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Abstract

We devise an arbitrary-order locking-free method for linear elasticity. The method
relies on a pure-displacement (primal) formulation and leads to a symmetric, positive
definite system matrix with compact stencil. The degrees of freedom are vector-valued
polynomials of arbitrary order k > 1 on the mesh faces, so that in three space dimensions,
the lowest-order scheme only requires 9 degrees of freedom per mesh face. The method can
be deployed on general polyhedral meshes. The key idea is to reconstruct the symmetric
gradient and divergence inside each mesh cell in terms of the degrees of freedom by
solving inexpensive local problems. The discrete problem is assembled cell-wise using
these operators and a high-order stabilization bilinear form. Locking-free error estimates
are derived for the energy norm and for the L2-norm of the displacement, with optimal
convergence rates of order (k+1) and (k+2), respectively, for smooth solutions on general
meshes. The theoretical results are confirmed numerically, and the CPU cost is evaluated
on both standard and polygonal meshes.

Keywords Linear elasticity, general meshes, arbitrary order, locking-free methods

1 Introduction

Let Q c R? d € {2,3}, denote a bounded connected polygonal or polyhedral domain. We
consider the isotropic linear elasticity problem

~Vag=Ff in
o =2uVu+ A(Vu)ly  inQ, (1)
u=20 on 0,

with £ > 0 and A = 0 scalar Lamé coefficients and Vg denoting the symmetric part of
the gradient operator (in short, the symmetric gradient) applied to vector-valued fields. We
consider homogeneous Dirichlet boundary conditions on the displacement for simplicity. More
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general boundary conditions can be handled. For X < €, we denote by (-,-)x and ||-|x
respectively the standard inner product and norm of L?(X), with the convention that the
index is omitted if X = Q. A similar notation is used for L?(X)?% and L?(X)%*?. With
fe L2(Q)? the weak formulation of problem consists in finding u € Uy := HE(Q)¢ such
that, for all v € Uy,

(2uVsu, Vsv) + (AV-u, V-u) = (f,v). (2)

It is known that the accurate approximation of problem in the incompressible limit
A — 400 requires the discrete space to be able to accurately represent nontrivial divergence-
free vector-valued fields. When considering primal approximations where the displacement
field is the sole unknown, this essentially amounts to having at hand a divergence operator
that satisfies a suitable commuting diagram property. Combined with the regularity result
on the displacement field and its divergence (see Eq. below), the commuting diagram
property allows one to prove error estimates that are uniform with respect to A. In the work
of Brenner and Sung [8], this property is obtained for the pure-displacement problem using
the nonconforming element of Crouzeix and Raviart [10] and the Navier-Cauchy formulation.
It is also possible to penalize the jumps of the discrete displacement field across interfaces in
a least-squares fashion, as do Hansbo and Larson [20)].

All of the above-mentioned approaches apply to standard simplicial or parallelepipedal
meshes. In recent years, a large effort has been devoted to the development and analysis
of discretization methods that apply to more general meshes possibly featuring polygonal or
polyhedral elements and nonconforming interfaces. In this context, we mention the lowest-
order method of Beirdo da Veiga, Gyrya, Lipnikov, and Manzini [5] for Stokes flow and that
of Beirdo da Veiga [6] for mixed linear elasticity, and the work of Di Pietro and Lemaire [16],
which introduces a generalization of the lowest-order Crouzeix—Raviart space and, correspond-
ingly, of the methods of [8 20]. Closer to the classical finite element spirit is the work of
Tabarraei and Sukumar [28], where Lagrangian shape functions for convex polygonal elements
are constructed. More recently, arbitrary-order methods on general meshes have received an
increasing attention. We cite here, in particular, the work of Beirdao da Veiga, Brezzi, and
Marini [4], where the authors introduce a locking-free Virtual Element method for planar
linear elasticity featuring vertex, edge, and element unknowns.

In this work, we devise a new approach to designing an arbitrary-order method for quasi-
incompressible linear elasticity on general meshes in space dimension d € {2,3} based on the
recent ideas of [I3], [14] for diffusive problems. For a polynomial degree k > 1, our starting
point is to consider as degrees of freedom (DOFs) vector-valued polynomials at mesh elements
and faces up to degree k. The design of the method then proceeds in two steps: (i) we
introduce discrete symmetric gradient and divergence reconstruction operators hinging on
the solution of inexpensive local problems inside each mesh element, in such a way that
the discrete divergence operator satisfies the commuting diagram property; (ii) we devise a
least-squares stabilization that weakly enforces the matching of element- and face-based DOFs.
The global system is assembled cell-wise using the above local reconstruction and stabilization
operators. Face-based DOFs establish inter-element connections at interfaces and can be used
to strongly enforce essential boundary conditions at boundary faces. Element-based DOFs are
intermediate variables which can be eliminated by static condensation from the global system.
Hence, DOFs in the global system are vector-valued polynomials of order k£ > 1 on the mesh
faces. For instance, the lowest-order scheme only requires 9 degrees of freedom per mesh face
in 3 space dimensions.



Discretization schemes for elliptic problems using face-based DOFs have received an in-
creasing attention in the last few years. We mention the seminal work of Cockburn, Gopalakr-
ishnan, and Lazarov [9] on Hybrid Discontinuous Galerkin (HDG) and the more recent works
of Wang and Ye [29] on the Weak Galerkin (WG) method, that of Lipnikov and Manzini on
Mimetic Finite Differences (MFD) [25], and that of the authors on Hybrid High-Order (HHO)
schemes [13| [14]. Although HDG and WG methods also reconstruct operators inside each
element, there are two important differences with HHO methods. First, the spaces in which
we reconstruct the symmetric gradient are not just tensor-valued polynomials, but the image
of vector-valued polynomials by the continuous symmetric gradient operator. This allows us
to define a higher-order displacement reconstruction operator which constitutes the main in-
gredient of the second distinctive feature, namely the design of the stabilization bilinear form.
This design is by no means straightforward, since the stabilization (i) remains local to each
element; (ii) ensures coercivity; (iii) yields optimal (higher-order) approximation properties.
We also mention that among the above schemes, only HDG schemes have been, to our knowl-
edge, devised for linear elasticity; we refer, e.g., to Soon, Cockburn, and Stolarski [27] where
various choices of the reconstruction spaces (which differ from HHO) are discussed.

