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Gildas Mazo, Stéphane Girard and Florence Forbes
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Abstract

The concept of copulas is useful to model multivariate distributions.

Given a parametric family of copulas, the inference of the parameter vector

commonly relies on likelihood-based methods. However, for some copula

families, the likelihood may not exist, or may lead to slow or complex

numerical optimization procedures. Therefore, it is desirable to consider

alternative estimation strategies. A natural approach is to build the infer-

ence on bivariate dependence coefficients, where the weighted sum of the

squared residuals between the dependence coefficients under the model

and their empirical counterparts is minimized. This method has already

been used in some applications but in a rather heuristic way. The asymp-

totic properties of the resulting estimator have not been investigated yet.

In this paper, we derive the consistency and asymptotic normality of the

weighted least square estimator based on three standard dependence coef-

ficients. Finally we illustrate how our results can be used to address three

statistical questions.

1 Introduction

The concept of copulas is useful to model multivariate distributions. Given a
multivariate random vector of interest, copula allow to separate the analysis
of the margins from the dependence structure. Standard books covering this
subject include [19,23]. See also [10] for an introduction to this topic.

When a parametric family of copulas has been chosen, the inference of the
parameter vector must be considered. It is then common to rely on likelihood-
based methods [1, 3, 17, 20]. However, for some copula families, the likelihood
may not exist [5, 6, 8, 18, 21, 28], or may lead to slow [29] or complex [1] nu-
merical optimization procedures. Therefore, it is desirable to consider alterna-
tive estimation strategies. An heuristic approach is to build the inference on
bivariate dependence coefficients, where the weighted sum of the squared resid-
uals between the dependence coefficients under the model and their empirical
counterparts is minimized. This idea has been applied in several applications.
See, for instance, [15, 29] for the estimation of the parameter of multivariate
Archimedean copulas, or [6, 28] for the estimation of parameter vectors of non-
differentiable copulas. We also refer to [30] for the estimation of the parameter
vector of a spatial extreme-value model. The inference of elliptical copulas
(see [4] and [22] Example 5.53) can be viewed as a particular case of the method
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considered here. Finally, see [2] for an application of this estimation strategy to
goodness-of-fit testing.

The asymptotic properties of the weighted least square estimator based on
dependence coefficients have not been investigated yet. This work aims at bridg-
ing this gap.

The remaining of this paper is as follows. In Section 2, we derive the con-
sistency and asymptotic normality of the weighted least square estimator based
on three standard dependence coefficients, namely, the Spearman’s rho, the
Kendall’s tau, and the upper tail dependence coefficient. In Section 3, we illus-
trate the theoretical results of Section 2 with three statistical questions arising
in three scientific fields. All the proofs are postponed to the Appendix.

2 Asymptotic properties of the weighted least

square estimator based on dependence coeffi-

cients

In this section, we derive the consistency and asymptotic normality of the
weighted least square estimator based on the Spearman’s rho, the Kendall’s
tau, and the upper tail dependence coefficients. In practice, the different de-
pendence coefficients define different estimators. However, since the methods to
derive the properties of these estimators are similar, we shall define and study
one generic estimator embedding all the three cases. In Section 2.1 the asymp-
totic properties of the generic estimator are established. In Section 2.2 we deal
with the practical estimators based on the actual dependence coefficients.

Let U(1), . . . ,U(n) with U(k) = (U
(k)
1 , . . . , U

(k)
d ), k = 1, . . . , n be indepen-

dent and identically distributed copies of U = (U1, . . . , Ud) whose distribution
is a copula C with parameter vector θ0 ∈ Θ ⊂ R

q. Let p = d(d − 1)/2 be the
number of variable pairs (Ui, Uj), for i = 1, . . . , d − 1, j = 2, . . . , d, i < j. Let
us define the vector map

D : Θ → D(Θ) ⊂ R
p (1)

θ 7→ (D1,2(θ), . . . ,Dd−1,d(θ)) ,

where Di,j(·) represents a well chosen dependence coefficient between the vari-
ables Ui and Uj . D(Θ) stands for the image of Θ by the multivariate map D.
The coordinates of D(θ) are the Di,j(θ) sorted in the lexicographical order.
When the map D is differentiable, its Jacobian matrix at θ = (θ1, . . . , θq) is
denoted by

Ḋ(θ) =




∂D1,2(θ)
∂θ1

∂D1,2(θ)
∂θ2

· · · ∂D1,2(θ)
∂θq

...
...

∂Dd−1,d(θ)
∂θ1

∂Dd−1,d(θ)
∂θ2

· · · ∂Dd−1,d(θ)
∂θq


 . (2)

Beside, let D̂ = (D̂1,2, . . . , D̂d−1,d) be an empirical (nonparametric) estimator

of D(θ0). To simplify the notations, we shall write Ḋ(θ0) = Ḋ, Di,j(θ0) = Di,j

and D = D(θ0). Vectors are assumed to be column vectors and T will denote
the transpose symbol.
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The estimator of θ0 studied in this paper is defined as

θ̂ := argmin
θ∈Θ

(
D̂ −D(θ)

)T
Ŵ
(
D̂ −D(θ)

)
, (3)

where Ŵ = Ŵn is a sequence (n = 1, 2, . . . ) of symmetric and positive definite

matrices with full rank. Let us note ℓ̂(θ) the loss function to be minimized

in (3). For instance, if Ŵ is a diagonal matrix with (ŵ1,2, . . . , ŵd−1,d) on its

diagonal, then ℓ̂(θ) reduces to the weighted sum of squared residuals

∑

i<j

ŵi,j(D̂i,j −Di,j(θ))
2.

In theory, the minimizer θ̂ of l̂(·) may not exist, or may not be unique. However,
it will be seen in Section 2.1 that the existence and uniqueness of θ̂ hold with

probability tending to one as the sample size increases. Since Ŵ is nonnegative
definite, the loss function ℓ̂ is such that ℓ̂(θ) ≥ 0 for all θ ∈ Θ and vanishes

at θ̂ if and only if θ̂ ∈ D
−1({D̂}), where D

−1({D̂}) denotes the set of all θ

in Θ such that D(θ) = D̂. In this case, the estimator does not depend on the

weights and D(θ̂) = D̂. Moreover, if the multivariate map D is one-to-one, then

θ̂ = D
−1(D̂). If D̂ takes the form of a p-dimensional empirical mean, θ̂ can

be regarded as a generalized method-of-moment estimator [12]. In this paper,
however, more general functionals of the sample are considered and therefore
the generalized method-of-moment framework does not apply. This remark was
also made in [25] where the authors used a simulated method-of-moment to
estimate the parameters of copulas.

In Section 2.2 and after, Di,j(θ) will be replaced by a dependence coefficient
between Ui et Uj , such as the Spearman’s rho, the Kendall’s tau, or the upper
tail dependence coefficient (their definitions are postponed to Section 2.2).

2.1 Asymptotic properties of the generic estimator

The assumptions needed to derive the asymptotic properties of θ̂ defined by the
minimization of the loss function ℓ̂ (3) are given below. The symbol ‖·‖ denotes
the Euclidean norm.

Assumption. (A1) The true parameter vector θ0 lies in the interior of Θ.
Moreover, there exists ε0 > 0 such that the set {θ ∈ Θ : ‖θ− θ0‖ ≤ ε0} is
closed (and thus compact).

(A2) As n → ∞, the sequence of weight matrices Ŵ converges in probability to
a symmetric and positive definite matrix W with full rank.

(A3) The map D defined in (1) is a twice continuously differentiable homeo-
morphism such that Ḋ is of full rank.

(A4) As n → ∞, the empirical estimator D̂ is such that

D̂
P→ D, and (4)

√
n
(
D̂ −D

)
d→ Np(0,Σ),
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where Σ is some symmetric, positive definite p×p matrix noted as follows

Σ =




Σ1,2;1,2 Σ1,2;1,3 . . . Σ1,2;d−1,d

Σ1,3;1,2 Σ1,3;1,3 . . . Σ1,3;d−1,d

...
...

