satisfying the classical compatibility condition for the
pure-traction problem.

For all T € 7T;, we define the local displacement reconstruction operator 7:;’? : fop —

PEH1(T)? such that, for all v e U,

Vrky i= Efv, J iy =J vr, > J Nrp(rhy) = )] f Nrr(vr),  (23)
T T FeFpYF FeFpYF
where, for all F € Fr, Nrp € R¥*4 is such that Nypa = %(QTFQ@Q — a®nrr) for all a € RY.
Note that ST Vew = ZFG]_-T SF Nrrwp for all w € U(T). Equation means that ré“ly is the
sum of the function v € ZL{%H solving and a rigid-body motion fixed by the two rightmost
(closure) conditions in (23)). The choice in is motivated by the fact that féﬁféiy —vel(T)
for all v € U(T); indeed, recalling the definition (I3)) of I%, we infer that §, r5Ifv = { 7kv =
§7 v, and since faces are hyperplanar, { . VesrhiIhy = Y iFery Sr QTFﬂé%y =Y rers $p Nrpv =
ST Visv.
We now study the approximation properties of the operator rkI% : U(T) — IP’SH(T)d on
smooth functions.

Lemma 3 (Approximation properties for [éﬁ[éi). Let k=0 and T € Ty,. There exists a real
number C' > 0 depending on o and k, but independent of h, such that, for all v e H*+?(T),

1
|k Ihw — ol + B kB — o] or

+ hp | Vo(th o — )7 + W2 | Vs (h Div — 0)|or < CRE2 0] grvapya. (24)



Proof. Let v e H**2(T)?. Using the definitions of rk., (19D) of E¥%, and of Ik, we
infer that, for all w € PE*!(T)? (ct. Remark [2),

(VeriIiw, Vaw)r = (BT, Vaw)r = —(7ho, V-Vaw)r + Y| (mfw, Vawnrr)r
FeFr

= —(,V-Vaw)r + Y. (v, Vswnre)p,
FeFr

since V-Vyw € Psfl(T)d < PH(T)? and (Vsw) pnrr € Pt (F)9. Integrating by parts the
right-hand side yields

(VsrbIfv — Voo, Voaw)r =0 Yw e PAYH(T)L (25)
The orthogonality condition implies that

IVs@hliv —v)lr = inf [Vs(w —v)lr < by ol geea iy, (26)
wePhL(T)

where the last inequality follows from the approximation property of 77?”1 (with s = k+2
and m = 1). Using Korn’s inequality (since (rk.I%v —v) e U(T)), together with (26]), we
infer that

I Itw — vl < he|Vs(rpIiv — )| S W52 o] gree(rya- (27)

Using the continuous trace inequality @ followed by Korn’s inequality , together with
and , we infer that

k
helrh T — vli3r < b IEe — ol + B3I Va(h i — 0)13 < B35V ulsaiye. (28)

Finally, the bound on h?HVS(f%I%y — v)|or is obtained by introducing iﬂ%Vsy inside the
norni, using the triangle inequality, and concluding with the approximation property of

7r]r_}i (applied component-wise to Vgv with s = k + 1 and m = 0), the discrete trace in-
equality (B, the bound on card(Fr), the mesh regularity property (3), the fact that
Verk Ik e PE(T)4? so that |mhVew — VerkIko|r < |Vs(v — rkIEv) |7, and (26). O

The global discrete symmetric gradient operator E,’f : LJ% — Xoer, VSZL{%H is assembled
element-wise, so that, for all v, € LJE,

Epvnr = Eflry, VT €Ty (29)

3.2.2 Divergence

For an element T € Ty, the local discrete divergence operator D? : LJ? — IP)S (T') is such that,
for all v = (vr, (VvF)rer,) € LJ'% and all g € IP’Z(T),

(Div, q)r = —(vr, V)T + Z (VPRTF, Q) F (30a)
FeFr
= (Vvr,r + Y, ((vr —vr)nrr, @) (30b)
FeFr



The corresponding global discrete divergence operator Df : UF — PE(T,) := X reT, PE(T) is
assembled element-wise, so that, for all v, € Q’fL,

Dﬁyh‘T = Dr_’ﬁLTyh VT € 771 (31)
A key point in our analysis is the following commuting diagram property.