The present HHO method exhibits various salient benefits. The method (i) relies on
a pure-displacement (primal) formulation, thereby leading to a symmetric, positive definite
system matrix and to strongly symmetric strain and stress tensors; (ii) is computationally
effective since the use of face unknowns (and the absence of nodal unknowns) yields a compact
stencil (consisting of face neighbors in the sense of faces) and greatly simplifies data exchange
(especially in three space dimensions); (iii) leads, for smooth solutions, to optimal, locking-
free strain and displacement error estimates of order (k + 1) and (k + 2), respectively, on
general polyhedral meshes. The price to pay is twofold. First, local problems related to the
reconstruction operators have to be solved. Our numerical results indicate that the associated
cost quickly becomes marginal with respect to the cost of solving the global system as the
number of DOFs is increased. Second, the method is nonconforming, so that, for instance, the
displacement can be multi-valued at a mesh vertex; however, displacement jumps optimally
converge to zero as the mesh is refined. As a result, any standard post-processing operator
(e.g., by local nodal averages) can be used to produce a conforming displacement field.

The paper is organized as follows. In Section [2] we recall the definition of admissible mesh
sequences in the spirit of [12] as well as some useful results. In Section[3] we introduce the local
DOFs, the local reduction map (mapping continuous functions to DOFs) and the symmetric
gradient and divergence reconstruction operators (mapping DOFs to polynomial functions),
and identify the key properties of these operators. In Sectiond] we define the stabilized discrete
bilinear form, state the discrete problem, and show its well-posedness. In Section 5] we perform
the error analysis and prove locking-free error estimates of order (k + 1) in the energy norm
and (k + 2) in the L?-norm for smooth solutions. In Section @, we discuss implementation
aspects, present numerical examples on polygonal meshes confirming our theoretical results,
and evaluate the efficiency of the proposed method in terms of CPU cost.

2 Setting

2.1 Admissible mesh sequences

In this section we briefly recall the notion of admissible mesh sequence of [12, Chapter 1].
Let H < R} denote a countable set of meshsizes having 0 as its unique accumulation point.



We focus on sequences (Tp)nen where, for all h € H, Tp, is a finite collection of nonempty
disjoint open polyhedra (called elements or cells) 7, = {T} such that Q = Urer, T and
h = maxge7;, hr (hr stands for the diameter of T'). A hyperplanar closed connected subset
F of Q is called a face if it has positive (d—1)-dimensional measure and (i) either there exist
Ty, T5 € Ty, such that F' = 0Ty n 0T (and F is an interface) or (ii) there exists T' € T, such
that F' = 0T n 0Q (and F is a boundary face). The set of interfaces is denoted by F, the
set of boundary faces by ]-'}Z, and we let Fp, 1= ]—'}L V) ]-}E’. The diameter of a face F' € Fp, is
denoted by hp. For all T € Ty, Fr := {F € F}, | F < 0T} denotes the set of faces lying on
the boundary of T and, for all F' € Fr, we denote by nrp the normal to F' pointing out of 7.
The m-dimensional Lebesgue measure, m € {0...d}, is denoted by ||,.

Definition 1 (Admissible mesh sequence). We say that the mesh sequence (Tp)pep s admis-
sible if, for all h € H, T, admits a matching simplicial submesh Tp, (so that any cell (resp.,
face) of Ty is a subset of a cell (resp., face) of Ty) and there exists a real number o > 0 (the
mesh reqularity parameter) independent of h such that the following conditions hold: (i) for all
h € H and all simplex S € ¥y, of diameter hg and inradius rs, ohs < rg (shape-reqularity) and
(i1) for all he H, all T € Ty, and all S € Ty, such that S < T, ohr < hg (contact-regularity).

In what follows, we consider meshes belonging to an admissible mesh sequence. We recall
two useful geometric results that hold in this framework. Owing to |12, Lemma 1.42|, for all
heH, all T € Ty, and all F € Fp, hp is comparable to hp in the sense that

o*hr < hp < hr. (3)

Moreover, owing to [12, Lemma 1.41], there exists an integer Ny = (d + 1) (depending on p)
such that the maximum number of faces of one element is bounded,
Vh e H, max card(Fr) < Np. (4)
TeT,
In what follows, we often abbreviate as a < b the inequality a < Cb with C' > 0 independent
of h, u, and A, but possibly depending on the mesh-regularity parameter g. Tracking the

dependence on Lamé’s parameters of the constant appearing in the inequalities allows one to
investigate the properties of the method in the incompressible limit.

2.2 Basic results

In this section we recall some basic results on admissible mesh sequences. There exist real
numbers Cy; and Ci, . depending on ¢ but independent of A such that the following discrete
trace inequalities hold for all T € Ty, cf. [12, Lemmata 1.46 and 1.49]:

lollr < Cuhnolr Vv e Py(T), YF e Fr, (5)
_ 1
[0|or < Cire(hp |03 + b |Vo|2) " Yoe HY(T), (6)

where IP’&(T ) denotes the space spanned by the restrictions to T of d-variate polynomials of
total degree < . Using [12, Lemma 1.40] together with the results of [18], it can be proved
that there exists a real number Cyp, depending on ¢ but independent of h such that, for all
T € Ty, denoting by 7k the L2-orthogonal projector on ]P’fi(T), the following inequality holds:
Forall T e Ty, all se {1,...,(I+ 1)}, and all ve H*(T),

L S—m
[0 — 70| gm(ry + b o — Tl gmor) < Capphy ™[olgsry  ¥Yme{0,...,(s—1)}. (1)
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The following Poincaré inequality is valid for all T € Tj, and all v € H(T') such that §,v = 0:
lvlr < Cehr|Volr, (8)

where Cp = 7! for convex elements (cf. [3]), while, for more general element shapes, Cp can
be estimated in terms of the mesh-regularity parameter ¢. For all T € Ty, we set

UT) = {U e HY(T)¢| Lv =0 and JT Vst = 0} : (9)

where Vg denotes the skew-symmetric part of the gradient operator. The following second
Korn inequality holds for all T' € T, and all v € U(T):

IVo|r < Ck 2| Vs, (10)

where Ck o > 0 is independent of h and can be estimated in terms of the mesh-regularity
parameter g, cf., e.g., [24, 22 23] for the two-dimensional case. Combining and ([10)), we
infer that, for all T € Tj, and all v e U(T),

lvllr < Cxhr|Vsullr, (11)

with Cx = Ck 2Cp. The bound also holds if v € H'(T)? and there exists I' = 0T with
IT'|g—1 # 0 such that vjp = 0.

3 Local reconstruction operators

In this section we define the local DOFs, the local reduction map, and the local symmetric
gradient and divergence reconstruction operators.

