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Modeling and Source Enumeration
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Houcke

Abstract

The existence of multiple wireless networks with different radio access technologies and protocols
makes the radio environmeheterogeneoudn order to provide the best Quality of Service available
from the present networks, and to satisfy the concept of always best connected, one can take advantage
of this heterogeneity by developing multi-mode terminals allowing to smartly switch from one interface
to another. This switching process, knownvastical HandOver(VHO), requires some relevant metrics
to be measured by the terminal in order to decide weather to trigger a vertical handover or not. In
this paper, we propose to track the number of active sources and employ the results in CSMA/CA
networks for VHO. The proposed algorithm is developed using a Markov chain model for sources at
any given time. We also use a three state Markov model for CSMA/CA networks and show how this
algorithm can be applied for recursively obtaining the two most informative metrics about the channel
state, namely, the channel occupancy rate and the collision rate. Numerical simulations confirm that
the proposed algorithm performs well for practical SNR values. In addition, the proposed algorithm is

computationally inexpensive and estimates the noise variance.

I. INTRODUCTION

Wireless communication standards are facing a proliferation leading to coexistence of different
networks belonging to different administrative domains which makes the radio environment
heterogeneousAt the same time, there is an emerging trend to provide ubiquitous wireless
access to mobile terminals while the Quality of Service (QoS) needs to be maintained by the

upper layers applications. In order to make such an operation possible, and to take advantage of



the heterogeneity the terminal shall be smart to sense theusuling environment and switch
cognitively from a standard to another, e.g., if the first @@ot satisfying the required QoS.
This switching process is known gertical handovemand is possible if the mobile terminal could
sense its environment and accordingly/cognitively regumé its communication parameters to
better adapt to the channel conditions. Thus, the operati@uch a cognitive system includes
two stages: sense and decide. This paper deals only withetigng task, prior to perform a
vertical handover, where the terminal has to evaluate s@hegant metrics that are informative
about the QoS of the available networks of interest.

In the context of vertical handover, only the passive edionas relevant since the terminal
seeks to know a priori if a network satisfies its QoS needsawithvasting time and power to
get connected to this network. To satisfy those condititims,algorithm here proposed, relies
on a physical layer sensing and requires no connection ta¢bess point, no synchronization,
no signal demodulation and no frame decoding.

Our networks of interest are based on a carrier sense neufiiess with collision avoidance
(CSMA/CA) protocol like WiFi (IEEE 802.11). It has been hlginted in [1], [2] that the usage of
the channel bandwidth in a CSMA/CA system can be approxidnasehe ratio between the time
in which the channel status is busy according to the NAV (MekwAllocation Vector) settings
and the considered time interval. The higher the traffic, ldrger the NAV busy occupation,
and vice versa. Then, once we read a NAV value during a cetitai@ window, the available
bandwidth and access delay can be estimated [3]. The maivbdck of this method is that
it requires to be connected to the access point in order taiolbhe NAV information from
the header, this may increases the decision time if manydatds or Access Point (AP) are
detected. An alternative technique has been presented,ifb]4[6] for the estimation of the
channel occupancy rate. This technique relies on a phytagar sensing, but requires the
knowledge of noise variance and does not give any informattmout the collision rate which is
a complementary metric to the channel occupancy rate. thdeg7] it has been shown that the
collision rate is depends on the number of users connecteah taccess point, and in [8] is is
stated that the mean of the MAC (Media Access Control) detspeaated with a transmission
by a particular source is increasing exponentially with phabability of collision. Thus, higher
is the collision rate, lower is the available QoS. To the lwéstur knowledge, the only passive

technique for collision detection has been studied in [@], Unfortunately, this method needs



the knowledge of the edges of the frame (the start and endg)aomorder to apply information
theoretic criterion to test if a collision is occurred. A®treceiver doesn’'t know the exact times
when the frame starts and ends, this technique can not betldiegplied and requires the edges
to be estimated as additional unknown parameters.