Proposition 4 (Commuting property for discrete divergence operator). The following dia-
grams commaute:

. V-
u(r) Y (r) Up — 13(2)
Ik ‘W% I hﬂili
Dk Dy
Uk — P(T) Uk g — Bh o (Th)

where L3(Q) := {ve L*(Q) | {,v =0}, P’j}o(ﬁ) :=PE(Th) N L3(), and ' denotes the global

version of the local L?-projector Wéﬁ.

Proof. Consider the local commuting diagram. Let T € T, let v € U(T), and set v := [Xv.
We infer that, for all g € PE(T),

(73 (Vv),9)r = (Vu,9)r = =(Vg,0)r + Y, (¢, vnre)r
FeFr

= —(Vg, M) + ) (g, mhvnre)r
FEJ—'T

= —(Vgvr)r + Y. (q.venre)r = (Diyv, o),
FE]:T

where we have used that Vq € ]P’S_I(T)d - IP’S(T)d, qr € P% | (F), and (304). For the global
commuting diagram, we use that, for all T € Tp, (D,]jyh)‘T = D%(LTyh) for all v, € QZ owing
to (31), Ly (Ifv) = Iéﬂ(gw) for all v € U owing to (13, whence

(DiIRe)ir = Dy (o) = 7 (V-(vr) = (w3 (V-0)pr,

owing to the local commuting diagram and the fact that the projection 7T,’§ acts locally. Finally,
restricting v to Up, we obtain f, Vv = 0, and summing tested with ¢ = 1 over all
mesh elements yields SQ Dﬁ[ ,’fg = 0 since the homogeneous Dirichlet boundary condition is
incorporated in LJZD for all ' e .7-"}1’. O

4 Discrete problem and well-posedness

In what follows, we assume that £ > 1. The reason for not allowing k = 0 is related to the
design of the stabilization bilinear form as discussed below. For all T' € 7}, we define the local
bilinear form on Lﬂ} X LJ? such that, for all u,v € LJ%,



with stabilization bilinear form

sr(u,v) == > hp' (Tp(Biu — up), mh (Riy — ve))r, (33)
FE]‘-T

where, for all T' € 7;, we have introduced the local displacement reconstruction operator
RE . Uk — PEHH(T) such that, for all v = (vr, (vr)rer,) € Uk,

Rhv := vy + (rhv — thrhv), (34)

and f:kp is defined by . The term in parentheses can be interpreted as a higher-order correc-
tion of the element unknown vr derived from the discrete symmetric gradient reconstruction
operator (19) (note that this correction is independent of the closure relations in since
k = 1). The stability analysis hinges on the following local discrete strain (semi-)norms on
LJ?: For allve LJ?,

IvIZr = 1Vevrlz + WEor, B = IETVIT + sT(v,v). (35)

where Mg,aT = D FeFy hzt|vr — vr|2 (the subscript e refers to strain). The stabilization
bilinear form s7 defined by introduces a least-squares penalty of the L?-orthogonal pro-
jection on P%_ (F)? of the difference between v and (]jl}y)| r- This penalty is tailored to
ensure control on the |-|. r-norm as reflected by the first inequality in below, and, at the
same time, to achieve the same convergence order as the symmetric gradient and divergence
reconstruction operators in the error analysis, see the bound below.

The global bilinear forms ap and sp on LJ% X LJZ are assembled element-wise so that, for
all up, vy € UF,

an(un,vn) == Y ar(Lrun, Lrvn),  sa(un,va) == Y sr(Lrun, Lyva). (36)
TeT, TeTh

The loading term is discretized by means of the linear form [;, on LJﬁ such that, for all v, € Qi,

h(vn) == >} lo(Love),  Ir(v) = LfvT. (37)

TeTh
The discrete problem reads: Find up € LJ;“%O such that, for all v;, € Qiﬂ,
ap(un,vp) = lp(vn). (38)

The global (semi-)norms are such that, for all v, € UF,

2hi= 2 IlovalZes IvalBan = D) ILoval
TeT;, TeTh

2E,s,T' (39>

Ivh

Proposition 5 (Norm |-|. ). The map || defined by is a norm on szo.