3.1 Degrees of freedom and reduction map
Let a polynomial degree k = 0 be fixed. For all T € T}, we define the local space of DOFs as

Ul = Py(T)* x { X Pﬁ_l(F)d}- (12)

FeFr

Forv e LJ’%, we use the notation v = (vr, (vr)per,). The degrees of freedom are illustrated in
Figure for k =1 and k = 2. The local reduction map Ik : U(T) := HY(T)? — U% is such
that, for all v e U(T),

Ifv = (o, (Th) rery)- (13)

3.2 Symmetric gradient

Let T € T,. We first define a local displacement reconstruction operator f:kp : LJ’% — IP’ZH(T)d.
For given DOFs v = (vr, (VF)Fer,) € LJ?, the field fi’}y € IP’ZH(T)d is defined by solving the
following well-posed pure-traction problem in T: For all w € ]Pg“(T)d,

(Vs(riv), Vsw)r = (Vevr, Vaw)r + Y, (ve — v, Vswnrr) p. (14)
FE]'—T



Figure 1: Face (black) and cell (grey) degrees of freedom in U%. (cf. (12))) for k = 1 and k = 2.
Cell degrees of freedom can be locally eliminated via static condensation.

k+1+d

k+1
tion, the local system is of size 12 if d = 2 and 30 if d = 3). The solvability of stems from
the fact that the right-hand side vanishes if the test function w is a rigid-body motion. The
solution to is uniquely defined if we prescribe the rigid-body motion components of f?y,
and we choose the following prescription:

This linear system is of size d ( (e.g., for k = 1, leading to a quadratic reconstruc-

FeFp o ¥

1
f Ty =J vr, J Ves(rhy) = ) f 5 (0rF@vE — vir®nrrF), (15)
T T T T

which ensures that ([?Iéiy —wv) € U(T) for all v € Lﬂ} (as shown in the proof of Lemma
below). We then define the local discrete symmetric gradient operator é‘éﬁ : Q[} — VS}P’SH(T)
such that

Efv := V(rfv). (16)

Owing to ([16)), we infer that, for all w € IP’ZH(T)d,

(BYv, Vsw)r = (Vevr, Vsw)r + Z (v — v, Vswnrr)r (17a)
FeFr

= —(vp, V-Vew)r + Z (vi, Vswnrr)r, (17b)
FeFr

where the second equation follows by integrating by parts. The composition of the reduction
map by the displacement reconstruction operator yields an approximation operator 7;%[42 :
ur) — ]P’ZH(T)d mapping continuous functions to polynomials in 7. We now study the
approximation properties of this operator on smooth functions.

Lemma 2 (Approximation properties for 7:]72[%). Let k = 0 and T € Ty. There exists a real
number C' > 0 depending on o and k, but independent of h, such that, for all v e H*+2(T)?,

1
|k o — vl + byl |kl — vfor

+ hr | V(b Iy — o) |7 + W | Ve(hIbo — v)|or < CRE2 vl greagry. (18)

Proof. (1) Let v € H**2(T)?. Using the definitions of r% and of IX., we infer that,



for all w e IP’SH(T)d,

(VerhIfv, Vaw)r = —(nho, V-Vaw)r + | (whv, Vswnrr)r
FeFr

~(, V-Vaw)r + Y. (v, Vewnrr)r,
FeFr

since V-Vsw € IPZ*I(T)d < PH(T)? and (Vsw) pnrr € Pk (F)9. Integrating by parts the
right-hand side yields

(VsrhIfv — Voo, Vau)r =0 Yw e PEHY(T), (19)
The orthogonality condition implies that
IVs(rF o = )7 = it Vsl —2)lr = h ol e rya, (20)
wel,

where the last inequality follows from the approximation property of 7T§«+1 (with s =k+2
and m = 1).

(2) Let us now verify that rf.I%v —v € U(T). We first observe that, owing to (18)), §, r¥.Ifv =
ST TrTy = XTQ In addition,

1
J Ves(rpIfo) = ) J §(LLTF®7T§Q—7T§Q®@TF)
T FG]'—T

Z f NTF®’U - U@”TF f Vssv.

FeFr
As a result, using Korn’s inequality m, together with m, we infer that

lr3Iiv = vllr < he|Vs(rpIiv — 0)lr S W52 o] gree(rya- (21)

(3) Using the continuous trace inequality (6) followed by Korn’s inequality (10, together
with and , we infer that

2(k+1)
hTHTTITU — |3 < Irplfe — vlF + h7|Vs(rhIfy — v)[F < h *

Mol (22)
Finally, the bound on hZZQHVS([:’ﬁI%y — v)|lor is obtained by introducing im_’ﬁvsy inside the
norm and using the triangle inequality, the approximation property ([7)) of 77% (applied component-
wise to Vgv with s = k + 1 and m = 0), the discrete trace inequality , the bound
on card(Fr), the mesh regularity property (3)), the fact that VerkIFbv e PE(T)4*? so that
|75 Vv — Verhholr < V(v — vk 50)|7, and (20). 0

3.3 Divergence

Let T € T,. The local discrete divergence operator D% : U% — PX(T) is such that, for all
v = (vr, (vr)rer,) € Uy and all g € P5(T),

(Dhv, @)1 == —(vr,Vo)r + 2 (VFn7F, Q) F (23a)
FeFr
= (Vvr.r + Y, ((vr —vr)nrr, Q). (23h)
FeFr

A key point in our analysis is the following commuting diagram property.



Proposition 3 (Commuting property for discrete divergence operator). Let k = 0 and let
T € Ty. The following diagram commutes:

u(r) L 12(7)

Proof. Let T € Tp, let ve U(T), and set v := I{,?y. We infer that, for all g € PS(T),

(7 (Vv),9)r = (Vu,9)r = =(Vg,0)r + Y, (¢, vnre)r

FeFr
= —(Vg, M) + ) (g, mhvnre)r
FE./—'T
= —(Vgvr)r + Y. (q.venre)r = (Diyv, g),
FG.FT
where we have used that Vg e ]P’ffl(T)d < PE(T)4, qF € Pk , and (23a)). O

4 Discrete problem and well-posedness

In this section we introduce the local and global bilinear forms, define the discrete problem,
and establish its well-posedness. In what follows, we assume that £ > 1

