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Abstract

Let K be an e�ective �eld of characteristic zero. An e�ective tribe is a subset of
K[[z1; z2; :::]] = K [ K[[z1]] [ K[[z1; z2]] [ ��� which is e�ectively stable under the
K-algebra operations, restricted division, composition, the implicit function theorem,
as well as restricted monomial transformations with arbitrary rational exponents.
Given an e�ective tribe with an e�ective zero test, we will prove that an e�ective
version of the Weierstrass division theorem holds inside the tribe, and that this can
be used for the computation of standard bases.

Keywords: Power series, algorithm, Weierstrass preparation, standard basis, D-alge-
braic power series, tribe
A.M.S. subject classi�cation: 68W30, 03C60

1 Introduction
There are two main aspects about e�ective computations with formal power series. On
the one hand, we need fast algorithms for the computation of coe�cients. There is an
important literature on this subject and the asymptotically fastest methods either rely on
Newton's method [3] or on relaxed power series evaluation [11].

On the other hand, there is the problem of deciding whether a given power series is
zero. This problem is undecidable in general, since we need to check the cancellation of an
in�nite number of coe�cients. Therefore, a related subject is the isolation of su�ciently
large classes of power series such that most of the common operations on power series can
be carried out inside the class, but such that the class remains su�ciently restricted such
that we can design e�ective zero tests.

The abstract description of a suitable framework for power series computations is the
subject of section 2. We �rst recall the most common operations on formal power series over
a �eld K of characteristic zero: the K-algebra operations, restricted division, composition,
the resolution of implicit equations, and so called restricted monomial transformations with
arbitrary rational exponents. A subset L of K[[z1; z2; :::]] =K [K[[z1]] [K[[z1; z2]] [ ���
which is stable under each of these operations will be called a tribe. We will also specify
e�ective counterparts of these notions.

The main results of this paper are as follows. Given an e�ective tribe with an e�ective
zero test, we show in section 4 that the tribe also satis�es an e�ective version of the
Weierstrass preparation theorem [17], and we give an algorithm for performing Weierstrass
division with remainder. In section 5, we also introduce �Weierstrass bases� and a recursive
version of Weierstrass division that works for ideals. For archimedean monomial orderings,
this can in turn be used for the computation of standard bases of ideals generated by series
in the tribe in the sense of Hironaka [9].

�. This work has been supported by the ANR-10-BLAN 0109 LEDA project.
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Our results can for instance be applied to the tribe of algebraic power series. In that
particular case, various alternative algorithms have been developed. An algorithm for
Weierstrass division was given in [2]. This algorithm has recently been extended to the
computation of reduced standard bases of ideals that satisfy Hironaka's box condition [1].
In the case that the ideals are generated by polynomials instead of power series, one
may compute (non reduced) standard bases using Mora's tangent cone algorithm [16] or
Lazard's homogenization technique [15].

The main other example that motivated our work is the tribe of D-algebraic power
series (see also [6, 7, 14]). The fact that the collection of all D-algebraic power series
satis�es the Weierstrass preparation theorem was �rst proved in a more ad hoc way by van
den Dries [8]. The notion of a tribe also shares some common properties with the notion
of a Weierstrass system, as introduced by Denef and Lipshitz [5] and used in [8]. Our
approach can be regarded as a simpler, e�ective and more systematic way to prove that
certain types of power series formWeierstrass systems. Moreover, we show how to compute
more general standard bases in this context.

The idea behind our main algorithm for the computation of Weierstrass polynomials
is very simple: given a series f 2 L \K[[z1; :::; zn]] of Weierstrass degree d in z1, we just
compute the solutions '1; :::; 'd of the equation f(z1; :::; zn) = 0 in z1 inside a su�ciently
large �eld of grid-based power series. This allows us to compute the polynomial P =
(z1 ¡ '1) ��� (z ¡ 'd) which we know to be the Weierstrass polynomial associated to f .
Using the stability of the tribe under restricted monomial transformations, we will be able
to compute P as an element of L.

The algorithms rely on our ability to compute with the auxiliary grid-based power series
'1; :::; 'd. For this reason, we brie�y recall some basic facts about grid-based power series
in section 3, as well as the basic techniques which are needed in order to compute with them.

Weierstrass division is a precursor of the more general notion of Hironaka division in
the particular case of a principal ideal in general position. For arbitrary ideals in general
position (or, more precisely, in �Weierstrass position�), we introduce a recursive version of
Weierstrass division in section 5. Assuming that such an ideal I is �nitely generated by
elements in the tribe L, this allows us to compute a �Weierstrass basis� for I and to decide
ideal membership for other elements of I. Another application is the computation of the
Hilbert function of I. The main ingredients in section 5 are the possibility to put ideals in
Weierstrass position modulo a suitable linear change of variables and ordinary Weierstrass
division in the principal ideal case. For tribes in which we have alternative algorithms
the Weierstrass preparation theorem, the techniques of section 5 can use these algorithms
instead of the ones from section 4.

In the last section 6, we show how to compute more traditional standard bases of
ideals I that are �nitely generated by elements of L. The main di�culty with standard
bases in the power series setting (in constrast to Gröbner bases in the polynomial setting)
is termination. This di�culty is overcome by using the fact that we may compute the
Hilbert function of the idea using the techniques from section 5. During the construction
of a standard basis, this essentially allows us to decide whether the S-series of two basis
elements reduces to zero or whether it reduces to a series of high valuation. In order to
avoid certain technical di�culties, we prove our main result only for archimedean monomial
orderings. It is plausible that our results can be extended to the general case and we will
outline some ideas in this direction.

Our paper uses several notations from the theory of grid-based power series [12] that are
uncommon in the area of standard bases. For instance, admissible orderings are replaced by
monomial orderings, initial monomials by dominant monomials, andWeierstrass position is
reminiscent of Hironaka's box condition [1]. Nevertheless, the dictionary is rather straight-
forward and we hope that the reader will appreciate some of the bene�ts of our notations.
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2 Common operations on power series

Let K be a �eld of characteristic zero and denote

K[[z1; z2; :::]] = K [K[[z1]][K[[z1; z2]][ ���;

where we understand that K[[z1; :::; zn]] is naturally included in K[[z1; :::; zn+1]] for each n.
So each element f 2K[[z1; z2; :::]] is a power series in a �nite number of variables.

We say thatK is e�ective if its elements can be represented by concrete data structures
and if all �eld operations can be carried out by algorithms. We say that K admits an
e�ective zero test if we also have an algorithm which takes f 2 K on input and which
returns true if f =0 and false otherwise.

If K is e�ective, then a power series f 2K[[z1; z2; :::]] is said to be computable if we
have an e�ective bound n for its dimension (so that f 2K[[z1; :::; zn]]), together with an
algorithm which takes i2Nn on input and produces the coe�cient fi2K of zi= z1

i1 ��� zn
in

on output. We will denote the set of computable power series by K[[z1; z2; :::]]com.

