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Abstract

In this short note, we prove that an almost umbilical hypersurface of a real space form

with almost Codazzi umbilicity tensor is embedded, diffeomorphic and quasi-isometric

to a round sphere. Then, we derive a new characterization of geodesic spheres in space

forms.
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1 Introduction

Let (Mn, g) be a connected and oriented compact Riemannian manifold isometrically
immersed into the simply-connected real space form M

n+1(δ) of constant curvature c. Let
B be the second fundamental form of the hypersurface and H its mean curvature. Since
we consider only hypersurfaces, we take B as the real-valued second fundamental form.
We denote by τ = B − Hg the traceless part of the second fundamental form, also called
umbilicity tensor. We said that M is totally umbilical if τ = 0.

It is a well-known fact that a compact totally umbilical hypersurface of a simply connected
real space form is a geodesic sphere. In the present note, we will investigate the natural
question of the stability of this rigidity result. In other words, if a compact hypersurface
of a real space form is almost umbilical, is this hypersurface close to a sphere? In what sense?

Shiohama and Xu proved in [17, 18] that if ||τ ||n is small enough, then Mn is home-
omorphic to the sphere S

n. Later on, we obtain quantitative results about the closeness
of almost hypersurfaces to spheres in [6, 15]. For instance, we prove in [15], always for
hypersurfaces of space forms, that if ||B − kg||∞ is sufficientely small, for a constant k,
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then the hypersurface is quasi-isometric to a sphere of radius 1
k . In [6] and also in [15],

we obtain smilar results with as less restrictive assumption replacing the L∞-norm by the
Lr-norm (r > n). In particular, the hypersurface is diffeomorphic to the sphere S

n. The
proximity to the sphere is stronger than for the results of Shiohama and Xu but in counter
part, the assumption on the umbilicity is also stronger. Indeed, the hypothesis implies that
the umbilicity tensor is close to zero and in addition that the mean curvature is close to a
constant. We add that in a very recent paper [16], Scheuer obtain the following nice result.
If M is embedded into R

n+1 and mean convex, then ||τ ||∞ sufficiently small implies that M

is strictly convex and Hausdorff close to a geodesic sphere of appropriate radius
√

n
λ1

, where

λ1 is the first positive eigenvalue of the Laplacian on M .

The aim of the present paper is to give a result comparable to those of [6] and [15]
with an alternative condition to the assumption that the mean curvature is almost constant.
Starting from the remark that a hypersurface of a real space form has constant mean
curvature if and only if its umbilicity tensor is Codazzi, we will prove that a hypersurface of
a real space form which is almost umbilical with almost Codazzi umbilicity tensor is close
to a sphere in the same sense as in [15]. Then, we prove a new rigidity result for geodesic
spheres in real space forms (Theorem 3.1).

2 Preliminaries

Before stating the results, we will introduce some useful notations and recalls. First, we
recall that the results obtained in [15] and [6] are consequences of pinching results for the
first eigenvalue of the Laplacian proved in [5] and [6]. A key tool for these pinching result
is the Michael-Simon’s extrinsic Sobolev inequality for submanifolds of the Euclidean space
[9] and its generalization by Hoffman and Spruck for any ambient manifold [7]. We begin
by recalling the conditions under which these Sobolev inequality are valid. Let (Nn+1, g)
be a Riemannian manifold with sectional curvature bounded by above, say KN 6 b2, with
b real or purely imaginary and n > 2. Let 0 < α < 1, we denote by HV (N,α) the set
of all connected, oriented and compact Riemannian manifolds without boundary (Mn, g)
isometrically immersed into N and satisfying the two following conditions

b2(1− α)−2/n(ω−1
n V ol(M))2/n 6 1, (1)

2ρ0 6 injM (N), (2)

where injM (N) is the injectivity radius of N restricted to M and ρ0 is given by

ρ0 =







b−1 sin−1
(

b(1− α)−1/n(ω−1
n V ol(M))1/n

)

if b is real,

(1− α)−1/n(ω−1
n V ol(M))1/n if b is imaginary.

