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Expansion of a singularly perturbed equation with a two-scale

converging convection term

Alexandre MOUTON∗∗

April 16, 2014

Abstract

In many physical contexts, evolution convection equations may present some very large amplitude

convective terms. As an example, in the context of magnetic confinement fusion, the distribution

function which describes the plasma satisfies the Vlasvov equation in which some terms are of the same

order as ǫ
−1, ǫ ≪ 1 being the characteristic gyrokinetic period of the particles around the magnetic

lines. In this paper, we aim to present a model hierarchy for modeling the distribution function for

any value of ǫ by using some two-scale convergence tools. Following Frénod & Sonnendrücker’s recent

work, we choose the framework of a singularly perturbed convection equation where the convective

terms admits a high amplitude part which periodically oscillates in time with high frequency ǫ
−1

≫ 1.

In this abstract framework, we derive an expansion with respect to the small parameter ǫ and we

recursively identify each term of this expansion. Finally, we apply this new model hierarchy to the

context of a linear Vlasov equation in the presence of a high amplitude external magnetic field.

Key words. Vlasov equation, Two-scale convergence, Gyrokinetic approximations, convection equa-
tion.

AMS subject classifications. 35Q83, 76M40, 78A35, 82D10.

1 Introduction

For sixty years, Magnetic Confinement Fusion (MCF) is one of the most important technological chal-
lenge for producing domestic energy. Indeed, this worldwide project involves physicists, engineers and
mathematicians in order to understand and reproduce on Earth the solar magnetic fusion reaction. One
of the most famous examples of this work programme is the ITER project localized in Cadarache (France)
which attempts to produce a fusion plasma in a tokamak reactor by confining it thanks to a strong ex-
ternal magnetic field. Besides the required technological aspects of MCF, it became necessary for thirty
years to lead a rigorous study of the behaviour of such a plasma and this work takes the form of the
derivation of mathematical models and of high precision numerical experiments.

In the present paper, we focus on the Vlasov equation in presence of a external magnetic field with
an amplitude of the same order as ǫ−1 ≫ 1 and on its limit regime as ǫ → 0. Such an equation is
the main subject of many previous works: indeed, many results about the mathematical justifications of
Guiding-Center and Finite Larmor Radius limit regimes have been established by Bostan [5, 6], Frénod
& Sonnendrücker [13, 15, 17], Frénod & Mouton [12, 28], Golse & Saint-Raymond [18, 19] and Han-Kwan
[21, 22, 23]. Most of these results are based on the use of two-scale convergence and homogenization
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ideas which led to some enrichements of the considered models.
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techniques (see Allaire [3] and Nguetseng [30]) or compactness methods. These mathematical studies
allowed to validate and reinforce the tokamak plasma models presented by Littlejohn, Lee et al., Dubin
et al. or Brizard et al. (see [26], [24, 25], [9], [7, 8]).

The Vlasov equations we are focused on in the present paper are the following:










∂tfǫ + v · ∇xfǫ +

(

Eǫ + v ×Bǫ +
v × βǫ

ǫ

)

· ∇vfǫ = 0 ,

fǫ(t = 0,x,v) = f0(x,v) ,

(1.1)











∂tfǫ +
v⊥

ǫ
· ∇x⊥

fǫ + v|| ∂x||
fǫ +

(

Eǫ + v ×Bǫ +
v ×M

ǫ

)

· ∇vfǫ = 0 ,

fǫ(t = 0,x,v) = f0(x,v) .

(1.2)

In both equations, fǫ = fǫ(t,x,v) is the distribution function which describes the evolution of the plasma
in the phase space, t, x and v stand for the time, space and velocity variables, Eǫ = Eǫ(t,x) and
Bǫ = Bǫ(t,x) are the external electric and magnetic fields, βǫ = βǫ(t,x) is a given vector function
assumed to oscillate in time with O(ǫ−1) order frequency, M is a fixed unit vector in R

3 and, for any
v ∈ R

3, v|| = M ·v and v⊥ = v− v|| M. These equations can be obtained by rescaling the linear Vlasov
equation as follows. First, we start from the collisionless Vlasov equation

{

∂tf + v · ∇xf +
q

m
(E+ v ×B) · ∇vf = 0 ,

f(t = 0,x,v) = f0(x,v) ,

which describes the evolution of a cloud of particles with unit charge q and unit mass m submitted to
external electric and magnetic fields E = E(t,x) and B = B(t,x).
We obtain (1.1) and (1.2) thanks to a rescaling procedure: indeed, for obtaining (1.1), we rescale the
variables, the external fields and the distribution function by setting x

′ = xx′, v
′ = v v′, t = t t′,

f(t,x,v) = f f ′(t′,x′,v′), E(t,x) = EE
′(t′,x′), B(t,x) = BB

′(t′,x′), where x, v, t, f, E,B are re-
spectively the characteristic length, the characteristic velocity, the characteristic time, the characteristic
distribution function, the characteristic electric field and the characteristic magnetic field. Introducing
the characteristic gyrofrequency of the particles ω = q B

m and the characteristic Larmor radius aL = v
ω ,

the rescaled Vlasov equation writes










∂t′f
′ + t ω

aL

x
v
′ · ∇xf

′ +

(

t ω
E

v B
E

′ + t ω v
′ ×B

′

)

· ∇v
′f ′ = 0 ,

f ′(t′ = 0,x′,v′) = f0′(x′,v′) ,

Then, considering a strong external magnetic field induces the following ratios:

t ω =
1

ǫ
,

E

v B
= ǫ ,

aL

x
= ǫ ,

where ǫ is a dimensionless parameter close to 0. Hence, omitting the primed notations and adding ǫ
in subscript for the distribution function and the electric and magnetic fields, we get equation (1.1). A
similar procedure gives (1.2) by replacing the rescaling x

′ = xx′ by x′|| = x|| x
′
||, x

′
⊥ = x⊥ x

′
⊥ and by

assuming that
aL

x||
= ǫ ,

aL

x⊥
= 1 ,

instead of aL = ǫ x.
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Both equations (1.1) and (1.2) can be viewed as particular formulations of a generic singularly per-
turbed convection equation of the form











∂tuǫ(t,x) +Aǫ(t,x) · ∇xuǫ(t,x) +
1

ǫ
L

(

t,
t

ǫ
,x

)

· ∇xuǫ(t,x) = 0 ,

uǫ(t = 0,x) = u0(x) .

(1.3)

where t ∈ [0, T ] and x ∈ R
n (n ∈ N

∗) are the variables (T > 0 is fixed), Aǫ : [0, T ] × R
n → R

n and
L : [0, T ]× R × R

n → R
n are given vector functions and the solution quantity is uǫ : [0, T ]× R

n → R.
We fix θ > 0 and we assume that Aǫ and L are divergence-free in x-direction and that L is θ-periodic in
τ -direction, i.e.

∀ (t, τ,x) ∈ [0, T ]× R× R
n , ∇x ·Aǫ(t,x) = ∇x · L(t, τ,x) = 0 , (1.4)

∀ (t, τ,x) ∈ [0, T ]× R× R
n , L(t, τ + θ,x) = L(t, τ,x) . (1.5)

We also assume that, for any fixed ǫ > 0, the initial data u0 and the vector functions Aǫ and L satisfy
the minimal required smoothness properties for insuring the existence and the uniqueness of the solution
uǫ of (1.3).

The main goal of the present paper is to identify the required hypotheses for the sequence (Aǫ)ǫ> 0

and for L in order to develop uǫ as follows

uǫ(t,x) =

+∞
∑

k=0

ǫk Uk

(

t,
t

ǫ
,x

)

, (1.6)

where each Uk : [0, T ]× R× R
n → R is θ-periodic in τ -direction and has to be identified.

A similar work has been lead by Frénod, Raviart and Sonnendrücker [13]: in this paper, the authors
considered a simplified version by assuming that L only depends on t and x and that the vector function
Aǫ = A does not depend on ǫ. By assuming that A,L ∈ L∞

(

0, T ;W 1,∞(Rn)
)

, they proposed to write
each Uk as

Uk(t, τ,x) = Vk (t,X(−τ ;x, t; 0)) +Wk (t, τ,X(−τ ;x, t; 0)) , k ∈ N ,

and they identified each Vk andWk thanks to a recurrence formula in k. Furthermore, thanks to additional
assumptions on Wk, they established some two-scale convergence results of the form

uǫ,k(t,x) −→ Uk(t, τ,x) two-scale,

where (uǫ,k)k ∈N is defined recursively by










uǫ,k(t,x) :=
1

ǫ

(

uǫ,k−1(t,x)− Uk−1

(

t,
t

ǫ
,x

))

, if k > 0,

uǫ,0(t,x) := uǫ(t,x) .

(1.7)

An alternative methodology has been proposed by Bostan [6] in the context of L = L(x) and Aǫ = A

strongly depending on L. This context is well suited for simplifying the expression of the 0-th order
limit model established by Frénod, Raviart and Sonnendrücker in [13] and allows a simple justification of
Guiding-Center and Finite Larmor Radius approximations of the linear Vlasov equations (1.1) and (1.2)
where the distribution function fǫ strongly converges in L∞

(

0, T ;L2(R6)
)

.
Another work from Frénod and Sonnendrücker [17] treats the equation (1.3) with a convection term

Aǫ which strongly depends on ǫ and a convection term L of the form

L(t,x) = Mx .

Up to some well chosen hypotheses on the sequence (Aǫ)ǫ > 0 and on M ∈ Mn(R), the authors established
the two-scale convergence of uǫ to 0-th order term U0 and they provided a complete identification of this
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limit function.
A first order expansion have been proposed by Frénod, Gutnic and Hirstoaga for the linear Vlasov

equation in the context of axisymmetric charged particle beams: indeed, in [10], the authors proposed a
first order approximation of the solution fǫ of the following Vlasov equation











∂tfǫ(t, r, vr) +
vr

ǫ
∂rfǫ(t, r, vr) +

(

Eǫ(t, r)−
r

ǫ

)

∂vrfǫ(t, r, vr) = 0 ,

fǫ(t = 0, r, vr) = f0(r, vr) ,

(1.8)

in which Eǫ is given. This expansion has been written under the form

fǫ(t, r, vr) ≈ F0

(

t,
t

ǫ
, r, vr

)

+ ǫ F1

(

t,
t

ǫ
, r, vr

)

,

and it has been proved that, under well chosen hypotheses for (Eǫ)ǫ > 0 and f0, the sequence (fǫ)ǫ> 0

two-scale converges to F0 and the sequence (fǫ,1)ǫ > 0 defined by

fǫ,1(t, r, vr) =
1

ǫ

(

fǫ(t, r, vr)− F0

(

t,
t

ǫ
, r, vr

))

,

two-scale converges to F1, with F0 and F1 fully identified. As well as the problem treated in [17], the
Vlasov equation (1.8) includes a 0-th order convection term which strongly depends on ǫ but a singularly
perturbed convection term which linearly depends on the space variables r and vr.