4.1 Local bilinear forms

Let T € T;,. We define the local bilinear form on LJ[} X LJ% such that, for all v,w € LJZ},

ar(v,w) 1= 2u(Efv, Efw)r + A(Dfv, Dfw) + (20)s7(v, w), (24)
with stabilization bilinear form
sp(v,w) = Z h (mh(Rhv — vip), 7 (REw — wp)) p, (25)
FE]'—T

where, for v = (vr, (VF)rer,) € LJ’%, B’%y € IP’ZH(T)C[ is such that
Ry = vr + (rfv — mirfv). (26)

The term in parentheses can be interpreted as a higher-order correction of the element DOFs
vy derived from the reconstructed field 7;?\7/ (note that this correction is independent of the
closure relations in for k > 1). The stabilization bilinear form sr introduces a least-
squares penalty of the L?-orthogonal projection on Pg_l(F ) of the difference between vy and
(B’}y)| r- This penalty is tailored to ensure stability, and, at the same time, to achieve the
same convergence order as the symmetric gradient and divergence reconstruction operators in
the error analysis. This important result is stated in the following lemma, where we introduce
the following local discrete strain (semi-)norms on LJk: For all v € Lﬂfp,

vZor = D) hp'lvr —vrlF. (27)
FE]:T

IvIZ 7 = |Vevr|F + |v|2,



Lemma 4 (Stabilization). Assume k > 1. There is a real number n > 0 independent of h, p,
and A such that, for all T € Ty, and all v € LJI%, the following stability property holds:

g,T' (28)

Moreover, for all v e H**2(T)?, the following approzimation property holds:

nlvlZr < |Efv|F + st(v,v) <0ty

sr(Tho, o) < WY o] gusarya. (20)

Proof. (1) Let T € T;, and let v € UX. We prove the first inequality in (2§). Taking w = vr

in (17al), we infer that

IVevr|3 = (Bfv, Vevr)r + Z (vr —vr, Vovrorr)r
1 FeFr (30)
k
< |Efv]F + §HVS\JT\|2T + NoCLlv|2 o,

where we have used the Cauchy—Schwarz and Young inequalities followed by the discrete trace
inequality for the last term on the right-hand side. As a result,

IVovr|# < |EFIF + IvI2 o (31)
Additionally, for all F' € Fr,
hp|vr = vrlr < hplvr — 7 REv|p + hp " |k By — vrl
= hp P |rh (v — Bhv)|p + by mb (B — vo)| (32)

= b Pk (v — BEv)| P + Cuchipt ey — whokv|p

where we have used the triangle inequality in the first line, the fact that vp € szl(F )% and
vT|F € Pflil(F)d in the second line, and the fact that 7% is a projector, the definition (26))
of RE, and the discrete trace inequality in the third line. For any function w € H(T)?,
writing wry = ‘T|;1(STQ) + \T|;1(ST Vssw)(z — ), where zp denotes the barycenter of T,
we observe that w;’ﬁwRM = wgrM Ssince k = 1, whence we infer that

|lw — Thw|r = ||(w — wrm) — TH(w — wrm) |7 < |w — wrM|T S Pr|Vsw|T,

where we have used the fact that 77:’} is an L?-projector and Korn’s inequality since
(w —wrm) € U(T). Applying this bound to w = r&yv, using the mesh regularity property @),
and recalling the definition of [:’%, the last term on the right-hand side of can be
estimated as

CohHIrhy — mhrkylr < 072CuCx | Ebvlir,

so that
—1 -1
hpve = vrlr < hp |7k (v — BEv)|r + | Ebvr. (33)

Squaring (33), summing over F' € Fp, and using the bound on card(Fr) leads to
vIZ o7 < s(v,v) + | Efv]7- (34)

The first inequality in immediately follows from and . The proof of the second
inequality in uses similar arguments and is omitted for the sake of brevity.



(2) Let us now prove for all v € H**2(T)?. We observe that, for all T € T, and all
Fe Fr,

,1 71
2| (BE Ty — who) | < hp?| REThw — vl

= h;l/QH(rTITy — ) — Th(h Iy — )| r

(35)
—1 -

< hp ek b — v|p + Cohp rh I — v|7

< P ol prea ey,

where we have used the fact that Tr}? is a projector and the definition of the faces DOFs of
Iéﬁy in the first line, the deﬁnition (26]) of B’% in the second line, the triangle inequality, the
discrete trace inequality , and the fact that 7rT is a projector in the third line, and the
approximation property (|18 of TTI%; and the mesh regularity property in the fourth line.
Recalling the definition of s7, the bound (29) readily follows from (35) and the bound (4] .
on card(Fr). O

4.2 Global bilinear forms

Going from local to global bilinear forms proceeds, as in standard finite element methods,
by a cell-wise assembly. The global space of DOFs is obtained by patching local DOFs at

interfaces, yielding
U = { X P’é(T)d} x { X P§_1(F)d}- (36)
TE'Th FEJ:}L

For vy, € LJ;‘;, we use the notation vy, = ((vr)7e7;, (VF)Fer,). For all T' € Ty, we denote by Lp
the restriction operator that maps the global DOFs in LJﬁ to the corresponding local DOFs in
LJ?, ie., for all vj, € LJfL, Lrvh = (v, (VP)Fer,) € LJ?. The homogeneous Dirichlet boundary
condition on the displacement can be enforced explicitly on the DOFs attached to boundary
faces. We set

Uk, = {\lh = ((vr)7eT,,, (VF)Fer,) € UF |vp =0 VF € ]:flf} , (37)

i

The global bilinear forms ap and sp are assembled cell-wise as follows: For all vj,, wy, € LJfL,

an(vn,wn) == Y ar(Love, Lewn),  sa(vn,wi) = Y sp(Lyva, Lyws). (38)
TeTh TeT,

The loading term is discretized by means of the linear form [ on LJ]fL such that, for all vy, € LJfL,
Ih(vh) == ). J fyr. (39)

The discrete problem reads: Find up € LJZ o such that, for all v, € LJZ 0

ap(up,va) = ln(vn)- (40)
The global strain (semi-)norm is such that, for all v, € U,
lvalZn = D} ILrvalZz. (41)
TeTh
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Proposition 5 (Norm || ). The map || defined by is a norm on LJIfL,O.

Proof. Tt suffices to show that, for all vy, € Q’ﬁ 05 IVhle,n = 0if and only if v =0 for all T € Ty,
and vy = 0 for all F' € Fj,. We start by observing that |vj[|.,, = 0 means that

VI'e€T,, Vyr=0 and vp—vp=0 VFeJF,.