Basic operations on power series

Let L be a subset of K[[z1; z2; :::]]. We will denote Ln=L\K[[z1; :::; zn]] for each n and
say that L is e�ective if L �K[[z1; z2; :::]]

com. In this section, we will give de�nitions of
several operations on power series and the corresponding closure properties that L may
satisfy. From now on, we will always assume that L is at least a K-algebra. It is also
useful to assume that L is inhabited in the sense that zi 2 L for all i. For each i, we will
denote @i= @ /@zi and �i= zi @i. We say that L is stable under di�erentiation if @iL�L
for all i (whence �iL�L).

The above closure properties admit natural e�ective analogues. We say that L is an
e�ective K-algebra if K is an e�ective �eld, if the elements of L can be represented by
concrete data structures and the K-algebra operations can be carried out by algorithms.
We say that L is e�ectively inhabited if there is an algorithm which takes i 2N on input
and which computes zi2L. We say that L is e�ectively stable under di�erentiation if there
exists an algorithm which takes f 2L and i2N on input and which computes @i f 2L.

Restricted division

We say that L is stable under restricted division if f / g2L whenever f 2L and g2L nf0g
are such that f /g 2K[[z1; z2; :::]]. If L is e�ective, then we say that L is e�ectively stable
under restricted division if we also have an algorithm which computes f / g as a function
of f ; g 2 L, whenever f / g 2 K[[z1; z2; :::]]. Here we do not assume the existence of a
test whether f / g 2 K[[z1; z2; :::]] (the behaviour of the algorithm being unspeci�ed
if f / g 2/ K[[z1; z2; :::]]). More generally, given g 2 K[[z1; z2; :::]] n f0g, we say that L is
stable under restricted division by g if f / g 2 L whenever f / g 2K[[z1; z2; :::]], and that
L is e�ectively stable under restricted division by g if this division can be carried out
by algorithm.

Composition

Given f 2K[[z]]=K[[z1; :::; zn]], we let f(0)2K denote the evaluation of f at 0=(0; :::;0).
Given f 2 K[[z]] and g1; :::; gn 2 K[[u]] = K[[u1; :::; up]] with g1(0)= ���= gn(0)= 0, we
de�ne the composition f � g = f � (g1; :::; gn) of f and g to be the unique power series
f � g 2K[[u1; :::; up]] with

(f � g)(u1; :::; up)= f(g(u1; :::; up); :::; g(u1; :::; up)):

Common operations on power series 3



We say that a power series domain L � K[[z1; z2; :::]] is stable under composition if
f � (g1; :::; gn)2L for any f 2Ln and g1; :::; gn2L with g1(0) = ���= gn(0) = 0. If we also
have an algorithm for the computation of f � (g1; :::; gn), then we say that L is e�ectively
stable under composition.

We notice that stability under composition implies stability under permutations of
the zi. In particular, it su�ces that z12L for L to be inhabited. Stability under composition
also implies stability under the projections �i with

(�i f)(z1; :::; zn)= f(z1; :::; zi¡1; 0; zi+1; :::; zn):

If L is also stable under restricted division by z1 (whence under restricted division by
any zi), then this means that we may compute the coe�cients [zik] f of the power series
expansion of f with respect to zi by induction over k:

[zi
k] f = �i

f ¡ [zi0] f ¡ ���¡ ([zik¡1] f) zik¡1

zi
k

:

Similarly, we obtain stability under the di�erentiation: for any f 2Ln and i6n, we have

(@i f)(z1; :::; zn) = �n+1
f(z1; :::; zi¡1; zi+ zn+1; zi+1; :::; zn)¡ f(z1; :::; zn)

zn+1
:

Implicit functions

Let '1; :::; 'm2K[[z1; :::; zn]] with p=n¡m> 0 and '1(0)= ���= 'm(0)=0. Assume that
the matrix formed by the �rst m columns of the scalar matrix

@'
@z

(0) =

0BB@
@'1
@z1

(0) ��� @'1
@zn

(0)
��� ���

@'m
@z1

(0) ��� @'m
@zn

(0)

1CCA
is invertible. Then the implicit function theorem implies that there exist unique power
series  1; :::;  m 2 K[[z1; :::; zp]], such that the completed vector  = ( 1; :::;  n)
with  m+1 = z1; :::;  n = zp satis�es ' �  = 0. We say that a power series domain
L�K[[z1; z2; :::]] satisfies the implicit function theorem (for m implicit functions) if
 1; :::;  m 2 L for the above solution of ' �  = 0, whenever '1; :::; 'm 2 Ln. We
say that L e�ectively satis�es the implicit function theorem if we also have an algorithm
to compute  1; :::;  m as a function of '1; :::; 'm.

We claim that L satis�es the implicit function theorem form implicit functions as soon
as L satis�es the implicit function theorem for one implicit function and L is stable under
restricted division and composition. We prove this by induction over m. For m = 1 the
statement is clear, so assume that m > 1. Since (@'/@z)(0) is invertible at least one of
the (@'i/@z1)(0) must be non zero. Modulo a permutation of rows we may assume that
(@'1/@z1)(0)=/ 0. Applying the implicit function theorem to '1 only, we obtain a function
� 2Ln¡1 with '1 � (�; z1; :::; zn¡1)= 0. Di�erentiating this relation, we also obtain

@�
@zj

= ¡@'1/@zj+1
@'1/@z1

� (�; z1; :::; zn¡1);

for each j. Setting � := 1/(@'1/@z1)(0), this yields in particular

@�
@zj

(0) = ¡� @'1
@zj+1

(0):
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Now consider the series 'i
0= 'i+1 � (�; z1; :::; zn¡1)2L. For each j6m¡ 1, we have

@'i
0

@zj
(0) =

@�
@zj

(0)
@'i+1
@z1

(0)+
@'i+1
@zj+1

(0)

=
@'i+1
@zj+1

(0)¡� @'1
@zj+1

(0)
@'i+1
@z1

(0):

In particular, ���������
@'1
0

@z1
(0) ��� @'1

0

@zm¡1
(0)

��� ���
@'m¡1
0

@z1
(0) ��� @'m¡1

@zm¡1
(0)

��������� = �

��������
@'1
@z1

(0) ��� @'1
@zm

(0)
��� ���

@'m
@z1

(0) ��� @'m
@zm

(0)

��������=/ 0:
By the induction hypothesis, we may thus compute series  2; :::;  m 2 Lp such that
'i
0�( 2; :::;  m;z1; :::; zp)=0 for all i. Setting  1= � �( 2; :::;  m; z1; :::; zp)2Lp, we conclude

that '1 � ( 1; :::;  m; z1; :::; zp)= '1 � (�; z1; :::; zn¡1) � ( 2; :::;  m; z1; :::; zp)=0 and

'i+1 � ( 1; :::;  m; z1; :::; zp) = 'i+1 � (�; z1; :::; zn¡1) � ( 2; :::;  m; z1; :::; zp)
= 'i

0 � ( 2; :::;  m; z1; :::; zp)
= 0

for all i6m¡ 1.