...
...

Σd−1,d;1,2 Σd−1,d;1,3 . . . Σd−1,d;d−1,d


 . (5)

Assumption (A1) is quite standard and will be taken for granted through-
out this paper. A sequence of weight matrices verifying (A2) can always be

constructed. A trivial example is Ŵ = Ip, where Ip is the identity matrix of
size p. Needless to say, better alternatives can be chosen, as we shall see after-
wards. This assumption was also made in [12] in the context of the generalized
method-of-moment. Assumption (A3) is natural. Indeed, the estimation of the
copula parameter vector is performed by trying to make the theoretical and
empirical dependence coefficients match, hence a success in this match should
ensure that the resulting parameter vector estimate is close to the true value.
In other words, the model should be identifiable. The homeomorphism con-
dition ensures this. This assumption was also made in [8] where the authors
estimate the parameter vector of an extreme-value model. Assumption (A4)
simply states that one should have reasonable empirical estimators to ensure
good convergence properties for θ̂.

Theorem 1. Assume that (A1), (A2), (A3) and (A4) hold. Then with prob-
ability tending to one and as n → ∞, the estimator θ defined by (3) exists, is
unique, and is consistent for θ0. Moreover, as n → ∞,

√
n(θ̂ − θ0)

d→ Nq (0,Ξ) , (6)

where

Ξ =
(
Ḋ

T
WḊ

)−1

Ḋ
T
WΣWḊ

(
Ḋ

T
WḊ

)−1

.

It is possible to build confidence regions for the true parameter vector and
the dependence coefficients, using the results of the following corollary. Let
χ2
q denote the chi square distribution with q degrees of freedom. Let us write

Ξ = Ξ(θ) and Σ = Σ(θ) to emphasize that in general these matrices depend
on θ. In the following, when matrices are said to be continuous with respect to
the parameter vector θ, the continuity is meant elementwise.

Corollary 1. Suppose that the assumptions of Theorem 1 hold.

(i) If Ξ(θ) is invertible for all θ in Θ and θ 7→ Σ(θ) is continuous at θ0,
then, as n → ∞,

n(θ̂ − θ0)
TΞ(θ̂)−1(θ̂ − θ0)

d→ χ2
q.

(ii) Define Σ̂ such that Σ̂ is invertible and converges to Σ(θ0) in probability
as n → ∞. Then as n → ∞,

n(D̂ −D(θ0))
T Σ̂

−1
(D̂ −D(θ0))

d→ χ2
p.

4



Observe that, if Σ(·) is invertible for all θ in Θ and is continuous at θ0, then

putting Σ̂
−1

= Σ(θ̂) allows to satisfy the assumption of Corollary 1 (ii).
It is possible to test particular values for a subset of the parameter vector

based on Corollary 2 below. For θ ∈ Θ, write θ = (θ1,θ2) ∈ R
r × R

q−r.
Then the estimator and the true parameter vector write θ̂ = (θ̂1, θ̂2) and θ0 =
(θ01,θ02) respectively. Let Ξ1(θ1,θ2) denote the asymptotic covariance matrix
of size r × r corresponding to θ1, that is

Ξ(θ1,θ2) =




Ξ1(θ1,θ2) . . .

...
. . .


 .

The test H0 : θ01 = θ⋆
1 against H1 : θ01 6= θ⋆

1 for a particular value θ⋆
1 can

be performed based on the following corollary.

Corollary 2. Under the assumptions of Corollary 1 (i), as n → ∞,

n(θ̂1 − θ⋆
1)

TΞ2(θ
⋆
1, θ̂2)

−1(θ̂1 − θ⋆
1)

d→ χ2
r.

How to decide if the parametric model chosen for the dependence coefficients
is reasonable? Let H0 be the null hypothesis “the chosen parametric model
θ 7→ D(θ) is the true map of the underlying copula” against H1 “the chosen
parametric model θ 7→ D(θ) is not the true map of the underlying copula”. If

H0 is true, then D(θ̂)− D̂ should be close to zero. To carry out this test, one
may use the result of the following corollary.

Corollary 3. Suppose that the assumptions of Theorem 1 hold. Define

A(θ) := Ḋ(θ)
(
Ḋ(θ)T Ḋ(θ)

)−1

Ḋ(θ)T .

If Ip − A(θ) and Σ(θ) are invertible for all θ in Θ and Σ(·) is continuous at
θ0, then

n
(
D(θ̂)− D̂

)
Σ−1(θ̂)

(
Ip −A(θ̂)

)−1

Σ−1(θ̂)
(
D(θ̂)− D̂

)
d→ χ2

p

as n → ∞.

The asymptotic covariance matrix Ξ for the limiting distribution (6) de-
pends on the limiting weight matrix W. Hence it is natural to wonder what
is the ”best” estimator θ̂ one can constructs in the sense of the ”best” limit-
ing distribution. This problem of finding optimal weights was studied in the
context of the generalized method of moments [12], and here we derive similar
results. To define what ”best” could mean in this context, the mathematical
concept of nonnegativeness is appropriate. Let us introduce the notation A ≥ 0
for a nonnegative matrix A. Also, for two nonnegative matrices A and B, we
note A ≤ B if B − A ≥ 0. Hence, given two limiting distributions N(0,A)
and N(0,B), the best limiting distribution is defined as the one which has the
smallest covariance matrix. In particular, it is easily checked that A ≤ B im-
plies tr(A) ≤ tr(B), where tr(·) stands for the trace operator of matrices. Thus,
within the class of all possible limiting distribution, the best one is such that the
sum of the variances is minimum. The next proposition gives the optimal choice
for the limiting weight matrix W, leading to the best limiting distribution.
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Proposition 1. Suppose that Σ defined in (A4) is invertible. Then the asymp-
totic covariance matrix Ξ (6) is minimum for W⋆ such that

W⋆
Ḋ ∝ Σ−1

Ḋ (7)

where the symbol ∝ denotes proportionality.

The result of Proposition 1 indicates that one can choose a weight matrix

Ŵ in the construction of θ̂ to lead to an optimal estimator in the sense that√
n(θ̂ − θ0) converges to the most efficient asymptotic distribution, that is,

the one which has the smallest asymptotic covariance matrix. Let us write

θ̂ = θ(Ŵ) to emphasize the dependence on Ŵ. In order to construct such an
optimal estimator, it suffices to let the sequence of weight matrices to converge
to Σ−1. This is summarized in the next corollary (left without proof).

Corollary 4. If, as n → ∞, Σ̂ is a consistent estimator for Σ (elementwise),

then θ(Σ̂
−1

) is optimal and

√
n(θ(Σ̂

−1
)− θ0)

d→ N

(
0,
(
Ḋ

T
Σ−1

Ḋ

)−1
)
.

The estimator Σ̂ could be an empirical estimator of Σ, but, since Σ depends
on θ0, it also could be constructed from an estimator of θ0. This estima-
tor could be chosen in turn as the inverse of a weight matrix to estimate the
parameter, and so on. Algorithm 1 constructs an updating sequence of esti-

mates Σ̂
(t)
, t = 0, 1, 2, . . . , T such that each of the elements of the sequence for

t = 1, 2, . . . converges in probability to Σ(θ0) as n → ∞. The performance of

Algorithm 1

Put Σ̂
(0)

= Ip .
for t = 0, 1, . . . , T do

θ̂
(t)

= θ(Σ̂
(t)
)

Σ̂
(t+1)

= Σ[θ̂
(t)
] .

end for

these estimators will be assessed numerically in Section 3.2.
The benefit of weighting can vanish if the distribution of (U1, . . . , Ud) is

exchangeable, that is, if C(u1, . . . , ud) = C(uπ(1), . . . , uπ(d)) for any permutation
π of (1, . . . , d), as the next proposition shows.

Proposition 2. If the distribution of (D̂i,j , D̂k,l) only depends on that of

(Ui, Uj , Uk, Ul) (∀i < j, k < l),

and the underlying copula C is exchangeable, then W⋆ = Ip verifies (7).