As a consequence, the aim of the present paper is to somehow generalize these results to the case
where Aǫ strongly depends on ǫ, t and x, and where L depends on t, τ and x. For this purpose, we
follow the recursive methodology detailed in [13] and we first write some convection equation for each
uǫ,k defined in (1.7), then we adapt the two-scale convergence results from [17] in order to prove that
uǫ,k somehow two-scale converges to Uk and we propose a set of equations allowing to identify Uk.
Such work is essentially motivated by applications to Vlasov equations like (1.1), (1.2) or (1.8) where
the electric and magnetic fields may be self-consistent and obtained from Poisson or Maxwell equations
which themselves depend on ǫ through the source terms computed thanks to the ǫ-dependent distribution
function (see [12, 14, 17, 18, 19, 21, 22, 23]).

Thus, the present paper is organised as follows: in a first paragraph, we present the main convergence
results along with the associated hypotheses which are required. The second part is devoted to the proof
of these results. Finally, we present some applications to Vlasov equations (1.1), (1.2) and (1.8).

2 Two-scale convergence results

2.1 Notations and definitions

Before going further and presenting the main results, we introduce some notations and definitions.
Considering a fixed θ > 0, we define for any p ∈ [1,+∞] the space Lp

#(0, θ) as the functions f : R → R

which are θ-periodic and such that f|[0,θ] ∈ Lp(0, θ). In the same spirit, we define C#(0, θ) stands for
the subspace of C(R) constituted of θ-periodic functions and provided with the the norm induced by
C(R). Having these notations in hands, we recall the definition of two-scale convergence as it has been
introduced by Allaire [3] and Nguetseng [30] and a useful two-scale convergence criterion:

Definition 2.1. Let X be a separable Banach space, X ′ its topological dual space, and 〈·, ·〉X,X′ the duality
bracket associated to X and X ′. Considering fixed q ∈ [1,+∞[, T > 0, and q′ such that 1

q + 1
q′ = 1,
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a sequence (uǫ)ǫ> 0 ⊂ Lq′(0, T ;X ′) two-scale converges to a function U ∈ Lq′
(

0, T ;Lq′

#(0, θ;X
′)
)

if, for

any test function ψ ∈ Lq (0, T ; C# (0, θ;X)), we have

lim
ǫ→ 0

∫ T

0

〈

uǫ(t), ψ

(

t,
t

ǫ

)〉

X,X′

dt =

∫ T

0

∫ θ

0

〈U(t, τ), ψ (t, τ)〉X,X′ dτ dt . (2.1)

Theorem 2.2 (Allaire [3]). If a sequence (uǫ)ǫ > 0 ⊂ Lq′(0, T ;X ′) is bounded independently of ǫ, there

exists a profile U ∈ Lq′
(

0, T ;Lq′

#(0, θ;X
′)
)

such that, up to the extraction of a subsequence

uǫ −→ U two-scale in Lq′
(

0, T ;Lq′

#(0, θ;X
′)
)

. (2.2)

Furthermore, the so-called two-scale limit U of uǫ is closely linked to the weak-* limit of (uǫ)ǫ> 0 in
Lq′(0, T ;X ′). Indeed this function denoted by u satisfies

u(t) =
1

θ

∫ θ

0

U(t, τ) dτ . (2.3)

2.2 Two-scale convergence at 0-th order

For any (t, σ,x) ∈ [0, T ]× R× R
n fixed, we consider the following differential system

{

∂τX(τ) = L (t, τ,X(τ)) ,
X(σ) = x ,

(2.4)

where the unknown is the vector function τ 7→ X(τ). We assume from now that this system admits
a unique solution in the class of θ-periodic functions in τ -direction and we denote this solution by
τ 7→ X(τ ;x, t;σ).

The first main result is the two-scale convergence of (uǫ)ǫ> 0 to a profile U0 = U0(t, τ,x). For this
purpose, we consider some hypotheses derived from those which are required for proving Theorem 1.5 of
[17]:

Hypothesis 2.3. Fixing p ∈ ]1,+∞[, q > 1 and q′ such that 1
p + 1

q′ < 1 and 1
q′ = max(1q − 1

n , 0), we
assume that

• u0 ∈ Lp(Rn),

• (Aǫ)ǫ> 0 is bounded independently of ǫ in
(

L∞
(

0, T ;
(

W 1,q(K)
)))n

for any compact subset K ⊂ R
n,

• L is smooth enough in order to insure that, for any compact subset K ⊂ R
n,

– L is in
(

L∞
(

0, T ;L∞
#

(

0, θ;W 1,q(K)
)

))n

,

– (t, τ,x) 7→ ∂tX(τ ;x, t; 0) is in
(

L∞
(

0, T ;L∞
#

(

0, θ;W 1,q(K)
)

))n

,

– (t, τ,x) 7→ ∇xX(τ ;x, t; 0) is in
(

L∞
(

0, T ;L∞
# (0, θ;L∞(K))

))n2

.

As a trivial consequence, we can write, up to a subsequence and for all compact K ⊂ R
n,

Aǫ −→ A0 = A0(t, τ,x) two-scale in
(

L∞
(

0, T ;L∞
#

(

0, θ;
(

W 1,q(K)
))))n

.
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Assuming that the profile A0 is somehow known, we introduce α0 and ã0 as

α0(t, τ,x) = ((∇xX)(τ ;x, t; 0))
−1

(A0 (t, τ,X(τ ;x, t; 0))− (∂tX)(τ ;x, t; 0)) , (2.5)

and

ã0(t,x) =
1

θ

∫ θ

0

α0(t, τ,x) dτ . (2.6)

With these hypotheses and definitions, we can identify the 0-th order term U0 of the expansion (1.6):

Theorem 2.4. Assume that Hypotheses 2.3 and that the sequence (uǫ)ǫ> 0 is bounded in
L∞ (0, T ;Lp

loc(R
n)) independently of ǫ. Then, up to a subsequence, uǫ two-scale converges to the pro-

file U0 = U0(t, τ,x) in L∞
(

0, T ;L∞
# (0, θ;Lp(Rn))

)

defined by

U0(t, τ,x) = V0 (t,X(−τ ;x, t; 0)) , (2.7)

where V0 = V0(t,x) ∈ L∞ (0, T ;Lp
loc(R

n)) satisfies

{

∂tV0(t,x) + ã0(t,x) · ∇xV0(t,x) = 0 ,
V0(t = 0,x) = u0(x) .

(2.8)

Theorem 2.5. U0 satisfies the following equation:

∂tU0(t, τ,x) + a0(t, τ,x) · ∇xU0(t, τ,x) = 0 , (2.9)

with a0 defined by

a0(t, τ,x)

= ((∇xX)(−τ ;x, t; 0))
−1

(ã0 (t,X(−τ ;x, t; 0))− (∂tX)(−τ ;x, t; 0)) .
(2.10)

2.3 Two-scale convergence at k-th order

We fix k ∈ N
∗ and we aim to identify the k-th term of the expansion (1.6). Before stating the result, we

need additional assumptions besides Hypotheses 2.3:

Hypothesis 2.6. Defining the sequence (Aǫ,i)ǫ> 0 as











Aǫ,i(t,x) =
1

ǫ

(

Aǫ,i−1(t,x)−Ai−1

(

t,
t

ǫ
,x

))

, ∀ i = 1, . . . , k ,

Aǫ,0(t,x) = Aǫ(t,x) ,

we assume that, for all i = 0, . . . , k, (Aǫ,i)ǫ > 0 two-scale converges to the profile Ai = Ai(t, τ,x) in
(

L∞
(

0, T ;L∞
#

(

0, θ;W 1,q(K)
)

))n

for any compact subset K ⊂ R
n.

Hypothesis 2.7. Defining the sequence (uǫ,i)ǫ > 0 as











uǫ,i(t,x) =
1

ǫ

(

uǫ,i−1(t,x)− Ui−1

(

t,
t

ǫ
,x

))

, ∀ i = 1, . . . , k − 1 ,

uǫ,0(t,x) = uǫ(t,x) ,

we assume that, for all i = 0, . . . , k − 1 and up to a subsequence, (uǫ,i)ǫ> 0 two-scale converges to the

profile Ui = Ui(t, τ,x) in L∞
(

0, T ;L∞
# (0, θ;Lp(Rn))

)

.
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Under these hypotheses and if k > 1, we define αi, ãi and ai as

αi(t, τ,x) = ((∇xX)(τ ;x, t; 0))−1
Ai (t, τ,X(τ ;x, t; 0)) , (2.11)

ãi(t,x) =
1

θ

∫ θ

0

αi(t, τ,x) dτ , (2.12)

ai(t, τ,x) =
1

θ

∫ θ

0

((∇xX)(σ − τ ;x, t; 0))
−1

Ai (t, σ,X(σ − τ ;x, t; 0)) dσ

=
1

θ

∫ θ

0

((∇xX)(−τ ;x, t; 0))
−1

αi (t, σ,X(−τ ;x, t; 0)) dσ ,

(2.13)

for all i = 1, . . . , k − 1. We also define recursively the functions W1, . . . ,Wk and R1, . . . , Rk−1 as

Wi(t, τ,x) =

∫ τ

0





i−1
∑

j =0

(aj −Aj) · ∇xUi−1−j −Ri−1



 (t, σ,X(σ;x, t; 0)) dσ , (2.14)

Ri(t, τ,x) = (∂tWi) (t, τ,X(−τ ;x, t; 0))−
1

θ

∫ θ

0

(∂tWi) (t, σ,X(−τ ;x, t; 0)) dσ

+

i
∑

j =0

(ãj · ∇xWi−j) (t, τ,X(−τ ;x, t; 0))

−
1

θ

i
∑

j =0

∫ θ

0

(αj · ∇xWi−j) (t, σ,X(−τ ;x, t; 0)) dσ ,

(2.15)

with the convention W0 = R0 = 0. Having these notations and assumptions in hands, we can now state
a two-scale convergence result at k-th order by proceeding recursively:

Theorem 2.8. We define s′ > 0 such that 1
s′ = 1− 1

q − 1
r with r ∈ [1, nq

n−q [ and we define the functional

space Xs′(K) =
(

W 1,q(K)
)′

∪
(

W 1,s′(K)
)′

. We assume that Hypotheses 2.3-2.6-2.7 are satisfied and

that, for any K ⊂ R
n compact,

• Wk is in L∞
(

0, T ;L∞
# (0, θ;Lp(K))

)

,

• ∂tWk is in L∞
(

0, T ;L∞
#

(

0, θ;Xs′(K)
))

,

• Rk−1 is in L∞
(

0, T ;L∞
#

(

0, θ;Xs′(K)
))

.