Under these hypotheses, Hoffman and Spruck showed that for any C1 function f on M , the
following extrinsic Sobolev inequality holds

(
∫

M

f
n

n−1 dvg

)

n−1

n

6 K(n, α)

∫

M

(|∇f |+ |Hf |) dvg, (3)
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where K(n, α) depends only on n and α (not on b). We remark that for Euclidean and
hyperbolic spaces, that is δ 6 0, (1) and (2) are trivially satisfied, whereas for spheres (δ > 0)

(1) and (2) resume to V ol(M) 6
(1−α)ωn

δn/2 , where ωn is the volume of n-dimensional unit

sphere. An immediate consequence of this inequality is that 1 6 K(n, α)||H||∞V ol(M)1/n

by taking f = 1. This extrinsic Sobolev inequality is of crucial importance to obtain pinching
results for the first eigenvalue of the Laplacian (see [5, 6]). An other important fact under
these assumptions is that the diameter of the hypersurface is bounded form above in terms
of the mean curvature. Namely, Topping (for the Euclidean space [19]) and then Wu and
Zheng (for any ambient manifold [20]) proved that if Equations (1) and (2) hold, then there
exists a constant C(n, α) depending only on n and α so that

diam(M) 6 C(n, α)

∫

M

|H|n−1dvg.

For the statements of our results, we introduce the following subset of HV (M
n+1(δ), α).

Let q > n and A > 0, we denote by HV (n, δ, α, q, A) the subset of all manifolds in
HV (M

n+1(δ), α) satisfying max
M

{

||H||∞V ol(M)1/n, ||B||qV ol(M)1/n
}

6 A if δ > 0 and

max
M

{

||H||∞V ol(M)1/n, ||B||qV ol(M)1/n, ||H||∞√
||H||2

∞
+δ

}

6 A if δ < 0. Note that this

condition is invariant by any dilatation of the metric of the ambiant space.

We also introduce the following usefull functions. Let r(x) = d(p, x) is the distance
function to a base point p (in the sequel, p will be the center of mass of M). We denote
by Z the position vector defined by Z = sδ(r)∇r, where ∇ is the connetcion of Mn+1(δ).
Moreover the functions cδ and sδ are defined by

cδ(t) =







cos(
√
δt) if δ > 0

1 if δ = 0

cosh(
√

|δ|t) if δ < 0

and sδ(t) =











1√
δ
sin(

√
δt) if δ > 0

t if δ = 0
1√
|δ|

sinh(
√

|δ|t) if δ < 0

A last notion will be useful for the sequel, the extrinsic radius. We recall that the extrinsic
radius R(M) of M is defined by

R(M) = inf{ρ > 0| ∃x ∈ M
n+1(δ) s.t. φ(M) ⊂ B(x, r)},

where φ is the immersion of M into M
n+1(δ). By a slight abuse of notation, we denote it

R(M) but, this radius depends not only on M but also on the immersion φ. Since in this
paper, the considered immersion will be fixed, this notation does not lead to any ambiguity.
Finally, even if, this is not optimal, we remark that R(M) 6 diam(M).

3 Almost umbilical hypersurfaces

Now, we have all the ingredients to state the main result of this note, which gives a new
result about the closeness to spheres for almost umbilical hypersurfaces..
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Theorem 3.1. Let (Mn, g) ∈ HV (n, δ, α, q, A). There exists ε0 ∈]0, 1[ depending on n, q

and A so that if ε 6 ε0 and

||τ ||∞ 6 ε||H||∞ and ||d∇τ ||∞ 6
ε||H||2∞

2nC(n, α)An
,

then M is embedded and (M, g) is ε-quasi-isometric to the round sphere

S

(

p, s−1
δ

(

1√
||H||2

∞
+δ

))

, where p is the center of mass of M . In particular, M is

diffeomorphic to the sphere S
n.

Before giving the proof of this theorem, we prove the following lemma

Lemma 3.2. Let (Mn, g) be a hypersurface of Mn+1(δ). For any tangent vector fields X,Y ,
we have

d∇τ(X,Y ) = Y (H)X −X(H)Y.

Proof: We compute the curvature R(X,Y )ν. We have

R(X,Y )ν = ∇X∇Y ν −∇Y ∇Xν −∇[X,Y ]ν

= −∇XA(Y ) +∇Y A(X) +A([X,Y ])

= −∇Xτ(Y ) +∇Y τ(X) + τ([X,Y ])−X(H)Y + Y (H)X

+H∇Y X −H∇XY +H[X,Y ]

= −d∇τ(X,Y )−X(H)Y + Y (H)X,

where we have used the fact ∇Y X − ∇XY + [X,Y ] = 0 since ∇ is torsion free. Moreover,
since M lies into a space of constant curvature, R(X,Y )ν = 0, which concludes the proof of
the lemma. �

Remark 3.3. We deduce immediately from this lemma that M have constant mean curvature
if and only if τ is Codazzi.

