
Energy-Efficient FPGA Implementation for Binomial
Option Pricing Using OpenCL

Valentin Mena Morales∗†, Pierre-Henri Horrein∗, Amer Baghdadi∗, Erik Hochapfel†, Sandrine Vaton∗
∗Institut Mines-Telecom; Telecom Bretagne; CNRS Lab-STICC, IRISA, Brest, France

†ADACSYS, 7 rue de la Croix Martre, Palaiseau, France

Email: {valentin.menamorales,ph.horrein,sandrine.vaton,amer.baghdadi}@telecom-bretagne.eu {erik.hochapfel}@adacsys.com

Abstract—Energy efficiency of financial computations is a
performance criterion that can no longer be dismissed, and is
as crucial as raw acceleration and accuracy of the solution. In
order to reduce the energy consumption of financial accelerators,
FPGAs offer a good compromise with low power consumption
and high parallelism. However, designing and prototyping an
application on an FPGA-based platform are typically very time-
consuming and requires significant skills in hardware design. This
issue constitutes a major drawback with respect to software-
centric acceleration platforms and approaches. A high-level
approach has been chosen, using Altera’s implementation of
the OpenCL standard, to answer this issue. We present two
FPGA implementations of the binomial option pricing model
on American options. The results obtained on a Terasic DE4
- Stratix IV board form a solid basis to hold all the constraints
necessary for a real world application. The best implementation
can evaluate more than 2000 options/s with an average power of
less than 20W.

I. INTRODUCTION

FPGAs (Field Programmable Gate Arrays) can be used
as accelerators for financial computations, provided that the
algorithm to be implemented can be parallelized to fit op-
timally on the FPGA’s hardware resources. FPGAs provide
benefits in terms of power consumption and computation
time over a pure software solution, but usually come at a
cost in programmability. As opposed to classic HDL-based
design (High Description Language: VHDL, verilog, etc.),
some approaches [1] attempt to reduce development time
by giving access to a high-level framework. For instance,
the OpenCL standard (Open Computing Language) supports
FPGA targets, through Altera’s implementation of an OpenCL
compiler. Altera’s OpenCL compiler has been used in this
work so as to speed up a financial computation (pricing of
American options, as detailed in Section III) within a specific
set of constraints.

This work aims at providing an architecture that can price
2000 option values under a second while being powered by the
user’s workstation. These constraints define a use case where
a trader can use our work to estimate the implied volatility
curve of an option [2], giving him information on the expected
evolution of this financial product. When a volatility curve
of an option with a specific set of parameters is known, a
trader can replace the constant volatility used to model the
evolution of this option with the computed volatility and reach
more accurate levels of modelization. A second per volatility
curve (2000 option values per volatility curve for accuracy
considerations) is a duration short enough to fit within the
user’s timeframe when making a decision. So as to be certain
that the accelerator can be integrated into any user’s existing

infrastructure, a design limit of 10W has been set for its power
consumption. The market data and the reference prices from
which the 2000 input values are generated are based on a
binomial representation. This restricts our study to the pricing
of American options by a binomial model [3].

In Section II we present other works related to the subject.
Section III describes the financial application as well as the
OpenCL standard, and Sections IV and V detail respectively
an architecture study of OpenCL implementations and their
performance results.

II. RELATED WORK

The acceleration of financial algorithms has been the
subject of many articles, but most works focused on the
acceleration factor of the implemented solution, compared to
a reference software. Still, the energy cost of acceleration is
starting to be taken into account as a key performance criterion,
along computing times and accuracy. Following this trend, de
Schryver, et al. [4] have presented a benchmark to compare
option pricing accelerators between each other, and not only
between an accelerator and a reference software. They define
an option pricing accelerator as:

• a problem, usually finding the price of a financial
product,

• a mathematical model used to predict this product’s
behavior,

• a solution to price this product, meaning an algorithm
and its implementation.

This benchmark includes energy consumption as a criterion of
discrimination between solutions (J/option). They applied this
methodology to a design space exploration for the pricing of
barrier options in the Heston model which led to the selection
of a Multi-Level Monte Carlo method as the best compromise
between acceleration, accuracy and energy consumption.