Then, if the sequence (uǫ,k)ǫ> 0 defined by

uǫ,k(t,x) =
1

ǫ

(

uǫ,k−1(t,x) − Uk−1

(

t,
t

ǫ
,x

))

, (2.16)

is bounded independently of ǫ in L∞ (0, T ;Lp
loc(R

n)), uǫ,k two-scale converges to the profile Uk in
(

0, T ;L∞
# (0, θ;Lp(Rn))

)

characterized as follows:

Uk(t, τ,x) = Vk (t,X(−τ ;x, t; 0)) +Wk (t, τ,X(−τ ;x, t; 0)) , (2.17)
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where Wk =Wk(t, τ,x) is defined in (2.14) and where Vk = Vk(t,x) is the solution of







































∂tVk(t,x) + ã0(t,x) · ∇xVk(t,x)

= −
1

θ

∫ θ

0

(∂tWk +α0 · ∇xWk)(t, σ,x) dσ

−

k
∑

i=1

[

1

θ

∫ θ

0

αi(t, σ,x) · [∇xVk−i(t,x) +∇xWk−i(t, σ,x)] dσ

]

,

Vk(t = 0,x) = 0 .

(2.18)

Theorem 2.9. Uk satisfies the following equation:

∂tUk(t, τ,x) + a0(t, τ,x)·∇xUk(t, τ,x)

= Rk(t, τ,x)−
k
∑

i=1

ai(t, τ,x) · ∇xUk−i(t, τ,x) ,
(2.19)

where Rk is obtained from the definition (2.15) extended to the case i = k.

3 Characterization of Uk

In this section, we aim to prove the two-scale convergence results presented in Theorems 2.4, 2.5, 2.8 and
2.9. For this purpose, we choose to detail the proofs on the generic equation of the form











∂tgǫ(t,x) +Aǫ(t,x) · ∇xgǫ(t,x) +
1

ǫ
L

(

t,
t

ǫ
,x

)

· ∇xgǫ(t,x) =
1

ǫ
fǫ(t,x) ,

gǫ(t = 0,x) = g0(x) ,

(3.1)

in which fǫ, Aǫ and L are known and where gǫ is the unknown. The next lines are structured as follows:
first, we detail some two-scale convergence results for the model (3.1) under some well-chosen hypotheses
for Aǫ, L and fǫ. Then we apply these results onto the equations satisfied by each uǫ,i recursively defined
thanks to Hypothesis 2.7.

3.1 Two-scale convergence

We aim to establish some two-scale convergence results for the sequence (gǫ)ǫ > 0 under some well-chosen
hypotheses for Aǫ, L and fǫ. These results are detailed in the following theorem:

Theorem 3.1. We consider s′ > 0 such that 1
s′ = 1− 1

q −
1
r with r ∈ [1, n q

n−q [ and, for all compact subset

K ⊂ R
n, we define Xs′(K) =

(

W 1,s′

0 (K)
)′

∪
(

W 1,q
0 (K)

)′

. We assume that Aǫ and L satisfy Hypotheses

2.3 and that g0 and (fǫ)ǫ> 0 have the following properties:

• g0 ∈ Lp(Rn),

• fǫ is bounded independently of ǫ in W 1,∞
(

0, T ;Xs′(K)
)

and admits F = F (t, τ,x) as a two-scale

limit in L∞
(

0, T ;L∞
#

(

0, θ;Xs′(K)
))

,

• F satisfies

∀ (t,x) ,

∫ θ

0

F (t, τ,X (τ ;x, t; 0)) dτ = 0 , (3.2)
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• The sequence (fǫ,1)ǫ > 0 defined by

fǫ,1(t,x) =
1

ǫ

(

fǫ(t,x) − F

(

t,
t

ǫ
,x

))

, (3.3)

is bounded independently in L∞
(

0, T ;Xs′(K)
)

and two-scale converges to the profile F1 =

F1(t, τ,x) in L∞
(

0, T ;L∞
#

(

0, θ;Xs′(K)
))

,

• Defining the function S = S(t, τ,x) as

S(t, τ,x) =

∫ τ

0

F (t, σ,X (σ;x, t; 0)) dσ , (3.4)

we assume that S lies in L∞
(

0, T ;L∞
# (0, θ;Lp

loc(R
n))
)

and that ∂tS lies in

L∞
(

0, T ;L∞
#

(

0, θ;Xs′(K)
))

.

If (gǫ)ǫ> 0 is bounded in L∞ (0, T ;Lp
loc(R

n)), then it admits a two-scale limit G = G(t, τ,x) in the space

L∞
(

0, T ;L∞
# (0, θ;Lp(Rn))

)

and G is characterized thanks to the relation

G(t, τ,x) = H (t,X(−τ ;x, t; 0)) + S (t, τ,X(−τ ;x, t; 0)) , (3.5)

where H = H(t,x) ∈ L∞ (0, T ;Lp
loc(R

n)) satisfies


































∂tH(t,x) + ã0(t,x) · ∇xH(t,x)

=
1

θ

∫ θ

0

F1 (t, τ,X(τ ;x, t; 0)) dτ

−
1

θ

∫ θ

0

[∂tS(t, τ,x)−α0(t, τ,x) · ∇xS(t, τ,x)] dτ ,

H(t = 0,x) = g0(x) .

(3.6)

Proof. Since (gǫ)ǫ> 0 is assumed to be bounded in L∞ (0, T ;Lp
loc(R

n)) independently of ǫ, it admits a

two-scale limit G = G(t, τ,x) in the functional space L∞
(

0, T ;Lp
#(0, θ;L

p(Rn)
)

. In the same spirit of

[17], the next step of the proof consists in finding an equation which link the first order derivative of G
in τ to the derivatives of G in x directions. For this purpose, we consider a test function ψ = ψ(t, τ,x)
defined on [0, T ]×R×R

n being θ-periodic in τ direction and with compact support K ⊂ R
n in x direction.

We multiply (3.1) by ψ(t, tǫ ,x) and we integrate the result in t and x. Some integrations by parts give

∫ T

0

∫

K

gǫ(t,x)

[

(∂tψ)

(

t,
t

ǫ
,x

)

+
1

ǫ
(∂τψ)

(

t,
t

ǫ
,x

)

+Aǫ(t,x) · (∇xψ)

(

t,
t

ǫ
,x

)

+
1

ǫ
L

(

t,
t

ǫ
,x

)

· (∇xψ)

(

t,
t

ǫ
,x

)]

dx dt

= −
1

ǫ

∫ T

0

∫

K

fǫ(t,x)ψ

(

t,
t

ǫ
,x

)

dx dt+

∫

K

u0(x)ψ(0, 0,x) dx .

Thanks to the considered assumptions for g0, Aǫ, L and fǫ, we can multiply by ǫ and reach the limit
ǫ→ 0. This gives

∫ θ

0

∫ T

0

∫

K

G(t, τ,x)

[

∂τψ(t, τ,x)+L(t, τ,x) · ∇xψ(t, τ,x)

]

dx dt

= −

∫ θ

0

∫ T

0

∫

K

F (t, τ,x)ψ(t, τ,x) dx dt dτ .
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This means that G satisfies the following equation in L∞
(

0, T ;L∞
# (0, θ;Lp

loc(R
n))
)

:

∂τG(t, τ,x) + L(t, τ,x) · ∇xG(t, τ,x) = F (t, τ,x) .

According to Lemma 2.1 from [13] and thanks to the hypothesis (3.2), we can write G as follows

G(t, τ,x) = H (t,X(−τ ;x, t; 0)) +

∫ τ

0

F (t, σ,X(σ − τ ;x, t; 0)) dσ ,

with H = H(t,x) ∈ L∞ (0, T ;Lp
loc(R

n)).

The next step consists in proving that H satisfies (3.6). For this purpose, we introduce the sequence
(hǫ)ǫ > 0 defined as

gǫ(t,x) = hǫ

(

t,X(−
t

ǫ
;x, t; 0)

)

+

∫ t/ǫ

0

F

(

t, σ,X(σ −
t

ǫ
;x, t; 0)

)

dσ .

Injecting this relation in (3.1) gives


















∂thǫ(t,x) + Ãǫ(t,x) · ∇xhǫ(t,x)

= fǫ,1

(

t,X

(

t

ǫ
;x, t; 0

))

− (∂tS)

(

t,
t

ǫ
,x

)

− Ãǫ(t,x) · ∇xS

(

t,
t

ǫ
,x

)

,

hǫ(t = 0,x) = g0(x) ,

(3.7)

where Ãǫ is linked to Aǫ through the following relation:

Ãǫ(t,x) =

(

(∇xX)

(

t

ǫ
;x, t; 0

))−1(

Aǫ

(

t,X

(

t

ǫ
;x, t; 0

))

− (∂tX)

(

t

ǫ
;x, t; 0

))

.

From the definition of hǫ provided by (3.1) and the hypotheses made for F and (gǫ)ǫ> 0, we can write

∀ t, ‖hǫ(t, ·)‖Lp(K) ≤ ‖gǫ(t, ·)‖Lp(K) + θ ‖F (t, ·, ·)‖L∞
# (0,θ;Lp(K)) ,

for all compact subset K ⊂ R
n so we deduce that the sequence (hǫ)ǫ > 0 is bounded independently of ǫ in

L∞ (0, T ;Lp
loc(R

n)) and, up to a subsequence, two-scale converges to H in L∞
(

0, T ;L∞
# (0, θ;Lp(Rn))

)

.