Proof of Theorem 3.1: Let ε > 0. We set η =
ε||H||2

∞

2nC(n,α)An . From the previous Lemma and

the assumption ||d∇τ ||∞ 6 η, we deduce that |X(H)| 6 η for any unitary vector X. Thus,
we have ||∇H|| 6 nη. Now, let p ∈ M be a point where the maximum of |H| is achieved.
Then, for any x ∈ M , by the mean value inequality, we have

|H(p)−H(x)| 6 nηd(p, x) 6 nηdiam(M).

Since by assumption M ∈ HV (n, δ, α,A), the diameter is bounded in terms the mean curva-
ture by the results of [19] for the Euclidean space and [20] for the general case. Indeed, we
have

diam(M) 6 C(n, α)

∫

M

|H|n−1dvg.

Hence, we get
|H(p)−H(x)| 6 nηC(n, α)||H||n−1

∞ V ol(M).
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Thus, we have
|H2 − ||H||2∞| 6 2nηC(n, α)||H||n∞V ol(M).

Since η =
ε||H||2

∞

2nC(n,α)An and the assumption ||H||n∞V ol(M) 6 An, we get

|H2 − ||H||2∞| 6 ε||H||2∞.

This, together with the other assuption ||τ ||∞ 6 ε||H||∞ leads to the conclusion that if
ε 6 ε0, where ε0 is a constant depending on n, q and A given by [6, Theorem 1.3], then M is

ε-quasi-isometric to the the sphere S

(

p, s−1
δ

(

1√
||H||2

∞
+δ

))

, where, p is the center of mass

of M . In particular, M is diffeomorphic to S
n. Moreover, in the proof of [6, Theorem 1.3],

the diffeomorphism is explicitely given. Namely, this diffeomorphism is the map

F : M −→ S(p, ρ)

x 7−→ expp

(

ρ X
|X|

)

,

where ρ = s−1
δ

(

1√
||H||2

∞
+δ

)

is the radius of the sphere, φ is the immersion ofM intoMn+1(δ)

and X = exp−1
p (φ(x)) is the position vector. Since F which is of the form F = G ◦ φ is a

diffeomorphism, then φ is necessarely injective. Thus, the immersion φ is an embedding.
This concludes the proof. �

Remark 3.4. The first condition ||τ ||∞ 6 ε||H||∞ is invariant by homothety. But, the

second condition ||d∇τ ||∞ 6
ε||H||2

∞

2nC(n,α)An is not invariant by homothety because of the square

on ||H||∞. This square is required since the diameter of M appears by the use of the mean
value inequality.

4 A new characterization of geodesic spheres

From Theorem 3.1, we can obtain a new characterization of geodesic sphere in real space
forms. We are motivated by the well-known Alexandrov theorem and the Yau conjecture
[21]. Indeed, the Alexandrov theorem [2] states that a compact CMC hypersurface embedded
into the Euclidean space, the hyperbolic space or the half-sphere is a geodesic sphere. Many
generalisations of this result have been proved after. For instance, Ros proved that the same
holds for higher order mean curvatures [11, 12]. In particular, in the Euclidean space, the
second mean curvature H2 = σ2(B) defined as the second homogeneous polynomial of the
second fundamental form is (up to a multiplicative constant) the scalar curvature. Precisely,
we have scal = n(n− 1)H2. More generally, in M

n+1(δ), we have scal = n(n− 1)(H2 + δ).
In the famous Problem section of [21], Yau conjectured that the embedding is not necessary
for the Alexandrov theorem for the scalar curvature. This conjecture is still open, even
if several partial answers have been given. We can cite for instance, the case where the
hypersurface is convex [4], stable [1], of cohomogeneity 2 [10], locally conformally flat [3] or
with pinched second fundamental form [8]. In [13] and [14], we prove it with the assumption
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that the mean curvature is almost constant. In this section, we give another partial answer
to this conjecture with a different additional assumption. Namely, we will show that
hypersurfaces with constant scalar curvature and almost Codazzi umbilicity tensor. are
geodesic spheres. This characterization is valid the three ambient spaces (Euclidean space,
hyperbolic space and half-sphere).

First, we give this technical lemma.

Lemma 4.1. Let (Mn, g) ∈ HV (n, δ, α, q, A) and s a positive constants. Let ε > 0 and
assume that

∣

∣

∣
H − ||H||∞

∣

∣

∣
6 ε||H||∞ et ||scal − s||∞ 6 ε||H||2∞,

then
||τ ||∞ 6 D||H||∞ε,

where D > 1 is an explicit constant depending on n, ||H||∞, δ and A.

Remark 4.2. 1. The constant D does not depend on s. Moreover, we will see in the
proof that s is then close to n(n− 1)(||H||2∞ + δ).