From a physical layer perspective, the problem of estingatfire channel occupancy rate and
the collision rate can be viewed as a source enumerationlggnodn fact, the data frames
of each user can be viewed as a signal emitted by one sourdethancollided frames as a
mixture of two or more sources. Rank tracking is a classicadl@horder selection problem that
arises in a variety of important statistical signal and yapeocessing, however it is a relatively
addressed infrequently in the extant literature [9], [1QL], [12]. In this paper, to achieve this
recursive estimation, we propose a new algorithm based orakdy chain model. Assuming
that a maximum ofl/ sources can be present at any observation time, we modeystens by
a M + 1 states chain (see Figure A/ states for the sources plus one for the case that no source
is active). Our proposed algorithm estimates the numberouofces, recursively, in four steps
and is an extension of the one proposed in [13] which has begyoped for spectrum sensing.

The application to CSMA/CA based networks is then stramintard. In several papers, such
networks have been modeled by a Markov process and theorpeahce have been studied [14],
[15], [16]. In most of these papers, a two state Markov chainsed (good state and bad state).
In our model, we employ a chain with three states: no trarsons one source, and collision.
The objective of the channel sensing is to detect this sédter a period of time, we can easily
estimate the channel occupancy rate as the ratio of the tiotal intervals where the channel
is declared as busy (number of sources is not zero) to thédbsservation time. In addition,
the collision rate is estimated as the ratio of the numberahés detected to be involved in a
collision to the total number of frames detected during theeovation time.

The remaining of the paper is organized as follows. In Sadtiove formulate the problem and
present the Markov model for tracking the number of sounseSéction Ill, we propose a four
step algorithm based on the Markov model for the number ofcgotracking, the algorithm is
presented for a general case and can be used in other ajgpigcdh Section 1V, we explain how
the proposed algorithm is used for a WiFi network. In Sectfrwe evaluate the performance
of the proposed algorithm on the estimation of the channelipancy rate and the collision rate

for a WiFi network. Finally, Section VI, concludes the paper
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Fig. 1. Markov Chain Model for adaptive source enumeration.

Throughout this paper we denoff.] for mathematical expectatiofi,)” for conjugate trans-
position, (.)# for complex conjugate transpositioh)| for Frobinius norm|.| for absolute value,
© for the element wise vector produdty for N x N identity matrix, <+ for overwriting, and

diag(.) for diagonal matrix with entries given by elements(of

II. MODEL

Let consider a receiver equipped wifti antennas, and(k) = [z,(k),...,zx(k)]T denote
the received signal at the time instantbe a mixture of maximunk” < N independent signals

as follows

x(k) = H(k)s(k) + w(k), 1)

where H(k) € CV*K is the channel matrixs(k) € CX*! is the transmitted data vector and
w(k) € CV*! is a zero=mean additive white Gaussian noise with variarice?@) which is
independent witts(k).

The sources are rising transmitting their packets and kargsupon the time. As a result, the
number of active sources varies with timek and needs to be estimatédteratively with time
k. The classical rank estimation methods are computatipeajpensive. Thus, we here propose
a new approach using a Markov Model. Since, it is very unjikidlat more than one source
vanish or arise at any given time instance, we can used thé&dvarhain in Figure 1, where

states/hypothesies are defined as follows



( Ho : Only noise is observed

H, : One station is transmitting

H, : Two stations are transmitting (2)

Hy @ Mstations are transmitting

\

where M is known and denotes the maximum number of sources that maygthe (thus, we
have K < M < N). If no knowledge is available about, one can sei/ to N —1. In Figure 1,
the transition probabilities; for : = 0,..., M — 1 represent the probability that the channel is
occupied by:; + 1 sources given that it was occupied bgources in the previous sensing time.
The probabilitiess; for i = 1,..., M are the probabilities that— 1 sources are present at the
present sensing time given thasources were present in the previous sensing time. We must
note that at a given time instance we have multi-hypothesisposite test problem with some
a priori estimates for the unknown parameters.

