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Abstract

The existence of multiple wireless networks with different radio access technologies and protocols

makes the radio environmentheterogeneous. In order to provide the best Quality of Service available

from the present networks, and to satisfy the concept of always best connected, one can take advantage

of this heterogeneity by developing multi-mode terminals allowing to smartly switch from one interface

to another. This switching process, known asVertical HandOver(VHO), requires some relevant metrics

to be measured by the terminal in order to decide weather to trigger a vertical handover or not. In

this paper, we propose to track the number of active sources and employ the results in CSMA/CA

networks for VHO. The proposed algorithm is developed using a Markov chain model for sources at

any given time. We also use a three state Markov model for CSMA/CA networks and show how this

algorithm can be applied for recursively obtaining the two most informative metrics about the channel

state, namely, the channel occupancy rate and the collision rate. Numerical simulations confirm that

the proposed algorithm performs well for practical SNR values. In addition, the proposed algorithm is

computationally inexpensive and estimates the noise variance.

I. INTRODUCTION

Wireless communication standards are facing a proliferation leading to coexistence of different

networks belonging to different administrative domains which makes the radio environment

heterogeneous. At the same time, there is an emerging trend to provide ubiquitous wireless

access to mobile terminals while the Quality of Service (QoS) needs to be maintained by the

upper layers applications. In order to make such an operation possible, and to take advantage of
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the heterogeneity the terminal shall be smart to sense the surrounding environment and switch

cognitively from a standard to another, e.g., if the first oneis not satisfying the required QoS.

This switching process is known asvertical handoverand is possible if the mobile terminal could

sense its environment and accordingly/cognitively reconfigure its communication parameters to

better adapt to the channel conditions. Thus, the operationof such a cognitive system includes

two stages: sense and decide. This paper deals only with the sensing task, prior to perform a

vertical handover, where the terminal has to evaluate some relevant metrics that are informative

about the QoS of the available networks of interest.

In the context of vertical handover, only the passive estimation is relevant since the terminal

seeks to know a priori if a network satisfies its QoS needs without wasting time and power to

get connected to this network. To satisfy those conditions,the algorithm here proposed, relies

on a physical layer sensing and requires no connection to theaccess point, no synchronization,

no signal demodulation and no frame decoding.

Our networks of interest are based on a carrier sense multiple access with collision avoidance

(CSMA/CA) protocol like WiFi (IEEE 802.11). It has been highlighted in [1], [2] that the usage of

the channel bandwidth in a CSMA/CA system can be approximated as the ratio between the time

in which the channel status is busy according to the NAV (Network Allocation Vector) settings

and the considered time interval. The higher the traffic, thelarger the NAV busy occupation,

and vice versa. Then, once we read a NAV value during a certaintime window, the available

bandwidth and access delay can be estimated [3]. The main drawback of this method is that

it requires to be connected to the access point in order to obtain the NAV information from

the header, this may increases the decision time if many standards or Access Point (AP) are

detected. An alternative technique has been presented in [4], [5], [6] for the estimation of the

channel occupancy rate. This technique relies on a physicallayer sensing, but requires the

knowledge of noise variance and does not give any information about the collision rate which is

a complementary metric to the channel occupancy rate. Indeed, in [7] it has been shown that the

collision rate is depends on the number of users connected toan access point, and in [8] is is

stated that the mean of the MAC (Media Access Control) delay associated with a transmission

by a particular source is increasing exponentially with theprobability of collision. Thus, higher

is the collision rate, lower is the available QoS. To the bestof our knowledge, the only passive

technique for collision detection has been studied in [4], [6]. Unfortunately, this method needs
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the knowledge of the edges of the frame (the start and end points) in order to apply information

theoretic criterion to test if a collision is occurred. As the receiver doesn’t know the exact times

when the frame starts and ends, this technique can not be directly applied and requires the edges

to be estimated as additional unknown parameters.