Proof. It suffices to show that, for all vy, € LJ’;L 05 IVhle,n = 0if and only if vp = 0 for all T € Ty,
and vy = 0 for all F' € Fj,. We start by observing that |v[|.,, = 0 means that

VI'eT,, Vyr=0 and vp—vp=0 VFeJF,.



For a boundary element T' € T, with F' € Fr n FP, using vp = 0 (cf. the definition of
U?O) we infer that vp|p = 0 which, combined with Vivy = 0 and Korn’s inequality, 1mphes
vr = 0 and, hence, vy = 0 for all F’ € Fr\{F} since v — vpr = 0. Repeating the argument
for the next layer of elements (and the corresponding faces), the result is proved iterating until
all elements and faces have been visited. O

Remark 6 (Bound on |-||-norm). Using discrete Korn inequalities for piecewise smooth fields,
see Duarte et al. [13] and Brenner [Jl], and a triangle inequality for the face term, we infer
the following stronger result on the |-|cp-norm: For all vj, € LJZ’O, Ivillen 2 Clun| with
real number C > 0 independent of h and vy, reconstructed from the cell-wise DOFs of vy as
(yh)|T =vr for all T € Ty,

Lemma 7 (Equivalence of the discrete strain norms). Let k = 1. There is a real number
n > 0 independent of h, u, and A such that, for all T € T, and all v € LJ?,

(40)

HVHE,S,T <n yv|?

nllv|?

and, for all vy € LJ;“L,
(41)

Proof. Let T € T, and let v € Uk We prove the first inequality in . Taking w = vr
in (19a]) (this is possible even if vp ¢ Z/{kJrl in view of Remark [2]), we infer that

IVevrlf = (Bfv, Vavr)r + ) (vo — v, Vavrnre) e
. FeFr (42)
<|Efvl7 + 5|V |7 + NoCEv[2 o7,

where we have used the Cauchy—Schwarz and Young inequalities followed by the discrete trace
inequality for the last term on the right-hand side. As a result,

k
IVevrlt < |EfvIZ + vIZ or (43)

Additionally, for all F' € Fr,

hp|ve = vrlr < hp e — T REv|F + by | Ry — v |
= hyp k(v — BEw) | F + by (R — vr) | (44)

— k k _k
= b Pk (v — BEV) |k + hp kv — whoky| e

where we have used the triangle inequality in the first line, the fact that vp € IP”d‘Ll(F)d and
vr|F € P’;_l(F) in the second line, and the fact that 7%, is a projector and the definition of
E?p in the third line. Using the discrete trace inequality , Korn’s inequality (since r%y—
ﬂ%?j%y € Q[é‘iﬂ for k > 1), the mesh regularity property (3), and recalling the definition (23)
of f:’?, the last term on the right-hand side can be estimated as

71 _
2|y — whrkv| e < 072CuCk | Ebv 1,

so that
_1 2|

_1/ Ive —vrlr < hp 2|7k (ve — REv)|F + | Efv|r. (45)

10



Squaring , summing over F' € Fr, and using the bound on card(Fr) leads to
V2 or < sT(v,v) + | Efv|7 (46)

The first inequality in immediately follows from and ([46). The proof of the second
inequality in uses similar arguments and is omitted for the sake of brevity. Finally, (41)
follows from by summing over T € T},. O

Corollary 8 (Well-posedness of (38))). Let k > 1. For all v, € LJ’;;, the following inequality
holds:

2un)valZ s < 2ulvallE o p + M Dfival® = an(va, va)- (47)
As a consequence, problem 1s well-posed.