In our model, the Mobile stations signal are assumed as e@mn, white, independent and
circularly symmetrical complex Gaussian random variablih variances of ¢?(k)}X, at time
k. These variances depend on the power of transmitters thenehgains which are unknown
and vary with time. We assume that these variances are alcoostant or change smoothly
from each sensing time to the next. Thus, the distributiothefrandom vector processk) is

characterized by its covariance matrix at timmés shown by
R(k) = Elx(k)x" (k)]. 3)

Note that it is implicitly assumed that the process:) is non-stationary. The non-stationarity
has two different reasons. The first one is that the numbeheftomponents of(k) changes
with time as sources vanish or arise. The second reasontiththahannel responsé&§(k) and
{2(k)}E | vary with time. However, we assume th#t k) and {c?(k)}X, vary very smoothly
with time. In other words, our assumption is that only thenges in the number of sources
creates sudden changes in the eigenstructure of the unknuatmix R(k). The eigenvalue

decomposition (EVD) of the matriR (k) can be written as
R(k) = U(k)A(k)U" (k), (4)

U(K)U (k) = 1y. (5)



where A(k) = diagAi(k), Aa(k), ..., An(k)], U(k) = [ui(k),uz(k),...,un(k)], Ni(k)s are
the eigenvalues and;(k)s are the orthonormal eigenvectors. Without loss of geiterilis
convenient to assumkg (k) > Ay (k) > --- > Ay(k) > 0.

Under Hypothesig{,,, the autocorrelation matrix expressed in (3) can be wriggn

2k) 0 0
0 <2(k) 0 = )
R(k) = H(k) N . H" (k) + o°(k)In. (6)
L 0 S (K)

Since the number of sources can change with time, the abo $NIcture is also subject to
modification and thus needs to be tracked. A simple but coatipmally exhaustive form of
subspace tracking consist of performing the estimatiomefall EVD parameters for every new
observationx(k). To reduce computational complexity, we are interestedgorahms that can
estimateA (k) and U(k) adaptively using the previous estimates/oft — 1) and U(k — 1).
These subspace algorithms seek to satisfy the followingutemu

A~

Uk)AR) U (k) = (1 — Uk — DAk — DU (k — 1) + ex(k)x" (k) 7)

where the constante (0, 1) is called the forgetting factor and determines the effed@ngth of
the exponential Windovaz—e [17]. A larger value fore < 1 results in a better tracking capability

in an environment wher#I (k) and {<?(k)}X, vary faster with time (e.g., for larger speeds).

I1l. PROPOSEDALGORITHM

In our algorithm, for updating EVD, we propose to use the PRO%-1 algorithm proposed
by B. Champagnet al. [18]. There are several other alternative algorithms tloatd be used.
This algorithm is computationally efficient using a CORDI@gessor as it uses only plane
rotations for updating the eigenvectors and directly pesithe set of orthonormal eigenvectors
which a well suited subspace tracking algorithm for our imwpothesis problem which deals
with non-stationary data.

In (6) the number of active sources is the number of eigeegabf R(%k) which are larger
thano?(k) and is in fact a function of the time and needs to be determined. We propose the
following a four steps soft enumeration algorithm to detierthe probability of each hypothesis

in (2), recurssively.



STEP O0: Initialization stepWe define kle—1 @S the a priori probability of having: active

sources at time:

Pl_1 = P[Hy, attimek|O(k — 1)] (8)

where the hypothesi,,, denotes the event that sources are active ar@(k — 1) denotes the
available information and observation up to the instantl. At the instantt = 0, in the absence
of any knowledge, we initialize the a priori probabilities By, = ﬁ,Vm =1,...,M. The

EVD of the received signallJ(0) and A(0) are initialized randomly.