Restricted monomial transformations

Consider an invertible n � n matrix M 2 Qn�n with rational coe�cients. Then the
transformation

� � zM: z1
Q ��� zn

Q ¡! z1
Q ��� zn

Q

zi 7¡! zM �i

is called a monomial transformation, where i 2 Qn is considered as a column vector.
For a power series f 2 K[[z1; :::; zn]] whose support supp f = fi 2 Nn: fi =/ 0g satis�es
M � supp f �Nn, we may apply the monomial transformation to f as well:

f � zM =
X
i2Nn

fi zM �i:

We say that L is stable under restricted monomial transformations if for any f 2 Ln and
invertible matrix M 2Qn�n with M � supp f �Nn, we have f � zM 2Ln. We say that L is
e�ectively stable under restricted monomial transformations if we also have an algorithm
to compute f � zM as a function of f and M . Notice that we do not require the existence
of a test whether M � supp f � Nn in this case (the behaviour of the algorithm being
unspeci�ed whenever M � supp f *Nn).

If M 2Nn�n has positive integer coe�cients, then we always haveM � supp f �Nn and
L is trivially stable under the monomial transformation f 7! f � zM whenever L is stable
under composition.

Examples

We say that the K-algebra L with z1 2 L is a local community if L is stable under
composition, the resolution of implicit equations, and restricted division by z1. We say
that L is a tribe if L is also stable under restricted division and restricted monomial
transformations. E�ective local communities and tribes are de�ned similarly.
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A power series f 2 K[[z1; z2; :::]] is said to be algebraic if it satis�es a non trivial
algebraic equation over the polynomial ringK[z1; z2; :::]=K[K[z1][K[z1; z2][���. Setting
H =K(z1; z2; :::) =K [K(z1) [K(z1; z2) [ ���, this is the case if and only if the module
H [f ] is a H-vector space of �nite dimension. Using this criterion, it is not hard to prove
that the set K[[z1; z2; :::]]alg of algebraic power series is a tribe (and actually the smallest
tribe for inclusion). Assume that K is an e�ective �eld. Then an e�ective algebraic power
series f 2K[[z1; z2; :::]] can be e�ectively represented as an e�ective power series together
with an annihilator P 2K[z1; z2; :::][F ]. It can be shown that K[[z1; z2; :::]]alg is an e�ective
tribe for this representation.

A power series f 2 K[[z1; :::; zn]] is said to be D-algebraic if it satis�es a non trivial
algebraic di�erential equation Pi(f ; :::; �i

ri f) = 0 for each i 2 f1; :::; ng, where Pi is a non
zero polynomial in ri+ 1 variables with coe�cients in K. We denote by K[[z1; z2; :::]]dalg

the set of D-algebraic power series. If K is an e�ective �eld, then e�ective D-algebraic
power series may again be represented through an e�ective power series and di�erential
annihilators Pi of the above form. In [14], one may �nd more information on how to
compute with D-algebraic power series, and a full proof of the fact that K[[z1; z2; :::]]dalg

is an e�ective tribe (the proof being based on earlier techniques from [6, 7]).

3 Grid-based series

Monomial monoids

In what follows, we will only consider commutative monoids. A monomial monoid is
a multiplicative monoid M with an asymptotic partial ordering 4 which is compatible
with the multiplication (i.e. m14n1^m24n2)m1m24n1 n2 and m1 n4m2 n)m14m2).
We denote by M� = fm 2 M: m � 1g the set of in�nitesimal elements in M and by
M4= fm2M:m4 1g the set of bounded elements in M. We say that M has Q-powers if
we also have a powering operation (k;m)2Q�M 7!mk2M such that (mn)k=mk nk and
(mk)l=mkl for all k; l 2Q and m; n2M.

A monomial monoidM is said to be e�ective if its elements can be represented by e�ec-
tive data structures and if we have algorithms for the multiplication and the asymptotic
ordering 4. Since m= n,m4 n^ n4m this implies the existence of an e�ective equality
test. A monomial group M is said to be e�ective if it is an e�ective monomial monoid with
an algorithm for the group inverse. We say that M is an e�ective monomial group with
Q powers if we also have a computable powering operation.

Grid-based sets

A subset G�M is said to be grid-based if there exist �nite sets fm1; :::;mmg �M� and
fn1; :::; nng�M such that

G � fm1
i1 ���mm

im nj: i1; :::; im2N; 16 j6ng: (1)

If M is actually a group which is generated (as a group) by its in�nitesimal elements, then
we may always take n=1.

If M is an e�ective monomial monoid, then a grid-based subset G �M is said to be
e�ective if the predicate m2M 7!m2G is computable and if �nite sets fm1; :::;mmg�M�

and fn1; :::; nng�M with (1) are explicitly given.
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Grid-based series

Let K be a �eld of characteristic zero. Given a formal series f =
P

m2Mfmm with fm2K,
the set supp f = fm2M: fm=/ 0g will be called the support of f . We say that the formal
series f is grid-based if its support is grid-based and we denote by K[[M]] the set of such
series. A grid-based series f 2K[[M]] is said to be in�nitesimal or bounded if supp f �M�

resp. supp f �M4, and we denote by K[[M]]� resp. K[[M]]4 the sets of such series.
In [12, Chapter 2] elementary properties of grid-based series are studied at length.

We prove there that K[[M]] forms a ring in which all series f with 12 supp f �M4 are
invertible. In particular, if M is a totally ordered group, then K[[M]] forms a �eld. Given
a power series f 2K[[z1; :::; zn]] and grid-based series g1; :::; gn 2K[[M]]�, there is also
a natural de�nition for the composition f(g)= f � g= f(g1; :::; gn)= f � (g1; :::; gn).

Given a grid-based series f 2K[[M]] the maximal elements of supp f for 4 are called
dominant monomials for f . If f has a unique dominant monomial, then we say that f is
regular , we write df for the dominant monomial of f , and call fdf the dominant coe�cient
of f . If M is totally ordered, then any non zero grid-based series in K[[M]] is regular.

Assume that K and M are e�ective. Then a grid-based series f 2K[[M]] is said to be
e�ective if its support is e�ective and if the map m2M 7! fm is computable. It can be shown
that the set K[[M]]com of computable grid-based series forms an e�ective K-algebra.

Examples

Given an �in�nitesimal� indeterminate z, the set zN 2 fzi: i 2 Ng is a monomial monoid
for the asymptotic ordering zi4 zj, i> j, and K[[zN]] coincides with K[[z]]. Similarly,
K[[zZ]] coincides with the �eld of Laurent series K((z)) and K[[zQ]] with the �eld of
Puiseux series in z over K. If K is algebraically closed, then so is K[[zQ]].

Given monomial monoids M1; :::; Mn, one may form the product monomial monoid
M1 � ��� �Mn with m1 ��� mn4 n1 ��� nn, m14 n1 ^ ��� ^mn 4 nn for all m1; n1 2M1; :::;
mn; nn2Mn. Then K[[z1

N����� znN]] coincides with the set of power series K[[z1; :::; zn]],
whereas K[[z1

Z� ���� znZ]] coincides with the set of Laurent series K((z1; :::; zn)).
Given monomial monoids M1; :::; Mn, one may also form the set M1 �� ��� �� Mn

whose elements m1 ��� mn are ordered anti-lexicographically: m1 ��� mn � n1 ��� nn if there
exists an i with mi � ni and mj = nj for all j > i. The set K[[z1

N �� ��� �� znN]] should
naturally be interpreted as K[[z1]]���[[zn]] (which it is isomorphic to K[[z1; :::; zn]]). The
set K[[z1

Z�� ��� �� znZ]] is a �eld which contains K((z1; :::; zn)), and this inclusion is strict
if n > 1 (notice also that K[[z1

Z �� ��� �� znZ]]  K((z1)) ��� ((zn))). If K is algebraically
closed, then K[[z1

Q�� ��� �� zn
Q
]] is again an algebraically closed �eld (and again, we have

K[[z1
Q�� ��� �� zn

Q
]] K[[z1

Q
]] ��� [[zn

Q
]]).