Indeed, if we consider a test function ψ = ψ(t, τ,x) on [0, T ]×R×R
n being θ-periodic in τ direction and

with compact support K ⊂ R
n in x direction, we have

lim
ǫ→0

∫ T

0

∫

Rn

hǫ(t,x)ψ

(

t,
t

ǫ
,x

)

dx dt

= lim
ǫ→0

∫ T

0

∫

Rn

[

gǫ

(

t,X

(

t

ǫ
;x, t; 0

))

− S

(

t,
t

ǫ
,x

)]

ψ

(

t,
t

ǫ
,x

)

dx dt

= lim
ǫ→0

∫ T

0

∫

Rn

[

gǫ(t,x)ψ

(

t,
t

ǫ
,X

(

−
t

ǫ
;x, t; 0

))

− S

(

t,
t

ǫ
,x

)

ψ

(

t,
t

ǫ
,x

)]

dx dt

=
1

θ

∫ θ

0

∫ T

0

∫

Rn

[G(t, τ,x)ψ (t, τ,X (−τ ;x, t; 0))− S (t, τ,x)ψ (t, τ,x)] dx dt dτ

=
1

θ

∫ θ

0

∫ T

0

∫

Rn

[G (t, τ,X(τ ;x, t; 0)) − S(t, τ,x)]ψ(t, τ,x) dx dt dτ

=
1

θ

∫ θ

0

∫ T

0

∫

Rn

H(t,x)ψ(t, τ,x) dx dt dτ .
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Consequently, hǫ weakly-* converges to H in L∞ (0, T ;Lp(Rn)) according to Theorem 2.2. However, as
in [17], we are able to obtain a strong convergence result for hǫ in a well-chosen functional space:

Lemma 3.2. For any compact subset K ⊂ R
n, the sequence (hǫ)ǫ > 0 strongly converges to H in

L∞

(

0, T ;
(

W 1,q
0 (K)

)′
)

.

Proof. The procedure is almost similar to the proof of Lemma 4.1 of [17]. Indeed, from the assumptions
made for the sequences (gǫ)ǫ> 0, (Aǫ)ǫ> 0, L, (fǫ)ǫ > 0 and (fǫ,1)ǫ> 0, we consider a compact subset K of
R

n and we sucessively prove that

• (Ãǫ)ǫ> 0 is bounded independently of ǫ in
(

L∞
(

0, T ;W 1,q(K)
))n

and is divergence-free in x direc-
tion,

• (Ãǫ)ǫ> 0 is bounded independently of ǫ in (L∞ (0, T ;Lr(K)))
n for any r ∈ [1, nq

n−q [,

• (Ãǫ hǫ)ǫ> 0 and (Ãǫ S(·,
·
ǫ , ·))ǫ > 0 are bounded independently of ǫ in the space (L∞ (0, T ;Ls(K)))

n

with s satisfying 1
s = 1

q + 1
r ,

•
(

∇x · (Ãǫ hǫ)
)

ǫ> 0
and

(

∇x · (Ãǫ S(·,
·
ǫ , ·))

)

ǫ> 0
are bounded in the space

(

L∞

(

0, T ;
(

W 1,s′

0 (K)
)′
))n

and consequently in
(

L∞
(

0, T ;Xs′(K)
))n

independently of

ǫ.

In addition of these results, we deduce from the hypotheses on F that ∂tS is in

L∞
(

0, T ;L∞
# (0, θ;Lp(K))

)

. At this point, we distinguish 2 different cases according to the considered

value of s′ in front of q:

1. Assume that s′ > q. This leads to the continuous embedding (Lq(K))
′
⊂
(

Ls′(K)
)′

and, conse-

quently, to the continuous embedding
(

W 1,q
0 (K)

)′

⊂
(

W 1,s′

0 (K)
)′

, so Xs′(K) =
(

W 1,s′

0 (K)
)′

. On

another hand, Rellich’s theorem gives the compact embedding Lp(K) ⊂
(

W 1,q
0 (K)

)′

. Hence, ∂tS

and fǫ,1 lie in L∞

(

0, T ;
(

W 1,s′

0 (K)
)′
)

, and the sequence (fǫ,1)ǫ> 0 is bounded independently of

ǫ in this space. Finally, we can write that (hǫ)ǫ > 0 is bounded independently of ǫ in the following
space:

U =

{

h ∈ L∞ (0, T ;Lp(K)) : ∂th ∈ L∞

(

0, T ;
(

W 1,s′

0 (K)
)′
)}

.

Aubin-Lions’ lemma indicates that U is compactly embedded in the space L∞

(

0, T ;
(

W 1,q
0 (K)

)′
)

,

so hǫ weakly-* converges to H in L∞ (0, T ;Lp(K)) and strongly converges to H in

L∞

(

0, T ;
(

W 1,q
0 (K)

)′
)

.

2. Assume that s′ ≤ q. As a consequence, we have the continuous embedding
(

W 1,s′

0 (K)
)′

⊂
(

W 1,q
0 (K)

)′

, Xs′(K) =
(

W 1,q
0 (K)

)′

and the compact embedding Lp(K) ⊂
(

W 1,q
0 (K)

)′

so we

are insured that (∂thǫ)ǫ > 0 is bounded independently of ǫ in L∞

(

0, T ;
(

W 1,q
0 (K)

)′
)

and that

(hǫ)ǫ> 0 is bounded in the functional space U defined by

U =

{

h ∈ L∞ (0, T ;Lp(K)) : ∂th ∈ L∞

(

0, T ;
(

W 1,q
0 (K)

)′
)}

.
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Applying Aubin-Lions’ lemma finally allows us to claim that the weak-* convergence of hǫ to H in

L∞ (0, T ;Lp(K)) is a strong convergence in the space L∞

(

0, T ;
(

W 1,q
0 (K)

)′
)

.

In order to conclude the proof of Theorem 3.1, we now consider a test function ψ = ψ(t,x) on
[0, T ]× R

n with compact support K ⊂ R
n in x direction. If we multiply (3.7) by ψ(t,x), integrate the

result in t and x, we obtain

−

∫ T

0

∫

Rn

hǫ(t,x)
[

∂tψ(t,x) + Ãǫ(t,x) · ∇xψ(t,x)
]

dx dt −

∫

Rn

g0(x)ψ(0,x) dx

=

∫ T

0

∫

Rn

fǫ,1(t,x)ψ

(

t,X

(

−
t

ǫ
;x, t; 0

))

dx dt

−

∫ T

0

∫

Rn

[

(∂tS)

(

t,
t

ǫ
,x

)

ψ(t,x) − S

(

t,
t

ǫ
,x

)

Ãǫ(t,x) · ∇xψ(t,x)

]

dx dt .

Thanks to Lemma 3.2 and to the hypotheses we have formulated for Aǫ, fǫ,1 and S, we can write the
limit obtained when ǫ converges to 0: indeed, we can write

∫ T

0

∫

Rn

H(t,x)

[

∂tψ(t,x) +

[

1

θ

∫ θ

0

α0(t, τ,x) dτ

]

· ∇xψ(t,x)

]

dx dt

+

∫

Rn

g0(x)ψ(0,x) dx

= −
1

θ

∫ T

0

∫

Rn

∫ θ

0

F1(t, τ,x)ψ (t,X (−τ ;x, t; 0)) dτ dx dt

+

∫ T

0

∫

Rn

[

1

θ

∫ θ

0

∂tS (t, τ,x) dτ

]

ψ(t,x) dx dt

−

∫ T

0

∫

Rn

[

1

θ

∫ θ

0

S (t, τ,x) α0(t, τ,x) dτ

]

· ∇xψ(t,x) dx dt ,

which is exactly the variational formulation of (3.6) in L∞ (0, T ;Lp(Rn)).

3.2 Identification of each Uk

Having Theorem 3.1 in hands, we can apply it for identifying each term Uk of the expansion (1.6).
For obtaining some equations for U0, we simply use this theorem with the source term fǫ = 0 on
[0, T ] × R

n for each ǫ ≥ 0. As a consequence, assuming that (uǫ)ǫ> 0 is bounded independently in ǫ in
L∞ (0, T ;Lp

loc(R
n)) in addition of Hypotheses 2.3 is sufficient to get the two-scale convergence of uǫ to

the profile U0 = U0(t, τ,x) in L∞
(

0, T ;L∞
# (0, θ;Lp(Rn))

)

entirely characterized by

U0(t, τ,x) = V0 (t,X(−τ ;x, t; 0)) ,

where V0 = V0(t,x) ∈ L∞ (0, T ;Lp(Rn)) satisfies
{

∂tV0(t,x) + ã0(t,x) · ∇xV0(t,x) = 0 ,
V0(t = 0,x) = u0(x) .

This is the conclusion of Theorem 2.4. For reaching the results of Theorem 2.7, we derive in x and t the
relation (2.7) and we obtain

∇xU0(t, τ,x) = ((∇xX)(−τ ;x, t; 0))
T
(∇xV0) (t,X(−τ ;x, t; 0)) ,
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and

∂tU0(t,τ,x)

= (∂tV0) (t,X(−τ ;x, t; 0)) + ∂tX(−τ ;x, t; 0) · (∇xV0) (t,X(−τ ;x, t; 0))

= [∂tX(−τ ;x, t; 0)− ã0 (t,X(−τ ;x, t; 0))] · (∇xV0) (t,X(−τ ;x, t; 0))

=
[

((∇xX)(−τ ;x, t; 0))
−1

[∂tX(−τ ;x, t; 0)− ã0 (t,X(−τ ;x, t; 0))]
]

· ∇xU0(t, τ,x) .

For identifying the higher order terms, more calculations are needed. First, we consider a fixed integer
k ∈ N

∗ and we assume that Hypotheses 2.6 and 2.7 are satisfied at step k and that the results of Theorem
2.8 are true for i = 0, . . . , k − 1, meaning that U0, . . . , Uk−1 are fully characterized. These assumptions
authorize the definitions of αi, ãi, ai, Wi and Ri for any i = 0, . . . , k as it is suggested in paragraph 2.3.
Then we can write an evolution equation for uǫ,i for any i = 1, . . . , k thanks to a recurrence procedure:
this equation writes























































∂tuǫ,i(t,x) +Aǫ(t,x) · ∇xuǫ,i(t,x) +
1

ǫ
L

(

t,
t

ǫ
,x

)

· ∇xuǫ,i(t,x)

=
1

ǫ

i−1
∑

j =0

(

aj

(

t,
t

ǫ
,x

)

−Aǫ,j(t,x)

)

· ∇xUi−1−j

(

t,
t

ǫ
,x

)

−
1

ǫ
Ri−1

(

t,
t

ǫ
,x

)

,

uǫ,i(t = 0,x) = 0 ,

(3.8)

for any i > 0.
As a consequence, we aim to apply Theorem 3.1 with fǫ defined by

fǫ(t,x) =

k−1
∑

i=0

[

ai

(

t,
t

ǫ
,x

)

−Aǫ,i(t,x)

]

· ∇xUk−1−i

(

t,
t

ǫ
,x

)

−Rk−1

(

t,
t

ǫ
,x

)

.