STEP 1: Sense and UpdatReceivex(k) and perform the preprocessing and normalization
steps in PROTEUS-1 [18] as follows

1) Projection: y(k) = U (k — 1)x(k);

2) Mapping into real vector elements
y(k) « D" (k)y(k), U(k) + U(k — 1)D(k)

usingD(k) = dlag(‘ﬁ’; - I;”(( ) wherey; (k) denotes théth entry of the vectoy (k).

3) Reordering/sortingFind the permutation matriXI which reorder the entries of(k) the

decreasing order and
y(k) < Oy (k), U(k) < UKL, A(k) + II"A(k — 1)II

4) Update the EVD using as follows [18]:
fori=1:N—-1do
for j=i+1: N do
Jus(k)/ k) = X (k)
U(k) < U(k)Gy;(0)

end for

0+ y;(k

end for

5) Ni(k) = (1— e)Xi(k) + ey?(k)



whereG;;(#) is the well-known plane or Givens rotation matrix defined by

Iiy

cos(0) ... sin(0)
Gij (8) = Ij—i—l . (9)
—sin(f) ...  cos(d)

I In-j |
The computational cost of this step, as stated in [18], iaetu6N? + 15.5N? + (v + 7.5)N
flops, wherev is used as a common flop count for the square root operation.

STEP 2: Calculation of Log-Likelihood Functionsn this step, we calculate the Log-
Likelihood functions using the observed samples at tim&nder hypothesi${,,, we estimate
of the noise variance by

1
N—-—m

N

>~ Ni(k), underH,,. (10)
i=m+1
This expression represents the maximum likelihood (ML)nestor of the noise variance only

52 (k) =

m

for a rectangular window, whereas we are using an exporenti@ow. Our simulation results
reveal that as the number of sources change with time thea&stiof noise variance will vary

significantly. Thus, we used the following alternative estior under,
52(k) = An(k), underH,. (11)

This estimator is more robust thaif(k) = + Ef\;mﬂ Xi(k) to the variation of number and
power of sources and is more suitable for environments veigh ¢hanging dynamics. We must
note thatXi(k;)s are eigenvalues of (7) and are biased estimators for tleeigenvalues of
R(k). In fact, the bias using2(k) = Ay(k) is than less using2(k) = D DA (k).
Obviously some performance gain can be obtained using mab®mte estimators such as the
recently proposed ones in [19]. Given these estimates tlgeLllelihood functions form > 1

are estimated as follows

L (k) Hm) =log () = (¥ = m) log(x52, (k) (12)
1
)
S N 1 H 2
> <1og<mj<k>> ~ o b) )

J

(k) = Vi (k) Vi (k) (k) |



and for underH, as

£lx(h) o) = N log(x}(4)) ~ 275

whereV,,(k) = [Wyi1(k) Wnya(k) ... uy(k)]. The termin(-5) is an additional penalty function

<) 1 (13)

introduced to avoid overestimation. The reason is that #ngelr values ofn involves more
unknown parameters which result in a larger bias in the estom of the Log-Likelihood
functions. The functionn(-%) is obtained in an empirical manner comforted by simulations
and may be justified using the asymptotic distribution of #igenvalues [17]. The overall
computational cost of this step is equal A& + 2N + M (N? + N +4) + 9.
STEP 3: Updating posterior probabilitiedn this step, we combine the priori probabilities
Pl defined in (8), and the Log-Likelihood functions in (12) ad®), to obtain theosterior

probabilities defined as

Py, = P[H,, at timek|O(k)]. (14)

In fact, /7, and Py, denote the estimated probabilities of presence:surces at the sensing
time k, respectively with or without the use of the current avdéakector of observatiox(k).
Let Py = [Py, - Pl andPyyy = [PY, ..., Bl _,]" denote the vectors containing

the M + 1 posterior and a priori probabilities, respectively, and

F(k) = lexp(L(x(k)[Ho)), -, exp(L(x(k)[Har))]" (15)

be the vector containing th& + 1 likelihood values wherém + 1)th element of~(k) represents
an estimate off (x(k)|H.,). By exploiting the Bayes rule, we obtain posterior prokibilector

as

1

Pip= 77—
T FT (k)P

F(k) ® Ppjp—1. (16)
A hard decision can be made on the rank, according to the nobaple hypothesis,i.e.