From a physical layer perspective, the problem of estimating the channel occupancy rate and

the collision rate can be viewed as a source enumeration problem. In fact, the data frames

of each user can be viewed as a signal emitted by one source, and the collided frames as a

mixture of two or more sources. Rank tracking is a classical model order selection problem that

arises in a variety of important statistical signal and array processing, however it is a relatively

addressed infrequently in the extant literature [9], [10],[11], [12]. In this paper, to achieve this

recursive estimation, we propose a new algorithm based on a Markov chain model. Assuming

that a maximum ofM sources can be present at any observation time, we model the system by

a M +1 states chain (see Figure 1,M states for the sources plus one for the case that no source

is active). Our proposed algorithm estimates the number of sources, recursively, in four steps

and is an extension of the one proposed in [13] which has been proposed for spectrum sensing.

The application to CSMA/CA based networks is then straightforward. In several papers, such

networks have been modeled by a Markov process and their performance have been studied [14],

[15], [16]. In most of these papers, a two state Markov chain is used (good state and bad state).

In our model, we employ a chain with three states: no transmission, one source, and collision.

The objective of the channel sensing is to detect this state.After a period of time, we can easily

estimate the channel occupancy rate as the ratio of the totaltime intervals where the channel

is declared as busy (number of sources is not zero) to the total observation time. In addition,

the collision rate is estimated as the ratio of the number of frames detected to be involved in a

collision to the total number of frames detected during the observation time.

The remaining of the paper is organized as follows. In Section II, we formulate the problem and

present the Markov model for tracking the number of source. In Section III, we propose a four

step algorithm based on the Markov model for the number of source tracking, the algorithm is

presented for a general case and can be used in other applications. In Section IV, we explain how

the proposed algorithm is used for a WiFi network. In SectionV, we evaluate the performance

of the proposed algorithm on the estimation of the channel occupancy rate and the collision rate

for a WiFi network. Finally, Section VI, concludes the paper.
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H0 H1
. . . HM

Noise only 1 active sources . . . M active sources

α0

β1

α1

β2

αM

βM

1− α0 1− α1 − β1
1− βM

Fig. 1. Markov Chain Model for adaptive source enumeration.

Throughout this paper we denote:E[.] for mathematical expectation,(.)T for conjugate trans-

position,(.)H for complex conjugate transposition,‖.‖ for Frobinius norm,|.| for absolute value,

⊙ for the element wise vector product,IN for N × N identity matrix,← for overwriting, and

diag(.) for diagonal matrix with entries given by elements of(.).

II. M ODEL

Let consider a receiver equipped withN antennas, andx(k) = [x1(k), . . . , xN (k)]
T denote

the received signal at the time instantk. be a mixture of maximumK < N independent signals

as follows

x(k) = H(k)s(k) +w(k), (1)

whereH(k) ∈ CN×K is the channel matrix,s(k) ∈ CK×1 is the transmitted data vector and

w(k) ∈ CN×1 is a zero=mean additive white Gaussian noise with variance of σ2(k) which is

independent withs(k).

The sources are rising transmitting their packets and vanishing upon the time. As a result, the

number of active sourcesK varies with timek and needs to be estimatedk iteratively with time

k. The classical rank estimation methods are computationally expensive. Thus, we here propose

a new approach using a Markov Model. Since, it is very unlikely that more than one source

vanish or arise at any given time instance, we can used the Markov chain in Figure 1, where

states/hypothesies are defined as follows
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H0 : Only noise is observed,

H1 : One station is transmitting,

H2 : Two stations are transmitting,
...

...

HM : Mstations are transmitting,

(2)

whereM is known and denotes the maximum number of sources that may beactive (thus, we

haveK ≤M < N). If no knowledge is available aboutM , one can setM to N−1. In Figure 1,

the transition probabilitiesαi for i = 0, . . . ,M − 1 represent the probability that the channel is

occupied byi+ 1 sources given that it was occupied byi sources in the previous sensing time.

The probabilitiesβi for i = 1, . . . ,M are the probabilities thati − 1 sources are present at the

present sensing time given thati sources were present in the previous sensing time. We must

note that at a given time instance we have multi-hypothesis composite test problem with some

a priori estimates for the unknown parameters.