Cartesian representations

From now on, we will assume that M is a monomial group which is generated as a group
by its in�nitesimal elements. Given a series f 2K[[M]], a Cartesian representation for f
is a Laurent series f�2K((z1; :::; zk)) together with monomials m1; :::;mk 2M� such that
f= f�(m1; :::;mk). Given several series f1; :::; fl2K[[M]], and Cartesian representations for
each of the fi, we say that these Cartesian representations are compatible if they are of the
form fi= f�i(m1; :::;mk) for f�i2K((z1; :::; zk)) and m1; :::;mk2M�. In [12, Proposition 3.12]
we show that such compatible Cartesian representations always exist.

In [12, Chapter 3], we give constructive proofs of several basic facts about Cartesian
representations and L-based series to be introduced below. These constructive proofs can
easily be transformed into algorithms, so we will only state the e�ective counterparts of
the main results. First of all, in order to keep the number of variables k in Cartesian repre-
sentations as low as possible, we may use the following e�ective variant of [12, Lemma 3.13]:

Grid-based series 7



Lemma 1. Let z1; :::; zk;m1; :::;ml be in�nitesimal elements of an e�ective totally ordered
monomial group M with Q-powers, such that we have explicit expressions for m1; :::;ml2
z1
Z ��� zkZ as power products. Then we may e�ectively compute in�nitesimal z1

0 ; :::; zk
0 2

z1
Q ��� zk

Q with z1; :::; zk;m1; :::;ml2 (z10 )N ��� (zk0 )N. �

L-based power series

Let L be a local community. We will say that f 2K[[M]] is L-based if f admits a Cartesian
representation of the form f = f�(m1; :::;mk) with f�= ' z1

i1 ��� zk
ik, '2Lk and i1; :::; ik2Z.

The set K[[M]]L of all such series forms a K-algebra [12, Proposition 3.14]. If K, L
and M are e�ective, then any grid-based series in K[[M]]L is computable. Moreover, we
may e�ectively represent series in K[[M]]L by Cartesian representations, and K[[M]]L is
an e�ective K-algebra for this representation.

A Cartesian representation f = f�(m1; :::;mk) of f 2K[[M]] is said to be faithful if for
each dominant monomial v�= z1

i1 ��� zk
ik of f , there exists a dominant monomial w of f with

v�(m1; :::;mk)4w. We have the following e�ective counterpart of [12, Proposition 3.19]:

Proposition 2. Assume that K, L and M are e�ective. Then there exists an algorithm
which takes a series in K[[M]]L on input and computes a faithful Cartesian representation
f = f�(m1; :::;mk) with f�= 'z1

i1 ��� zk
ik, '2Lk and i1; :::; ik2Z. �

Faithful Cartesian representations are a useful technical tool for various computations.
They occur for instance in the proof of the following e�ective counterpart of [12, Proposi-
tion 3.20]:

Proposition 3. Assume that K, L and M are e�ective. There exists an algorithm which
takes an in�nitesimal (or bounded, or regular) series f 2 K[[M]] on input and which
computes a Cartesian representation f = f�(m1; :::; mk) such that f� is again in�nitesimal
(or bounded, or regular, respectively). �

Solving power series equations

Assume now that K is an e�ective �eld with an e�ective zero test and an algorithm for
determining the roots in K of polynomials in K[F ]. Let L be an e�ective local community
over K and M an e�ective totally ordered monomial group. We notice that a grid-based
series in K[[M� FN]] can also be regarded as an ordinary power series in K[[M]][[F ]].
We are interested in �nding all in�nitesimal solution of a power series equation

P0+P1 f +P2 f
2+ ���=0;

where P =P0+P1F +P2 F 2+ ���2K[[M�FN]]L. The Newton polygon method from [12,
Chapter 3] can be generalized in a straightforward way to power series equations instead
of polynomial equations and the e�ective counterpart of [12, Theorem 3.21] becomes:

Theorem 4. There exists an algorithm which takes P 2 K[[M � FN]]L � K[[M]][[F ]]
with P =/ 0 on input and which computes all solutions of the equation P (f) = 0 with
f 2K[[M]]�. �

Given P 2 K[[M � FN]]L with P =/ 0, we may also consider P as an element of
K[[FN � M]] =� K[[F ]][[M]]. Let NP 2 K[[F ]] be the dominant of P for this latter
representation. The valuation of NP in F is called the Weierstrass degree of P . If K is
algebraically closed, then it can be shown that the number of solutions to the equation in
Theorem 4 coincides with the Weierstrass degree, when counting with multiplicities.

8 Section 3



Scalar extensions
Let L be a tribe over K and let �1; :::; �l be formal indeterminates. Then there exists
a smallest tribe over K(�) that extends L. We will denote this tribe by K(�)
L. Setting

L=�1
Z�� ��� �� �lZ�� (z1N� z2N� ���);

we notice that K(�)�K[[�1
Z�� ��� �� �lZ]]L�K[[L]]L and L �K[[L]]L. This shows that

any element in K(�)
L can be represented by an element of K[[L]]L. In particular, if L
is e�ective, then so is K(�)
L.

4 E�ective Weierstrass preparation
E�ective algebraic closures
LetK be an e�ective �eld with an e�ective zero test. We may consider its algebraic closure
Kalg as an e�ective �eld with an e�ective zero test, when computing non deterministi-
cally (we refer to [4] for more details about this technique, which is also called dynamic
evaluation).

Let L be an e�ective tribe overK with an e�ective zero test. It is convenient to represent
elements of Kalg
L by polynomials P 2L[�], where �2Kalg. The algebraic number � is
e�ectively represented using an annihilator A2L[X] and we may always take P such that
degP < degA. It is a routine veri�cation that Kalg
L forms again an e�ective tribe for
this representation.

Consider a series f 2Kalg
 L \K[[z1; z2; :::]], represented as f = P (�) = P0 + ��� +
Pk¡1 �

k¡1, where � 2 Kalg is given by an annihilator of degree k. Then we notice that
we can compute a representation for f as a element of L. Indeed, whenever Pj =/ 0 for
some j > 0, then this means that there exists a monomial zi 2 z1N z2

N ��� such that the
coe�cient [zi] P 2K[�] of zi in P is a polynomial of non zero degree in �. On the other
hand, [zi] P 2 K, which means that we can compute an annihilator for � of degree <k.
Repeating this reduction a �nite number of times, we thus reach the situation in which
P1= ���=Pk¡1=0, so that f =P02L.