First, we have to verify if the sequence (fǫ)ǫ> 0 is bounded independently of ǫ in L∞
(

0, T ;Xs′(K)
)

for

any compact subset K ⊂ R
n. For this purpose, we first remark that Hypotheses 2.3 and 2.6 imply that

their exists a constant C = C(K) > 0 such that
∥

∥

∥

∥

∥

ai

(

t,
t

ǫ
, ·

)

−Aǫ,i(t, ·)

∥

∥

∥

∥

∥

W 1,q(K)

≤ C(K) ,

for any t ∈ [0, T ] and ǫ > 0. Hence, following the same methodology as in the proof of Lemma 3.2

and assuming that Rk−1 is in L∞
(

0, T ;L∞
#

(

0, θ;Xs′(K)
))

leads to the existence of a constant C′ =

C′(K) > 0 such that
‖fǫ(t, ·)‖Xs′(K) ≤ C′(K) ,

for any ǫ > 0 and t ∈ [0, T ], where the norm ‖ · ‖Xs′(K) is either the usual norm on
(

W 1,q
0 (K)

)′

or
(

W 1,s′

0 (K)
)′

according to the sign of s′ − q.

This result indicates that fǫ two-scale converges to the profile F = F (t, τ,x) in

L∞
(

0, T ;L∞
#

(

0, θ;Xs′(K)
))

characterized by

F (t, τ,x) =

k−1
∑

i=0

[ai(t, τ,x) −Ai(t, τ,x)] · ∇xUk−1−i(t, τ,x) −Rk−1(t, τ,x) .
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The next step consists in proving that Wk defined by

Wk(t, τ,x) = S(t, τ,x) =

∫ τ

0

F (t, σ,X(σ;x, t; 0)) dσ ,

is such that
Wk ∈ L∞

(

0, T ;L∞
# (0, θ;Lp(K))

)

,

∂tWk ∈ L∞
(

0, T ;L∞
#

(

0, θ;Xs′(K)
))

,

Wk(t, θ,x) = 0 , ∀ t,x .

The first two points are handled thanks to the hypotheses for Wk which are added for claiming Theorem
2.8. The last point can be proved by using the definition of Rk−1. Indeed, we have

Wk(t, θ,x) =

∫ θ

0

(

k−1
∑

i=0

[ai −Ai] · ∇xUk−1−i −Rk−1

)

(t, τ,X(τ ;x, t; 0)) dτ , (3.9)

with

Rk−1 (t, τ,X(τ ;x, t; 0))

= ∂tWk−1(t, τ,x) + ã0(t,x) · ∇xWk−1(t, τ,x)

−
1

θ

∫ θ

0

(∂tWk−1 +α0 · ∇xWk−1)(t, σ,x) dσ

+
k−1
∑

i=1

[

1

θ

∫ θ

0

αi(t, σ,x) · [∇xWk−1−i(t, τ,x)−∇xWk−1−i(t, σ,x)] dσ

]

,

(3.10)

and
([

ai −Ai

]

· ∇xUk−1−j

)

(t, τ,X(τ ;x, t; 0))

= [(∇xX)(τ ;x, t; 0) [ãi(t,x)−αi(t, τ,x)]] · (∇xUk−1−j) (t, τ,X(τ ;x, t; 0))

= [ãi(t,x)−αi(t, τ,x)] · (∇xVk−1−i(t,x) +∇xWk−1−i(t, τ,x)) ,

(3.11)

for any i = 0, . . . , k − 1. Hence, using the links between ãi, αi and Ai, we inject (3.10) and (3.11) in
(3.9) for obtaining a new formulation for Wk:

Wk(t, τ,x) =

k−1
∑

j=0

∫ τ

0

[ãj(t,x)−αj(t, σ,x)]

· [∇xVk−1−j(t,x) +∇xWk−1−j(t, σ,x)] dσ

−

∫ τ

0

[

∂tWk−1(t, σ,x) −
1

θ

∫ θ

0

∂tWk−1(t, ζ,x) dζ

]

dσ .

(3.12)

Hence, it is straightforward that Wk(t, θ,x) = 0 for any t and for any x.
The last property we have have to satisfy for completing the proof of Theorem 2.8 consists in proving

that the sequence (fǫ,1)ǫ> 0 defined by

fǫ,1(t,x) =
1

ǫ

(

fǫ(t,x)− F

(

t,
t

ǫ
,x

))

=
1

ǫ

k−1
∑

i=0

[

Ai

(

t,
t

ǫ
,x

)

−Aǫ,i(t,x)

]

· ∇xUk−1−i

(

t,
t

ǫ
,x

)

,
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is bounded independently of ǫ in L∞
(

0, T ;L∞
#

(

0, θ;Xs′(K)
))

for any compact subset K ⊂ R
n. To

obtain this result, we remark that fǫ,1 can write as

fǫ,1(t,x) = −

k
∑

i=1

Aǫ,i(t,x) · ∇xUk−i

(

t,
t

ǫ
,x

)

,

and we use Hypothesis 2.6. Consequently, this sequence admits the profile F1 = F1(t, τ,x) defined as

F1(t,x) = −

k
∑

i=1

Ai(t, τ,x) · ∇xUk−i(t, τ,x) ,

as a two-scale limit in L∞
(

0, T ;L∞
#

(

0, θ;Xs′(K)
))

.

We end the proof of Theorem 2.8 by assuming that (uǫ,k)ǫ> 0 is bounded independently of ǫ
in L∞ (0, T ;Lp

loc(R
n)): we deduce that uǫ,k two-scale converges to the profile Uk = Uk(t, τ,x) in

L∞
(

0, T ;L∞
# (0, θ;Lp(Rn))

)

defined by

Uk(t, τ,x) = Vk (t,X(−τ ;x, t; 0)) +Wk (t, τ,X(−τ ;x, t; 0)) ,

where Vk = Vk(t,x) ∈ L∞ (0, T ;Lp
loc(R

n)) satisfies















































∂tVk(t,x)+ã0(t,x) · ∇xVk(t,x)

= −
1

θ

∫ θ

0

[

k
∑

i=1

(Ai · ∇xUk−i) (t, τ,X(τ ;x, t; 0))

]

dτ

−
1

θ

∫ θ

0

[∂tWk(t, τ,x) +α0(t, τ,x) · ∇xWk(t, τ,x)] dτ ,

Vk(t = 0,x) =

{

u0(x) , if k = 0,
0 else.

4 Application to Vlasov equation

In this last paragraph, we present some results which can be obtained when we apply Theorems 2.4 and
2.8 on linear Vlasov equations like (1.1), (1.2) or (1.8).

4.1 Guiding-Center regime

We focus on the following linear Vlasov equation:










∂tfǫ + v · ∇xfǫ +

(

Eǫ + v ×Bǫ +
v × βǫ

ǫ

)

· ∇vfǫ = 0 ,

fǫ(t = 0,x,v) = f0(x,v) .

(4.1)

In this equation, t ∈ [0, T ] is the dimensionless time variable, x ∈ R
3 is the dimensionless space variable,

v ∈ R
3 is the dimensionless velocity variable, fǫ = fǫ(t,x,v) ∈ R is the unknown distribution function,

Eǫ = Eǫ(t,x) ∈ R
3 and Bǫ = Bǫ(t,x) ∈ R

3 are the given electric and magnetic fields, f0 = f0(x,v) ∈ R

is the given initial distribution. We finally assume from now that the vector function βǫ is of the form

βǫ(t,x) = β

(

t,
t

ǫ
,x

)

, (4.2)
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where β : [0, T ]× R × R
3 → R

3 is a given function assumed to be θ-periodic and continuous in τ with
θ > 0 fixed.

Before going further, we introduce additional objects linked to β. First, let β̃ be defined such
that ∂τ β̃ = β and β̃(t, 0,x) = 0 for any t,x. Second, we define the matrix B̃ = B̃(t, τ,x) such that

B̃(t, τ,x)v = v × β̃(t, τ,x) for any t, τ,x,v. Finally, we define R = R(t, τ,x) = exp
(

B̃(t, τ,v)
)

.

We fix q > 3/2 and we consider the following hypotheses:

Hypothesis 4.1. We assume that the function R satisfies

• R is θ-periodic in τ direction,

• R ∈
(

L∞
(

0, T ;L∞
#

(

0, θ;W 1,∞(K)
)

))3×3

for any compact subset K ⊂ R
3,

• ∂tR ∈
(

L∞
(

0, T ;L∞
#

(

0, θ;W 1,q(K)
)

))3×3

for any compact subset K ⊂ R
3.

Consequently, adding sufficient hypotheses on f0, (Eǫ)ǫ> 0 and (Bǫ)ǫ > 0 allows to establish a 0-th
order two-scale convergence result:

Theorem 4.2. We assume that Hypotheses 4.1 are satisfied and that f0 ∈ L2(R6) and both sequences

(Eǫ)ǫ> 0 and (Bǫ)ǫ > 0 are bounded in
(

L∞
(

0, T ;W 1,q(K)
))3

independently of ǫ and for any K ⊂ R
3

compact. We denote E0 = E0(t, τ,x) and B0 = B0(t, τ,x) as the respective two-scale limit of (Eǫ)ǫ> 0

and (Bǫ)ǫ> 0 in the space
(

L∞
(

0, T ;L∞
#

(

0, θ;W 1,q(K)
)

))3

and we define L0 as

L0(t, τ,x,v) = E0(t, τ,x) + v ×B0(t, τ,x) . (4.3)

Then, (fǫ)ǫ > 0 is bounded in L∞
(

0, T ;L2(R6)
)

independently of ǫ and, up to the extraction of a subse-

quence, two-scale converges to the profile F0 = F0(t, τ,x,v) in L∞
(

0, T ;L∞
#

(

0, θ;L2(R6)
)

)

. Further-

more, F0 is characterized by

F0(t, τ,x,v) = G0 (t,x,R(t,−τ,x)v) , (4.4)

with G0 = G0(t,x,v) ∈ L∞
(

0, T ;L2
loc(R

6)
)

solution of







∂tG0(t,x,v) + (J1(t,x)v) · ∇xG0(t,x,v)

+ J2(L0)(t,x,v) · ∇vG0(t,x,v) = 0 ,
G0(t = 0,x,v) = f0(x,v) ,

(4.5)

where J1(t,x) and J2(L0)(t,x,v) are defined by

J1(t,x) =
1

θ

∫ θ

0

R(t, τ,x) dτ , (4.6)

J2(L0)(t,x,v) =
1

θ

∫ θ

0

J2(L0)(t, τ,x,v)dτ . (4.7)

with J2 defined as

J2(L0)(t, τ,x,v) = R(t, τ,x)−1
[

− ∂tR(t, τ,x)v −
(

∇xR(t, τ,x)v
)

R(t, τ,x)v

+L0 (t, τ,x,R(t, τ,x)v)
]

.
(4.8)



TWO-SCALE EXPANSION OF A CONVECTION EQUATION 17

Proof. We first remark that the sequence (fǫ)ǫ> 0 is bounded independently of ǫ in L∞
(

0, T ;L2(R6)
)

.
Indeed, we have

∂t

(∫

R6

|fǫ(t,x,v)|
2 dx dv

)

= 0 .