Proof. Inequality is a straightforward consequence of together with the first inequal-
ity in (41). The well-posedness of then follows from the Lax-Milgram Lemma since || p
is a norm on QZ o owing to Proposition O

5 Error analysis

5.1 Basic error estimate
We bound the error in the energy norm such that, for all vj, € LJQ,

Ivhl2nn o= 20l o + MDpval® = an(vn, vn)- (48)
Owing to (47)), this readily implies an error bound in the ||| ,-norm as well.

Theorem 9 (Convergence). Let k> 1. Let u € Uy and up, € LJ]fL’O denote the unique solutions
to and (38), respectively. Set U, := }’fy € Qﬁo, with I}]f defined by (15)). Assume the
additional regularity uw € H*(T,)? and g € H*Y(T;,)¥*%. Then, there ewists a real number
C > 0 independent of h, u, and X\, such that

(2/1)1/2th — gh”en,h < Cthrl <2NHQHH]“+2(T;L)‘Z + HgHHIH—l(Th)dX(i> . (49)

Remark 10 (Locking-free estimate). For d = 2 and §) convez, the fact that the error esti-
mate for k =0 is uniform in X\ follows from the regularity estimate

plulzoye + AV-ulmie) < Cul £, (50)

where C,, > 0 denotes a real number depending on 2 and p but independent of X. A proof
of can be found, e.g., in [6]. More generally, for k > 1, we need f € HE(Q)? and the
reqularity shift pl|ul| gre2()e + NV-ul grir @) < Cul fllgr@)e-

Proof. We define, for all vy, € LJ’th, the discrete stress (dual) norm

Sh = sup an(Vh, Wp). (51)
V,VhGLJIﬁ,OJ\WhHE,s,hzl

|vh

Since |vi|2, = 20IVall% s + M DEvA? = an(vn,vi) < [Valspvnle,sn, we infer that

1) vk lenn < |vnlls.h-
(24)
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Observing that uj, — 1y, € Uf ; yields (24) 2 |up, —Tp en,n < [lup — T
lup — Uy, |s,n- Using yields

lup — ﬂh

5., and we need to bound

Sh = sup En(vn), (52)

YhELJZ’()a”\lh HE,S,h:l

with consistency error & (vp) := lp(vp) — an(Uy,, vy). We bound &, (vy,) for a generic vy, € QZ o-

Recalling that f = —V.g a.e. in {2, and integrating by parts element-wise, we infer that
In(va) = 2 {QM(VSW Vovr)r + MV, Vvr)r — Z (enrr,vr — VF)F} ; (53)
TeT, FeFr

where we have used the continuity of the normal stress component at interfaces together with
v = 0 for all I ¢ .7-"}; to infer that ZTG'T;L ZFGIT(QETF:‘JF)F =0. Taking w = Up =
f%LTQh = féﬁ[%(y‘:p) in the definition of E}IjLTyh for all T € Tp, (cf. Remark, and using
the definitions of E;f and of fl%, we infer that

2u(BRGy, Efvi) = )| {Q,M(V@T, Vor)r + Y. 2u(Vlipnre,ve _VT)F} : (54)
TeT), FeFr

Using the definition of DF and taking ¢ := 7% (V-u) in the definition (30b) of DFLyv, for
all T € Ty, and recalling the local commuting diagram property for Ié?, we infer that

MDDy, Dhva) = . {A(v-u,v-vT>T+ > A(rr;’%(Vu),(vF—VT)-nTF)F}. (55)
TeTh FeFr

Using f to replace the corresponding terms in the expression of &, (vy), we infer that

En(vn) = ) 2p {(Vs(u —lr), Vevr)r + Y, (Vs(u — Tp)norp, ve — VT)F}

TeTh FeFr
— > M(Veu = 7 (Vu))nrr, vr — ve)r — (2p)sn(y, vi) = T+ Ta + Ta. - (56)
FG]'-T

To estimate €1, we use the Cauchy—Schwarz inequality, the approximation property of
f?[{,ﬂ, the mesh regularity properties and , and the first inequality in to infer that

E,s,h- (57)