K= arg mn%X{P,SW, x k|k} 17)

The computational cost of this step is equabBtd/ + 1).
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Sensex(h) }_} Update the EVD thanks
to PROTEUS-1 [18]
Compute the Log-
Likelihood Ia.mctions (12)

Update Posterior

| Probabilities (16)

’ Prediction (18) } !
Deceide on the rank, giver

the most probable state

Fig. 2. Flow chart of the proposed algorithm

STEP 4: Prediction of priori probabilitiesA prediction of the priori probabilitiesP,;’jL”k
for the next sensing time is needed to compute the posteratrapilities expressed in (16). We

use the Markov model illustrated in Figure 1 to predict thpsgbabilities as
Pk+1|k = TPk\k (18)

where the transition matrix of the Markov chdihas shown in Figure 1 is given by

1—ap o 0 0
b l—a1 = 831
T=| o0 By 1—ag— By 0o |- (19)
Qpr—1
0 0 Bm 1_BM_

A flow-chart of this: algorithm is presented in Figure 2 and &ighm 1.

The computational cost of this last step is equal6+ 1)?, thus, the overall computational
cost of the proposed algorithm is equal to the sum of the CG=ach step, that i§N? + (M +
16.5)N? 4+ (M 4+ 9.5+ v)N + TM + 12.

IV. APPLICATION TOCSMA/CA BASED WIRELESS NETWORKS

The proposed algorithm in the previous section gives ames#i of the number of active
sources at each sensing time, recursively. In additionHerdontext of metric estimation, the
soft information inP;;, can be used to more accurately extract other informatiopatticular,

the valuesl — P, and1— P, — P, represent instantaneous estimates of the probabilités th



Algorithm 1 Adaptive Source Enumeration

1: Initialize : U(0), A(0) andPy_y;
2: Sensex(k)

3 for k=1: N, do

& y(k) =Tk - 1)x(k);

5. D(k) = diag(yi(k)/|y:(k)]);
6 y(k) « DT (k)y(k);

7. U(k) + Uk — 1)D(k);
(k) « Ty (k >,

(k) ¢ U(k)TI

100 Ak) HTA(k — 1)IT;
11: fori=1:N—-1do

y
U

12: for j=i+1: N do

13 0 yi(Rk)y; (k) / (Ni(k) = X (k));
14; U(k) < U(k)G;;(6);

15: end for

16: end for

172 A(k) « (1 — e)A(k) + ediagy2(k));

18 for m=0:M do

19: Computes?(k) according to (11);

20: ComputeL(x(k)|H,,) thanks to (12);
21: Deducef (x(k)|[Hm) = exp(LX(k)|Hm));
22:  end for
23 Py = WPWHF(IC) ® Pr—1;

24:  Decide on the rank according to the most probable hypothesis
25 Prip = TPy

26: end for
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Fig. 3. Markov Model for the PHY layer of a WiFi Channel

system is occupied and has a collision, respectively. TAussaging these values over time we
can estimate the occupancy and collision rates of samples.

We here apply this proposed algorithm to estimate the cHaweepancy rate and the collision
rate of a WiFi access point. The IEEE 802.11 (WiFi) commutiicarelies on the protocol
CSMAJ/CA. Carrier sense multiple access with collision aavice (CSMA/CA) is a multiple
access method , in computer networking. Any node wishingasmit data must first listen to
the channel for a predetermined amount of time and determhegther or not the channel is
used by another node. Only if the channel is identified to d&e;i then the node is permitted to
begin the transmission process. Otherwise if the chanrsgnsed as "busy,” the node defers its
transmission and wait for a random period of time called b#cK hus, there are Inter Frame
Spacing (IFS) time intervals between any two consecutigenés during which the observed
signal consist of only noise samples. Whereas during datads, we have signal plus noise.
During transmission of data frames, the observed samplebdedrom one source plus noise or
from two (or more) sources in the case of a collision. Thusfia physical layer point of view,
the WiFi communication can be modeled as a Markov chain Witkd states as illustrated in
Figure 3 which meand/ = 2.