2. If δ > 0, D does not depend on ||H||∞.

Proof: The proof of this lemma comes directly from the Hisung-Minkowski formulae. We
recall that the Hsiung-Minkowksi formulae are integral formulae involving two consecutive
higher order mean curvatures. In particular, we have the first two ones

∫

M

(

H 〈Z, ν〉+ cδ(r)
)

dvg = 0, (4)

∫

M

(

H2 〈Z, ν〉+ cδ(r)H
)

dvg = 0. (5)

Since we assume that |scal − s| < ε, and scal = n(n− 1)(H2 + δ), we get easily
∣

∣

∣

∣

∣

H2 −
(

s

n(n− 1)
− δ

)

∣

∣

∣

∣

∣

<
1

n(n− 1)
ε||H||2∞. (6)

For more convenience, we will denote h2 = s
n(n−1) − δ and ||H||∞ = h. Then, from (5)

0 =

∫

M

(

H2 〈Z, ν〉+ cδ(r)H
)

dvg

=

∫

M

(

h2 〈Z, ν〉+ cδ(r)H
)

dvg +

∫

M

(H2 − h2) 〈Z, ν〉 dvg

=
h2

h

∫

M

h 〈Z, ν〉 dvg +
∫

M

cδ(r)Hdvg +

∫

M

(H2 − h2) 〈Z, ν〉 dvg

=
h2

h

∫

M

H 〈Z, ν〉 dvg +
h2

h

∫

M

(h−H) 〈Z, ν〉 dvg +
∫

M

cδ(r)hdvg

+

∫

M

cδ(r)(H − h)dvg +

∫

M

(H2 − h2) 〈Z, ν〉 dvg.
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Now, we use the other Hsiung-Minkowski formula (4) to get

0 = −h2

h

∫

M

cδ(r)dvg +
h2

h

∫

M

(h−H) 〈Z, ν〉 dvg

+

∫

M

cδ(r)hdvg +

∫

M

cδ(r)(H − h)dvg +

∫

M

(H2 − h2) 〈Z, ν〉 dvg

=

(

h− h2

h

)
∫

M

cδ(r)dvg +
h2

h

∫

M

(h−H) 〈Z, ν〉 dvg +
∫

M

cδ(r)(H − h)dvg

+

∫

M

(H2 − h2) 〈Z, ν〉 dvg.

Then, since |Z| = sδ(r) and using the assumption |H − h| 6 hε and (6), we deduce

∣

∣

∣
h− h2

h

∣

∣

∣

∫

M

cδ(r)dvg 6 h2ε

∫

M

sδ(r)dvg + εh

∫

M

cδ(r)dvg +
εh2

n(n− 1)

∫

M

sδ(r)dvg.

Using the fact that |H2| 6 H2, we deduce from the assumptions on h and h2 that

h2 6 |H2|+
1

n(n− 1)
εh2

6 H2 +
1

n(n− 1)
εh2

6 h2 + 2εh2 +
1

n(n− 1)
εh2

6 h2(1 + 3ε).

Hence, we get

∣

∣

∣
h− h2

h

∣

∣

∣

∫

M

cδ(r)dvg 6 εh

∫

M

cδ(r)dvg +

(

1 + 3ε+
1

n(n− 1)

)

εh2

∫

M

sδ(r)dvg.

Therefore, unsing the fact that ε < 1, we get

∣

∣

∣
h2 − h2

∣

∣

∣
6

[

1 + h

(

1 + 3ε+
1

n(n− 1)

)

∫

M
sδ(r)dvg

∫

M
cδ(r)dvg

]

εh2

6

[

1 + 5h

∫

M
sδ(r)dvg

∫

M
cδ(r)dvg

]

εh2.

From now on, we will discuss the three cases δ = 0, δ > 0 and δ < 0.

First case: δ = 0. In this case, we have sδ(r) = r and cδ(r) = 1, then,
∫
M

sδ(r)dvg∫
M

cδ(r)dvg
6 R.

Since R is the extrinsic radius, we have this obvious relation with the interior diameter
R 6 diam(M) and therefore, by the result of Topping

∫

M
sδ(r)dvg

∫

M
cδ(r)dvg

6 R 6 diam(M) 6 C(n, α)

∫

M

|H|n−1dvg 6 C(n, α)
An

h
.
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Second case: δ > 0. In this case, cδ(r) = cos(
√
δr) and sδ(r) = 1√

δ
sin(

√
δr) and we have

∫
M

sδ(r)dvg∫
M

cδ(r)dvg
6 tδ(R) 6 R, since we have assumed that M is contained in a sphere a radius

π
4
√
δ
. Thus, like in the case δ = 0, we have

∫

M
sδ(r)dvg

∫

M
cδ(r)dvg

6 C(n, α)
An

h
.