1| < 20hM ] ez g yavalen S 20w gprsa gy vl
Proceeding similarly for %5 using the approximation property of ﬂéi yields
|Ta| < MY wl a7, VR 2,51 (58)
To estimate €3, we observe that, for all T € T, and all F' € Frp,
hy b (B L8, — Gp)lr < b | RELeDy, — ullr
= hp| @y —w) — iy —w)|r
< hp Ly = ulr + Cahp iz — ulr

< hypt | rea iy,
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where we have used the fact that 7% is a projector and the definition of Uy in the first
line, the definition of ]j? and that of Up in the second line, the triangle inequality, the
discrete trace inequality , and the fact that 7'('];1 is a projector in the third line, and the
approximation property of Z’%Iéi and the mesh regularity property in the fourth line.
Hence, recalling the definition of s, and using the above inequality together with the
bound () on card(Fr), we infer that

sn(@p D) = Y, D) hpt Imb(BELrG, — up)|F < 22D fuFpeen 7 ya- (60)
TeTy, FeFr

Using the symmetry and positivity of sp, the bound , and the fact that Sh(\,/hv\lh)l/Q <
Ivh| s, we infer that

T3] < (20)5n,(Up, ) 250 (v vi) 72 < 20hF T wl e o ya |va | s, (61)
The estimate follows using inequalities , , and to estimate the right-hand
side of (B6)), and using the resulting bound in (52)). O
5.2 L’-error estimate for the displacement

In this section, we bound the |-|-norm of the displacement error. We assume elliptic regularity
in the following form: For all g € L*(Q2)?, the unique solution of

—V-g =g in £,
§=2uVsz+ A(V2)ly  inQ, (62)
z=0 on 05},
satisfies the a priori estimate
pllzll 2y + AIV-zll g ) < Culgl- (63)

Theorem 11 (L2-error estimate for the displacement). Under the assumptions of Theorem@
and the elliptic reqularity assumption , the following holds:

len| < ChF+2 ("y"Hk+2(7’}L)d + HgHHkH(Th)dxd) , (64)

with displacement error ey, € Pg(ﬁ)d such that en|T = UT — Wé‘iy for all T € Ty, and where
C > 0 is a real number depending on ), u, and o, but independent of A\ and h.

Proof. In the proof, we abbreviate by a < b the inequality a < Cb with real number C > 0
independent of h and A, but possibly depending on p. Since and imply that [||en,n =
2w) || g.sp and || g.sn = 02| |en, respectively, we infer from the error estimate that,
with ep ‘= uUp — Qh € Lji,[) and B(g,g, k) = HTJHH’“'Q(E)d + HQHH’“’l(Th)dXda

len]=n + snlen,en)” < BT B(u, o, k). (65)

Consider the auxiliary problem with g := e,. Integrating by parts element-wise, we infer
that

lenl® = = > (er.Vior = D, [(Vser, )z + Y. (er —er snrr)r | (66)

TeTh TeTh FeFr
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where we have used the continuity of the normal component of ¢ across interfaces together
with the fact that ep = 0 for all F' € F} to infer that 2reT, 2rer, (€Fssnrr)r = 0. Let
Z), 1= I}’fg and observe that, for all T' € T},

IVsz — EfLazylr + 1 |Vsz — EFLrzyllor < hrllzlme ey, (67a)
|V-z — DfLrzyllr + RV -2 — DfLrzylor < he|[ Vo2l (67b)
st(Lr2y, L12)"? < hrlz) g2y (67c)

Estimate (67a) is proved as in the proof of Lemma [3} estimate (67b) results from the local
commuting diagram of Proposition [} estimate (67¢]) is proved as in the proof of Theorem [9]
Since ap(en,z,) = En(z),) with En(2),) = ln(Z),) — an(Uy,, Z,,), we decompose the error as follows:

lenl® = { >

TeT,

(Veer,S)r+ ), (er —eT,CnTF)F] - ah(eh,fh)} +En(z) =T + To.
FG]‘—T
(68)