Proposition 2 holds for the popular class of Archimedean copulas. A copula C
is an Archimedean copula if

C(u1, . . . , ud) = ϕ−1

(
d∑

i=1

ϕ(ui)

)
(8)
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where ϕ : [0, 1] → [0,∞] is a continuous strictly decreasing function such that
ϕ(0) = ∞ and ϕ(1) = 0 (see [23] Section 4.6 p. 151 for more about Archimedean
copulas). It is easy to see that these copulas are exchangeable. Hence, for those
copulas, the smallest asymptotic variance is obtained when there are no weights

(that is, when Ŵ is the identity matrix Ip).
Another situation exists where the weights have no effect. If there are as

many pairs as parameters, then θ̂ is explicit and does not depend on Ŵ, as the
next proposition shows.

Proposition 3. Suppose that the assumptions of Theorem 1 hold. If p = q
then, as n → ∞ and with probability tending to one,

θ̂ = D
−1
(
D̂

)
, (9)

and

√
n(θ̂ − θ0)

d→ Nq

(
0,
(
Ḋ

T
Ḋ

)−1

Ḋ
T
ΣḊ

(
Ḋ

T
Ḋ

)−1
)
. (10)

This special case will be illustrated in Section 3.3.

2.2 Asymptotic properties for the estimators based on de-

pendence coefficients

This section is devoted to the study of the estimator θ̂ defined in (3), but with
Di,j being replaced by ρi,j , τi,j or λi,j , respectively denoting the Spearman’s
rho, Kendall’s tau, and upper tail dependence coefficients between the variables
Ui and Uj .

The definitions of the considered dependence coefficients are recalled below.
Given a bivariate copula Ci,j , the Spearman’s rho and the Kendall’s tau are
respectively defined by

ρi,j(θ) =12

∫

[0,1]2
Ci,j(u, v) du dv − 3, (11)

τi,j(θ) =4

∫

[0,1]2
Ci,j(u, v) dCi,j(u, v)− 1. (12)

They belong to [−1, 1] and measure the dependence between the variables as-
sociated to Ci,j . Negative (respectively positive) values indicate negative (re-
spectively positive) dependence. A value of zero indicates independence (see
e.g. [23], chapter 5).

If Ci,j is an extreme-value copula, it is natural (see e.g. [11] Section 6.4) to
measure the dependence with the upper tail dependence coefficient, or simply
tail dependence coefficient, defined by

λi,j(θ) = 2 + logCi,j(e
−1, e−1). (13)

This coefficient belongs to [0, 1] and a value closer to 1 indicates more (positive)
dependence, and a value closer to 0 indicates more independence (there is no
negative dependence for extreme-value copulas). Recall that a copula C is an
extreme-value copula if there exists a copula C̃ such that

C(u1, . . . , ud) = lim
n↑∞

C̃n(u
1/n
1 , . . . , u

1/n
1 ), (14)
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for every (u1, . . . , ud) ∈ [0, 1]d. See for instance [11] for more about extreme-
value copulas.

Empirical estimators have to be chosen to estimate nonparametrically the
dependence coefficients. Common ones are considered in the propositions below
(one propsotion per type of dependence coefficient). In each of these, it is shown
that Assumption (A4) holds.

Proposition 4 (Spearman’s rho). Let Di,j(θ) = ρi,j(θ). Also, define

D̂i,j = ρ̂i,j =

∑n
k=1

(
U

(k)
i − U i

)(
U

(k)
j − U j

)

[∑n
k=1

(
U

(k)
i − U i

)2∑n
k=1

(
U

(k)
j − U j

)2]1/2 , (15)

where Ui =
∑n

k=1 U
(k)
i /n, U2

i =
∑n

k=1

(
U

(k)
i

)2
/n and UiUj =

∑n
k=1 U

(k)
i U

(k)
j /n.

Put ρ̂ = (ρ̂1,2, . . . , ρ̂d−1,d) and ρ = (ρ1,2, . . . , ρd−1,d) where ρi,j = ρi,j(θ0). Then
as n → ∞

ρ̂
P→ ρ and (16)

√
n (ρ̂− ρ)

d→ Np (0,Σ) ,

where Σ is some symmetric and positive definite matrix.

Although the convergence to a normal distribution is established, the expres-
sion for the asymptotic covariance matrix is unknown. It is possible to replace
the empirical means and variances in formula (15) by their true values to get a
closed form expression for Σ. Let

ρ̂i,j =
12

n

n∑

k=1

(
U

(k)
i − 1

2

)(
U

(k)
j − 1

2

)
. (17)

By the multivariate central limit theorem, (16) holds true with

Σi,j;k,l =144µi,j;k,l − ρi,jρk,l, (18)

µi,j;k,l =E

[(
Ui −

1

2

)(
Uj −

1

2

)(
Uk − 1

2

)(
Ul −

1

2

)]
.

In this particular case, the empirical estimator ρ̂i,j is the empirical mean of the

variables 12(U
(k)
i − 1

2 )(U
(k)
j − 1

2 ), k = 1, . . . , n, hence, the estimator θ̂ can be
embedded within the framework of the generalized method of moments [12].

Proposition 5 (Kendall’s tau). Let Di,j(θ) = τi,j(θ). Also, define

D̂i,j = τ̂i,j =

(
n

2

)−1∑

k<l

sign
(
(U

(k)
i − U

(l)
i )(U

(k)
j − U

(l)
j )
)
, (19)

where sign(x) = 1 if x > 0, −1 if x < 0 and 0 if x = 0. Put τ̂ = (τ̂1,2, . . . , τ̂d−1,d)
and τ = (τ1,2, . . . , τd−1,d) where τi,j = τi,j(θ0). Then as n → ∞

τ̂
P→ τ and

√
n (τ̂ − τ )

d→ Np (0,Σ) ,

8



where

Σi,j;k,l = 4E [(4Ci,j(Ui, Uj) + 1− τi,j − 2Ui − 2Uj) (20)

× (4Ck,l(Uk, Ul) + 1− τk,l − 2Uk − 2Ul)] .

Proposition 6 (tail dependence coefficient). Assume that the copula of interest
C is an extreme-value copula and let Di,j(θ) = λi,j(θ). Also, define

D̂i,j = λ̂i,j = 3− 1

1−∑n
k=1 max(U

(k)
i , U

(k)
j )/n

, (21)

put λ̂ = (λ̂1,2, . . . , λ̂d−1,d)and λ = (λ1,2, . . . , λd−1,d) where λi,j = λi,j(θ0). Then
as n → ∞

λ̂
P→ λ and

√
n
(
λ̂− λ

)
d→ Np (0,Σ) ,

where

Σi,j;k,l = (3− λi,j)
2(3− λk,l)

2 Cov (max(Ui, Uj),max(Uk, Ul)) . (22)

To summarize, we have shown that each of the Spearman’s rho, Kendall’s
tau, and tail dependence coefficients can form a weighted least square estimator
verifying Assumption (A4).

3 Applications to three statistical questions

This section illustrates how the results derived in Section 2 can serve to assess the
uncertainty of risk measures in credit risk modeling (Section 3.1) and hydrology
(Section 3.3). In Section 3.2 it is shown that one can improve inference in
presence of missing observations by using weights. The numerical computations
were carried out with the R software for statistical computing [27], especially
with the help of the packages [7, 14, 16,26].

In each of the subsequent sections, the asymptotic covariance matrix Σ of
Assumption (A4) will need to be calculated. The formulas to compute the
(i, j; k, l) element of this matrix are given in the propositions of Section 2.2.
Nevertheless, due to the complexity of these formulas, we chose to base the
computation of Σ on Monte-Carlo simulations. More precisely, we generated
10,000 observations of the underlying copula model in order to approximate
Σi,j;kl by its corresponding Monte-Carlo empirical mean. Generating more sim-
ulations (as many as 100,000) did not change significantly the calculations.