E�ective Weierstrass preparation
Let L still be an e�ective tribe over K with an e�ective zero test. Given f 2 Ln, we
recall that f is said to have Weierstrass degree d in z1 if f(0) = (@f / @z1)(0) = ��� =
(@d¡1 f /@z1

d¡1)(0) = 0, but (@d f /@z1d)(0) =/ 0. In that case, the Weierstrass preparation
theorem states that there exists unit u 2 K[[z1; :::; zn]] and a monic polynomial P =
zd+Pd¡1 z1

d¡1+ ���+P02K[[z2; :::; zn]][z1] of degree d such that f=u P . The polynomial P
is called the Weierstrass polynomial associated to f . We claim that P 2Ln and that there
exists an algorithm to compute P (and therefore the corresponding unit u, since Ln is
e�ectively stable under restricted division):

Theorem 5. There exists an algorithm which takes a power series f 2Ln of Weierstrass
degree d on input and computes its Weierstrass polynomial P as an element of Ln.

Proof. Consider the e�ective totally ordered monomial group M = z2
Q �� ��� � zn

Q with
Q-powers. We have a natural inclusion Ln � Kalg[[M � z1

N]]Kalg
L. Now consider f 2
Kalg[[M� z1N]]Kalg
L�Kalg[[M]][[z1]]. By theorem 4, we may compute all in�nitesimal
solutions '1; :::; 'd2Kalg[[M]]Kalg
L to the equation f(')=0 in z1 (we recall that there
are d such solutions, when counting with multiplicities, since Kalg is algebraically closed).
Now consider

P = (z1¡ '1) ��� (z1¡ 'd)2Kalg[[M� z1N]]Kalg
L

Effective Weierstrass preparation 9



and let P � 2K[[z1; :::; zn]] be the Weierstrass polynomial associated to f . Since P � also
admits the in�nitesimal roots '1; :::; 'd when considered as an element of Kalg[[M]][[z1]],
we have P =P � when considering P � as an element of Kalg[[M� z1N]]. It follows that

P 2 Kalg[[M� z1N]]Kalg
L\K[[z1; :::; zn]]:

Now consider a Cartesian representation P = P�(m1; :::;mk) for P with P� 2L. By Propo-
sition 3, we may take P� to be in�nitesimal. Since m1; :::;mk are in�nitesimal and m1; :::;

mk 2 z1
Q ��� zn

Q, Lemma 1 also shows that we may assume without loss of generality that
k 6 n. Completing the m1; :::; mk with additional elements if necessary, this means that
we may compute an invertible matrix M 2Qn�n such that mi= zi � zM for all i. In other
words, P =P� � zM with P� 2Ln. Since P 2K[[z1; :::; zn]] and L is e�ectively closed under
restricted monomial transformations, we conclude that P 2Ln. �

E�ective Weierstrass division

Assume that f 2Ln has Weierstrass degree d in z1 and let g2Ln. The Weierstrass division
theorem states that there exists a quotient Q and a remainder R in K[[z2; :::; zn]][z1] with

g = Qf +R

and degz1R<d. We claim that Q and R once again belong to Ln and that there exists an
algorithm to compute them:

Theorem 6. There exists an algorithm which takes a power series f 2Ln of Weierstrass
degree d and g 2Ln on input and computes the quotient and remainder of the Weierstrass
division of g by f as elements of Ln.

Proof. Let '1; :::; 's be the distinct solutions of f(')=0 when considered as an equation
in z1, and let �i be the multiplicity of each 'i, so that �1 + ��� + �s = d. For each i, we
compute the polynomials

Ai =
X
j=0

�i¡1
1
j!
@j g

@z1
j
� ('i; z2; :::; zn) z1

j 2Kalg[[M]]Kalg
L[z]

Bi = (z1¡ 'i)�i2Kalg[[M]]Kalg
L[z]

Using Chinese remaindering, we next compute the unique R 2 Kalg[[M]]Kalg
L[z] such
that R � AimodBi for each i and degz R < d. It is easily veri�ed that R coincides with
the remainder of the Weierstrass division of g by f . In particular, R 2K[[z1; :::; zn]] and
we may obtain R as an element of Ln in the same way as in the proof of Theorem 5. We
obtain the quotient Q of the Weierstrass division by performing the restricted division
of g¡R by f . �

The evaluation approach

Often, it is possible to regard or represent elements of the tribe L as functions. For instance,
we may regard f = z1+ exp z2 as a function f : (t K[[t]])2!K[[t]] that sends (z1(t); z2(t))
to z1(t)+ exp z2(t). This point of view is very useful for heuristic zero testing: in order to
test whether f 2K[[z1; :::; zn]]L vanishes, just pick random in�nitesimal univariate series
z1(t); :::; zn(t)2 t K[[t]] and check whether the �rst N terms of f(z1(t); :::; zn(t)) vanish for
some suitable large number N .
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In this evaluation approach, we notice that Weierstrass preparation becomes far less
expensive: instead of explicitly computing '1; :::; 'd2Kalg[[M]]Kalg
L as above, it su�ces
to show how to evaluate '1; :::; 'd (in terms of the evaluations of z2; :::; zn). For instance, if
we evaluate z1; :::; zn at in�nitesimal ordinary power series in tK[[t]], then the evaluations
of '1; :::; 'd will be Puiseux series in K[[tQ]] that can be computed fast using the Newton
polygon method.

Algebraic power series

In the special case of algebraic power series, we recall from the introduction that an
alternative approach to Weierstrass division was proposed in [2]. In this approach, algebraic
functions are represented in terms of unique power series solutions to certain systems of
polynomial equations. Given an algebraic series f 2K[[z1; :::; zk]] of Weierstrass degree d
in z1, the idea is then to represent the Weierstrass polynomial P associated to f as P =

z1
d + ud¡1 z1

d¡1 + ��� + u0 for certain undetermined coe�cients. Next, it su�ces to form
a new system of equations in u0; :::; ud¡1 for which the unique solution yields the actual
Weierstrass polynomial. For instance, if f is a polynomial, then the relation f remP = 0
essentially provides us with such a system (here we understand f remP to be the remainder
of the euclidean division of f by P as polynomials in z1).

The e�ciency of this approach from [2] highly depends on the way how the systems
of equations that are satis�ed by algebraic power series are represented. For instance,
completely writing out the remainder f remP as a polynomial inK[u0; :::;ud¡1; z1; z2; :::;zn]
typically leads to very large expressions. On the other hand, we expect the approach to be
e�cient in combination with the evaluation approach mentioned above. If we replace the
variables z2; :::; zn by in�nitesimal power series in t K[[t]], then one may solve the evaluated
system of equations in u0; :::; ud¡1 using the relaxed technique from [13].

D-algebraic power series

One attractive way to represent D-algebraic power series in z1; :::; zn is as elements of
a suitable type of �nitely generated algebras A�K[[z1; :::; zn]] overK that are stable under
the derivations @1; :::; @n with respect to z1; :::; zn. For instance, we might have A=K

�
z1; z2;

e¡z1
2z2
2
; erf(z1 z2)

�
. We refer to [14, Section 5.3] for a precise and fully general de�nition.