The three states of the chain are

Ho : Only noise is observed, (Interframe spacing);
‘H, : Only one mobile station is transmitting; (20)

H, : Two stations are transmitting (Collision).

wherel —aq € (0, 1) represents the probability of idle channel when the chawaslidle in the
previous sensing timd, — a; — 51 € (0, 1) represents the probability of busy channel when the

channel was busy in the previous sensing time. Finalys3, € (0, 1) represents the probability
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of a collision when a collision was detected in the previdoget The transition matrix of the

Chain is

1-— (7)) 61 0
T = Qo l—ar—f B2 (21)
0 Qg 1—ps

We assume that the cognitive device is equipped with mone tiva antennasyv > 2.

V. SIMULATIONS

Simulations have been assessed on WiFi 802.11n signals. digRals are OFDM signals
with a total number of 64 sub-carriers and a cyclic prefix oigid 16. The receiver is assumed
to be equipped ofV = 4 antennas. The channkl(k) is a set of complex numbers randomly
chosen according to a Gaussian law with zero mean and ayr#aaance. The channel is also
assumed to be constant during a frame transmission or shearlying. The forgetting factor
used for the PROTEUS-1 algorithmds= 0.05. The moments of the markov chain illustrated in
Figure 3 are as follows &y = 1074, oy = /2, 81 = 10 and 3, = 403;. These probabilities
have been determined empirically by simulations.

The matricesU(0) and A(0) are initialized by first observing 10 samples on the chanfel o
interest and computing the true EVD of the set of observatiofigure 4, we plot an example of
a sensed communication, the observation is made of two Fartiee first frame is a product of
a collision between a frame with an observed SNR=15 dB at ¢igaitive observer, the second
frame is emitted by a single source observed with a SNR=10Tdi. top figure represents
the posterior probabilities versus time. the decision am ridink (illustrated in the bottom) is
made according to the hypothesis presenting the maximurtenas probability. We observe
that under these scenario, our algorithm has a good traddpgbility. The overestimation that
appear in the beginning, is negligible and may be due to tbetfet the algorithm needs time
to converge. Some delays during the transition from a rarkntather appear, for example, the
transition from the rank one to two in the figure occurs withedagt of 22 samples, and from
the rank two to one occurs after 24 samples. These delaysrapergional to the eigenvalue
tracking algorithm exponential window = 1~ = 20.

Note that the delays from the stat®vo sources” to "one source” and vis versa have no

impact on the performance of the algorithm. Indeed, thetlewng the collision does not matter
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Fig. 4. Example for tracking capacity of the algorithm : (apdhitude of the observed signal, (@)posteriori probabilities
and (c) Real and estimated rank.

to us, it is the number of collision that is important in ousealn the other side, the delays
occurring when transiting from the stat&me source” and”noise” are important because they
determine the length of the frame, parameter that we areggminuse when computing the

channel occupancy rate.

In Figure 5, we have conducted simulation in the same saemariin Figure 4 but using a
transition probabilityy 100 times greater. We remark that the tracking capacity ®ptioposed
algorithm is affected by this action, and that the algoritlersensitive to the choice of the

transition matrixT.
As stated previously the channel occupancy rate ndtgdis defined as being the ratio
between the amount of time where the channel is considerdoeiag busy and the length

of the observation window. According to our model illustrin Figure 3, the”,,. is processed
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(a) Magnitude of the observed signal
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Fig. 5. Example for tracking capacity of the algorithm whérarging the transition matrix elements such thatis 100 times

greater than in the scenario of Figure 4.

as follows

Copr = . Z Pl + Ply) = Z Py (22)

where IV, is the length of the observation window.
The collision rate is defined as the number of frame issued adllesion (rank>1) divided

by the total number of frames on the observation window, that

Number of collided frames

Reo :
! Total number of frames

(23)