3.1 Measuring uncertainty for loss probabilities in credit

risk modeling

In credit risk modeling, a threshold model (see [22] Section 8.3) is characterized
by a random vector X = (X1, . . . , Xd) and a threshold vector a = (a1, . . . , ad).
The variableXi represents the asset value of the firm i at a certain maturity date.
This firm defaults when its asset value is smaller than the threshold ai, that is,

9



when Xi ≤ ai. Assume that all firms have the same probability π of defaulting,
in other words, P (Xi ≤ ai) = π. In risk analysis, the distribution of the loss
associated to a portfolio plays a major role. Consider an homogeneous portfolio
whose loss L is given by the number of defaults. Hence, L =

∑d
i=1 Yi where

Yi = 1{Xi≤ai} for i = 1, . . . , d. Observe that the distribution of L depends on
the joint distribution of X. More precisely, it depends on the copula associated
to X (see [22] Section 8.4). If the copula associated to X is a d-dimensional
Clayton copula (that is, a copula for which (8) holds with ϕθ(t) = tθ − 1) with
parameter θ > 0, then the probability of experiencing l defaults, l = 0, 1, . . . , d,
is given by (see [22] Section 8.4)

p̃l(θ) :=

(
d
l

)

Γ(1/θ)(π−θ − 1)

∫ 1

0

t
l−1+1

(π−θ
−1) (1− t)d−l

(
log(t)

1− π−θ

)1/θ−1

. (23)

These probabilities are represented Figure 1 with θ = 2 and π = 0.05. If π is
known, this probability is a functional of θ, and an estimator of the parameter
gives an estimator of the loss probability. Let θ0 be the true parameter. We
wish to estimate it with θ̂ defined in (3) by using the pairwise Kendall’s tau.
Hence the framework of Proposition 5 applies. Since the underlying copula is
exchangeable and the parameter is one-dimensional, an explicit formula for θ̂

exists. First, by Corollary 2, one can set Ŵ to the identity matrix Ip. Second,
since q = 1 and the underlying copula is exchangeable, τ (θ) is equal to τ(θ)1p,
where τ(θ) = θ/(θ + 2) for θ > 0. Hence one can minimize the loss function of
(3) by equating its derivative to zero to get

θ̂ = τ−1


1

p

∑

i<j

τ̂i,j


 (24)

where τ̂i,j is given in (19). By substituting (24) into (23), one gets an estimator

p̃l(θ̂) of the true loss probability p̃l := p̃l(θ0).

How to report uncertainty measures for p̃l(θ̂)? It is easily checked that the
assumptions of Theorem 1 hold, hence, as n → ∞,

√
n(θ̂ − θ0)

d→ N

(
0,

1T
p Σ1p

(pτ ′)2

)
,

where Σ has been given in (20) and τ ′ denotes the derivative of τ(·) at θ0. An
application of the delta-method yields, as n → ∞,

√
n(p̃l(θ̂)− p̃l)

d→ N
(
0, η2l

)
, where

η2l =

(
dp̃l(θ)

dθ

∣∣∣
θ=θ0

)2 1T
p Σ1p

(pτ ′)2
.

Thus, one can approximate (for n large enough) the distribution of p̃l(θ̂) by a
normal distribution. This finite sample approximation was verified by simula-
tion. We generated 500 replications of a dataset of size n = 200, dimension
d = 5 and parameter θ0 = 2 and checked that the intervals p̃l ± 1.96ηl/

√
n con-

tain 95% of the estimates p̃l(θ̂). The results were 94.8, 94.4, 95.0, 94.6, 95.2 and
94.2 percent at l = 0, 1, 2, 3, 4, 5 respectively. Figure 1 illustrates these intervals
and the loss probabilities.
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Figure 1: Loss probabilities p̃l for l = 0, 1, . . . , 5 and associated asymptotic 95%
confidence intervals with n = 200.
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3.2 Weighting to improve the inference of Archimedean

copulas in presence of missing values

Consider the following situation. We wish to estimate the parameter θ0 of a
Clayton copula (as in Section 3.1) with the help of a Spearman’s rho empirical
estimator like (17), but our sample contains missing values.

A way to formalize the presence of missing values is to introduce independent
Bernoulli random variables. Let

Z
(k)
i =

{
1 if U

(k)
i is not missing,

0 if U
(k)
i is missing,

for i = 1, . . . , d and k = 1, . . . , n. Define P (Z
(k)
i = 1) = bi. If the bi are known

then an unbiaised empirical estimator of the Spearman’s rho for the pair (Ui, Uj)
in presence of missing observations is

D̂ij = ρ̂ij =
12 1

n

∑n
k=1 Z

(k)
i Z

(k)
i (U

(k)
i − 1

2 )(U
(k)
j − 1

2 )

bibj
. (25)

Define ρ̂ = (ρ̂1,2, . . . , ρ̂d−1,d) and ρ(θ) := 12
∫
[0,1]2

C1,2(u, v; θ) du dv − 3 where

C1,2 denotes the bivariate marginal of the underlying copula C between the vari-
ables U1 and U2. Let ρ = ρ(θ0) be the true Spearman’s dependence coefficient
and ρ′ be the derivative of ρ(·) at θ0. Following the arguments of Section 3.1,
one can obtain

θ̂ = ρ−1

(
ρ̂TŴ1p

1T
p Ŵ1p

)
. (26)

By applying, the law of large numbers and the multivariate central limit theo-
rem, it is easily checked that Assumption (A4) holds with

Σi,j;k,l =144b
−δi,k−δj,k
k b

−δi,l−δj,l
l µi,j;k,l − ρi,jρk,l, (27)

µi,j;k,l =E

[(
Ui −

1

2

)(
Uj −

1

2

)(
Uk − 1

2

)(
Ul −

1

2

)]
,

where δi,k denotes the Kronecker symbol, that is, δi,k = 1 if i = k and 0

otherwise. If bi = 1, (27) reduces to (18). The asymptotic properties of θ̂ can
be derived by applying Theorem 1. We have, as n → ∞

√
n(θ(Ŵ)− θ0)

d→ N

(
0,

1T
p WΣW1p(
ρ′1T

p W1p

)2

)
.

By Proposition 1, Ŵ = Σ̂
−1

would ensure an optimal asymptotic distribution.
Note that the assumptions of Corollary 2 do not hold because the distribution
of (25) does not depend only on that of (Ui, Uj): it depends also on bi and bj .
We tested the estimators presented in Algorithm 1 by performing a numerical
simulation experiment. We generated 500 datasets with 200 observations of 5
variables according to a Clayton copula with parameter θ0 = 1. The bi were
set to 0.9− (i− 1)(0.9− 0.1)/(d− 1) for i = 1, . . . , d− 1 respectively. For each

dataset θ̂(t) was computed for t = 0, 1, 2, 3 and the squared errors (θ̂(t) − θ0)
2

were derived. The results reported Figure 2 show that the one-step estimator
θ̂(1) allows to reduce the errors significantly. Also, considering more steps do
not seem to improve further the inference.
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Figure 2: Box plots of the squared errors (θ̂(t) − θ0)
2 for t = 0, 1, 2, 3 (see text

for details).
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3.3 Measuring uncertainty for multivariate return periods

in hydrology

In hydrology, it is of interest to quantify the severity and frequency of extreme
events. Such potentially dangerous events are underlain by the behavior of a
vector (U1, . . . , Ud) whose distribution is a copula C, determined by a parameter
vector θ in Θ. For a certain potentially dangerous event, define the return period
T and the critical level p̃ through the relationship

T =
1

1−Kθ(p̃)
, (28)

where Kθ(t) = P (C(U1, . . . , Ud) ≤ t), t ∈ [0, 1]. Kθ is called the Kendall’s
distribution function associated to C, see [24]. The return period can be inter-
preted as the average time elapsing between two dangerous events. For instance,
T = 30 years means that the event happens once every 30 years in average. The
critical level can be viewed as a measure of how dangerous the underlying event
is. The following question naturally arises: given a certain return period, what
is the critical level of the underlying event? To answer to this question, it suffices
to invert (28) to get p̃ as a function of T

p̃T (θ) = K−1
θ

(1− 1/T ).