Now consider a D-algebraic series f 2A�K[[z1; :::; zn]] of Weierstrass degree d. Then
Weierstrass division with respect to f can be regarded as restricting D-algebraic series
de�ned on the n-dimensional ambient space in z1; :::; zn to the (n¡1)-dimensional subspace
in z2; :::; zn with d branches on which f vanishes. Restrictions of functions in A can again
be represented by the same elements in A, but the derivations @1; :::; @n on A need to be
replaced by new derivations @ 0 with @ 0 f = 0. We refer to [14, section 5.5] for an implicit
function theorem that is based on this line of thought. We expect it to be possible to
generalize these ideas and obtain an alternative e�ective Weierstrass preparation theorem.

5 E�ective power series elimination
Throughout this section, we assume that K is an e�ective �eld with an e�ective zero
test and that L is an e�ective tribe over K with an e�ective zero test. We will write
S=K[[z1; :::; zn]] =K[[M]] with M= z1

N ��� znN and assume that M is endowed with the
asymptotic ordering 4 such that

zi� zj () (9k; i1= j1^ ��� ^ ik¡1= jk¡1^ ik> jk):

For each k 2 f1; :::; ng, we also de�ne Mk= zk
N ��� znN and Sk=K[[zk; :::; zn]] =K[[Mk]].

Given an arbitrary subset S�M, we �nally de�ne K[[S]] := ff 2S: supp f �Sg.
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Weierstrass systems

Consider a subset B�Snf0g together with a leading monomial lb2M with blb=/ 0 for each
b 2 B. Setting lb= z1

d1 ��� zk
dk with dk=/ 0 (or dk= 0 and k = 1), we call zk the Weierstrass

variable for b and dk the corresponding Weierstrass degree. We also denote kb=k, db=dk,
and

Fb = lbMk

Rb = M nFb
mb = z1

d1 ��� zk¡1
dk¡1

Mb = fm2M:m4mbg:

Given any f 2S, we de�ne

�b(f) =
X
n2Mk

fmbnn:

We say that B is a Weierstrass system if supp b � Mb, if �b(b) has valuation db (w.r.t.
z1; :::; zn) for each b 2B and if Fb \ Fb0=? for all b=/ b in B. In that case, the elements
of B are totally ordered by b6 b0,Mb�Mb0.

Weierstrass reduction

Let fbg be a Weierstrass system and k= kb. Given f 2S, Weierstrass division of �b(f) by
�b(b) yields a unique series a unique u2Sk such that

�b(f)¡ u�b(b) 2 K[[zk
f0;:::;db¡1gMk+1]]:

It follows that f ¡ u b2K[[Rb]]. Moreover, if f 2K[[Mb]], then f ¡ u b2K[[Mb]]. We
call redb f := f ¡ u b the Weierstrass reduction of f with respect to b. If f ; b 2 SL, then
redb f 2SL and we may compute redb f as described in Section 4.

We notice that redb:S!K[[Rb]] is an Sk+1-linear mapping. The mapping actually
preserves in�nite summation in the following sense: a family (fi)i2I 2 SI is said to be
summable if the set fi 2 I : m 2 supp fig is �nite for each m 2M. In that case, the sum
f =

P
i2I fi is well de�ned by taking fm=

P
i2I (fi)m for each m 2M. Linear mappings

that preserve in�nite summation are said to be strongly linear .
Now consider a Weierstrass system B= fb1; :::; bpg with b1< ���< bp. Given f 2S, we

de�ne its Weierstrass reduction with respect to B by

redB f = (redbp � ��� � redb1)(f): (2)

By induction over p, it can be checked that redB:S!K[[RB]] is a strongly linear mapping,
where RB=Rb1\ ��� \Rbp. If f 2SL, then we also have redB(f)2K[[RB]]L, and we may
compute redB(f) using (2).

Reduced Weierstrass systems

AWeierstrass system B is itself said to be reduced if for each b2B, we have b¡ lb2K[[RB]].
Two Weierstrass systems B and B 0 are said to be equivalent if redB and redB 0 coincide.

Let B be an arbitrary Weierstrass system and consider b 2 B with k = kb and d= db.
We claim that there exists a unique u = ub 2 Sk with u b ¡ lb 2 K[[Rb]]. Indeed, the
Weierstrass preparation theorem implies the existence of a series u 2 Skb with u �b(b) 2
zk
d+ Sk+1 zk

d¡1+ ���+Sk+1. It follows that u b¡ lb 2K[[Rb]]. If b 2SL, then Theorem 5
shows how to compute u.
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Replacing b by ub b for each b 2 B, we obtain an equivalent Weierstrass system such
that b ¡ lb 2K[[Rb]] for each b 2 B. Let B = fb1; :::; bpg with b1 < ��� < bp. Replacing bi
by (redbp � ��� � redbi+1)(bi) for i = p; :::; 1, we obtain an equivalent reduced Weierstrass

system B~. If B �SL, then this procedure is completely e�ective, and B~�SL.

Weierstrass position

Let I be an ideal of S. In this subsection, we will de�ne when I is in Weierstrass position.
We proceed by induction over n. The ideals I = 0 and I = S are always in Weierstrass
position, which deals in particular with the case when n=0.

Assume that n > 0 and I =/ 0, and let d be the minimal valuation of a non zero
element of I. Given a power series g 2S, let g= g0+ g1 z1+ g2 z1

2+ ��� be its power series
expansion with respect to z1. For each i 2N, the sets I>i := I \ fg 2 S: valz1 g > ig and
I[i] := fgi: g 2 I>ig are ideals of S and S2. We say that I is in Weierstrass position if there
exists an element f 2 I with fz1d =/ 0 and such that the ideals I[0]; :::; I[d¡1] of S2 are in
Weierstrass position.

Assume that K is in�nite. Given a �nite number of ideals I1; :::; Ip of S, let us show
by induction over n that there exists a linear change of coordinates for which I1; :::; Ip are
simultaneously in Weierstrass position. A linear change of coordinates is a mapping S!S;
f 7! f � ' with '2Slin

n := (Kx1+ ���+Kxn)n

For n = 0, we have nothing to do, so assume that n > 0. For each k 2 f1; :::; pg, let
fk 2 Ik be a non zero element of minimal order dk. Since K is in�nite, there exist �2; :::;
�n2K such that (fk � ')z1dk=/ 0, where '=(z1; z2+�2 z1; :::; zn+�n z1). By the induction

hypothesis, there exists a vector  2 (S2)linn¡1 of linear series such that (Ik)[i] � ' �  are
simultaneously in Weierstrass position for k2f1; :::; pg and i<dk. Notice that we still have
(fk�'� )z1dk=/ 0 for all k. Consequently, the ideals Ik�'� are all in Weierstrass position.

From a practical point of view, a random linear change of variables puts an ideal into
Weierstrass position with probability one. From a theoretical standpoint, it su�ces to
extend K with

�
n
2

�
formal parameters and to perform a generic triangular linear change of

coordinates. The adjunction of new formal parameters can be done e�ectively using the
technique from the end of Section 3.

Weierstrass bases

Let I be an ideal of S. A Weierstrass system B is said to be a Weierstrass basis for I if
I = ff 2 S: redB f = 0g. Assuming that I is in Weierstrass position, an abstract way to
construct a Weierstrass basis goes as follows.