For a boundary element T € T}, with F € Fpr n ]-}E’, using vp = 0 (cf. the definition of
LJ’,““O), we infer that vrip =0 which, combined with Vgvy = 0 and Korn’s inequality, implies
vy = 0 and, hence, v = 0 for all F’ € Fp\{F} since vi — vi» = 0. Repeating the argument
for the next layer of elements (and the corresponding faces), the result is proved iterating until
all elements and faces have been visited. O

Corollary 6 (Well-posedness of ({40)). Assume k > 1. For allvy, € Qﬁ, the following inequality
holds:
aval?n < S {IBELrvilB + sr(Lrva, Lrva) | < w2 (12)
TeTh

with 1 resulting from Lemma . As a consequence, problem 1s well-posed.

Proof. Inequalities follow from by summing over T' € Tp,. The well-posedness of
then follows from the Lax-Milgram Lemma and Proposition [ O

Remark 7 (Bound on |-|-norm). Using discrete Korn inequalities for piecewise smooth fields,
see Duarte et al. [I7] and Brenner [7], and a triangle inequality for the face term, we infer
the following stronger result on the || n-norm: For all v, € U¥ , |valen 2 Clun| with real
number C' > 0 independent of h and vy reconstructed from the element-based DOFs of vi, as
(vn)ir = vr for all T € Th.

5 Error analysis

5.1 Basic error estimate

Let u € Uy and uy, € Qﬁ’o denote the unique solutions to and , respectively. We bound
the error uj, — U, where U, € LJZO is such that U, = ((W;]?Q)Ten, (Trf;y)pe]:h). Observe that 4y,
is obtained from the exact solution w using the local reduction maps on each mesh element,
e, Lyu, = I{,ﬁ(yw). We measure the error in the energy norm such that, for all vy € LJ;“L,

[Val12nn == an(vn, va)- (43)

Owing to the lower bound in ({#2), we observe that |v4 |2, , = (2un)|lva|?,- In what follows, we

formulate the regularity of the exact solution using broken (piecewise) Sobolev spaces H™(Tp)
I . . . 2 _ 2

for some positive integer m equipped with the norm H'HHM(E) = XreT; H‘HHm(T)'

Theorem 8 (Convergence). Assume k = 1 and the additional reqularity u € H**2(T;,)¢ and
V-u € H**Y(Ty,). Then, there ewists a real number C > 0 independent of h, p, and X\, such
that

(210) " |up, — Gpllen < CRFH <2M||B||Hk+2(7h)d + )‘HV'HHH’V“(Th)) : (44)
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Remark 9 (Locking-free estimate). For d =2 and Q convez, it is proven in [8] that
] gzye + AMVul g < Cul £, (45)

where C, > 0 denotes a real number depending on €1 and p but independent of X\. More
generally, for k = 1, we need the regularity shift plu gr+2(qya + N V-uu| grir ) < Cpl £l mr(o)e-

Proof. For all vy, € Qﬁ 0, We observe that

ap\Vh, Wh
”‘thzn,h = ah(yh,yh) < sup y X Hths,h-
Whegz’o HWh‘ e,h
Since [valenn = (2un)72||vp|c.n, we infer that
(20m) "2 vhlengp < sup an(Va, wp).

wWieUF o.|wne,n=1
Applying this inequality to the error (ujp — U;,) and using yields

(2um) " |up, — Gy len,n < sup En(wp), (46)

YhEQ;Ii’Ov”V,VhHE,h:l

with consistency error &, (wp) = I (wp) —ap (U, wy). We bound &, (wy,) for a generic wy, € LJfL 0
such that |wp|c, = 1. Recalling that f = —V-g a.e. in €2, and integrating by parts element-
wise, we infer that

In(wp) = Z {Q,M(Vs% Vswr)r + A(Veu, V-wr)r — Z (anrr, wr — WF)F} , o (47)
TeTs FeFr

where we have used the continuity of the normal stress component at interfaces together with
wrp = 0 for all F ¢ ]-"}L) to infer that ZTE'T;L ZFefT(QﬂTF>WF)F = 0. Taking w = Up =
f%LTQh = féﬁ[%(y‘:p) in the definition (17al) of g%LTVJh for all T € Ty, we infer that

(BFLrGy, EfLrwy)r = (Vlip, Vewr)r + Z (Vslrnrr, Wrp — Wr)F. (48)
FeFr

Similarly, taking ¢ := 7% (V-u) in the definition [23b]) of D&Lrwy, for all T € Ty,, and recalling
the local commuting diagram property for I{,?, we infer that

(DEL7G), DY Lpwy)r = (nh(V-u), DYLrwy)r

= (Vau, Vowr)r + Y (W (Vu), (we —wr)nre)p, (49
FeFr

since V-wr € IP’S_I(T) < PE(T). Using ([@7)-([d9) to replace the corresponding terms in the
expression of &, (wy), we infer that

En(wn) = D, 2p {(Vs(u — i), Vawr)r + Y (Vs(u — lp)nrr, wr — WT)F}

TeTh FeFr
= D MV =7 (Vu))nre, wr — we)r — (20) s, Gy, wp) == T+ To + Tz, (50)
FE]‘—T

12



To estimate €1, we use the Cauchy—Schwarz inequality, the approximation property of
ré]{,ﬂ, and the mesh regularity properties and to infer that

IT1] S 200 ] pra gy W e e (51)
Proceeding similarly for %5 using the approximation property of W% yields

[Tal S AV ] s o [ e i (52)

To estimate T3, we infer from the symmetry and positivity of s, that
5| < (2)sn (T, Tp) s (Wi, wi) 7> < 20hM ] e gy o W< s (53)

where we have used to estimate the first factor and the second bound in to estimate
the second factor. The bound follows using inequalities , , and to estimate
the right-hand side of , and using the resulting bound in (46)). O

We now infer an energy error estimate comparing Vgu to the global (nonconforming)
symmetric gradient reconstruction gﬁgh such that gﬁgth = E@LTgh for all T € Tp,.

Corollary 10 (Estimate on symmetric gradient reconstruction). Under the assumptions of
Theorem[§, the following holds:

(21)|Vsu — Efup| < CR* <2MHuHHk+2m)d + AHVﬂHHHl(Th)) : (54)
where C' > 0 is a real number independent of h, u, and A.
Proof. For all T € Ty, the triangle inequality yields
|Vsu — EfLruplr < |Vs(u — rfIfu) |7 + | EFLr (@, — up)| 7,

since Vg (ﬂ?[{,ﬁy)@ = géiLTQh. The first term on the right-hand side is bounded using Lemma
and the second one using Theorem [§]

5.2 L’-error estimate for the displacement

In this section, we bound the |-|-norm of the displacement error. We assume elliptic regularity
in the following form: For all g € L?(Q)4, the unique solution of

—V‘g =g in €,
§=2uVsz + A(V2)lg  inQ, (55)
z=0 on 052,
satisfies the a priori estimate
w2l g2 ya + M V-zlmi@) < Cullgl- (56)

We first consider the displacement error ey, such that ep|r := ur —W:’}y € IP’S(T)d forall T € Tp,.