Let θ0 denote the true parameter vector and let p̃T = p̃T (θ0). The estimation
of p̃T , or, in other words, the estimation of θ0, was performed in [6]. The
parametric model proposed for C was the extreme-value copula

C(u1, . . . , ud) =

(
d∏

i=1

u1−θi
i

)
min

i=1,...,d
(uθi

i ), θi ∈ [0, 1], i = 1, . . . , d, (29)

which allowed to study the dependence between d = 3 sites in Italy (Airole,
Merelli and Poggi). The authors chose to base the inference on the Kendall’s
tau, and, in our work, it corresponds to the framework of Proposition 5. For θ
in [0, 1]d, the Kendall’s tau is given by

τij(θ) =
θiθj

θi + θj − θiθj
, i < j. (30)

By inverting (30), one obtains

θ̂i =
1

2

(
1 +

1

τ̂ ij
+

1

τ̂ ik
− 1

τ̂ jk

)
, (31)

where i, j, k denote the indexes of the three sites and τ̂ij is given by (19). Observe
that this is the solution of the equation (9), and, under the light of Proposition 3
(since p = q = d = 3), we see that this estimator has the smallest asymptotic
variance within the class (3). However, in [6], the asymptotic behavior of θ̂ =

(θ̂1, θ̂2, θ̂3) was not derived. This is done next, and we shall see that it allows to
quantify the uncertainties around the critical levels.

The asymptotic normality of
√
n(θ̂ − θ0) can be established by applying

Theorem 1. It suffices to verify that Assumption (A3) holds, which is easily
checked from (30). Hence, as n → ∞

√
n(θ̂ − θ0)

d→ N(0,Ξ), (32)
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where Ξ is given by (10) and (20). Now, the derivation of the asymptotic
behavior of the critical levels is straightforward. From (32), we get by the
delta-method that, as n → ∞

√
n
(
p̃T (θ̂)− p̃T

)
d→ N(0, s2T ), (33)

where s2T = ˙̃pTΞ ˙̃p
T

T , ˙̃pT being the Jacobian of p̃T (·) at the true parameter
value. It follows that confidence intervals can be computed from the finite-
sample approximation of (33), provided that the sample size is large enough.
In [6], the critical levels in terms of return periods were reported for the three
pair of sites (Airole-Merelli, Airole-Poggi and Merelli-Poggi). We added to their
figure 95% confidence intervals for the critical levels1 (Figure 3.3).

The test based on Corollary 3 has no power to detect a wrong model in this
situation. Indeed, since D(θ̂) = D̂, the test statistic is always zero. Other tests
can be performed to achieve such a task, see the original paper [6].

When studying extreme events, it is common to have only a limited amount
of data. For instance, in [6], only n = 34 (multivariate) observations were avail-
able. With such a small sample size, the approximation to a normal law for the
distribution of

√
n(p̃T (θ̂) − p̃T ) may be questionable. To assess the goodness

of this approximation for small and moderate sample sizes, we carried out the
following numerical experiment. N = 500 dataset of size n were generated ac-
cording to (29) with θ0 = (0.6, 0.7, 0.2). For the m-th dataset (m = 1, . . . , N),

the parameter vector estimate θ̂
(m)

was computed. Let sT (θ̂
(m)

) be the asymp-

totic covariance matrix in (33) at θ̂
(m)

where sT (θ) is regarded as a function

of θ. The critical levels p̃T (θ̂
(m)

) together with the 95% confidence bands

p̃T (θ̂
(m)

) ± 1.96sT (θ̂
(m)

)/
√
n were computed for T = 10, 20, 30. Some of the

θ̂
(m)

did not lie in their theoretical bounds ([0, 1]), which led to numerical diffi-

culties for computing s2T (θ̂
(m)

). Therefore, these were dropped from the experi-
ment. The results reported Table 3.3 show that the finite sample approximation
is rather good for n = 100. Even for n = 34, this approximation appears to be
good for the pair Airole-Merelli. Despite these encouraging results for moderate
and small samples, we finish by stressing that the number of missing outputs

(recall that this happens when θ̂
(m)

do not belong to [0, 1]) were quite high: 354
and 298 over the 500 dataset replications for n = 34 and n = 100 respectively.
Consequently, it would be of interest to improve the estimator (31) to reduce
this vexing effect. For instance, one could consider an estimator based on both
the Kendall’s tau and the Spearman’s rho. The asymptotic distribution of such
an estimator could be deduced from Theorem 1 but would require the joint
asymptotic distribution of the empirical Kendall’s tau and Spearman’s rho.

1The authors thank Fabrizio Durante and Gianfausto Salvadori for sharing their dataset.
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pair (1,2) (1,3) (2,3)
n T 10 20 30 10 20 30 10 20 30
34 0.95 0.95 0.93 0.89 0.84 0.82 0.90 0.87 0.82
100 0.95 0.94 0.94 0.96 0.94 0.93 0.96 0.94 0.93

Table 1: Proportion for the true value p̃T to be included within the 95% confi-
dence intervals. The labels for the pairs (1,2), (1,3), and (2,3) are Airole-Merelli,
Airole-Poggi and Merelli-Poggi respectively.

16



Figure 3: Critical levels p̃T (θ̂) for T = 2, . . . , 40 together with 95% confidence
intervals.
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Appendix

Proof of Theorem 1

In order to prove Theorem 1, we first establish two lemmas. These lemmas, as
well as their proofs, are similar to the results in [8]. It will appear that the proof
of the theorem is a straightforward application of these lemmas.

Let Θ and ε0 as in Assumption (A1). Define the vector map

ϕ : Θ ⊂ R
q → ϕ(Θ) ⊂ R

p (34)

ϕ(θ) 7→ (ϕ1(θ), . . . , ϕp(θ))
T ,

and assume that ϕ is twice continuously differentiable. Denote by ϕ̇(θ) the
p× q Jacobian matrix of ϕ at θ and define ϕ̇ := ϕ̇(θ0). Let

Yn = (Yn,1, . . . , Yn,p)
T

be a random vector in R
p depending on an integer n and assume that Yn

P→
ϕ(θ0) as n → ∞. Let Ŵ = Ŵn be a p×p symmetric and positive definite matrix

with full rank and suppose that Ŵ converges in probability to a symmetric and

positive definite matrix W with full rank as n → ∞. Then Ŵ =
˜̂
W

T ˜̂
W for

some p×p matrix
˜̂
W. Denote by Θ̂n the set of all minimizers of the loss function

ℓn(θ) = (Yn −ϕ(θ))
T
Ŵ (Yn −ϕ(θ)) (35)

=

∥∥∥∥
˜̂
W (Yn −ϕ(θ))

∥∥∥∥
2

, θ ∈ Θ,

where ‖ · ‖ stands for the Euclidean norm. Observe that this set may contain
several or no elements. Let Hn(θ) be the Hessian matrix of ℓn at θ, that is, the
matrix whose (k, l) element is given by

Hn,kl(θ) =
∂2ℓn(θ)

∂θk∂θl
.

Let Q(θ) be the d× d matrix whose (k, l) element writes

Qkl(θ) =

(
∂2ϕ1(θ)

∂θk∂θl
, . . . ,

∂2ϕp(θ)

∂θk∂θl

)
ŴT (ϕ(θ)−ϕ(θ0)) ,

and H(θ) be the d× d matrix defined by

H(θ) = 2
(
Q(θ) + ϕ̇(θ)TWT ϕ̇(θ)

)
.

Finally write Bε(θ0) = {θ ∈ Θ : ||θ − θ0|| ≤ ε} the closed ball around θ0 with
radius ε > 0 and assume that there exists ε0 > 0 such that Bε0(θ0) is closed.
Then Bε(θ0) is compact for all 0 < ε ≤ ε0.

Lemma 1. (i) The elementwise convergence Hn(θ)
P→ H(θ) holds uniformly

for all θ in Bε0(θ0).
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(ii) If ϕ̇ is of full rank then, with probability tending to 1, Hn(θ) is positive
definite for all θ in some closed neighborhood of θ0.