In our model, the Mobile stations signal are assumed as zero-mean, white, independent and

circularly symmetrical complex Gaussian random variableswith variances of{ς2i (k)}
K
i=1 at time

k. These variances depend on the power of transmitters the channel gains which are unknown

and vary with time. We assume that these variances are almostconstant or change smoothly

from each sensing time to the next. Thus, the distribution ofthe random vector processx(k) is

characterized by its covariance matrix at timek is shown by

R(k) = E[x(k)xH(k)]. (3)

Note that it is implicitly assumed that the processx(k) is non-stationary. The non-stationarity

has two different reasons. The first one is that the number of the components ofs(k) changes

with time as sources vanish or arise. The second reason is that the channel responsesH(k) and

{ς2i (k)}
K
i=1 vary with time. However, we assume thatH(k) and{ς2i (k)}

K
i=1 vary very smoothly

with time. In other words, our assumption is that only the changes in the number of sources

creates sudden changes in the eigenstructure of the unknownmatrix R(k). The eigenvalue

decomposition (EVD) of the matrixR(k) can be written as

R(k) = U(k)Λ(k)UH(k), (4)

U(k)UH(k) = IN . (5)
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where Λ(k) = diag[λ1(k), λ2(k), . . . , λN(k)], U(k) = [u1(k),u2(k), . . . ,uN(k)], λi(k)s are

the eigenvalues andui(k)s are the orthonormal eigenvectors. Without loss of generality it is

convenient to assumeλ1(k) ≥ λ2(k) ≥ · · · ≥ λN (k) ≥ 0.

Under HypothesisHm, the autocorrelation matrix expressed in (3) can be writtenas

R(k) = H(k)




ς21 (k) 0 . . . 0

0 ς22 (k) . . . 0
...

. . . . . . 0

0 . . . ς2m(k)



HH(k) + σ2(k)IN . (6)

Since the number of sources can change with time, the above EVD structure is also subject to

modification and thus needs to be tracked. A simple but computationally exhaustive form of

subspace tracking consist of performing the estimation of the all EVD parameters for every new

observationx(k). To reduce computational complexity, we are interested in algorithms that can

estimateΛ(k) and U(k) adaptively using the previous estimates ofΛ(k − 1) andU(k − 1).

These subspace algorithms seek to satisfy the following equation

Û(k)Λ̂(k)ÛH(k) = (1− ǫ)Û(k − 1)Λ̂(k − 1)ÛH(k − 1) + ǫx(k)xH(k) (7)

where the constantǫ ∈ (0, 1) is called the forgetting factor and determines the effective length of

the exponential window2−ǫ
ǫ

[17]. A larger value forǫ < 1 results in a better tracking capability

in an environment whereH(k) and{ς2i (k)}
K
i=1 vary faster with time (e.g., for larger speeds).

III. PROPOSEDALGORITHM

In our algorithm, for updating EVD, we propose to use the PROTEUS-1 algorithm proposed

by B. Champagneet al. [18]. There are several other alternative algorithms that could be used.

This algorithm is computationally efficient using a CORDIC processor as it uses only plane

rotations for updating the eigenvectors and directly provides the set of orthonormal eigenvectors

which a well suited subspace tracking algorithm for our multi-hypothesis problem which deals

with non-stationary data.

In (6) the number of active sources is the number of eigenvalues ofR(k) which are larger

thanσ2(k) and is in fact a function of the timek and needs to be determined. We propose the

following a four steps soft enumeration algorithm to determine the probability of each hypothesis

in (2), recurssively.
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STEP 0: Initialization step:We definePm
k|k−1 as the a priori probability of havingm active

sources at timek

Pm
k|k−1 = P [Hm at timek|O(k − 1)] (8)

where the hypothesisHm denotes the event thatm sources are active andO(k− 1) denotes the

available information and observation up to the instantk−1. At the instantk = 0, in the absence

of any knowledge, we initialize the a priori probabilities as Pm
0|−1 = 1

M
, ∀m = 1, . . . ,M . The

EVD of the received signal,̂U(0) and Λ̂(0) are initialized randomly.

STEP 1: Sense and Update:Receivex(k) and perform the preprocessing and normalization

steps in PROTEUS-1 [18] as follows

1) Projection : y(k) = ÛH(k − 1)x(k);

2) Mapping into real vector elements:

y(k)← DH(k)y(k), Û(k)← Û(k − 1)D(k)

usingD(k) = diag( y1(k)
|y1(k)|

, · · · , y1(k)
|yn(k)|

) whereyi(k) denotes theith entry of the vectory(k).