For all T € Tp, using the definition ((19a)) of g,’fLTgh with Vow = géiLT';\h and the defini-
tion (30b)) of DﬁLTgh with ¢ = D?LTih, we infer that

an(en2y) = Y, {(VSGT,S%)T + ) (er - eT,S:’?nTF)F} + (2u)snlen,z,),  (69)
TeTh FeFr

with §%,‘i = 2u£}§iLT2h + )\D:'ﬁLTZhgd. Plugging this expression into %1, multiple uses of the
Cauchy—Schwarz inequality together with mesh regularity properties and yield, with
or(2) == s — Splry,

1/2

1 ~ A

1] < {lenl2 + snlenen)} " x { > {16r(2)|F + herlor(2) 3} + (2ﬂ)25h(zh7zh)} :
TeT,

Owing to the estimate , the approximation properties , and the regularity esti-
mate , we infer that

511 < 252 B(u, 0, k) Izl gy + MV 2l o)) < R 2B g k)lenl. (70)

Consider now To. Adding (g, Vsz) — (f, 2) = 0 and since I4(2,) = (f,7F2) = (7} f, z), we infer
that

En1) = (nhf — £,2) + { (e, Vs2) — ) (B}, BJ2,) — M(DEGy, D2,) } — (20)s0(81,21)
= 52,1 + ‘22,2 + ‘3:2,3.
(71)
Since k > 1, we infer that
Tonl = [(mhf — fr2 = mh2)| S D522 £l e ayalz] 2 e (72)

Using the orthogonality relation and the right commuting diagram of Proposition
implying that D}z, = 7F(V-2), we infer that

To2 = (21)(Vsu — Eﬁgha Vsz — Ef]fzh) + A(V-u — Diy, V-2 — Dfzp,).
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Hence, using the approximation properties and of 7:]7{1[%1 and W%, respectively, to bound
the terms with u and using (67a)-(67b) to bound the terms with z leads to

[T2al £ BB, 0, k) (|2l + V-2l ) - (73)

Finally, using the symmetry and positivity of sp, the bound on sp(Up,U,), and the
bound (67c]) on sp,(Z,,2;,), we infer that

sn(@ns20) < sn(@y, Tp) 8025, 2) 7 < W2 Blu, g, k) 2] 2 e (74)

Using f and the regularity estimate , we obtain
%ol < W2 B(u, g, k)en]l. (75)
The estimate follows using and to bound the right-hand side of ([68)). 0

6 Implementation and numerical study

In this section we discuss some implementation aspects and present a numerical study to assess
the theoretical results. The numerical efficiency in terms of CPU cost is also evaluated.

6.1 Implementation

An essential step in the implementation consists in selecting a basis for each of the polynomial
spaces that appear in the construction. Let T' € Tj, and denote by zr a point with respect to
which T is star-shaped (in the numerical tests, the barycenter of T" was used). As a basis for
PL(T), L € {k,k + 1}, we take, letting A’ := {a = (;)1<i<a € N? | |a|pn <1},

d
BZT = {H f%zz
i=1

i.e., the basis BlT is spanned by monomials in the translated and scaled coordinate variables
(é7.)1<i<d- A basis for the polynomial space of vector-valued functions P (7)? is then obtained
by the Cartesian product of Bl.. Similarly, for all F' € F,, we can define for ]P”é_l(F) a basis

aedl, gr= N \ﬂ<i<d}, (76)
T

B’fp of monomials with respect to a local frame scaled using the face diameter and a point with
respect to which F is star-shaped. A basis for Pfl_l(F)d is obtained by Cartesian product.

Equation defines hierarchical bases, so that we can construct and evaluate B?H
(required to solve (20)) at quadrature nodes and obtain B (used to solve (30)) by simply dis-
carding the higher-order functions. The constraints in are accounted for in problem ([20))
as follows: the zero-average condition for the displacement is replaced by the requirement that
functions vanish at x7, and the latter condition is incorporated by simply discarding the con-
stant function in BF_I}H; the zero-average condition for the skew-symmetric part of the gradient
is enforced using a Lagrange multiplier (which is scalar-valued for d = 2 and R3-valued for
d = 3). Moreover, the homogeneous Dirichlet boundary condition is also enforced by means
of a Lagrange multiplier in P%¥ | (F)? for all F € Fp.