(i) It is easily seen that Hn(θ) = 2
(
ϕ̇(θ)TŴT ϕ̇(θ) +Qn(θ)

)
where Qn(θ)

is a [d× d] matrix such that its (k, l) element is given by

Qn,kl(θ) =

(
∂2ϕ1(θ)

∂θk∂θl
, . . . ,

∂2ϕp(θ)

∂θk∂θl

)
ŴT (ϕ(θ)−Yn) .

Let Ŵji denote the element of Ŵ in the j-th row and i-th column. For all θ in
Bε0(θ0),

|Hn,kl(θ)−Hkl(θ)| = 2

∣∣∣∣∣∣

p∑

i,j=1

∂2ϕi(θ)

∂θk∂θl
Ŵji (ϕj(θ0)− Yn,j)

∣∣∣∣∣∣

≤
p∑

i,j=1

∣∣∣∣
∂2ϕi(θ)

∂θk∂θl

∣∣∣∣ |Ŵji| |ϕj(θ0)− Yn,j |

≤ constant×
p∑

i,j=1

|Ŵji| |ϕj(θ0)− Yn,j | ,

the last inequality holding because, since the second order derivatives of the ϕi’s
are continuous on the closed and thus compact set Bε0(θ0), they are uniformly
bounded by some constant on this set. Therefore, as n → ∞,

sup
θ∈Bε0

(θ0)

|Hn,kl(θ)−Hkl(θ)| ≤ constant×
p∑

i,j=1

|Ŵji| |ϕj(θ0)− Yn,j | P→ 0,

which follows from the weak consistency of Yn and Ŵ.
(ii) Notice that since ϕ̇ is of full rank, H(θ0) is positive definite. Hence

for every x 6= 0 ∈ R
q, the map θ 7→ xTH(θ)x is continuous and one can

choose a sufficiently small ε(x) > 0 such that there exists δ(x) > 0 for which
xTH(θ)x ≥ xTH(θ0)x − ε(x) > 0. In other words, ∀x ∈ R

q, ∃δ(x) > 0 :
‖θ − θ0‖ ≤ δ(x) =⇒ xTH(θ)x > 0. Define 0 ≤ δ := infx∈Rq {δ(x)}. Then for
all θ in Θ, ‖θ − θ0‖ ≤ δ implies xTH(θ)x > 0 for all x 6= 0. We have shown
that H(θ) is positive definite on Bδ(θ0). Now define

Aij =

{
sup

θ∈Bε0 (θ0)

|Hn,ij(θ)−Hij(θ)| ≤ inf
x∈Rq,x 6=0, θ∈Bδ(θ0)

xTH(θ)x

2
∑q

i,j=1 |xixj |

}

and put A =
⋂
i,j

Aij. On the event A, for all x 6= 0 and for all θ in Bε0(θ0), we

have

∣∣xT (H(θ)−Hn(θ))x
∣∣ ≤

q∑

i,j=1

|xixj | inf
x∈Rq,x 6=0, θ∈Bδ(θ0)

xTH(θ)x

2
∑q

i,j=1 |xixj |

≤ inf
θ∈Bδ(θ0)

xTH(θ)x

2
.
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If, moreover, θ ∈ Bδ(θ0), then

xTHn(θ)x ≥ xTH(θ)x

2
> 0

because H(θ) is positive definite on Bδ(θ0). Hence on A and for all θ in
Bδ(θ0)

⋂
Bε0(θ0), the matrix Hn(θ) is positive definite. By (i), P (A) → 1

as n → ∞, which concludes the proof.

Lemma 2. (i) If ϕ in (34) is an homeomorphism, then for all ε such that
0 < ε ≤ ε0, as n → ∞,

P
[
Θ̂n 6= ∅ and Θ̂n ⊂ Bε(θ0)

]
→ 1.

(ii) If, moreover, ϕ̇(θ0) is of full rank then as n → ∞,

P
[
card Θ̂ = 1

]
→ 1,

where card denotes the cardinal of a set. Define θ̂ to be the unique element

of Θ̂ if card Θ̂ = 1, and any arbitrary point otherwise. Then θ̂
P→ θ0 as

n → ∞.

(iii) If in addition to the assumptions of (i) and (ii)

√
n(Yn −ϕ(θ0))

d→ Np(0,Σ)

then

√
n(θ̂ − θ0)

d→ Nq

(
0,
(
ϕ̇TWϕ̇

)−1
ϕ̇TWΣWϕ̇

(
ϕ̇TWϕ̇

)−1
)

(i) Let 0 < ε < ε0. Since ϕ is a homeomorphism and Ŵ has full rank,
˜̂
Wϕ is also homeomorphism. Hence there exists δ > 0 such that θ ∈ Θ

and ‖˜̂W (ϕ(θ)−ϕ(θ0)) ‖ ≤ δ imply ‖θ − θ0‖ ≤ ε. Thus for every θ ∈ Θ

with ‖θ − θ0‖ > ε we have ‖˜̂W (ϕ(θ)−ϕ(θ0)) ‖ > δ. On the event An =

{‖˜̂W (ϕ(θ0)−Yn) ‖ ≤ δ/2} and for θ outside θ ∈ Bε(θ0), the inequality

‖˜̂W (ϕ(θ)−ϕ(θ0)) ‖ ≤ ‖˜̂W (ϕ(θ)−Yn) ‖+ ‖˜̂W (Yn −ϕ(θ0)) ‖

implies

‖˜̂W (ϕ(θ)−Yn) ‖ ≥ ‖˜̂W (ϕ(θ)−ϕ(θ0)) ‖ − ‖˜̂W (Yn −ϕ(θ0)) ‖
> δ − δ/2

= δ/2

≥ ‖˜̂W (Yn −ϕ(θ0)) ‖.

Therefore

min
θ∈Bε(θ0)

‖˜̂W (Yn −ϕ(θ)) ‖ ≤ inf
θ/∈Bε(θ0)

‖˜̂W (Yn −ϕ(θ)) ‖,
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where in the left hand side the minimum is attained because Bε(θ0) is compact.

By consistency of Yn and Ŵ, we have P (An) → 1. It follows that the event

{
Θ̂n 6= ∅ and Θ̂n ⊂ Bε(θ0)

}

has probability tending to 1.
(ii) Without loss of generality denote by Bη(θ0), η < ε0, the closed neigh-

borhood of Lemma 1 (ii). Assume that the event

{
Θ̂ 6= ∅, Θ̂ ⊂ Bη(θ0) and Hn(θ) is positive definite for all θ in Bη(θ0)

}

(36)

happens. Let θ ∈ Bη(θ0) and θ⋆ be a vector in Θ̂. A Taylor expansion of ℓn in
(35) at θ⋆ gives

ℓn(θ) = ℓn(θ
⋆) + (θ − θ⋆)T▽ℓn(θ

⋆) +
1

2
(θ − θ⋆)THn(θ̃)(θ − θ⋆),

where θ̃ = tθ+(1−t)θ⋆, t ∈ (0, 1) and ▽ℓn denotes the gradient of ℓn. In view of
Lemma 2 (i), θ⋆ is in some open neighborhood of θ0 and thus ▽ℓn(θ

⋆) = 0. The
fact that θ̃ ∈ Bη(θ0) entails that Hn(θ̃) is positive definite. Therefore, we have
shown that ℓn(θ) > ℓn(θ

⋆) for all θ in Bη(θ0). This implies that the cardinal

of Θ̂ is 1. By Lemma 1 (ii) and Lemma 2 (i), the event (36) has probability
tending to 1. Hence P [ card Θ̂ = 1] → 1. Now let θ̂ be as in Lemma 2 (ii) and
let ε > 0. Without loss of generality, assume that ε ≤ ε0. Then

lim
n→∞

P
[
θ̂ ∈ Bε(θ0)

]
= lim

n→∞
P
[
θ̂ ∈ Bε(θ0) and card Θ̂ = 1

]
= 1,

the last equality holding because of Lemma 2 (i). Thus the consistency of θ̂ is
proved.