Consequently, up to the extraction of a subsequence, fǫ two-scale converges to F0 = F0(t, τ,x,v) ∈

L∞
(

0, T ;L∞
#

(

0, θ;L2(R6)
)

)

, where F0 has to be characterized.

Second, we remark that the vector function Aǫ defined by

Aǫ(t,x,v) =

(

v

Eǫ(t,x) + v ×Bǫ(t,x)

)

,

is bounded independently of ǫ in
(

L∞
(

0, T ;W 1,q(K)
))6

for any compact subset K ⊂ R
6 and two-scale

converges to A0 defined by

A0(t, τ,x,v) =

(

v

L0(t, τ,x,v)

)

.

Under the hypotheses made on β, we find that F0 satisfies

∂τF0(t, τ,x,v) + (v × β(t, τ,x)) · ∇vF0(t, τ,x,v) = 0 .

Invoking Hypotheses 4.1, we find that there exists a function G0 = G0(t,x,v) ∈ L∞
(

0, T ;L2
loc(R

6)
)

such
that

F0(t, τ,x,v) = G0 (t,x,R(t,−τ,x)v) .

Hence, applying Theorem 2.4 gives the equation (4.5) for characterizing G0.

We can remark here that the results of Theorem 4.2 are coherent with the Guiding-Center model
presented in [15]. Indeed, taking Bǫ = 0 and β = ez leads to the matrix

R(t, τ,x) =





cos τ sin τ 0
− sin τ cos τ 0

0 0 1



 ,

which is 2π-periodic in τ . Consequently, assuming that Eǫ and Bǫ converge strongly in
(

L∞
(

0, T ;L2
loc(R

3)
))3

to E and B, we have

J1(t,x)v = vz ez ,

and
J2(L0)(t,x,v) = Ez(t,x) ez + v × (Bz(t,x) ez) .

In order to characterize the higher order terms, it is necessary to add several assumptions. We fix an
integer k > 0 and we consider the following hypotheses for (fǫ)ǫ> 0, (Eǫ)ǫ> 0 and (Bǫ)ǫ> 0:

Hypothesis 4.3. Defining recursively the sequences (Eǫ,i)ǫ> 0 and (Bǫ,i)ǫ> 0 as










Eǫ,i(t,x) =
1

ǫ

(

Eǫ,i−1(t,x) − Ei−1

(

t,
t

ǫ
,x

))

, ∀ i = 1, . . . , k ,

Eǫ,0(t,x) = Eǫ(t,x) ,










Bǫ,i(t,x) =
1

ǫ

(

Bǫ,i−1(t,x)−Bi−1

(

t,
t

ǫ
,x

))

, ∀ i = 1, . . . , k ,

Bǫ,0(t,x) = Bǫ(t,x) ,

we assume that, for all i = 0, . . . , k, (Eǫ,i)ǫ> 0 and (Bǫ,i)ǫ> 0 two-scale converge to Ei = E i(t, τ,x) and

Bi = Bi(t, τ,x) respectively in
(

L∞
(

0, T ;L∞
#

(

0, θ;W 1,q(K)
)

))3

for any compact subset K ⊂ R
3.
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Hypothesis 4.4. Defining recursively the sequence (fǫ,i)ǫ> 0 as











fǫ,i(t,x,v) =
1

ǫ

(

fǫ,i−1(t,x,v) − Fi−1

(

t,
t

ǫ
,x,v

))

, ∀ i = 1, . . . , k − 1 ,

fǫ,0(t,x,v) = fǫ(t,x,v) ,

we assume that, up to a subsequence, the sequence (fǫ,i)ǫ> 0 two-scale converges to the profile Fi =

Fi(t, τ,x,v) ∈ L∞
(

0, T ;L∞
#

(

0, θ;L2(R6)
)

)

for all i = 0, . . . , k − 1.

We now define Li for i = 0, . . . , k such that

Li(t, τ,x,v) = E i(t, τ,x) + v ×Bi(t, τ,x) . (4.9)

We define W0, . . . ,Wk such that W0 = 0 and, for any i = 1, . . . , k,

Wi(t, τ,x,v)

=

∫ τ

0

(

(J1(t,x)−R(t, σ,x)) v
J2(L0)(t,x,v) − J2(L0)(t, σ,x,v)

)

·

(

∇xGi−1(t,x,v) +∇xWi−1(t, σ,x,v)
∇vGi−1(t,x,v) +∇vWi−1(t, σ,x,v)

)

dσ

+
i−1
∑

j =1

∫ τ

0

[

[

J3(Lj)(t,x,v) −R(t, σ,x)−1
Lj (t, σ,x,R(t, σ,x)v)

]

· [∇vGi−j−1(t,x,v) +∇vWi−j−1(t, σ,x,v)]
]

dσ

−

∫ τ

0

[

∂tWi−1(t, σ,x,v) −
1

θ

∫ θ

0

∂tWi−1(t, ζ,x,v) dζ

]

dσ ,

(4.10)

with J3(Lj) defined by

J3(Lj)(t,x,v) =
1

θ

∫ θ

0

R(t, τ,x)−1
Lj(t, τ,R(t, τ,x)v) dτ , (4.11)

and where G0, . . . , Gk−1 are linked with F0, . . . , Fk−1 and W0, . . . ,Wk−1 thanks to the relation

Fi(t, τ,x,v) = Gi (t,x,R(t,−τ,x)v) +Wi (t, τ,x,R(t,−τ,x)v) .

With these notations, we can establish a two-scale convergence result at the k-th order:

Theorem 4.5. We assume that the hypotheses of Theorem 4.2 and that Hypotheses 4.3 and 4.4 are
satisfied. We introduce Rk−1 as follows

Rk−1(t, τ,x,v)

= ∂tFk−1(t, τ,x,v) + (J1(t,x)v) · ∇xFk−1(t, τ,x,v)

+

[

1

θ

∫ θ

0

R(t, σ,x)−1
[

− ∂tR(t, σ,x)v − (∇xR(t, σ,x)v)R(t, σ,x)v
]

dσ

]

· ∇vFk−1(t, τ,x,v)

+

k−1
∑

i=0

[

1

θ

∫ θ

0

R(t, σ,x)−1
Li (t, σ + τ,x,R(t, σ,x)v) dσ

]

· ∇vFk−1−i(t, τ,x,v) .

(4.12)



TWO-SCALE EXPANSION OF A CONVECTION EQUATION 19

In addition, taking s′ such that 1
s′ = 1 − 1

q − 1
r with r ∈ [1, 6q

6−q [ and defining Xs′(K) =
(

W 1,q(K)
)′
∪

(

W 1,s′(K)
)

, we assume that, for any compact subset K ⊂ R
6,

• Wk ∈ L∞
(

0, T ;L∞
#

(

0, θ;L2(K)
)

)

,

• ∂tWk, Rk−1 ∈ L∞
(

0, T ;L∞
#

(

0, θ;Xs′(K)
))

.

Then, if the sequence (fǫ,k)ǫ> 0 defined by

fǫ,k(t,x,v) =
1

ǫ

(

fǫ,k−1(t,x,v) − Fk−1

(

t,
t

ǫ
,x,v

))

, (4.13)

is bounded independently of ǫ in L∞
(

0, T ;L2
loc(R

6)
)

, it two-scale converges to the profile Fk =

Fk(t, τ,x,v) ∈ L∞
(

0, T ;L∞
#

(

0, θ;L2(R6)
)

)

up to the extraction of a subsequence. Furthermore, Fk

is fully characterized by

Fk(t, τ,x,v) = Gk (t,x,R(t,−τ,x)v) +Wk (t, τ,x,R(t,−τ,x)v) , (4.14)

where Wk is defined in (4.10) and where Gk = Gk(t,x,v) ∈ L∞
(

0, T ;L2
loc(R

6)
)

is the solution of



























































































∂tGk(t,x,v) + (J1(t,x)v) · ∇xGk(t,x,v)

+ J2(L0)(t,x,v) · ∇vGk(t,x,v)

= −
1

θ

∫ θ

0

[∂tWk(t, τ,x,v) + (R(t, τ,x)v) · ∇xWk(t, τ,x,v)] dτ

−
1

θ

∫ θ

0

J2(L0)(t, τ,x,v) · ∇vWk(t, τ,x,v) dτ

−
1

θ

k
∑

i=0

∫ θ

0

[

R(t, τ,x)−1
Li (t, τ,x,R(t, τ,x)v)

]

· ∇vWk−i(t, τ,x,v) dτ

−
k
∑

i=1

J3(Li)(t,x,v) · ∇vGk−i(t,x,v) ,

Gk(t = 0,x,v) = 0 .

(4.15)

4.2 Finite Larmor Radius regime

We focus now on the following linear equation:










∂tfǫ +
v⊥

ǫ
· ∇x⊥

fǫ + v|| ∂x||
fǫ +

(

Eǫ + v ×Bǫ +
v ×M

ǫ

)

· ∇vfǫ = 0 ,

fǫ(t = 0,x,v) = f0(x,v) ,

(4.16)

in which (x,v) ∈ R
3 × R

3, t ∈ [0, T ], fǫ = fǫ(t,x,v) ∈ R is the unknown distribution function,
Eǫ = Eǫ(t,x) ∈ R

3 is the external electric field, f0 = f0(x,v) is the initial distribution function,
M = ez ∈ R

3 and Bǫ = Bǫ(t,x) ∈ R
3 constitute the external magnetic field.