If I = ?, then we take B = ?. Otherwise, let f be an element of I of minimal
valuation d with fz1d =/ 0. For each i 2 f0; :::; d ¡ 1g, the induction hypothesis yields
a Weierstrass basis B[i] for the ideal I[i]. For each b 2 B[i], the exists an element b0 =
b z1

i+ bi+1
0 z1

i+1+ ���+ bd¡10 z1
d¡12 I>i. Let B[i]0 be the set of all such elements b0 with b2B[i].

Then ff gqB[0]0 q ��� qB[d¡1]0 is a Weierstrass basis for I.

Stable Weierstrass systems

Our next aim is to provide a more e�ective criterion for checking whether a reduced
Weierstrass system B is in fact a Weierstrass basis of an ideal. Given k2f1; :::; ng we will
denote

B(k] = fb2B: kb6 kg
B[k] = fb2B: kb= kg
B[k) = fb2B: kb> kg:
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The Weierstrass system B is said to be stable if for all k 2f1; :::; n¡ 1g and b2B, we have

redB (xk b) = 0:

Notice that this relation automatically holds for b2B(k], so it su�ces to prove the relation
for all k 2 f0; :::; n ¡ 1g and b 2 B[k+1). The main goal of this subsection is to prove the
following theorem:

Theorem 7. Any stable reduced Weierstrass system B is a Weierstrass basis.

Proof. Let k 2 f0; :::; n¡ 1g and notice that Mk :=K[[RB(k]]] is an Sk+1-module. Now
consider

Mk = ff 2Mk: redB f =0g
= ff 2Mk: redB[k+1) f =0g

Nk = Mk\
X

b2B[k+1)
Sk+1 b:

We claim that Mk=Nk for all k. We clearly have Mk �Nk. For the inverse inclusion, it
su�ces to show that Mk is an Sk+1 module. We will use induction over n¡ k. For k=n,
we have Mn=Nn=0.

Assuming that Mk=Nk, let us now show that Mk¡1=Nk¡1. Notice that

Mk¡1 = Mk�Ek

Ek =
M
b2B[k]

Sk b

and redB(k]: Mk¡1 ! Mk is an Sk+1-linear projection. Now Mk can be regarded as an
Sk-module by letting multiplication by '2Sk act as

' � f := redB(k] (' f) = redB[k] ('f):

Since B is stable, we have xk � b 2 Mk for all b 2 B[k+1). Since B[k+1) generates the
Sk+1-module Nk = Mk, it follows that Mk is an Sk+1[xk]-submodule of Mk. Using the
fact that redB is strongly linear, Mk is actually an Sk-submodule of Mk. In other words,
SkMk �Mk + Ek. Using that Mk¡1 =Mk � Ek, we conclude that SkMk¡1 = Sk (Mk �
Ek)�Mk�SkEk=Mk¡1, whence Mk¡1 is an Sk-module.

Having proved our claim, we �nally observe that B is a Weierstrass basis forN0=M0. �

Computing Weierstrass bases

Let F be a �nite subset of SL. Assuming �general position�, we will show in this section
how to compute a Weierstrass basis B �SL for the ideal (F). The algorithm will proceed
by the repeated replacement of elements of B by linear combinations of elements in B.
Consequently, along with the computations, we may calculate a matrix M 2 SL

B�F with
B=MF (in the sense that b=

P
f2FMb;f f for all b2B). The algorithm raises an error

if the general position hypothesis is violated.
As usual, we proceed by induction over n. If F �f0g, then we may take B=? and we

have nothing to do. Otherwise, let f 2F nf0g be of minimal valuation d. If fx1d=0, then
we raise an error. Assuming that fx1d=/ 0, we �rst replace f by u f , where u 2 SL is such
that u f ¡ z1d2K[[Rf]]. We next replace each other element g2F nff g by redfg, so that
F nff g�K[[Rf]]. For each i2f0; :::; d¡ 1g, let F[i]= fg 2F : valz1 g= ig. The recursive
application of the algorithm to (F[i])i yields a matrixMi such thatMi (F[i])i is a Weierstrass
basis of ((F[i])i). Consequently, B[i]=MiF[i] yields a Weierstrass system such that (B[i])i
is a Weierstrass basis. The union B= ff gqB[0]q ��� qB[d¡1] is also a Weierstrass system
and we may reduce it using the algorithm described above.
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At this point, we have a reduced Weierstrass system with the property that (B[i])i
is a Weierstrass basis for each i. We next compute R = fredB (xk b): 1 6 k < n; b 2 Bg.
If R = f0g, then B is a Weierstrass basis by Theorem 7. Otherwise, we replace F by
B [R n f0g and recompute B in the same way above, while keeping the same f . During
each iteration of this loop, the ideals ((B[i])i) of S2 can only increase, and one of them must
increase strictly. Since S2 is Noetherian, the loop therefore terminates.

Su�ciently �general position� for avoiding any errors can be forced in a similar way as
described in the subsection aboutWeierstrass position. In that case, we systematically work
with collections F such that each F 2F is a �nite subset of SL. Modulo a common linear
change of coordinates '2Slin

n we then compute a Weierstrass basis for each ideal (F � ')
with F 2F .

Hilbert functions

Let I be an ideal of S. For each d 2 N, let Jd be the ideal generated by all monomials
z1
d1 ��� zn

dn with d1+ ���+ dn= d. Setting D(d) = dim (S/(I + Jd)) and HF(d) =HFI(d) =
D(d+1)¡D(d), the function HF=HFI is called the Hilbert function of I. It is well know
that there exists a degree � 2N and a polynomial H =HI 2Q[d] such that HF(d)=H(d)
for all d> �. This polynomial is called the Hilbert polynomial of I and � the corresponding
regularity of I.

Now let B be a Weierstrass basis for I and denote

RB;<d = RB\M<d (3)
M<d = fz1

d1 ��� zn
dn: d1+ ���+ dn<dg: (4)

Given f 2S, let f<d=
P

m2M<d
fmm, so that f<d is a natural representative of f modulo Jd.

For some (Qb)b2B 2SB, we have f =
P

b2BQb b+ redB(f), whence f<d=
P

b2B (Qb b)<d+

redB(f)<d. It follows that f mod (I + Jd)= redB(f)mod (I +Jd), whence

S/(I +Jd) =� K[[RB;<d]]:

This simply means that

D(d)= jRB;<dj= jM<d nFB j= jM<dj ¡
X
b2B

jFb\M<dj:

Now given b2B with lb= z1
d1 ��� zk

dk, we have

jFb\M<dj= jxkN ���xnN\M<d¡d1¡���¡dkj=
�

n¡ k
d¡ d1¡ ��� ¡ dk¡ 1

�
for all d > d1 + ��� + dk + 1. These formulas allow us to explicitly compute the Hilbert
polynomial of I and the corresponding regularity.

6 Standard bases

Let K, S=K[[z1; :::; zn]] =K[[M]] and L be as in the previous section, but forget about
the other notations de�ned there. Let 4 be an arbitrary total monomial ordering on M
with z1� 1; :::; zn� 1. Given a series f 2S monomial m2M, we denote f�m=

P
n�mfnn.