3) Reordering/sorting: Find the permutation matrixΠ which reorder the entries ofy(k) the

decreasing order and

y(k)← ΠTy(k), Û(k)← Û(k)Π, Λ̂(k)← ΠT Λ̂(k − 1)Π

4) Update the EVD using as follows [18]:

for i = 1 : N − 1 do

for j = i+ 1 : N do

θ ← yi(k)yj(k)/(λ̂i(k)− λ̂j(k))

Û(k)← Û(k)Gij(θ)

end for

end for

5) λ̂i(k)← (1− ǫ)λ̂i(k) + ǫy2i (k)
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whereGij(θ) is the well-known plane or Givens rotation matrix defined by

Gij(θ) =




Ii−1

cos(θ) . . . sin(θ)
... Ij−i−1

...

− sin(θ) . . . cos(θ)

IN−j




. (9)

The computational cost of this step, as stated in [18], is equal to 6N3 + 15.5N2 + (ν + 7.5)N

flops, whereν is used as a common flop count for the square root operation.

STEP 2: Calculation of Log-Likelihood Functions:In this step, we calculate the Log-

Likelihood functions using the observed samples at timek. Under hypothesisHm, we estimate

of the noise variance by

σ̂2
m(k) =

1

N −m

N∑

i=m+1

λ̂i(k), underHm. (10)

This expression represents the maximum likelihood (ML) estimator of the noise variance only

for a rectangular window, whereas we are using an exponential window. Our simulation results

reveal that as the number of sources change with time the estimate of noise variance will vary

significantly. Thus, we used the following alternative estimator underH0

σ̂2
0(k) = λ̂N(k), underH0. (11)

This estimator is more robust than̂σ2
0(k) = 1

N

∑N

i=m+1 λ̂i(k) to the variation of number and

power of sources and is more suitable for environments with fast changing dynamics. We must

note thatλ̂i(k)s are eigenvalues of (7) and are biased estimators for the true eigenvalues of

R(k). In fact, the bias usinĝσ2
0(k) = λ̂N (k) is than less usinĝσ2

0(k) = 1
N

∑N

i=m+1 λ̂i(k).

Obviously some performance gain can be obtained using more elaborate estimators such as the

recently proposed ones in [19]. Given these estimates the Log-Likelihood functions form ≥ 1

are estimated as follows

L(x(k)|Hm) = log
( ǫ

m

)
− (N −m) log(πσ̂2

m(k)) (12)

−
1

σ̂2
m(k)

‖x(k)−Vm(k)Vm(k)
Hx(k)‖2

−

m∑

j=1

(
log(πλ̂j(k))−

1

λ̂j(k)
|uH

j (k)x(k)|
2

)
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and for underH0 as

L(x(k)|H0) = −N log(πσ̂2
0(k))−

1

σ̂2
0(k)
‖x(k)‖2 (13)

whereVm(k) = [um+1(k) um+2(k) . . . uN (k)]. The termln( ǫ
m
) is an additional penalty function

introduced to avoid overestimation. The reason is that the larger values ofm involves more

unknown parameters which result in a larger bias in the estimation of the Log-Likelihood

functions. The functionln( ǫ
m
) is obtained in an empirical manner comforted by simulations

and may be justified using the asymptotic distribution of theeigenvalues [17]. The overall

computational cost of this step is equal toN2 + 2N +M(N2 +N + 4) + 9.

STEP 3: Updating posterior probabilities:In this step, we combine the priori probabilities

Pm
k|k−1 defined in (8), and the Log-Likelihood functions in (12) and (13), to obtain theposterior

probabilities defined as

Pm
k|k = P [Hm at timek|O(k)]. (14)

In fact,Pm
k|k andPm

k|k−1 denote the estimated probabilities of presence ofm sources at the sensing

time k, respectively with or without the use of the current available vector of observationx(k).

Let Pk|k = [P 0
k|k, . . . , P

M
k|k]

T andPk|k−1 = [P 0
k|k−1, . . . , P

M
k|k−1]

T denote the vectors containing

theM + 1 posterior and a priori probabilities, respectively, and

F(k) = [exp(L(x(k)|H0)), · · · , exp(L(x(k)|HM))]T (15)

be the vector containing theM+1 likelihood values where(m+1)th element ofF(k) represents

an estimate off(x(k)|Hm). By exploiting the Bayes rule, we obtain posterior probability vector

as

Pk|k =
1

FT (k)Pk|k−1

F(k)⊙Pk|k−1. (16)

A hard decision can be made on the rank, according to the most probable hypothesis,i.e.