(iii) A Taylor expansion for the gradient ▽ℓn of ℓn in equation (35) around
θ0 entails

▽ℓn(θ̂) = ▽ℓn(θ0) +Hn(θ̃)(θ̂ − θ0),

where θ̃ = tθ̂ + (1 − t)θ0, t ∈ (0, 1). By the same arguments as in the proof of
Lemma 2 (ii), ▽ℓn(θ̂) = 0, hence,

√
nHn(θ̃)(θ̂ − θ0) =

√
n
(
▽ℓn(θ̂)− ▽ℓn(θ0)

)

= −√
n▽ℓn(θ0)

= 2ϕ̇TŴ
√
n (Yn −ϕ(θ0)) .

For x in R
q, we have

P
[√

nHn(θ̃)(θ̂ − θ0) ≤ x
]
=P

[√
nHn(θ̃)(θ̂ − θ0) ≤ x and card Θ̂ = 1

]

+P
[√

nHn(θ̃)(θ̂ − θ0) ≤ x and card Θ̂ 6= 1
]
.

(37)
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Since the second term in the sum in the right hand side of (37) tends to 0, we
have that

lim
n→∞

P
[√

nHn(θ̃)(θ̂ − θ0) ≤ x and card Θ̂ = 1
]

= lim
n→∞

P
[√

nHn(θ̃)(θ̂ − θ0) ≤ x
]

= lim
n→∞

P
[
2ϕ̇TŴ

√
n (Yn −ϕ(θ0)) ≤ x

]
.

By the assumptions of Lemma 2 (iii) and by consistency of Ŵ, we have

2ϕ̇TŴ
√
n (Yn −ϕ(θ0))

d→ Nq

(
0, 4ϕ̇TWΣWT ϕ̇

)
.

If Hn(θ̃) converges in probability to H(θ0) = 2ϕ̇Wϕ̇, then

√
n(θ̂ − θ0)

d→ Nq

(
0,
(
ϕ̇TWT ϕ̇

)−1
ϕ̇TWΣWT ϕ̇

[(
ϕ̇TWT ϕ̇

)−1
]T)

.

Therefore, to conclude the proof, it suffices to prove that Hn(θ̃)
P→ H(θ0). Let

ε > 0. Assume that

sup
θ∈Bε0 (θ0)

|Hn,ij(θ)−Hij(θ)| <
ε

2
.

The map θ 7→ Hn,ij(θ) is continuous, hence, there exists δ > 0 such that |θ̃ −
θ0| < δ implies |Hn,ij(θ̃) − Hn,ij(θ0)| < ε/2. Assume that θ̂ ∈ Bδ(θ0) and
suppose without loss of generality that δ ≤ ε0. Then it holds that

|Hn,ij(θ̃)−Hij(θ0)| ≤ |Hn,ij(θ̃)−Hn,ij(θ0)|+ |Hn,ij(θ0)−Hij(θ0)|
<

ε

2
+

ε

2
= ε.

By Lemma 1 (i) and Lemma 2 (i) we have shown that for all ε > 0, the event

{
|Hn,ij(θ̃)−Hij(θ0)| ≤ ε

}

has probability tending to 1. Hence the proof is finished.

The proof of Theorem 1 is a direct application of Lemma 2 with ϕ = D and
Yn = D̂.

Proof of Corollary 1

(i) The limiting covariance matrix of θ̂, viewed as a function (elementwise) of
θ is given by

Ξ(θ) =
(
Ḋ(θ)TWḊ(θ)

)−1

Ḋ(θ)TWΣ(θ)WḊ(θ)
(
Ḋ(θ)TWḊ(θ)

)−1

.

By assumption, Ḋ(·) and Σ(·) are continuous at θ0, hence so is Ξ(·). Therefore,
since θ̂ converges in probability to θ0, we also have that Ξ(θ̂) converges in
probability to Ξ(θ0). Moreover, since Ξ(θ) is invertible and nonnegative definite
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for all θ in Θ, we have Ξ(θ) = Ξ1/2(θ)Ξ1/2(θ) where Ξ1/2(θ) is also invertible.
Therefore, by Theorem 1, as n → ∞,

√
nΞ(θ̂)−1/2(θ̂ − θ0)

d→ N(0, Iq),

leading to the desired result.
(ii) By Assumption (A4),

√
n
(
D̂ −D(θ0)

)
d→ Np(0,Σ(θ0))

as n → ∞. The arguments in the proof of (i) can be easily adapted to prove
(ii).

Proof of Corollary 2

The proof of Corollary 2 is similar to that of Corollary 1 (i).

Proof of Corollary 3

Note D0 := D(θ0) and write

D(θ̂)− D̂ = D(θ̂)−D0 +D0 − D̂. (38)

A Taylor expansion yields

D(θ̂)−D0 =
˜̇
D(θ̂ − θ0) (39)

where
˜̇
D := Ḋ(θ̃) with θ̃ being a vector between θ̂ and θ0. Substitute (39) into

(38) to get

D(θ̂)− D̂ =
˜̇
D(θ̂ − θ0) +D0 − D̂. (40)

From (39), we have

θ̂ − θ0 = (
˜̇
D

T ˜̇
D)−1 ˜̇

D

T

(D(θ̂)−D0). (41)

Substitute (41) into (40) to obtain

D(θ̂)− D̂ =
˜̇
D

(
˜̇
D

T ˜̇
D

)−1 ˜̇
D

T (
D(θ̂)−D0

)
+
(
D0 − D̂

)
.

Since

D(θ̂)−D0 =
(
D(θ̂)− D̂

)
+
(
D̂ −D0

)
,

we have
(
Ip − ˜̇

D

(
˜̇
D

T ˜̇
D

)−1 ˜̇
D

T
)(

D(θ̂)− D̂

)
=

(
Ip − ˜̇

D

(
˜̇
D

T ˜̇
D

)−1 ˜̇
D

T
)(

D0 − D̂

)
.

Define A(θ) := Ip − Ḋ(θ)
(
Ḋ(θ)T Ḋ(θ)

)−1

Ḋ(θ)T , Ã := A(θ̃) and Â := A(θ̂).

By Assumption (A4) and because D is continuously differentiable, as n → ∞,

(Ip − Ã)
√
n
(
D(θ̂)− D̂

)
d→ N (0, (Ip −A)Σ(Ip −A))
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where A := Ḋ0

(
Ḋ

T

0 Ḋ0

)−1

Ḋ0 and Ḋ0 := D(θ0). Since Ip −A(θ) is idempo-

tent, that is (Ip −A(θ))2 = Ip −A(θ), we have for all θ in Θ

[(Ip −A(θ))Σ(θ)(Ip −A(θ))]
−1/2

= (Ip −A(θ))−1Σ−1(θ)(Ip −A(θ))−1.

By continuity Σ(θ̂)
P→ Σ. Since Â

P→ A as well,

(Ip − Â)−1Σ−1(θ̂)
√
n
(
D(θ̂)− D̂

)
d→ N (0, Ip)

as n → ∞, yielding the desired result.

Proof of Proposition 1

Without loss of generality, assume that W⋆
Ḋ = αΣ−1

Ḋ for some scalar α.
Let θ̂ = θ̂(W) and note θ̂(W⋆) the estimator for which W = W⋆. Denote by
Ξ(W) and Ξ(W⋆) the associated limiting covariance matrices of Theorem 1.
We have

Ξ(W)−Ξ(W⋆)

=
(
Ḋ

T
WḊ

)−1

Ḋ
T
WΣWḊ

(
Ḋ

T
WḊ

)−1

− α
(
Ḋ

T
W⋆

Ḋ

)−1

=
(
Ḋ

T
WḊ

)−1
(
Ḋ

T
WΣWḊ − Ḋ

T
WḊα

(
Ḋ

T
W⋆

Ḋ

)−1

Ḋ
T
WḊ

)(
Ḋ

T
WḊ

)−1

=
(
Ḋ

T
WḊ

)−1

Ḋ
T
WΣ1/2

(
Ip −Σ−1/2

Ḋα
(
Ḋ

T
W⋆

Ḋ

)−1

Ḋ
T
Σ−1/2

)
Σ1/2WḊ

(
Ḋ

T
WḊ

)−1

,

where Σ1/2 is the symmetric and invertible matrix such that Σ = Σ1/2Σ1/2.