The Monte Carlo method and its optimizations have been
extensively studied due to its massive parallelism. Accelerating
this method on parallel hardware such as GPU [5], [6] or
FPGA [7], [8] is quite efficient. However, the acceleration
factors that can be achieved are counterbalanced by the slow
convergence rate of this method. The Monte Carlo method is
best suited to complex model evaluation or to problems with
high dimensionality. Complex models are usually difficult to
price with other methods, while high dimensionality problems
benefits from the Monte Carlo’s linear increase in complexity
method with dimensionality. Most other pricing methods see
their complexity increase exponentially with dimensionality
(quadrature methods, finite differences methods, etc.).

IEEE978-3-9815370-2-4/DATE14/ c©2014 EDAA

The binomial option pricing model has seen less interest, as
they are harder to efficiently implement on classic acceleration
hardware, despite the possible gains in computing times. Still,
the work of Jin, et al. [9] can be mentioned, as well as [10]
(both on reconfigurable targets), and [11] for an architecture
based on a GPU, closer to the industry standards of CPU
and GPU clusters. Although not explicited in those papers,
one benefit of using FPGAs for acceleration is their low
consumption, when compared with GPUs and CPUs. Indeed,
FPGAs usually consume an order of magnitude less power than
CPUs or GPUs (≈ 10W for FPGA and ≈ 100W for GPUs
and CPUs). Those implementations price slightly higher than
103 American options/s with high precision for the fastest of
them [10], [11]. They can achieve better acceleration factors
compared to a software reference in specific cases, when
restrictions on accuracy are either alleviated (fixed precision
implementations) or strengthened (higher time discretization
steps). Unfortunately, the above referenced works do not
consider the energy consumption criterion.

Jin, et al. have also carried out a survey of different meth-
ods of model evaluations [12]. They conclude that quadrature
methods are the best compromise to price American options,
while tree-based methods are optimal when time-to-solution is
a key constraint. The results they described were obtained on
floating-point and fixed precision.

III. CONTEXT

A. Option Pricing

The main aim of financial applications when used as
decision aid tools is to provide the user with information on the
expected evolution of financial products. Those applications
can, for instance, provide an accurate estimation of a product
value at a given time or the risk associated with an investment.
Such applications either run on a server cluster to accelerate
them, or on the user’s personal computer when cost is a bigger
constraint than computation time.

The algorithm targeted in this paper implements a binomial
model to price American options. An option is a financial
product that gives the right (but not the obligation) to buy
(call option) or sell (put option) an asset before a given date.
An option pricing model tries to estimate an option price when
there exists no analytical solution to evaluate it. Many types
of options exist, each corresponding to a slightly different
version of this definition. For instance, European options give
the right to buy (or sell) an asset at a predetermined date,
whereas American options give the right to do so at any given
time before its expiration date. The value of the latter thus
depends on the asset price during the whole life of the option.
This means that the optimal value of an American option is
the maximum of all its possible values. The time dependancy
introduced by this maximum renders it non trivial to compute
(contrary to European options).

B. Binomial Model

The binomial model is a lattice-based method to price
options, with a time discretization (cf. Figure 1). To simulate
the evolution of the asset over time, the asset price can either
increase or decrease by a fixed amount at each time step,
with respective probabilities p and q = 1 − p. The tree is
recombining: if an asset value increases once before decreasing
once, it keeps the same value. This means that the number of
possible values only increases by one at each step. If ∆t is

(2, 2)

S2,2 = u²S0

(1, 2)

S1,2 =uS0

(2, 1)

S2,1 = S0

(2, 0)

S2,0 =u-2S0

T=2

Expiry date

1 t=0

Settlement date

∆t

1

2

0

1 2

Leaves

Initialisation

Backward

Iteration

(1, 1)

S1,1 =u-1S0

(0, 2)

S0,2 =S0

Vt,k = f(St,k) Vt,k = f(St,k; Vt+1,k; Vt+1,k-1)

Time steps

t

Node index

k

Option

Price

V0,2

Figure 1. Binomial tree applied to the pricing of an American option

the time discretization step, at time t = n∆t, n values are
possible for the underlying asset. The maximum time, which
is the option expiration time, is noted T , and N values are
possible at time T (T = N∆t). At time t, possible asset
prices are noted St,k with k ∈ 1, . . . , n. The option value
at time t, noted Vt,k, is computed as the maximum between
its value if it were exercised right now and its potential value
before expiry. In order to know both values at each node (i.e.
at each tree coordinate (t, k)), the tree is computed backward,
starting with the leaves, and ending with the option value S0,0

at time t = 0. S0,0 represents the option maximum value on
the considered time frame. The values at the leaves (ST,k, for
k ∈ 1, ..., N) correspond to the pricing of European options
and can be found analytically.