K̂ = argmax
m
{P 0

k|k, . . . , P
M
k|k}. (17)

The computational cost of this step is equal to3(M + 1).
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Sensex(k)
Update the EVD thanks

to PROTEUS-1 [18]

Compute the Log-

Likelihood Functions (12)

Update Posterior

Probabilities (16)
Prediction (18)

Deceide on the rank, given

the most probable state

Fig. 2. Flow chart of the proposed algorithm

STEP 4: Prediction of priori probabilities:A prediction of the priori probabilitiesPm
k+1|k

for the next sensing time is needed to compute the posterior probabilities expressed in (16). We

use the Markov model illustrated in Figure 1 to predict theseprobabilities as

Pk+1|k = TPk|k (18)

where the transition matrix of the Markov chainT as shown in Figure 1 is given by

T =




1− α0 α0 0 . . . 0

β1 1− α1 − β1 α1
. . .

...

0 β2 1− α2 − β2
. . . 0

...
. . . . . . . . . αM−1

0 . . . 0 βM 1− βM




. (19)

A flow-chart of this algorithm is presented in Figure 2 and Algorithm 1.

The computational cost of this last step is equal to(M + 1)2, thus, the overall computational

cost of the proposed algorithm is equal to the sum of the CCs ofeach step, that is6N3+(M +

16.5)N2 + (M + 9.5 + ν)N + 7M + 12.

IV. A PPLICATION TO CSMA/CA BASED WIRELESS NETWORKS

The proposed algorithm in the previous section gives an estimate of the number of active

sources at each sensing time, recursively. In addition for the context of metric estimation, the

soft information inPk+1|k can be used to more accurately extract other information. Inparticular,

the values1−P 0
k|k and1−P 0

k|k−P 1
k|k represent instantaneous estimates of the probabilities that
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Algorithm 1 Adaptive Source Enumeration

1: Initialize : Û(0), Λ̂(0) andP0|−1;

2: Sensex(k)

3: for k = 1 : Ns do

4: y(k) = ÛH(k − 1)x(k);

5: D(k) = diag(yi(k)/|yi(k)|);

6: y(k)← DH(k)y(k);

7: Û(k)← Û(k − 1)D(k);

8: y(k)← ΠTy(k);

9: Û(k)← Û(k)Π;

10: Λ̂(k)← ΠT Λ̂(k − 1)Π;

11: for i = 1 : N − 1 do

12: for j = i+ 1 : N do

13: θ ← yi(k)yj(k)/(λ̂i(k)− λ̂j(k));

14: Û(k)← Û(k)Gij(θ);

15: end for

16: end for

17: Λ̂(k)← (1− ǫ)Λ̂(k) + ǫdiag(y2i (k));

18: for m = 0 : M do

19: Computeσ2(k) according to (11);

20: ComputeL(x(k)|Hm) thanks to (12);

21: Deducef(x(k)|Hm) = exp(L(x(k)|Hm));

22: end for

23: Pk|k =
1

FT (k)Pk|k−1

F(k)⊙Pk|k−1;

24: Decide on the rank according to the most probable hypothesis;

25: Pk+1|k = TPk|k

26: end for
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H0 H1 H2

Noise One source Collision

α0

β1

α1

β2

1− α0 1− α1 − β1 1− β2

Fig. 3. Markov Model for the PHY layer of a WiFi Channel

system is occupied and has a collision, respectively. Thus,averaging these values over time we

can estimate the occupancy and collision rates of samples.

We here apply this proposed algorithm to estimate the channel occupancy rate and the collision

rate of a WiFi access point. The IEEE 802.11 (WiFi) communication relies on the protocol

CSMA/CA. Carrier sense multiple access with collision avoidance (CSMA/CA) is a multiple

access method , in computer networking. Any node wishing to transmit data must first listen to

the channel for a predetermined amount of time and determinewhether or not the channel is

used by another node. Only if the channel is identified to be ”idle,” then the node is permitted to

begin the transmission process. Otherwise if the channel issensed as ”busy,” the node defers its

transmission and wait for a random period of time called backoff. Thus, there are Inter Frame

Spacing (IFS) time intervals between any two consecutive frames during which the observed

signal consist of only noise samples. Whereas during data frames, we have signal plus noise.