Third case: δ < 0. In this case, cδ(r) = cosh(
√

|δ|) and sδ(r) =
1√
|δ
sinh(

√

|δ|). Hence, we

get immediately that
∫
M

sδ(r)dvg∫
M

cδ(r)dvg
6 1√

|δ|
. Then, in the three cases, we have

∣

∣

∣
h2 − h2

∣

∣

∣
6 Eεh2,

where

E =











1 + 5C(n, α)An if δ > 0,

1 + 5h√
|δ|

if δ < 0,

is a constant depending on n, α, δ, h and A.

Now, we recall the Gauss formula. For X,Y, Z,W ∈ Γ(TM),

R(X,Y, Z,W ) = R(X,Y, Z,W ) + 〈SX,Z〉 〈SY,W 〉 − 〈SY,Z〉 〈SX,W 〉

where R and R are respectively the curvature tensor of M and M
n+1(δ).

By taking the trace in X and Z and for W = Y , we get

Ric(Y ) = Ric(Y )−R(ν, Y, ν, Y ) + nH 〈SY, Y 〉 −
〈

S2Y, Y
〉

,

where S is the shape operator. Since, the ambient space is of constant sectional curvature δ,
by taking the trace a second time, we have

scal = n(n− 1)δ + n2H2 − |S|2,

or equivalently

scal = n(n− 1)
(

H2 + δ
)

− |τ |2.

Hence, we have

||τ ||2 = n(n− 1)(H2 −H2)

6 n(n− 1)
(

|H2 − h2|+ |h2 − h2|
)

6 n(n− 1)
(

2h2ε+ Eh2ε
)

6 Dh2ε,

where we have set D = n(n− 1)(2 + E). This concludes the proof of the lemma. �

Now, from this lemma, we can prove the following result.
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Theorem 4.3. Let (Mn, g) ∈ HV (n, δ, α, q, A). There exists D > 1 depending on n, α, δ,
||H||∞ and A and there exists η0 ∈]0, 1[ depending on n,q and A and so that if η 6 η0 and

||scal − s||∞ 6
η||H||2∞

D
and ||d∇τ ||∞ 6

η||H||2∞
2nC(n, α)AD

,

then M is embedded and (M, g) is η-quasi-isometric to the round sphere

S

(

p, s−1
δ

(

√

s
n(n−1)

))

, where p is the center of mass of M . In particular, M is

diffeomorphic to the sphere S
n.

Proof: First, the constant D of the theorem is the one computed in Lemma 4.1. The second

assupmtion ||d∇τ ||∞ 6
η||H||2

∞

2nC(n,α)AD implies by the computations of the proof of Theorem 3.1

that
∣

∣

∣
H − ||H||∞

∣

∣

∣
6

η||H||∞
D . Thus, we can apply Lemma 4.1 with ε = η

D to get

||τ ||∞ 6 D||H||∞ε = η||H||∞. (7)

Moreover, since D > 1, we have

||d∇τ ||∞ 6
η||H||2∞

2nC(n, α)AD
6

η||H||2∞
2nC(n, α)A

. (8)

Thus, (7) and (8) are exactely the hypotheses of Theorem 3.1. Then, we conclude that

(M, g) is η-quasi-isometric to the round sphere S

(

p, s−1
δ

(

√

s
n(n−1)

))

, where p is the center

of mass of M . In particular, M is diffeomorphic to S
n. In addition Theorem 3.1 insures that

M is embedded into M
n+1(δ). �

We deduce easily the following corollary which is a new characterization of geodesic
spheres and gives a new partial answer to the Yau conjecture.

Corollary 4.4. Let (Mn, g) ∈ HV (n, δ, α, q, A) and s a positive constant. There exists D > 1
depending on n, α, δ, ||H||∞ and A and there exists η0 ∈]0, 1[ depending on n, q and A so
that if η 6 η0 and

scal = s and ||d∇τ ||∞ 6
η||H||2∞

2nC(n, α)A
,

then M is a geodesic sphere of radius s−1
δ

(

√

s
n(n−1)

)

.

Proof: This Corollary is a direct consequence of Theorem 4.3 together with the Alexandrov
theorem for the scalar curvature proved by Ros [12]. Indeed, form the assumptions, we can
apply Theorem 4.3 and get that M is embedded. Since M is assumed to have constant scalar
curvature, by [12], M is a geodesic sphere. Moreover, the radius of this sphere is determined

by the scalar curvature and is s−1
δ

(

√

s
n(n−1)

)

. �
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