Each node is updated using the following recurrence for-
mulas (for a call option) [2]:

St,k = dSt+1,k

Vt,k = max(St,k −K; rpVt+1,k + rqVt+1,k−1)
(1)

where d,K, r, p, q are option dependent parameters, where:

• d = e(−σ∆t), where σ is the volatility of the option,
• K is the strike price (the price at which the option

can be bought),
• r is the risk free rate (assuming risk neutral valuation).

C. A High-Level Approach: OpenCL

OpenCL [13] is a framework for parallel programming on
heterogeneous platforms. It is based on a runtime host library
and C99 extensions for device programming, adapted to sup-
port vectorized data types, synchronization points, and other
functionalities. OpenCL is a standard in parallel programming,
which has been implemented on several hardware architec-
tures by manufacturers (e.g.: GPUs, CPUs, FPGAs, etc.). An
OpenCL program can be executed on any of those devices with
only a handful of modifications, allowing portability. As shown
on Figure 2, an OpenCL device is subdivided into compute
units, which execute multiple copies (work-items) of a piece
of code (kernel). However, performances can vary depending
on the compatibility between the program and the architecture
of the targeted device.

HOST

DEVICE

GLOBAL MEMORY

Compute Unit

LOCAL MEMORY LOCAL MEMORY

Work-Item

P
R

IV
A

T
E

Work-Item

Core

P
R

IV
A

T
E

Core
Work-

Group

LOCAL MEMORY

Work-Item

Core

P
R

IV
A

T
E

Figure 2. OpenCL platform

The master of an OpenCL architecture (the host) handles
the application’s data-flow through queues of orders to the
devices it is connected to. Data movement is thus explicitly
specified by the programmer. This data management relies on a
relaxed memory consistency model, with three memory levels:
global, local and private. The work-items on a device are orga-
nized into work-groups that share a common memory region
(local memory) and synchronization points. This memory level
acts as a cache-coherent memory for the programmer, which
ease any data partitioning problem that may arise: every work-
item within a work-group can access any data stored in the
address space of the local memory. The global memory can be
accessed by any work-group and by the host. Access to global
memory can be coalesced to reduce latency, provided that
accessed pieces of data are adjacent. Nevertheless, accesses to
global data is always slower than accesses to local data (up to
an order of magnitude in bandwidth). Finally, each work-item
has access to a single private memory region.

Two OpenCL devices have been used as implementation
targets: an FPGA board as the final target, and a GPU as an
initial target. The use of a GPU board reduced development
time through faster compilation and thus shorter debug and
development iterations. It has also served as a reference to
compare the results accuracy and computation times of the
proposed acceleration solutions.

IV. ARCHITECTURE STUDY

A. Straightforward Implementation

Compared with a classic HDL design methodology, work
scheduling on hardware resources is delegated to the device
in OpenCL. The developper simply enqueues the necessary
number of work-items in the host program and lets the
workload get dispatched on the device’s resources as best as
possible, with no need to program a layer of control over its
operative core. Enqueueing far more work than what can be
processed at once on the device can then help it optimize its
use of hardware resources, and is actually necessary to reach an
acceleration factor that balances the communication overhead
between the host and the device.