13



Theorem 11 (L2-error estimate for the displacement). Under the assumptions of Theorem@
and the elliptic reqularity assumption , the following holds:

lenl < CR2 (2palul geseryyo + AIV-ulgenr;)) (57)

where C' > 0 is a real number depending on , u, and o, but independent of X and h.

Proof. In the proof, we abbreviate by a < b the inequality a < Cb with real number C > 0
independent of h and ), but possibly depending on p. Since ||ens = (2un)”?|||er and
| len.n = (21)sn (-, )2, we infer from the error estimate that, with e, := up, — U), € U¥
and B(u, k) := 2p|u| grzc7)a + AIVu] grr,),

e+ snlen,en)”? < WP B(u, k). (58)

lex,

Consider the auxiliary problem with g := e and corresponding solution z and ¢. Inte-
grating by parts element-wise and since ejr = er, we infer that -

lenl® = = > (er, Vio)r = D, {(VseT,g)T + ) (er _eT7§nTF)F} ; (59)

TeT;, TeTh N FeFr

where we have used the continuity of the normal component of ¢ across interfaces together
with the fact that er = 0 for all F € .7-"}3. Let z;, := ((W?g)TGTh, (ﬂ?g)pe]:h) € sz,o (so that
Lrz, = I%QT) and observe that, for all T € 7Ty,

IVa(z — b IE2) |7 + b2 Vs(z — thIE2) lor < hrllzl ey, (60a)
IV-z = 7k (V-2) |7 + b’ V-2 = 7h(V-2) |or S hr| V2l o), (60b)
sr(Ihz, 182) < hrllz| gogrye. (60c)

Estimate is proved as in Lemma estimate results from the approximation
properties of 7k estimate (60c) is proved as in Lemma {4 Since ap,(ep,2),) = En(2Z),) with
En(zy) = ln(z),) — an(uy, z,), we rewrite as follows:

lenl® = { >

TeTh

(Vser, o) + Z (er _eT7§nTF)F] - ah(ehﬁh)} + &n(z) = %1 + o,
B FeFr B
(61)
For all T' € Ty, using the definition (17a) of g%LTgh with w = r%LTZh and the definition (23b))
of D?LTgh with ¢ = D%LTZh, we infer that

an(en,zp) = Z {(VseT,Sc’?)T + Z (er —eT,S:’?nTF)F} + (2u)sn(en,z),  (62)
TE'Th FE]'-T

with §:’ﬁ = Q;LE%LTZ,I + )\(DCI}LTZ,Z)Q. Plugging this expression into ¥7, multiple uses of the
Cauchy-Schwarz inequality together with the fact that sy (en,2,) < sn(en,en)”?sn(Zn.2) ">,
sn(zp,2zp) = ZTeTh s7(I%2, I%2), and the mesh regularity properties and yield

1/2

1

T1] < {llenlZ ), + sn(en en)} " x { > {HQT@)HQT + b0 (2) |3 + (2u)28T(I§Z=I§Z)}} ;
TeT,

14



with 07(z) == ¢ — SkLr2;, = (2p)Vs(z — r5I52) + (V-2 — 75.(V2))1s. Owing to the esti-

mate on ey, the approximation properties on z, and the regularity estimate , we
infer that

11 S W 2B, k) (12l ey + V-2l ) ) S BB, k) enl. (63)

Consider now Ts. Adding (g, Vsz) — (f,2) = 0 and since lx(2;,) = Ype7, (f; % 2)r, we infer
that

&n@) = Y, (@ Va2)r - (2)(EfLr8y, BfLr2,)r - A(DhLrfy, Dilrg,) |

TeT,
= 3 @wsr(Lrdy, Lr2,) + Y. (f.rhz —2)r (64)
TeTh TeT;,

= 52,1 + T2,2 + ‘3:2,3.

To bound Ty 1, we observe that E%LTQ}L = Vs([éi[éig) and géﬁLT’;\h = Vs(réﬂéig) owing
to , as well as D%LTﬁh = ﬂ%(V-y) and D%LTZh = W?(V-g) owing to Proposition . Using
the orthogonality relation , we infer that

To1 = 3 {C0)(Volu = thIF0), Vi(z = rh152)r + A(V-u = 7h(Vu), V2 = 7h(V-2))r}
TeT,

Hence, using the approximation properties and of f:’ﬁlé,i and 77:’}, respectively, to bound
the terms with u and using — to bound the terms with z leads to

2] < W 2B, k) (2l 2y + M V-2l (65)

Furthermore, since sp(Lru,, Lrz),) = sT(Iéiy,Iéig) < ST(I@,Iéiy)l/QsT(I%gJéig)l/Q, we infer

using and (60c]) that
[Tl < WM 2B(u, k)2l 2 0ya- (66)

Finally, since 7%, is self-adjoint and since k > 1, we infer that (f, Thy—2)r = (7hf—f,2)r =

(Wéif —fiz— W}g)T, whence

[F2,3] < P52 S 2] 2 (e (67)

Using f and the regularity estimate , we obtain
[Ta| < W52 B(u, k)|enl - (68)
The estimate follows using and to bound the right-hand side of ([61]). O

Finally, we infer an L?-estimate comparing u to the global (nonconforming) displacement
reconstructions r,’jgh and Bﬁgh such that r,’ighw = r%LTgh and Bﬁghw = B’%LTLJ}L for all
TeT,.

