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A flexible and tractable class of one-factor copulas

Gildas Mazo, Stéphane Girard and Florence Forbes

MISTIS, Inria - Laboratoire Jean Kuntzmann, France

Abstract

Copulas are a useful tool to model multivariate distributions. While
there exist various families of bivariate copulas, the construction of flex-
ible and yet tractable copulas suitable for high-dimensional applications
is much more challenging. This is even more true if one is concerned
with the analysis of extreme values. In this paper, we construct a class
of one-factor copulas and a family of extreme-value copulas well suited
for high-dimensional applications and exhibiting a good balance between
tractability and flexibility. The inference for these copulas is performed
by using a least-squares estimator based on dependence coefficients. The
modeling capabilities of the copulas are illustrated on simulated and real
datasets.

Keywords: extreme-value copula, factor model, multivariate copula, high-
dimension.

1 Introduction

The modeling of random multivariate events (i.e., of dimension greater than 2) is
a central problem in various scientific domains and the construction of multivari-
ate distributions able to properly model the variables at play is challenging. The
challenge is even more difficult if the data provide evidence of tail dependencies
or non Gaussian behaviors. To address this problem, the concept of copulas is
a useful tool as it permits to impose a dependence structure on pre-determined
marginal distributions. Standard books covering this subject include [23, 32].
See also [18] for an introduction to this topic. The most common copula models
used in high dimensional applications are discussed below.

The popular Archimedean copulas are tractable and allow to model a differ-
ent behavior in the lower and upper tails. For instance, the Gumbel copula is
upper, but not lower, tail dependent; the opposite holds for the Clayton copula.
Nevertheless, the dependence structure of Archimedean copulas is severely re-
stricted because they are exchangeable, implying that all the pairs of variables
have the same distribution. More details about these copulas can be found in
the above mentioned books.

Nested Archimedean copulas are a class of hierarchical copulas generalizing
the class of Archimedean copulas. They allow to introduce asymmetry in the
dependence structure but only between groups of variables. This hierarchical
structure is not desirable when no prior knowledge on the random phenomenon
under consideration is available. Furthermore, constraints on the parameters
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restrict the tractability of these copulas. These copulas first appeared in [23]
Section 4.2.

The class of elliptical copulas arises from the class of elliptical distributions.
These copulas are interesting in many ways but they are tail symmetric, meaning
that the lower tail dependence coefficient is equal to the upper tail dependence
coefficient (these coefficients are defined in Section 2.2). This may not be the
case in applications. See, e.g., [31] Section 5 or [16] for an introduction to these
copulas.

Pair copula constructions and Vines are flexible copula models based on the
decomposition of the density as a product of conditional bivariate copulas. How-
ever, these models are difficult to handle. Furthermore, the conditional bivariate
copulas are typically assumed not to depend on the conditioning variables. This
so called simplifying assumption can be misleading, as remarked in [2]. Pair-
copula constructions first appeared in [23] Section 4.5. See also [4, 5, 28] for
theoretical developments and [1] for a practical introduction to modeling with
Vines.

As mentioned above, most copula models are either tractable or flexible,
but rarely both. In this paper, we propose a tractable and yet flexible class
of one-factor copulas well suited for high-dimensional applications. This class
is nonparametric, and, therefore, encompasses many distributions with differ-
ent features. Unlike elliptical copulas, the members of this class allow for tail
asymmetry. Furthermore, we derive the associated extreme-value copulas, and,
therefore, the analysis of extreme values can be carried out with the presented
models. Finally, we show how to perform theoretically well-grounded, and prac-
tically fast and accurate, inference of these copulas, thanks to the ability of
calculating explicitly the dependence coefficients.

The remaining of this paper is organized as follows. Section 2 presents the
proposed class of one-factor copulas, Section 3 deals with inference, and, in
Section 4, the proposed copulas are applied to simulated and real datasets. The
proofs are postponed to the Appendix.

2 A tractable and flexible class of one-factor cop-
ulas

The class of copulas proposed in this paper, referred to as the FDG class (see
Section 2.2 for an explanation of this acronym), can be embedded in the frame-
work of one-factor models. We therefore introduce the later in Section 2.1. The
construction and properties of FDG copulas are given in Section 2.2. Paramet-
ric examples are proposed in Section 2.3. The extreme-value copulas associated
to the FDG class are derived in Section 2.4.

2.1 One-factor copulas

By definition, the coordinates of a random vector distributed according to a
one-factor copula [27] are independent given a latent factor. More specifically,
let U0, U1, . . . , Ud (d ≥ 2) be standard uniform random variables such that
the coordinates of (U1, . . . , Ud) are conditionally independent given U0. The
variable U0 plays the role of a latent, or unobserved, factor. Let us write C0i

the distribution of (U0, Ui) and Ci|0(·|u0) the conditional distribution of Ui given
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U0 = u0 for i = 1, . . . , d. It is easy to see that the distribution of (U1, . . . , Ud),
called a one-factor copula, is given by

C(u1, . . . , ud) =

∫ 1

0

C1|0(u1|u0) . . . Cd|0(ud|u0) du0. (1)

The copulas C0i are called the linking copulas because they link the factor U0

to the variables of interest Ui. The one-factor model has many advantages to
address high dimensional problems. We recall and briefly discuss them below.