During transmission of data frames, the observed samples can be from one source plus noise or

from two (or more) sources in the case of a collision. Thus from a physical layer point of view,

the WiFi communication can be modeled as a Markov chain with three states as illustrated in

Figure 3 which meansM = 2.

The three states of the chain are




H0 : Only noise is observed, (Interframe spacing);

H1 : Only one mobile station is transmitting;

H2 : Two stations are transmitting (Collision).

(20)

where1−α0 ∈ (0, 1) represents the probability of idle channel when the channelwas idle in the

previous sensing time,1−α1 − β1 ∈ (0, 1) represents the probability of busy channel when the

channel was busy in the previous sensing time. Finally1−β2 ∈ (0, 1) represents the probability



13

of a collision when a collision was detected in the previous time. The transition matrix of the

Chain is

T =




1− α0 β1 0

α0 1− α1 − β1 β2

0 α1 1− β2


 (21)

We assume that the cognitive device is equipped with more than two antennasN > 2.

V. SIMULATIONS

Simulations have been assessed on WiFi 802.11n signals. WiFi signals are OFDM signals

with a total number of 64 sub-carriers and a cyclic prefix of length 16. The receiver is assumed

to be equipped ofN = 4 antennas. The channelH(k) is a set of complex numbers randomly

chosen according to a Gaussian law with zero mean and a unitary variance. The channel is also

assumed to be constant during a frame transmission or slowlyvarying. The forgetting factor

used for the PROTEUS-1 algorithm isǫ = 0.05. The moments of the markov chain illustrated in

Figure 3 are as follows :α0 = 10−4, α1 = α0/2, β1 = 10α0 andβ2 = 40β1. These probabilities

have been determined empirically by simulations.

The matricesÛ(0) and Λ̂(0) are initialized by first observing 10 samples on the channel of

interest and computing the true EVD of the set of observation. In Figure 4, we plot an example of

a sensed communication, the observation is made of two frames : the first frame is a product of

a collision between a frame with an observed SNR=15 dB at the cognitive observer, the second

frame is emitted by a single source observed with a SNR=10 dB.The top figure represents

the posterior probabilities versus time. the decision on the rank (illustrated in the bottom) is

made according to the hypothesis presenting the maximum posterior probability. We observe

that under these scenario, our algorithm has a good trackingcapability. The overestimation that

appear in the beginning, is negligible and may be due to the fact that the algorithm needs time

to converge. Some delays during the transition from a rank toanother appear, for example, the

transition from the rank one to two in the figure occurs with a delay of 22 samples, and from

the rank two to one occurs after 24 samples. These delays are proportional to the eigenvalue

tracking algorithm exponential window1
ǫ
= 1

0.05
= 20.

Note that the delays from the state”two sources” to ”one source” and vis versa have no

impact on the performance of the algorithm. Indeed, the length of the collision does not matter
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Fig. 4. Example for tracking capacity of the algorithm : (a) Magnitude of the observed signal, (b)a posteriori probabilities

and (c) Real and estimated rank.

to us, it is the number of collision that is important in our case. In the other side, the delays

occurring when transiting from the states”one source” and”noise” are important because they

determine the length of the frame, parameter that we are going to use when computing the

channel occupancy rate.

In Figure 5, we have conducted simulation in the same scenario as in Figure 4 but using a

transition probabilityα0 100 times greater. We remark that the tracking capacity of the proposed

algorithm is affected by this action, and that the algorithmis sensitive to the choice of the

transition matrixT.

As stated previously the channel occupancy rate notedCor is defined as being the ratio

between the amount of time where the channel is considered asbeing busy and the length

of the observation window. According to our model illustrated in Figure 3, theCor is processed
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Fig. 5. Example for tracking capacity of the algorithm when changing the transition matrix elements such thatα0 is 100 times

greater than in the scenario of Figure 4.

as follows

Cor =
1

Ns

Ns∑

k=1

(
P 1
k|k + P 2

k|k

)
= 1−

1

Ns

Ns∑

k=1

P 0
k|k. (22)

whereNs is the length of the observation window.