For this reason, the first approach implements a dataflow
paradigm, supported by kernels independent from each other
and forming a highly scalable application. A single tree node of
the binomial tree (Figure 1) is computed by a kernel, which is

enqueued enough times so that a full tree datapath is computed
at once. This amounts to N(N + 1)/2 work-items, with N
the total number of discretization steps. Each stage of the tree
(i.e., each time-step) corresponds to a different pipelined option
being computed. This efficiently pipelines N+1 options on the
FPGA device, one option entering the tree and N options at
each step within the tree. An option is computed by calling this
network of kernels N times, until it exits the pipeline. Those
iterations are controlled by the host program, which schedules
the memory transfers between the host and the device and the
sequential execution of the kernel batches. Four instructions
are executed by the host during each batch: initializing the data
necessary to fill the first addresses of the input buffer, writing
this data to the device global memory, enqueueing the kernels
and reading a result from the global memory. For instance, let
us consider the pricing of 2000 options with 1024 steps. The
tree for one option will roughly contain 5.105 tree nodes. The
whole tree must be processed for each option, which means
that approximately 1.109 tree nodes (and thus kernels) must
be processed. The results of each batch is stored in global
buffers, containing all the internal data. The use of global
buffers enables data to be stored between two batches, and
enables this data to be accessed by any kernel. To avoid any
memory conflict, ping-pong buffering is used (one buffer is
read while the other one is written). Those buffers are switched
between each batch to let data flow through the network. Data
updated during each batch are stored in these buffers (i.e. St,k,
Vt,k, and indexes). Option-dependent data, yet that is constant
during an option pricing, is stored in another global buffer.
Figure 3 describes this data-flow, applied to the tree shown in
Subsection III-B. The tree is displayed flattened here, with the

(2, 0)

Id=3

(1, 1)

Id=2

(2, 2)

Id=5

(2, 1)

Id=4

(1, 0)

Id=1

(0, 0)

Id=0

Option 0

Option 1

Option 3

Option 2

Work-items

(t, k)

Global Id

Ping Pong

Buffers

Id+N+1

Id+N-t

External operation

(with host)

Work-items

execution

Buffer switch between batches

Figure 3. Straightforward implementation of the binomial tree illustrated in
Figure 1

last tree node on the left side (at (t, k) = (0, 0) and the first
encountered nodes on the right side (from (t, k) = (2, 0) to
(t, k) = (2, 2). Option 0 is being computed by the work-item
(0, 0) and will be read right before the next batch of kernels is
enqueued, while three other options are in the pipeline, options
1 and 2 being processed (respectively) by the work-items (1, 0)
and (1, 1) and (2, 0), (2, 1) and (2, 2) while option 3 is being
written in the buffer by the host. Two buffer addresses are read
by each work-item to compute a tree node value (following
recurrence formulas defined in Equation 1). The id indicated in
each work-item stands for their respective global index, starting
at 0 for the first encountered work-item, at the (2, 2) position
in the tree.

Work-item indexing is a key point in OpenCL program-
ming. Each work-item has several indexes associated to it:

• a global index, unique to each work-item and rang-
ing from 0 to the number of enqueued kernels
(N(N + 1)/2− 1 here),

• the index of its work-group,
• and its individual (local) index inside this work-group.

In this implementation, the address of a work-item input is a
function of its time discretization step t within the binomial
tree. However, work-items in a work-group do not necessarily
correspond to tree nodes from the same time discretization
step, as work-group size is identical for each work-group.
Work-items can only be identified by their global index, and
their input addresses are then (id + N − t). Computing time
steps within the work-item would be too costly in terms of
computing resources. They are stored in a constant buffer,
allowing work-items to determine their Read addresses at the
beginnning of each batch (Id + N − t). Write addresses are
less complex and depend only of the global index of the work-
items (Id+N + 1).