Note that the temporal average Bf‘k gives the collided rate of signal samples. However, the
reason that we use (23) instead of the average of isltﬁgtin the MAC layer, the required

metric of interest is the collision rate of the frames and that of samples.
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As the algorithm proposed in [4], the proposed approacltesuifh some cases of fluctuations.
These fluctuations mainly appear during the transition feolnypothesis to another one, and their
duration is proportional to the forgetting factorSpecially at high SNRs, as the contrast between
the eigenvalues become bigger, we noticed that these ftisnigaare mainly an overestimation
that rapidly vanishes with time. To overcome this problere, wtilize the smoothing algorithm
proposed in [4] which have been tested experimentally oh Wi&i signals and shown its
efficiency. This smoothing algorithm rely on the fact thati€SMA/CA algorithm the smallest
silence period is an SIFS (Short InterFrame Spacing) andher rame has a length smaller than
it. Hence, if our algorithm meet a frame of size less that the sf an SIFS, it will automatically
affect to it the number of source of the frame that comes &ft€nce, this smoothing operated
the channel occupancy rate and the collision rate are cadghainks to (22) and (23).

To evaluate the performance of the proposed method versuSNiRR, we realized simulations
under the following scenario : a WiFi communication is iotgted, the true channel occupancy
rate is equal to 64.97% and the collision rate is equal to 418é. observation window contains
7880 samples, and is constituted of 5 frame with two of thesmad from a collision as illustrated
in Figure 6.

Figures 7 illustrates the NMSE (Normalized Mean Square rErob the estimation of the

channel occupancy rate defined as

R—-R

NMSE: 10 loglo R

(24)

where i and R are the estimated and the true channel occupancy rategctiesy. In this
figure, we compare the performance of the proposed algotithtime one proposed in [4] which
requires the knowledge of the noise powgr We observe that for Signal to Noise Ratios (SNR)
below than 12 dB, the two techniques have similar perforreaviten the Markov approach is out
performed by the approach proposed in [4] for higher SNR® pérformance of the Markov
approach are very attractive since it achieve NMSE veryeckosthe one in [4] without the
knowledge of the noise power. In the same figure, is plottedpdrformance of the proposed
algorithm whenq, is chosen 100 times bigger. We observe that even with thischatte of
the transition probabilities the proposed algorithm s$tds a good estimation capabilities of the

channel occupancy rate.
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Fig. 6. Used scenario for the evaluation of the algorithnfqgrerance.

Figure 8 compares the performance of our algorithm to thes gmeposed in [6], [4]. We
observe that the proposed approach out performs both tpetsibased on Akaike Information
Criterion (AIC) and Minimum Description Length (MDL). thisiainly due to the fact that the
estimation is done jointly in our approach, when in the othend for [6], [4] we first need
to estimate the number of frame using [5] than extract thes audfering of a collision. Thus
two independent sources of error are possible in that case :irothe numerator and one in
the denominator. However, conversely to thig estimation wheny, became 100 time bigger
the algorithm lose it accuracy and our approach is outperdrwhen estimating the collision
rate. The main advantage of the propsoed approach lies dia¢héhat it does not require any
algorithm to detect the frames edges, when the approacltogedpin [6], [4] needs to know
perfectly the edges of the frame to perform AIC and MDL on idahen decide weather a

collision occurred or not.
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Fig. 7. NMSE on the estimation of the channel occupancy rate.

VI. CONCLUSION

In this paper, we presented a new method for joint estimaifaiine channel occupancy rate
and collision rate of a CSMA/CA based network. The proposmd &teps algorithm is based
on a Markov chain modeling, and can be extended for any agipit that requires number of
sources tracking. Numerical simulation show that our psegoalgorithm well behaves for the
practical SNR operating range of wireless networks. Ouordlgm is computationally cheap

and performs noise variance estimation.
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