Concerning numerical integration, in the two-dimensional case we can exploit the decom-
position of elements into triangles and use standard quadrature rules. In our implementation,
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we have used the quadrature rules available in GetFem-++ [21]. In the three-dimensional case,
this is also possible provided the faces of the elements are triangles or quadrangles yielding
pyramidal subelements for which standard cubature rules are available. If this is not the case,
a simplicial decomposition of the element can be considered, usually implying an increase
in the number of quadrature nodes. Similarly, numerically integrating on the mesh faces is
straightforward in two space dimensions and for elements with triangular or quadrangular
faces in three space dimensions. For more general polygonal faces in three space dimensions,
triangulating the face may be required.

6.2 Numerical study

To numerically validate the estimates of Theorems [9] and we solve the two-dimensional,
pure-displacement problem with p = 1, A € {1, 1000}, displacement u = (uq, usz) such that

1
uy = sin(mxy) sin(rzy) + 23 %h ug = cos(mxy) cos(mrs) + 3% (77)
and load f = (f1, f2) such that
f1 = 2n?sin(mz) sin(7zs), fo = 2% cos(mz1) cos(mxs).

The solution has vanishing divergence in the limit A — +oco. This, together with the
fact that f does not depend on A, make this test case suitable to check numerically that the
estimatesi and are indeed uniform in A\. We consider the three families of meshes
depicted in Figure the matching triangular and Kershaw mesh families of [I7] and the
(predominantly) hexagonal mesh family considered in [12, Section 4.2.3]. The stress error
is measured in the energy norm defined by . For the displacement, the error is the one
appearing on the left-hand side of . The convergence rates displayed in Figure [2| and
for A = 1 and A = 1000, respectively, are in agreement with the theoretical predictions. The
slight superconvergence observed for the Kershaw mesh family is due to the fact that the mesh
regularity increases when refining. As predicted, the error does not depend on A.

To check the performance of the proposed method in terms of CPU time, we have in-
strumented our code in the spirit of [11] to separately measure (i) the assembly time Tags,
accounting for the construction of the local contributions to the bilinear form aj, (cf. ([B6)),
the local elimination of cell unknowns, and the assembly into a global matrix; (ii) the solution
time Ty corresponding to the solution of the global linear system. Local computations are
based on the linear algebra facilities provided by the Eigen3 library [I5]. The linear systems
corresponding to problems , , and to the L?-orthogonal projectors W;’% and W}? are
solved using the robust Cholesky factorization available in Eigen3. The global system (involv-
ing face unknowns only) is solved using SuperLU [§] through the PETSc 3.4 interface [1]. The
tests have been run sequentially on a laptop computer powered by an Intel Core i7-3520 CPU
running at 2.90 GHz and equipped with 8Gb of RAM.

To check how the more elaborate local computations (with respect, e.g., to standard finite
elements) affect the overall CPU cost, we plot in Figure |4 the ratio T,ss/7so1 as a function of
card(F). We consider the triangular and hexagonal mesh families for which Np (cf. {))) is
respectively the smallest and the largest. It can be observed that, when refining the mesh,
the ratio Tass/Tsol rapidly decreases as a result of having (approximately) Tass0C card(Fp) and
TsolOC card(]—"h)s/Q. This means that, in large test cases, the local computations can be expected
to have a negligible impact on the global CPU time.
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Figure 1: Triangular, Kershaw, and hexagonal meshes for the numerical example of Section@

Figures [f| and [] depict the stress and displacement errors as a function of the total CPU

time Tiot = Tass + Tsol- Lhis representation is included to provide a fair basis of future
comparison with other methods. As expected from the regularity of the exact solution ,
the highest-order computation provides in all the cases the best precision for a given CPU
time as well as the largest reduction rate for the error.
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