Given a subset S �S, we also denote S�m= ff�m: f 2Sg. The notations f�m, f4m, S�m,
etc. are de�ned likewise.
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Hironaka reduction

Let B be a �nite subset of S=/ . We de�ne

FB =
S
b2B dbM

RB = M nFB:

Given f 2S, we say that f is reduced with respect to B if supp f �Rb. There exists a unique
g 2 (B) such that f ¡ g is reduced with respect to B and we de�ne redB(f) := f ¡ g to
be the Hironaka reduction of f with respect to B. If f 2SL and B �SL, then we do not
necessarily have redB(f) 2 SL. Nevertheless, for any m 2M such that M�m is �nite, we
may compute redB(f)�m from f�m and B�m using a similar recursion (over M�m) as in
the case of Euclidean division. We say that B is autoreduced if b is reduced with respect
B n fbg for all b2B.

Example 8. Let L be the tribe of algebraic power series. If

f = z1 z2

b = (z1¡ z22) (z2¡ z12);

then it can be shown [10, p. 75] that

redfbg(f) =
X
k>0

¡
z1
3�2k+ z2

3�2k�:
In particular, f ; b2SL, but redfbg(f)2/ SL.

Standard bases

Given an ideal I �S, let

FI = fdf: f 2 I n f0gg
RI = M nFI:

We say that a �nite subset B of S=/ is a standard basis for I if (db)b2B is a set of generators
of (FI). We say that B is reduced if B is autoreduced and b ¡ db 2K[[RI]] for all b 2 B.
Any ideal I �S admits a unique reduced standard basis.

Let f ; g 2 S=/ be such that df = zi = z1
i1 ��� zn

in and dg = zj = z1
j1 ��� zn

jn. Let
k= sup (i; j)= (max (i1; j1); :::;max (in; jn)). We de�ne the S-series S(f ; g)2S of f and g
to be

S(f ; g) = gdg z
k¡i f ¡ fdf zk¡j g:

In a similar way as in the case of Gröbner bases, it can be shown that a �nite autoreduced
subset B of S=/ is a standard basis if and only if redB(S(b; b0))=0 for all b; b02B. For any
pair (b; b0)2B2, the relation redB(S(b; b0))=0 gives rise to an S-linear relation between the
elements of B. Using standard Gröbner basis techniques it can be shown that the space of
all S-linear relations between elements of B (the module of syzygies) is generated by the
relations of this special form.

Given a finite set F � S and I = (F), this characterization theoretically allows
us to compute the reduced standard basis B for I using a suitable local adaptation of
Buchberger's algorithm. However, such an �algorithm� relies on our ability to compute
reductions and Example 8 shows that we do not have any algorithm for doing so. Nev-
ertheless, we will show next that it is still possible to compute suitable truncations of B.
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Truncated standard bases

Given an ideal I�S, we have I=I�m�I4m, where I4m=I\S4m is again an ideal. Let B be
the reduced standard basis for I and assume that I is generated by a �nite subset F of SL.

IfM�m is �nite, then for any f 2S�m and S �S�mwe have an algorithm to compute the
truncated reduction redS

] (f) := redS(f)�m2S�m. Similarly, for f ; g2S�m
=/ , we can compute

the truncated S-polynomial S ](f ; g) := S(f ; g)�m 2 S�m. When using these truncated
variants of reduction and S-polynomials, the local analogue of Buchberger's algorithm
terminates, since all computations take place in a �nite dimensional vector space. This
provides us with an algorithm to compute T =B�mnf0g, together with a matrixM 2SLT �F
such that T =(MF)�m.

Hilbert functions

Let B be a standard basis of an ideal I of S, let d2N, and let RB;<d be de�ned as in (3).
In a similar way as at the end of section 5, one can show that

S/(I +Jd) =� K[[RB;<d]]:

Moreover, RB=Rfdb:b2Bg and the dimension of K[[Rfdb:b2Bg;<d]] can be computed by the
familiar technique of counting boxes below a Gröbner staircase. In other words, if we know
a standard basis B �SL of an ideal I of S, then we can compute the Hilbert function of I.

Computing standard bases in the archimedean case

In this subsection we show that the Hilbert function of I also provides us with information
about the possible shapes of standard bases for I. We will assume that the monomial
ordering 4 on M is archimedean in the sense that for any m;n2Mnf1g, the exists a k2N
with mk� n. In particular, the set M�m is �nite for any m2M.

Theorem 9. Let F be a �nite subset of SL and assume that the monomial ordering 4
on M is archimedean. Then there exists an algorithm to compute a standard basis
for I =(F).

Proof. Using the techniques from Section 5, we can compute the Hilbert function HFI of I.
Let B be the reduced standard basis of I and m2M. Since 4 is archimedean, the set M�m
is �nite. We have shown above that this allows us to compute T = B�m n f0g, as well as
a matrixM 2SLT �F with T =(MF)�m. Let B~=MF . Given b~2B~, there exists a b2B with
b~�m=b�m=/ 0 and db=db�m=db~�m=db~. Consequently, FB~�FB. Now we may also compute
the Hilbert function HFJ~ of the ideal J~= (FB~). We claim that B~ is a standard basis for I
if and only if HFI=HFJ~. Indeed, we have FJ~=FB~�FB=FI, so HFI=HFJ~ if and only if
FB~=FB. By de�nition, a subset A� I is a standard basis of I if and only FA=FI=FB.

In order to compute a standard basis, we pick smaller and smaller elementsm2M for4,
and perform the above computations until we have HFI =HFJ~. Since 4 is archimedean,
m eventually becomes su�ciently small so that m � db for all b 2 B. At that point, we
necessarily have FB~=FB and HFI=HFJ~. This proves the termination of our algorithm. �

Remark 10. For the computed standard basis B~, we notice that we also obtain the
corresponding matrix M 2SL

B�F with B~=MF .

Computing standard bases in the general case

We expect Theorem 9 to generalize to arbitrary monomial orderings, but various technical
di�culties have to be worked out with care. We will content ourselves with outlining an
approach that we believe should work.
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First of all, it is fairly standard that elimination techniques can be generalized to work
over �nite dimensional modules instead of rings. In particular, the results from section 5
should generalize to �nitely generated submodules of Sr, as well as Theorem 9 in the case
of archimedean monomial orderings.

Now given a non archimedean monomial ordering 4, we may assume without loss of
generality that we ordered the coordinates such that z1�z2�����zn. Letm<n be maximal
such that the restriction of 4 to M] := z1

N ��� zmN is archimedean. The idea is now to regard
elements of S as series in S[[[z1; :::; zm]], where S[ =K[[zm+1; :::; zn]]. It then su�ces to
generalize the theory from the previous subsections to the case when K is replaced by S[.
Moreover, using induction over n, we may assume that we know how to compute standard
bases for submodules of (S[)r. But for each m2M], the truncation S�m is precisely a free
�nite dimensional S[-module. This should allow us to �rst compute a standard basis
for I�m as an S[-module and next turn this into the truncation of an actual (not necessarily
reduced) standard basis.
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