B. Optimized Approach

The above described dataflow approach is scalable and
easily implemented. However, it suffers from several draw-
backs. First, the host iterates through each batch of kernels
to continuously fill the pipeline, and in doing so results in
an overhead in computation time. Memory operations and
work-items executions are overlapped with one another and
synchronized by the host, but they still incur a cost in
computation time. Besides, the structure of the work-items
is not kept between batches: private memories are emptied
and local memories are unused, which results in new copies
of previously processed data from the global memory to the
work-items at the beginning of each batch. A way to solve
these issues lies into a reordering of work-items into work-
groups, where this division of work-items carries information
meaningful for the computation of a binomial tree. A task-
based parallelism fits this work division, with each work-
group assigned to an option pricing (in other words, a full
binomial tree). To reduce the amount of data copied during a
computation, a work-item can be asssigned to the computation
of a row in a tree, where a row can be defined as every
tree node (t, k) with k constant. Following the terminology
previously used in this work, a work-item would be assigned
to the computation of the tree nodes (t, k), in a loop from
t = T , down to t = N − (k+1), at which point any following
computation would be useless (i.e. outside of the tree). T work-
items are then necessary at the beginning of the computation
to initialize the leaves, and one less work-item is supposed to
be computed between each time step. With such a repartition,
options parameters, as well as St,k, can be kept in private
memory with St,k = dSt−1,k updated by the work-item (t, k)
at the beginning of each iteration. All shared data between
work-items (i.e. Vt,k for k ∈ {0...N}) are stored in local
memory, which is possible as they are all in the same work-
group. As local memory is scarcer than global memory, no
ping pong buffers are used; they are replaced by a single local
buffer, associated with local synchronization points (barriers)
and temporary copies to avoid memory conflicts (cf. Figure 4).
From the host point of view, three commands must be executed
to run this computation:

1) copying all option parameters in global memory,
2) enqueueing enough kernels to process all the data,

(t, 2)

Id=2

(t, 1)

Id=1

(t, 0)

Id=0

St, 2 St, 1 St, 0

Local

Memory

Private

Memory Vt, 0 Vt, 1 Vt, 1 Vt, 2 Vt, 2 Vt, 3

Vt, 3 Vt, 2 Vt, 1 Vt, 0

Vt, 3
Global

Memory

Synchronisation barrier

Work-items execution

Work-items

(t, k)

Local Id

Copy

Compute

Store to local

memory

Figure 4. Data-flow during the computation of a binomial tree (Figure 1)
with an optimized kernel

3) and read back the final results from global memory.

Option-dependent data is transfered once in global memory
during the initialization step (1), and is then copied in private
or local memory during the computation of the tree leaves
(not displayed on Figure 4). Similarly, the results are read
from global memory (3) only when the full workload has been
processed, i.e. when all options have been computed. Com-
pared with the straightforward implementation, host-device
interaction is reduced to a minimum. The main restrictions on
this implementation are linked to OpenCL constraints on the
use of work-groups. The work-group size is a constant defined
when enqueueing a kernel on a device, and cannot be modified
on the fly. When a complete tree row has been processed, the
corresponding work-item is either left idle or its results are
ignored; hardware resources are unlikely to be reused. Besides,
even if the kernel is more complex, only N ∗Nop work-items
have to be enqueued to compute Nop options: more options
may have to be priced to reach device saturation, which is a
requirement in order to reach maximum raw performance.

V. RESULTS

In order to validate the approach, both proposed architec-
tures have been implemented. In this section, the results of
these implementations are presented.

A. Test Environment

Three target technologies were considered: a CPU on
which the reference software ran, a GPU for development and
comparison purposes, and an FPGA. The CPU is a quadcore
Intel Xeon X5450 running at 3.0 GHz, the reference software
being written in C. A single core of the Xeon was used
during tests. The operating system running on the CPU is
a Linux kernel 3.2 with 64 bits support. The targeted GPU
is an NVIDIA GeForce GTX660 TI with 5 compute units.
The board’s global memory consists of a 2 GB GDDR5
memory with 144 GB/s of bandwidth and an access from the
host through a PCIe 3.0 connection with x16 lanes (theorical
throughput of 985 MB/s per lane) [14]. Local memory on the
GPU is made of on-chip L1 caches of 48 kB per compute unit.

The FPGA board is a Terasic DE4 based on a Stratix IV
4SGX530. Global memory is stored in two DDR2 memory
banks, for a maximum theorical bandwidth of 12.75 GB/s to
and from the FPGA (at a 400 MHz clock rate), and is accessi-
ble from the host through a PCIe gen2 4x connection. The PCIe
connection has a maximum bandwidth of 500 MB/s per lane,
meaning the DE4 board’s maximum bandwidth is 2 GB/s. The

local memory is implemented through an interconnect structure
that gives access to on-chip RAM blocks as simple dual port
RAMs, running at 600 MHz. Specifically, M9K RAM blocks
are used (RAM blocks of 256x36 bits). Private memory is
implemented as flip-flops within the data flow and thus runs at
the kernel’s frequency. Each kernel implemented on the FPGA
board was compiled with Quartus II 64 bits.