Thanks to well-chosen hypotheses for f0 and the sequences (Eǫ)ǫ> 0 and (Bǫ)ǫ> 0, it is possible to
establish a 0-th order two-scale convergence result:

Theorem 4.6. We assume that f0 ∈ L2(R6) and that (Eǫ)ǫ> 0 and (Bǫ)ǫ> 0 are bounded independently

of ǫ in
(

L∞
(

0, T ;W 1,q(K)
))3

for q > 3/2 and for any compact subset K ⊂ R
3.
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We denote with E0 = E0(t, τ,x) and B0 = B0(t, τ,x) the respective two-scale limits of (Eǫ)ǫ > 0 and

(Bǫ)ǫ > 0 in
(

L∞
(

0, T ;L∞
#

(

0, 2π;W 1,q(K)
)

))3

and we introduce the vector function L0 defined by

L0(t, τ,x,v) = E0(t, τ,x) + v ×B0(t, τ,x) . (4.17)

Up to a subsequence, fǫ two-scale converges to the profile F0 = F0(t, τ,x,v) in

L∞
(

0, T ;L∞
#

(

0, 2π;L2(R6)
)

)

and F0 is fully characterized by

F0(t, τ,x,v) = G0 (t,x+R1(−τ)v,R2(−τ)v) , (4.18)

where R1, R2 and G0 = G0(t,x,v) ∈ L∞
(

0, T ;L2
loc(R

6)
)

satisfy

R1(τ) =





sin τ 1− cos τ 0
cos τ − 1 sin τ 0

0 0 0



 , R2(τ) =





cos τ sin τ 0
− sin τ cos τ 0

0 0 1



 , (4.19)







∂tG0(t,x,v) + v|| ∂x||
G0(t,x,v)+J1(L0)(t,x,v) · ∇xG0(t,x,v)

+ J2(L0)(t,x,v) · ∇vG0(t,x,v) = 0 ,
G0(t = 0,x,v) = f0(x,v) ,

(4.20)

with J1(L0) and J2(L0) defined by

Ji(L0) =
1

2π

∫ 2π

0

Ri(−τ)L0 (t, τ,x+R1(τ)v,R2(τ)v) dτ . (4.21)

Proof. We easily remark that the sequence (Aǫ)ǫ> 0 defined by

Aǫ(t,x,v) =









0
0
v||

Eǫ(t,x) + v ×Bǫ(t,x)









,

is bounded independently of ǫ in
(

L∞
(

0, T ;W 1,q(K)
))6

for any compact set K ⊂ R
6 and for

q > 3/2. Consequently, Aǫ two-scale converges to the vector function A0 = A0(t, τ,x,v) ∈
(

L∞
(

0, T ;L∞
#

(

0, 2π;W 1,q(K)
)

))6

defined by

A0(t, τ,x,v) =









0
0
v||

E0(t, τ,x) + v ×B0(t, τ,x)









=









0
0
v||

L0(t, τ,x,v)









.

We also remark that the ODE system
{

(X,V)(τ) = L (t, τ,X(τ),V(τ)) ,
(X,V)(0) = (x,v) ,

with L defined by

L(t, τ,x,v) =

(

v⊥

v ×M

)

,

admits the following 2π-periodic solution:
{

X(τ ;x,v, t; 0) = x+R1(τ)v ,
V(τ ;x,v, t; 0) = R2(τ)v ,
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with R1 and R2 defined by (4.19).
Multiplying the Vlasov equation by fǫ and integrating the result in x and v, we obtain

∂t

(∫

R6

|fǫ(t,x,v)|
2
dx dv

)

= 0 ,

so we deduce ‖fǫ(t, ·)‖L2(R6) = ‖f0‖L2(R6) for any ǫ and any t. Consequently, Theorem 2.4 allow us to
claim that, up to the extraction of a subsequence, fǫ two-scale converges to the profile F0 = F0(t, τ,x,v)

in L∞
(

0, T ;L∞
#

(

0, 2π;L2(R6)
)

)

characterized by

F0(t, τ,x,v) = G0 (t,x+R1(−τ)v,R2(−τ)v) ,

where G0 = G0(t,x,v) ∈ L∞
(

0, T ;L2
loc(R

6)
)

satisfies (4.20).

For obtaining higher order two-scale convergence terms, we first consider a fixed k ∈ N
∗ and we

assume that the electric and magnetic fields satisfy the following hypotheses:

Hypothesis 4.7. Defining recursively the sequences (Eǫ,i)ǫ> 0 and (Bǫ,i)ǫ> 0 as










Eǫ,i(t,x) =
1

ǫ

(

Eǫ,i−1(t,x) − Ei−1

(

t,
t

ǫ
,x

))

, ∀ i = 1, . . . , k ,

Eǫ,0(t,x) = Eǫ(t,x) ,










Bǫ,i(t,x) =
1

ǫ

(

Bǫ,i−1(t,x)−Bi−1

(

t,
t

ǫ
,x

))

, ∀ i = 1, . . . , k ,

Bǫ,0(t,x) = Bǫ(t,x) ,

we assume that, for all i = 0, . . . , k and up to the extraction of a subsequence, (Eǫ,i)ǫ> 0 and
(Bǫ,i)ǫ> 0 two-scale converge to the profiles Ei = Ei(t, τ,x) and Bi = Bi(t, τ,x) respectively in
(

L∞
(

0, T ;L∞
#

(

0, 2π;W 1,q(K)
)

))3

for any compact subset K ⊂ R
3.

Hypothesis 4.8. Defining recursively the sequence (fǫ,i)ǫ> 0 as










fǫ,i(t,x,v) =
1

ǫ

(

fǫ,i−1(t,x,v) − Fi−1

(

t,
t

ǫ
,x,v

))

, ∀ i = 1, . . . , k − 1 ,

fǫ,0(t,x,v) = fǫ(t,x,v) ,

we assume that, up to a subsequence, the sequence (fǫ,i)ǫ> 0 two-scale converges to the profile Fi =

Fi(t, τ,x,v) ∈ L∞
(

0, T ;L∞
#

(

0, 2π;L2(R6)
)

)

for all i = 0, . . . , k − 1.

Hence, defining Li as
Li(t, τ,x,v) = E i(t, τ,x) + v ×Bi(t, τ,x) , (4.22)

for all i = 0, . . . , k, we define recursively the functions W0, . . . ,Wk such that W0 = 0 and, for any i > 0,

Wi(t, τ,x,v)

=

i−1
∑

j =0

∫ τ

0

(

J1(Lj)(t,x,v) −R1(−σ)Lj (t, σ,x+R1(σ)v,R2(σ)v)
J2(Lj)(t,x,v) −R2(−σ)Lj (t, σ,x+R1(σ)v,R2(σ)v)

)

·

(

∇xGi−1−j(t,x,v) +∇xWi−1−j(t, σ,x,v)
∇vGi−1−j(t,x,v) +∇vWi−1−j(t, σ,x,v)

)

dσ

−

∫ τ

0

[

∂tWi−1(t, σ,x,v) −
1

2π

∫ 2π

0

∂tWi−1(t, ζ,x,v) dζ

]

dσ

(4.23)
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where, for i = 0, . . . , k − 1, Gi is defined on [0, T ]× R
6 thanks to the relation

Fi(t, τ,x,v) = Gi (t,x+R1(−τ)v,R2(−τ)v)

+Wi (t, τ,x+R1(−τ)v,R2(−τ)v) .

Hence we have the following result for obtaining the k-th order term Fk:

Theorem 4.9. We assume that the hypotheses of Theorem 4.6 and Hypotheses 4.7 and 4.8 are satisfied
for a fixed k ∈ N

∗ and we introduce the function Rk−1 defined by

Rk−1(t,τ,x,v)

= ∂tFk−1(t, τ,x,v) + v|| ∂x||
Fk−1(t, τ,x,v)

+
1

2π

k−1
∑

i=0

[

∫ 2π

0

(

R1(−σ)Li (t, σ + τ,x+R1(σ)v,R2(σ)v)
R2(−σ)Li (t, σ + τ,x+R1(σ)v,R2(σ)v)

)

dσ

·

(

∇xFk−1−i(t, τ,x,v)
∇vFk−1−i(t, τ,x,v)

)

]

.

(4.24)

In addition, taking s′ such that 1
s′ = 1 − 1

q − 1
r with r ∈ [1, 6q

6−q [ and defining Xs′(K) =
(

W 1,q(K)
)′
∪

(

W 1,s′(K)
)

, we assume that, for any compact subset K ⊂ R
6,

• Wk ∈ L∞
(

0, T ;L∞
#

(

0, 2π;L2(K)
)

)

,

• ∂tWk, Rk−1 ∈ L∞
(

0, T ;L∞
#

(

0, 2π;Xs′(K)
))

.

Then, if the sequence (fǫ,k)ǫ> 0 defined by

fǫ,k(t,x,v) =
1

ǫ

(

fǫ,k−1(t,x,v) − Fk−1

(

t,
t

ǫ
,x,v

))

, (4.25)

is bounded independently of ǫ in L∞
(

0, T ;L2
loc(R

6)
)

, it two-scale converges to the profile Fk =

Fk(t, τ,x,v) ∈ L∞
(

0, T ;L∞
#

(

0, 2π;L2(R6)
)

)

up to the extraction of a subsequence. Furthermore, Fk

is fully characterized by

Fk(t, τ,x,v) = Gk (t,x+R1(−τ)v,R2(−τ)v)

+Wk (t, τ,x+R1(−τ)v,R2(−τ)v) ,
(4.26)

where Wk is defined in (4.23) and where Gk = Gk(t,x,v) ∈ L∞
(

0, T ;L2
loc(R

6)
)

is the solution of


























































































∂tGk(t,x,v) + v|| ∂x||
Gk(t,x,v)

+ J1(L0)(t,x,v) · ∇xGk(t,x,v) + J2(L0)(t,x,v) · ∇vGk(t,x,v)

= −
1

2π

∫ 2π

0

[

∂tWk(t, τ,x,v) + v|| ∂x||
Wk(t, τ,x,v)

]

dτ

−
1

2π

k
∑

i=0

∫ 2π

0

[

(

R1(−τ)Li (t, τ,x+R1(τ)v,R2(τ)v)
R2(−τ)Li (t, τ,x+R1(τ)v,R2(τ)v)

)

·

(

∇xWk−i(t, τ,x,v)
∇vWk−i(t, τ,x,v)

)

]

dτ

−

k
∑

i=1

(

J1(Li)(t,x,v) · ∇xGk−i(t,x,v)
J2(Li)(t,x,v) · ∇xGk−i(t,x,v)

)

·

(

∇xGk−i(t,x,v)
∇vGk−i(t,x,v)

)

,

Gk(t = 0,x,v) = 0 .