Write A = Σ−1/2
Ḋα

(
Ḋ

T
W⋆

Ḋ

)−1

Ḋ
T
Σ−1/2. Note that A is idempotent,

that is, A2 = A. Indeed,

A2 =Σ−1/2
Ḋα

(
Ḋ

T
W⋆

Ḋ

)−1

Ḋ
T
Σ−1

Ḋα
(
Ḋ

T
W⋆

Ḋ

)−1

Ḋ
T
Σ−1/2

=Σ−1/2
Ḋα

(
Ḋ

T
W⋆

Ḋ

)−1

Ḋ
T
W⋆

Ḋ

(
Ḋ

T
W⋆

Ḋ

)−1

Ḋ
T
Σ−1/2

=Σ−1/2
Ḋα

(
Ḋ

T
W⋆

Ḋ

)−1

Ḋ
T
Σ−1/2

=A.

Hence Ip −A is idempotent as well and therefore

Ξ(W)−Ξ(W⋆) =
(
Ḋ

T
WḊ

)−1

Ḋ
T
WΣ1/2(Ip −A)(Ip −A)Σ1/2WḊ

(
Ḋ

T
WḊ

)−1

which is easily seen to be nonnegative definite.
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Proof of Proposition 2

It suffices to show that W⋆ = Ip verifies (7). Let us first assume that

Σ1 ∝ 1 (42)

(this will be shown afterwards for exchangeable copulas). Then (42) is also
true with Σ−1 in place of Σ. Hence, by substituting (42) into (7), we get
W⋆ ∝ Ip. To show (42), recall that Σ is the asymptotic variance matrix of√
n(D̂−D). Keeping in mind the representation (5), we have that Σi,j;k,l is the

limit of Cov(
√
n(D̂i,j−Di,j),

√
n(D̂k,l−Dk,l)). Thus Σi,j;k,l only depends on the

distribution of (Ui, Uj , Uk, Ul). But since the underlying copula is exchangeable,
at most three distinct distributions can arise: the distribution of (U2

1 , U2, U3)
(the pairs (Ui, Uj) and (Uk, Ul) share one variable), that of (U2

1 , U
2
2 ) (the pairs

(Ui, Uj) and (Uk, Ul) share two variables), and that of (U1, U2, U3, U4) (the pairs
(Ui, Uj) and (Uk, Ul) share no variables). It follows that all lines of Σ are equal
up to permutations of {1, . . . , d}, which implies (42).

Proof of Proposition 3

The gradient of the loss function (3) is equal to 0 if and only if

Ḋ
T
Ŵ
(
D(θ)− D̂

)
= 0.

But since Ḋ is of full rank and p = q, the kernel of Ḋ
T
is null, hence

Ŵ
(
D(θ)− D̂

)
= 0.

The fact that Ŵ is of full rank concludes the proof.

Proof of Proposition 4

Note that formula (15) is nothing else than the standard Pearson correlation
coefficient. We recall how to obtain its asymptotic normality. Observe that

ρ̂i,j =
UiUj − UiUj((

U2
i − Ui

2
)(

U2
j − Uj

2
))1/2 ,

where Ui =
∑n

k=1 U
(k)
i /n, U2

i =
∑n

k=1

(
U

(k)
i

)2
/n and UiUj =

∑n
k=1 U

(k)
i U

(k)
j /n.

By the multivariate central limit theorem, the vector

√
n
(
(Ui, Uj , U2

i , U
2
j , UiUj)− (E(Ui), E(Uj), E(U2

i ), E(U2
j ), E(UiUj))

)

converges to a normal distribution. The convergence of (15) follows by the
delta-method. To obtain the convergence of ρ̂1,2, . . . , ρ̂d−1,d), one can adapt the
above arguments.
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Proof of Proposition 5

The proof of Proposition 5 uses the results of [13] on U-statistics. Recall that
U(1), . . . ,U(n) is a sample of d-dimensional vectors. A U-statistics of order 2 is
defined by

U(U(1), . . . ,U(n)) =

(
n

2

)−1 ∑

1≤α<β≤2

Φ
(
U(α),U(β)

)

where the symmetric map Φ : (Rd)2 → R is called the kernel of U . It has
been shown in [13] that a multivariate vector of properly centered and scaled
U-statistics converge in law to a normal distribution. Before using these re-
sults, it is convenient to introduce the following. Define Ψij

(
u(1),u(2)

)
=

Φij

(
u(1),u(2)

)
− τij and Ψij,1

(
u(1)

)
= E

[
Ψij

(
u(1),U(2)

)]
. To make use of

the results in [13], notice that τ̂ij is a U -statistic with symmetric kernel

Φij

(
u(1),u(2)

)
=Φij

(
(u

(1)
i , u

(1)
j ), (u

(2)
i , u

(2)
j )
)

=sign
((

u
(1)
i − u

(2)
i

)(
u
(1)
j − u

(2)
j

))

for i < j and u(k) =
(
u
(k)
1 , . . . , u

(k)
d

)
, k = 1, . . . , n. By Theorem 7.1 of [13],

√
n(τ̂ − τ )

d→ Np(0,Σ),

where Σ writes as in (5) and

Σi,j;k,l =4E
[
Ψij,1

(
U(1)

)
Ψkl,1

(
U(1)

)]
. (43)

To simplify the formula (43), observe that, almost surely,

Ψij

(
u(1),U(2)

)

=Φij

(
u(1),U(2)

)
− τij

=sign
((

u
(1)
i − U

(2)
i

)(
u
(1)
j − U

(2)
j

))
− τij

=

{
1− τij if U

(2)
i < u

(1)
i and U

(2)
j < u

(1)
j or U

(2)
i > u

(1)
i and U

(2)
j > u

(1)
j

−1− τij otherwise,

and

P
[
U

(2)
i < u

(1)
i and U

(2)
j < u

(1)
j or U

(2)
i > u

(1)
i and U

(2)
j > u

(1)
j

]

=2Cij

(
u
(1)
i , u

(1)
j

)
+ 1− u

(1)
i − u

(1)
j .

Therefore,

Ψij,1

(
u(1)

)
= E

[
Ψij

(
u(1),U(2)

)]
= 4Cij

(
u
(1)
i , u

(1)
j

)
+ 1− τij − 2u

(1)
i − 2u

(1)
j .

(44)

By substituting (44) into (43), one obtains (20). An application of Lemma 2
with Yn = τ̂ and ϕ(θ) = τ (θ) concludes the proof of (ii).

26



Proof of Proposition 6

It has been shown in [9] that (recall that C here is an extreme-value copula)

1

n

n∑

k=1

max
(
U

(k)
i , U

(k)
j

)
P→ 2− λij

3− λij
, and ,

√
n

(
1

n

n∑

k=1

max(U
(k)
i , U

(k)
j )− 2− λij

3− λij

)
d→ N (0,Var(max(Ui, Uj))) . (45)

By the multivariate central limit theorem and the multivariate delta method
with the continuous map g : [0, 1)p → (−∞, 2]p such that g(x1, . . . , xp) =
(g(x1), . . . , g(xp))

T with g(x) = 3− 1/(1− x), we have

√
n(λ̂− λ)

d→ Np(0,Σ),

where Σ = GΩGT , G is the Jacobian matrix of g at
(

2−λ12

3−λ12
, . . . ,

2−λd−1,d

3−λd−1,d

)T
,

that is, G = diag(−(3 − λ12)
2, . . . ,−(3 − λd−1,d)

2) and Ω is the variance-
covariance matrix for the limit distribution of the p-dimensional vector whose
components are the left members in (45). Here diag(x1, . . . , xp) denotes the
matrix with (x1, . . . , xp) on the diagonal and with zero’s elsewhere. It is easily
seen that Σ writes as in (5) and (22).
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