B. Hardware Resources Management and Utilization

All performance results were obtained according to the use
case detailed in the Introduction (Section I), with a goal of
less than 2000 options computed per second, and an available
power of approximately 10W. The need for accuracy is met
by representing all data in double precision and by choosing
a discretization step of T = 1024. This provides a good com-
promise between speed, precision and hardware restrictions (in
terms of memory resources). Further gain in efficiency could
be achieved by manual fine tuning (i.e. custom data types), as
seen in classic FPGA designs. We chose not to do so as it
would not yield significant enough benefits compared with the
necessary development time and would defeat the purpose of
using the OpenCL standard.

Both kernels described in Section IV are detailed below.
Table I shows compilation results for both kernels presented
in Section IV, when implemented on the DE4 board. Those
results were given by the Quartus II Fitter Summary as config-
ured by default when running Altera’s OpenCL Compiler, and
Quartus Power Estimation tool (quartus_pow) to estimate the
kernel’s power consumption. In table I, the memory bits row
covers M9K RAM blocks as well as M144K blocks (RAM
block of 2048x72 bits). All results are given in a base 2
definition (i.e., 1K = 1024 = 210).

Table I. RESOURCE USAGE

Stratix IV EP4SGX530

Kernel IV.A Kernel IV.B

Logic utilization 99 % 66 %

Registers 411 K/415 K 245 K/415 K

Memory bits 10,843 K/20,736 K (52 %) 7,990 K/20,736 K (39 %)

including M9K 1,250/1,250 (100 %) 1,118/1,280 (89 %)

DSP (18-bit) 586/1 K (59 %) 760/1 K (76 %)

Clock Frequency 98.27 MHz 162.62 MHz

Power consumption (W) 15 17

Those kernels were parallelized using several options of
Altera’s OpenCL Compiler. First, compiler directives can
be used to either replicate entire hardware pipelines or to
vectorize the kernel execution. When replicating the pipeline,
computations can be done independently from one another,
while vectorization corresponds to an SIMD work division
(Single Instruction, Multiple Data). From empiric observations,
vectorization is usually a less resource-consuming optimization
than replication. It also eases memory coalescing optimization.
However, it is more constraining: vectorization can only be
done by powers of two, and be a divider of the total work-
group size. Besides, it is also possible to unroll any loop
included in the kernel through #pragma directives. Loop
unrolling uses less memory than a full replication, while giving
another way to increase throughput and optimize resource
consumption. Loop unrolling, replication and vectorization are
3 parameters that help reach the best compromise between
resource utilization, latency and throughput. In our case, Ker-
nel IV.A has been vectorized twice and replicated 3 times to

use the maximum possible resources on the FPGA. Kernel
IV.B contains an internal loop, which has been unrolled twice,
coupled with a 4 times vectorization of the kernel. Both
options of parallelization were chosen after several compilation
iterations to find the best resource consumption rate.

It is interesting to note that, when optimized, both kernels
use most of the M9K Block RAMs available, even though
those blocks are used differently in the two kernels. Kernel
IV.B implements its local memory as M9K blocks, while
kernel IV.A uses those to coalesce its memory accesses to
the global memory and store its inputs and outputs in shallow
FIFOs. The kernels’ power consumptions (15 and 17W) are
upper bounds of the actual power consumption, and are resp.
50 and 70 % higher than the budget limit of 10W. They are an
order of magnitude lower than the power consumption of the
Xeon and the GTX660, with a respective Thermal Dissipation
Power of 120 and 140W (see [14], [15], resp.). It is worth
mentioning that the power consumption results of the FPGA
designs do not encompass the DDR2 power consumption, nor
any other part of the board but the FPGA. Still, the FPGA
chip is responsible for most of the power consumption on the
board, and those results represent a good approximation of the
total power consumption of the DE4 board.