Corollary 12 (L?-estimate on displacement reconstructions). Under the assumptions of The-
orem [11], the following holds:

max(|lu — rpus|, |u — Riug|) < ChF*? (2u\lu\|m+zm)d + /\”V'UHH’CH(T,,,)) . (69)

where C' > 0 is a real number independent of A and h.
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Proof. For all T € Ty, the triangle inequality yields
lu = rflrunllr < |u — rflulr + |r5Ifu — riloun|r = 1 + T,

and T is readily estimated using Lemma To estimate ‘Eg, we first observe that, for all
ve HYT)?, we can write v = (v—vrnm)+VRM With vRM = |T\d ST +\T|d ST Ssv)(x z7),
where zp denotes the barycenter of T. Since (v — vrnm) € U(T), we infer owing to Korn’s
inequality that |v|r < Cxhr|Vssv|r + |vrm| 7, and using Cauchy-Schwarz inequalities

leads to
J v J V| -
T T

Applying this estimate to v = rTféu — TT Lzup, recalling (15)), and using the Cauchy—Schwarz
inequality together with mesh regularity, we infer that

HUHT CKhTHVSSU”T + |T‘_1/2 + |T‘;1/2hT

~ —1
%ol < hr| EFLr (@), — up) |7 + |7hu — ur|r + by D, hy Plrku — uplF = Taq + Too + Tas.
FeFr

The terms To; and Ty are estimated using Theorems [§] and respectively. Finally, to
estimate ¥ 3, we use the triangle inequality and the discrete trace inequality to infer that

|T23| < hr|Lru,

whence the bound on |u — r¥up| follows from Theorems [§| and To bound |u — RFupl|, we
observe that, recalling and using the boundedness of ﬂéi,

lu — Ryunlr < |lu = rhun|r + |[w5(rfun — @) |7 + |7hu — urr
< 2|y — riunlr + |7y — ur |7,
whence the conclusion readily follows. O

6 Implementation and numerical study

In this section we discuss implementation aspects and present numerical results. We verify
the error estimates derived in the previous section by means of a manufactured exact solution,
and we consider the classical Cook’s membrane test case. The numerical efficiency in terms
of CPU cost is also evaluated.

6.1 Implementation

An important step in the implementation consists in selecting a basis for each of the polynomial
spaces that appear in the construction. Let T € T, and denote by zp a point with respect to
which T is star-shaped (in the numerical tests, the barycenter of T' was used). As a basis for
PL(T), L € {k,k + 1}, we take, letting A’ := {a = (i)1<i<a € N | |a|n <1},

d
o< {[ e
i=1

i.e., the basis BlT is spanned by monomials in the translated and scaled coordinate variables
(é7.4)1<i<d- A basis for the polynomial space of vector-valued functions P!,(T) is then obtained

T — TT4

aeAl, &= I

v1<i<d}, (70)

16



by the Cartesian product of BL.. Similarly, for all F € Fj, we can define a basis B for PX_ (F)
spanned by monomials with respect to a local frame scaled using the face diameter and a point
with respect to which F is star-shaped. A basis for P%_| (F')? is obtained by Cartesian product.

Equation defines hierarchical bases, so that we can construct and evaluate B?’l
(required to solve (I4))) at quadrature nodes and obtain BE. (used to solve ([23))) by simply dis-
carding the highest-order functions. The constraints in are accounted for in problem ([14])
as follows: the zero-average condition for the displacement is replaced by the requirement that
functions vanish at zp, and this condition is incorporated by simply discarding the constant
function in Béﬁ“; the zero-average condition for the skew-symmetric part of the gradient is
enforced using a Lagrange multiplier (which is scalar-valued for d = 2 and R3-valued for
d = 3). Moreover, the homogeneous Dirichlet boundary condition is also enforced by means
of a Lagrange multiplier in P%_ (F)4 for all F € F).

Concerning numerical integration, in the two-dimensional case we can exploit the decom-
position of elements into triangles and use standard quadrature rules. In our implementation,
we have used the quadrature rules available in GetFem++ [26]. In the three-dimensional
case, this is also possible provided the faces of the elements are triangles or quadrangles yield-
ing pyramidal sub-elements for which standard cubature rules are available. If this is not the
case, a simplicial decomposition of the element can be considered, usually implying an increase
in the number of quadrature nodes. Similarly, numerically integrating on the mesh faces is
straightforward in two space dimensions and for elements with triangular or quadrangular
faces in three space dimensions. For more general polygonal faces in three space dimensions,
triangulating the face may be required.

6.2 Convergence and computational cost

To verify the estimates of Theorems[8|and [L] we solve the two-dimensional, pure-displacement
problem with p = 1, A € {1,1000}, displacement u = (u1,u2) such that

1
uy = sin(mxy) sin(mwxs) + TS ug = cos(mxy) cos(may) + T (71)
and load f = (f1, f2) such that
f1 = 2n?sin(mz) sin(7zs), fa2 = 2m% cos(mz1) cos(mxs).

The solution has vanishing divergence in the limit A — +oco. This, together with the
fact that f does not depend on A, make this test case suitable to check numerically that the
estimatesi and are indeed uniform in A\. We consider the three families of meshes
depicted in Figure the matching triangular and Kershaw mesh families of [21I] and the
(predominantly) hexagonal mesh family considered in [I6, Section 4.2.3]. The stress error is
the one estimated in Theorem , and the displacement error is estimated as |u — RFup|, cf.
Corollary [12] The convergence rates displayed in Figure [3] and [] for A = 1 and A = 1000,
respectively, are in agreement with the theoretical predictions. The slight superconvergence
observed for the Kershaw mesh family is due to the fact that the mesh regularity increases
when refining. As predicted, the error does not depend on A.

To check the performance of the proposed method in terms of CPU time, we have in-
strumented our code in the spirit of [15] to separately measure (i) the assembly time Tags,
accounting for the construction of the local contributions to the bilinear form aj, (cf. [B8)),
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Figure 2: Triangular, Kershaw, and hexagonal meshes for the numerical example of Section@

the local elimination of cell unknowns, and the assembly into a global matrix; (ii) the solution
time Ty corresponding to the solution of the global linear system. Local computations are
based on the linear algebra facilities provided by the Eigen3 library [19]. The linear systems
corresponding to problems , , and to the L2-orthogonal projectors 7751 and 77}‘; are
solved using the robust Cholesky factorization available in Eigen3. The global system (involv-
ing face unknowns only) is solved using SuperLU [II] through the PETSc 3.4 interface [2].
The tests have been run sequentially on a laptop computer powered by an Intel Core i7-3520
CPU running at 2.90 GHz and equipped with 8Gb of RAM.

To check how the more elaborate local computations (with respect, e.g., to standard finite
elements) affect the overall CPU cost, we plot in Figure |5 the ratio 7,ss/7s01 as a function of
card(Fp,). We consider the triangular and hexagonal mesh families for which Nj (cf. () is
respectively the smallest and the largest. It can be observed that, when refining the mesh,
the ratio 7T,ss/7sol rapidly decreases as a result of having (approximately) T,ss0C card(Fy) and
TeolC card(fh)3/2. This means that, in large test cases, the local computations can be expected
to have a negligible impact on the global CPU time.