(4.27)



TWO-SCALE EXPANSION OF A CONVECTION EQUATION 23

4.3 Application to axisymmetric charged particle beams

In this last example, we focus on the following axisymmetric linear Vlasov equation:










∂tfǫ(t, r, vr) +
vr

ǫ
∂rfǫ(t, r, vr) +

(

Eǫ(t, r)−
r

ǫ

)

∂vrfǫ(t, r, vr) = 0 ,

fǫ(t = 0, r, vr) = f0(r, vr) .

(4.28)

In this system, fǫ = fǫ(t, r, vr) is the unknown distribution function of the particles, Eǫ = Eǫ(t, r) is the
radial component of the external magnetic field, the variables (t, r, vr) ∈ [0, T ]×R×R stand for the time
variable and the radial position and velocity variable, with the convention fǫ(t, r, vr) = fǫ(t,−r,−vr),
Eǫ(t, r) = −Eǫ(t,−r) (see [10, 14, 29] for details).

The two-scale convergence of fǫ at 0-th order has been studied by Frénod, Sonnendrücker and
Salvarani in [14] in a more rich context. We recall here this result and we adapt it in a straightforward
way to the case of Vlasov equation (4.28):

Theorem 4.10 (Frénod, Sonnendrücker, Salvarani [14]). We assume that the initial distribution f0

is positive on R
2 and that f0 ∈ L1(R2; rdrdvr) ∩ L2(R2; rdrdvr). We also assume that the se-

quence (Eǫ)ǫ> 0 is bounded independently of ǫ in the space L∞
(

0, T ;W 1,3/2(K; rdr)
)

for any K ⊂ R

compact. Then, up to the extraction of a subsequence, fǫ two-scale converges to the profile F0 =

F0(t, τ, r, vr) in L∞
(

0, T ;L∞
#

(

0, 2π;L2(R2; rdrdvr)
)

)

and Eǫ two-scale converges to E0 = E0(t, r, vr)

in L∞
(

0, T ;L∞
#

(

0, 2π;W 1,3/2(K; rdr)
)

)

for any K ⊂ R compact, with F0 defined by

F0(t, τ, r, vr) = G0(t, r cos τ − vr sin τ, r sin τ + vr cos τ) , (4.29)

with G0 = G0(t, r, vr) ∈ L∞
(

0, T ;L2
loc(R

2; rdrdvr)
)

solution of

{

∂tG0 + J1(E0) ∂rG0 + J2(E0) ∂vrG0 = 0 ,
G0(t = 0, r, vr) = f0(r, vr) ,

(4.30)

where

J1(E0)(t, r, vr) = −
1

2π

∫ 2π

0

sin(τ) E0(t, τ, r cos τ + vr sin τ) dτ , (4.31)

J2(E0)(t, r, vr) =
1

2π

∫ 2π

0

cos(τ) E0(t, τ, r cos τ + vr sin τ) dτ . (4.32)

In order to establish higher order two-scale convergence results, it is necessary to add some hypotheses
on the external electric field Eǫ. As in the previous paragraphes, we consider a fixed integer k > 0 and
we formalize it as follows:

Hypothesis 4.11. Defining recursively the sequence (Eǫ,i)ǫ > 0 as











Eǫ,i(t, r) =
1

ǫ

(

Eǫ,i−1(t, r)− Ei−1

(

t,
t

ǫ
, r

))

, ∀ i = 1, . . . , k ,

Eǫ,0(t, r) = Eǫ(t, r) ,

we assume that, for all i = 0, . . . , k, (Eǫ,i)ǫ> 0 two-scale converges to the profile Ei = Ei(t, τ, r) in

L∞
(

0, T ;L∞
#

(

0, 2π;W 1,3/2(K; rdr)
)

)

for any K ⊂ R compact.

We also add some hypotheses about the two-scale convergence of fǫ at i-th order for i = 0, . . . , k− 1:
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Hypothesis 4.12. Defining recursively the sequence (fǫ,i)ǫ> 0 as











fǫ,i(t, r, vr) =
1

ǫ

(

fǫ,i−1(t, r, vr)− Fi−1

(

t,
t

ǫ
, r, vr

))

, ∀ i = 1, . . . , k − 1 ,

fǫ,0(t, r, vr) = fǫ(t, r, vr) ,

we assume that, up to the extraction of a subsequence, (fǫ,i)ǫ > 0 two-scale converges to Fi = Fi(t, τ, r, vr)

in L∞
(

0, T ;L∞
#

(

0, 2π;L2(R2; rdrdvr)
)

)

for i = 0, . . . , k − 1.

Hence we can define recursively W0, . . . ,Wk as follows:

Wi(t, τ,r, vr)

=

∫ τ

0

[

i−1
∑

j=0

(

J1(Ej)(t, r, vr) + sin(σ) Ej(t, σ, r cosσ + vr sinσ)
J2(Ej)(t, r, vr)− cos(σ) Ej(t, σ, r cosσ + vr sinσ)

)

·

(

∂rGi−1−j(t, r, vr) + ∂rWi−1−j(t, σ, r, vr)
∂vrGi−1−j(t, r, vr) + ∂vrWi−1−j(t, σ, r, vr)

)

− ∂tWk−1(t, σ, r, vr) +
1

2π

∫ 2π

0

∂tWk−1(t, ζ, r, vr) dζ

]

dσ ,

(4.33)

where G0, . . . , Gk−1 are linked to F0, . . . , Fk−1 by the relations

Fi(t, τ, r, vr) = Gi(t, r cos τ − vr sin τ, r sin τ + vr cos τ)

+Wi(t, τ, r cos τ − vr sin τ, r sin τ + vr cos τ) .

We finally introduce the function Rk−1 defined by

Rk−1(t, τ, r, vr) = ∂tFk−1(t, τ, r, vr)

+

k−1
∑

j=0

[

1

2π

∫ 2π

0

(

sin(σ)Ej(t, σ + τ, r cosσ + vr sinσ)
cos(σ)Ej(t, σ + τ, r cosσ + vr sinσ)

)

dσ

·

(

∂rFk−1−j(t, τ, r, vr)
∂vrFk−1−j(t, τ, r, vr)

)

]

.

(4.34)

Hence we can extend the main result of [10] to the k-th order:

Theorem 4.13. We assume that the hypotheses of Theorem 4.10 and Hypotheses 4.11 and 4.12 are
satisfied for a fixed k ∈ N

∗. In addition, taking s′ such that 1
s′ = 1− 1

q −
1
r with r ∈ [1, 2q

2−q [ and defining

Xs′(K; rdrdvr) =
(

W 1,q(K; rdrdvr)
)′

∪
(

W 1,s′(K; rdrdvr)
)

, we assume that, for any compact subset

K ⊂ R
2,

• Wk ∈ L∞
(

0, T ;L∞
#

(

0, 2π;L2(K; rdrdvr)
)

)

,

• ∂tWk, Rk−1 ∈ L∞
(

0, T ;L∞
#

(

0, 2π;Xs′(K; rdrdvr)
))

.

Then, if the sequence (fǫ,k)ǫ> 0 defined by

fǫ,k(t, r, vr) =
1

ǫ

(

fǫ,k−1(t, r, vr)− Fk−1

(

t,
t

ǫ
, r, vr

))

, (4.35)
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is bounded independently of ǫ in L∞
(

0, T ;L2
loc(R

2; rdrdvr)
)

, it two-scale converges to the profile Fk =

Fk(t, τ, r, vr) in L∞
(

0, T ;L∞
#

(

0, 2π;L2(R2; rdrdvr)
)

)

with

Fk(t, τ, r, vr) = Gk(t, r cos τ − vr sin τ, r sin τ + vr cos τ)

+Wk(t, τ, r cos τ − vr sin τ, r sin τ + vr cos τ) ,
(4.36)

where Wk is defined in (4.33) and where Gk = Gk(t, r, vr) ∈ L∞
(

0, T ;L2
loc(R

2; rdrdvr)
)

is the solution
of











































































































∂tGk(t, r, vr) + J1(E0)(t, r, vr) ∂rGk(t, r, vr) + J2(t, r, vr) ∂vrGk(t, r, vr)

= −
1

2π

∫ 2π

0

∂tWk(t, τ, r, vr) dτ

+
1

2π

k
∑

i=0

∫ 2π

0

sin(τ)Ei(t, τ, r sin τ + vr sin τ) ∂rWk−i(t, τ, r, vr) dτ

−
1

2π

k
∑

i=0

∫ 2π

0

cos(τ)Ei(t, τ, r sin τ + vr sin τ) ∂vrWk−i(t, τ, r, vr) dτ

−

k
∑

i=1

J1(Ei)(t, r, vr) ∂rGk−i(t, r, vr)

−
k
∑

i=1

J2(Ei)(t, r, vr) ∂vrGk−i(t, r, vr) ,

Gk(t = 0, r, vr) = 0 .

(4.37)

5 Conclusions and perspectives

We have proposed some two-scale convergence results for a particular kind of convection equations in
which a part of the convection term presents some high order frequency oscillations in time. These results
can be viewed as an improvement of the calculations done by Frénod, Raviart and Sonnendrücker in [13]
since the properties of the convection terms Aǫ and L are less restrictive: indeed, in the present paper,
the two-scale convergence can be proved with Aǫ which depends on ǫ and with L which can also depend
on ǫ in some particular sense. Along with these results, we have described the list of required hypotheses
on (Aǫ)ǫ > 0 and L for reaching the k-th order of two-scale convergence for (uǫ)ǫ> 0. Finally, we have
applied these new results to three different rescaled linear Vlasov equations which are used in the context
of MCF or charged particles beams. The limit systems which have been obtained consolidate the existing
results and complete them by proposing a k-th order two-scale limit model.

From a numerical point of view, these new informations can be used for enriching the two-scale
numerical methods which are currently based on the resolution of the 0-th order limit model: in particular,
the limit model presented in Theorem 4.10 is discretized for approaching the solution of (4.28) but these
numerical experiments are relevant for ǫ≪ 1 (see [14, 29]). Combining this approach with the numerical
resolution of higher order two-scale limit models like (4.37) may provide some relevant numerical results
for values of ǫ which are less close to 0.
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