C. Performance Comparison

Table II illustrates the performances for each kernel on
GPU and FPGA, along with software reference results, and
published results for comparison [9], [10]. All the presented
results were sampled after device saturation (best use case
possible). After device saturation, computation time is a linear
function of the number of computed options. This saturation
typically happens at 105 priced options, which represents 5
plotted volatility curve (2000 options per volatility curve),
which seems to be a realistic scenario. Only the kernel IV.B
implemented on the GTX660 has a saturation at a higher
number of options (106 options in both double and single
precision). Higher throughput could be reached by increasing
the implementation latency, but it would effectively rise the
device saturation rate and reduce the accelerator’s efficiency
at lower workloads. As we consider an accelerator used by
a single trader and not a shared resource (e.g., a server
component), latency at low workload is an issue and must be
minimized. The first implemented kernel presents extremely
poor computing times, in both GPU and FPGA versions. This
is due to memory copy from global memory to the host: one
of the two ping pong buffers is fully read between each batch
(approximately 19 MB for N = 1024), effectively stalling the
kernel to avoid overwriting the results. A modified version of
this kernel on GPU, with a reduced number of read operations
between host and device, has an acceleration factor 14 times
better than the initial kernel version on the same hardware
(840 options/s vs 58.4 options/s). Modifications of this new
version of the kernel to run on the DE4 board are ongoing, but
the same order of magnitude of acceleration can be expected.

The kernel IV.B shows more promising results. More
than 2000 options can be computed in less than a second
(5150 options/s). Considering energy efficiency, the FPGA
implementation is more than 5 times more energy efficient
than the software reference. Unfortunately, this kernel does
not reach the accuracy levels required for this application,
with a RMSE (Root Mean Square Error) of 10−3 only. The
same kernel implemented on GPU has no accuracy issues. The
source of this inacurracy has been isolated and is due to the use

Table II. PERFORMANCES

Kernel IV.A Kernel IV.B Reference Software [9] [10]

Platform FPGA GPU FPGA GPU GPU
Single Core Xeon

X5450
Virtex 4 xc4vsx55 Stratix III EP3SE260

Precision Double Double Double Single Double Single Double Double Double

options/s 25 53 2400 47000 8900 116 222 385 1152

RMSE ~10−3 0 ~10−3 0 0 ~10−3 0 0 0

options/J 1.7 0.4 140 340 64 1 1.85 N/A N/A

Tree nodes/s 13 M 30 M 1.3 G 25 G 4.7 G 61 M 117 M 202 M 576 M

of the Power operator. This operator shows an RMSE of 10−3,
compared with a software reference. The Power operator is not
used within the kernel IV.A as the tree leaves are computed
by the host and then tranfered to the device, contrary to kernel
IV.B where the tree leaves are initialized in the device (a work-
item for each tree leaf).

The performance gap in computation time between FPGA
and GPU kernels comes from the high number of streaming
multiprocessors that are present on this GPU. The GTX660
boasts a total of 960 stream processors (CUDA cores), with
1 double precision Arithmetic Logic Unit (ALU) per 8 stream
processors (120 DP-ALUs) and running at 980 MHz. This out-
ranks the processing capabilities of the FPGA board, but also
means that the GPU board needs a more important workload to
reach optimal performances (ten times as many). Besides, this
increase in latency does not lead to much gain in acceleration
factor, as the number of options/s computed by the GTX660
and the FPGA version are within a factor 5 of each other.
Both computation times fall between expected results. This
is illustrated by the number of options that can be computed
with a single joule: the implementation on the DE4 board is
2 times more energy-efficient than the GPU implementation.
Provided that the 13.0 SP1 of Altera’s OpenCL compiler
generates an accurate Power operator, the kernel IV.B on the
DE4 board answers most of the constraints of our problem:
pricing American options with high accuracy, at 2000 options/s
or higher, and with minimal energy consumption. In case this
issue is not solved with version 13.0 SP1, the values at the
leaves will have to be computed on the host and sent to
global memory, to be then copied in local memory, to the
detriment of speed. The energy consumption still remains an
issue, as the best current solution still needs more power than
what is available. Workarounds exist, however. The best kernel
implemented shows faster computation times than necessary;
either clock frequency or paralellism levels can be lowered to
reduce energy consumption. Besides, a less power consuming
FPGA board can be selected that would better fit our goal.
Finally, the DDR memory size used to implement global
memory can be drastically reduced with no other impact on
general performances but energy savings, as kernel IV.B use at
best less than 100 KB of global memory during computation.