Figures [6] and [7] depict the stress and displacement errors as a function of the total CPU
time Tiot = Tass + Tsol- Lhis representation is included to provide a fair basis of future
comparison with other methods. As expected from the regularity of the exact solution ,
the highest-order computation provides in all the cases the best precision for a given CPU
time as well as the largest reduction rate for the error.

6.3 Cook’s membrane test case

We next consider a bending dominated test case widely used in the mechanical engineering
literature and referred to as Cook’s membrane; cf. Figure 8| for a description of the domain
and of the boundary conditions. Following [I], we take a quasi-incompressible material with
p = 0.375 and A = 7.5x10%. The load F (cf. again Figure [8) is uniform and has unitary
resultant. We monitor the following quantities at the middle point A of coordinates x4 =
(48,52) of the right side of the domain: (i) the displacement, measured using the piecewise
polynomial, vector-valued fields up = (up1,un2) € P’;(ﬁ)d and Uy, = (Up,1,Un2) € PZH(E)”I
such that upp = ur for all T € T;, and @), = Bﬁgh (cf. Corollary and (ii) the pressure
pr(xz4) measured by the quantity )\D:’?LTgh where T denotes one mesh element such that
A € 0T (when two such elements exist, we arbitrarily choose one of them). The problem is
solved on triangular, Kershaw, and (predominantly) hexagonal mesh sequences obtained by
mapping the meshes depicted in Figure 2] onto the domain represented in Figure [8] Since no
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Figure 3: Errors vs. h for A =1
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Figure 8: Configuration for Cook’s membrane test case.

Table 1: Cook’s test case (cf. Section , triangular mesh family

(a) k=1
card(7p) card(Fn) wupi(za) Unai(za) un2(za) Un2(za) Pr(za)
56 92 —7.390 —7.414  16.712 16.717  5.123-1072
224 352 —7.312 —7.319 16.566 16.560 5.860 - 1072
896 1,376 —7.279 —7.282 16.498 16.496 6.614 - 1072
3,584 5,440 —7.265  —7.265 16.468 16.468  6.957-1072
14,336 21,632 —7.255  —7.255 16.449 16.449  7.051-1072
(b) k =2
card(T,) card(Fn) wupi(za) Uni(za) un2(za) Upa(za) pr(z4)
56 92 —7.320 —7.325 16.586 16.571  6.219- 1072
224 352 —7.282  —7.283 16.501 16.498  6.911-1072
896 1,376 —7.268 —7.268 16.474 16.474 7.077-1072
3,584 5,440 —17.264 —7.264 16.467 16.467 7.086 - 1072
14,336 21,632 —7.260 —7.260 16.460 16.460 7.093-1072

analytical solution is available for this test case, we use as reference quantities those obtained
for k = 2 on the finest triangular mesh composed of 14,336 elements:

Upa(za) = —7.2596x10° ¥y o(za) = 1.6460x10"0  pp(za) = 7.0928x1072.

The results collected in Tables show that the proposed method delivers accurate results
even on coarser meshes, and that the behavior of the solution is very well-captured using few
elements. As expected, the difference between the approximations u, and @, of the displace-
ment becomes negligible for sufficiently refined meshes. A comparison of the displacement
values for different meshes and polynomial degrees is presented in Figure[9 Finally, the solu-
tions obtained for £ = 1 on the coarsest, intermediate and finest hexagonal mesh refinement
levels are plotted in Figure[10] One can appreciate from Figure [L0] that a reasonably accurate
solution is obtained even with very few (22) elements and k£ = 1. The interface jumps in the
displacement field that are visible in left panel of Figure become rapidly negligible when
refining the mesh, as reflected in the central and right panels.
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Table 2: Cook’s test case (cf. Section , Kershaw mesh family

(a) k=1
card(7n) card(Fn) wpi(za) Una(za) un2(za) Un2(za) Pr(za)
289 612 —7.334 —7.343 16.590 16.594 6.855 - 102
1,156 2,380 —7.291 —7.296 16.513 16.516 7.011-102
2,601 5,304 —7.280 —7.282 16.494 16.494 7.068 - 1072
4,624 9,384 —7.273 —7.275 16.482 16.483 7.068 - 102
7,225 14,620 -7.270 —7.270 16.476 16.476 7.079-102
(b) k=2
card(7p) card(Fn) wupi(za) Uni(za) up2(za) Un2(za) pr(za)
289 612 —7.315 —-7.316 16.547 16.546 71121072
1,156 2,380 —7.285 —7.286 16.499 16.499 7.088 - 102
2,601 5,304 —7.276 —7.276 16.484 16.484 7.086 - 102
4,624 9,384 —7.267 —7.267 16.471 16.471 7.084 102
7,225 14,620  —7.264 —7.264  16.466  16.466  7.086 - 102

Table 3: Cook’s test case (cf. Section , hexagonal mesh family

(a) k=1
card(Ty) card(Fn) upi(za) Uni(za) un2(za) Un2(za) Pr(za)
22 62 —7275  —7.326  16.563 16.621  4.321-1072
76 220 —7.270 —7.302 16.510 16.526 5.554 - 102
280 824 —7.268 —7.284 16.485 16.493 6.457 - 1072
1,072 3,184 —7.265  —7.270  16.472 16.475  6.895 - 1072
4,192 12,512 —7261  —7.262  16.463 16.464  7.036 - 102
(b) k =2
card(7,) card(Fn) wupi(za) Uni(za) un2(za) Upa(za) pr(za)
22 62 —7291  —7.264  16.533 16.497  5.975-1072
76 220 —7.275  —7.283  16.491 16.493  6.808 - 102
280 824 —7.267 —7.269 16.473 16.475 7.120-102
1,072 3,184 —7.261  —7.261 16.462 16.462  7.088 102
4,192 12,512 —7.259  —7.259  16.459 16.459  7.084 1072
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Figure 9: Vertical (left) and horizontal (right) displacement at point A (cf. Figure |8) for
Cook’s membrane test case described in Section The tests were run with £ = 1 (solid
lines), k = 2 (dashed lines) and meshes obtained by mapping the meshes of Figure [2| onto the
domain depicted in Figure §]
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Figure 10: Deformed configuration for the coarsest, intermediate, and finest hexagonal meshes
for Cook’s test case described in Section [6.3] The color represents the magnitude of the
displacement field Z_%ﬁgh (cf. Corollary .
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