The collision rate is defined as the number of frame issued of acollision (rank>1) divided

by the total number of frames on the observation window, thatis

Rcol =
Number of collided frames

Total number of frames
. (23)

Note that the temporal average ofP 2
k|k gives the collided rate of signal samples. However, the

reason that we use (23) instead of the average of is thatP 2
k|k in the MAC layer, the required

metric of interest is the collision rate of the frames and notthat of samples.
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As the algorithm proposed in [4], the proposed approach suffers in some cases of fluctuations.

These fluctuations mainly appear during the transition froma hypothesis to another one, and their

duration is proportional to the forgetting factorǫ. Specially at high SNRs, as the contrast between

the eigenvalues become bigger, we noticed that these fluctuations are mainly an overestimation

that rapidly vanishes with time. To overcome this problem, we utilize the smoothing algorithm

proposed in [4] which have been tested experimentally on real WiFi signals and shown its

efficiency. This smoothing algorithm rely on the fact that ina CSMA/CA algorithm the smallest

silence period is an SIFS (Short InterFrame Spacing) and no other frame has a length smaller than

it. Hence, if our algorithm meet a frame of size less that the size of an SIFS, it will automatically

affect to it the number of source of the frame that comes afterit. Once, this smoothing operated

the channel occupancy rate and the collision rate are computed thanks to (22) and (23).

To evaluate the performance of the proposed method versus the SNR, we realized simulations

under the following scenario : a WiFi communication is intercepted, the true channel occupancy

rate is equal to 64.97% and the collision rate is equal to 40%.The observation window contains

7880 samples, and is constituted of 5 frame with two of them issued from a collision as illustrated

in Figure 6.

Figures 7 illustrates the NMSE (Normalized Mean Square Error) of the estimation of the

channel occupancy rate defined as

NMSE= 10 log10

∣∣∣∣∣
R̂− R

R

∣∣∣∣∣

2

(24)

where R̂ and R are the estimated and the true channel occupancy rates, respectively. In this

figure, we compare the performance of the proposed algorithmto the one proposed in [4] which

requires the knowledge of the noise powerσ2
w. We observe that for Signal to Noise Ratios (SNR)

below than 12 dB, the two techniques have similar performance when the Markov approach is out

performed by the approach proposed in [4] for higher SNRs. The performance of the Markov

approach are very attractive since it achieve NMSE very close to the one in [4] without the

knowledge of the noise power. In the same figure, is plotted the performance of the proposed

algorithm whenα0 is chosen 100 times bigger. We observe that even with this badchoice of

the transition probabilities the proposed algorithm stillhas a good estimation capabilities of the

channel occupancy rate.
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Fig. 6. Used scenario for the evaluation of the algorithm performance.

Figure 8 compares the performance of our algorithm to the ones proposed in [6], [4]. We

observe that the proposed approach out performs both techniques based on Akaike Information

Criterion (AIC) and Minimum Description Length (MDL). thismainly due to the fact that the

estimation is done jointly in our approach, when in the otherhand for [6], [4] we first need

to estimate the number of frame using [5] than extract the ones suffering of a collision. Thus

two independent sources of error are possible in that case : one in the numerator and one in

the denominator. However, conversely to theCor estimation whenα0 became 100 time bigger

the algorithm lose it accuracy and our approach is outperformed when estimating the collision

rate. The main advantage of the propsoed approach lies on thefact that it does not require any

algorithm to detect the frames edges, when the approach proposed in [6], [4] needs to know

perfectly the edges of the frame to perform AIC and MDL on it and then decide weather a

collision occurred or not.
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VI. CONCLUSION

In this paper, we presented a new method for joint estimationof the channel occupancy rate

and collision rate of a CSMA/CA based network. The proposed four steps algorithm is based

on a Markov chain modeling, and can be extended for any application that requires number of

sources tracking. Numerical simulation show that our proposed algorithm well behaves for the

practical SNR operating range of wireless networks. Our algorithm is computationally cheap

and performs noise variance estimation.
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