VI. CONCLUSION & FUTURE WORK

This paper presents two implementations of a binomial
option pricing model applied to American options. The hard-
ware target is a system comprising a CPU as host station,
as well as an FPGA board to accelerate computations with
minimal power consumption. The best OpenCL kernel is close
to the performance levels desired, with more than 2000 options
priced per second. The power that is used to achieve this
computation time, 7W more than available, can be lowered
to acceptable levels with a more appropriate target and by

reducing the kernel frequency. Future work will focus on other
hardware architectures supporting the OpenCL standard [16],
[17], so as to compare their performances to the FPGA device
and study the portability of the OpenCL kernel.

REFERENCES

[1] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, and Z. Zhang,
“High-level synthesis for FPGAs: from prototyping to deployment,”
vol. 30, no. 4, pp. 473–491, Apr. 2011.

[2] J. Hull, Options, Futures, & Other Derivatives, ser. Prentice Hall finance
series. Prentice Hall, 2009.

[3] J. C. Cox, S. A. Ross, and M. Rubinstein, “Option pricing: A simplified
approach,” Journal of Financial Economics, vol. 7, no. 3, pp. 229–263,
Sep. 1979.

[4] C. de Schryver, I. Shcherbakov, F. Kienle, N. Wehn, H. Marxen,
A. Kostiuk, and R. Korn, “An energy efficient FPGA accelerator
for monte carlo option pricing with the heston model,” in 2011
International Conference on Reconfigurable Computing and FPGAs
(ReConFig), Dec. 2011, pp. 468–474.

[5] E. Atanassov, S. Ivanovska, and D. Dimitrov, “Parallel implementation
of option pricing methods on multiple GPUs,” in 2012 Proceedings of
the 35th International Convention MIPRO, May 2012, pp. 368–373.

[6] D. Murakowski, W. Brouwer, and V. Natoli, “CUDA implementation
of barrier option valuation with jump-diffusion process and brownian
bridge,” in 2010 IEEE Workshop on High Performance Computational
Finance (WHPCF), Nov. 2010, pp. 1–4.

[7] R. Sridharan, G. Cooke, K. Hill, H. Lam, and A. George, “FPGA-
Based reconfigurable computing for pricing multi-asset barrier options,”
in 2012 Symposium on Application Accelerators in High Performance
Computing (SAAHPC), Jul. 2012, pp. 34–43.

[8] A. Tse, D. Thomas, K. Tsoi, and W. Luk, “Reconfigurable control
variate monte-carlo designs for pricing exotic options,” in 2010 Inter-
national Conference on Field Programmable Logic and Applications
(FPL), Sep. 2010, pp. 364–367.

[9] Q. Jin, D. B. Thomas, W. Luk, and B. Cope, “Exploring reconfigurable
architectures for binomial-tree pricing models,” in Reconfigurable Com-
puting: Architectures, Tools and Applications. Springer, 2008, pp.
245–255.

[10] C. Wynnyk and M. Magdon-Ismail, “Pricing the american option using
reconfigurable hardware.” IEEE, 2009, pp. 532–536.

[11] M. Pharr and R. Fernando, GPU Gems 2: Programming Techniques for
High-Performance Graphics and General-Purpose Computation (Gpu
Gems). Addison-Wesley Professional, 2005.

[12] Q. Jin, W. Luk, and D. Thomas, “On comparing financial option price
solvers on FPGA,” in 2011 IEEE 19th Annual International Symposium
on Field-Programmable Custom Computing Machines (FCCM), May
2011, pp. 89–92.

[13] K. O. W. Group, “The opencl specification,” 2011. [Online]. Available:
http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf

[14] “GeForce GTX 660 | Specifications | GeForce.” [Online].
Available: http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-
660/specifications

[15] “ARK | Intel R©Xeon R©Processor X5450 (12M Cache, 3.00GHz, 1333
MHz FSB).” [Online]. Available: http://ark.intel.com/products/34446/

[16] T. Flanagan, Z. Lin, and S. Narnakaje, “Accelerate multicore application
development with keystone software.”

[17] “Software Development Kit OpenCLTMon ARM Linux.” [Online].
Available: http://malideveloper.arm.com/develop-for-mali/sdks/mali-
opencl-sdk/