Nonexchangeability. The one-factor model is nonexchangeable. Recall that
a copula C is said to be exchangeable if C(u1, . . . , ud) = C(uπ(1), . . . , uπ(d)) for
any permutation π of (1, . . . , d). This means in particular that all the bivari-
ate marginal distributions are equal to each other. For example, Archimedean
copulas are exchangeable copulas. Needless to say, this assumption may be too
strong in practice.

Parsimony. The one-factor model is parsimonious. Indeed, only d linking
copulas are involved in the construction of the one-factor model, and since they
are typically governed by one or two parameters, the number of parameters in
total increases only linearly with the dimension. Parsimony is more and more
desirable as the dimension increases.

Random generation. The conditional independence property of the one fac-
tor model allows to easily generate data (U1, . . . , Ud) from this copula.

1 Generate U0, V1, . . . , Vd independent standard uniform random variables.

2 For i = 1, . . . , d, put Ui = C−1
i|0 (Vi|U0) where C−1

i|0 ( . |U0) denotes the inverse

of v 7→ Ci|0(v|U0).

Dependence properties of the one-factor model have been studied in [27]. The
authors investigated how positive dependence properties of the linking copulas
extend to the bivariate margins

Cij(ui, uj) := C(1, . . . , 1, ui, 1, . . . , 1, uj , 1, . . . , 1).

These properties included positive quadrant dependence, increasing in the con-
cordance ordering, stochastic increasing, and tail dependence. For details about
these dependence concepts, see [23] Section 2. The copulas proposed in this
paper, presented in Section 2.2 and Section 2.4, admit simple expressions and
therefore the properties mentioned above can be made more specific.

2.2 Construction and properties of FDG copulas

The class of FDG copulas is constructed by choosing appropriate linking copulas
for the one-factor copula model (1). The class of linking copulas which served
to build the FDG copulas is referred to as the Durante class [11] of bivariate
copulas, which can also be viewed as part of the framework of [3]. The Durante
class consists of the copulas C of the form

C(u, v) = min(u, v)f(max(u, v)), (2)
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where f : [0, 1] → [0, 1], called the generator of C, is a differentiable and in-
creasing function such that f(1) = 1 and t 7→ f(t)/t is decreasing. The FDG
acronym thus stands for “one-Factor copula with Durante Generators”. The
advantages of taking Durante linking copulas are twofold: the integral (1) can
be calculated and the resulting multivariate copula is nonparametric.

Theorem 1. Let C be defined by (1) and assume that C0i belongs to the Durante
class (2) with given generator fi. Then

C(u1, . . . , ud) = u(1)

 d∏
j=2

u(j)

∫ 1

u(d)

d∏
j=1

f ′j(x)dx+ f(1)(u(2))

 d∏
j=2

f(j)(u(j))


(3)

+

d∑
k=3

k−1∏
j=2

u(j)

 d∏
j=k

f(j)(u(j))

∫ u(k)

u(k−1)

k−1∏
j=1

f ′(j)(x)dx

 ,
where u(i) := uσ(i), f(i) := fσ(i) and σ is the permutation of (1, . . . , d) such that
uσ(1) ≤ · · · ≤ uσ(d).

In expression (3), we use the convention that the
∑d
k=3 is zero when d = 2. The

particularity of the copula expression (3) is that it depends on the generators
through their reordering underlain by the permutation σ. For instance, with
d = 3 and u1 < u3 < u2 we have u(1) = u1, u(2) = u3, u(3) = u2, σ = {1, 3, 2}
and f(1) = fσ(1) = f1, f(2) = fσ(2) = f3, f(3) = fσ(3) = f2. This feature
gives its flexibility to the model. Observe also that C(u1, . . . , ud) writes as
u(1) multiplied by a functional of u(2), . . . , u(d), form that is similar to (2).
Although the expression of a FDG copula has the merit to be explicit, it is
rather cumbersome. Hence, we shall continue its analysis through the prism of
its bivariate margins.

Proposition 1. Let Cij be a bivariate margin of the FDG copula (3). Then
Cij belongs to the Durante class (2) with generator

fij(t) = fi(t)fj(t) + t

∫ 1

t

f ′i(x)f ′j(x)dx.

In other words,

Cij(ui, uj) = Cfij (ui, uj) = min(ui, uj)fij(max(ui, uj)).

In view of Proposition 1, the FDG copula can be regarded as a multivariate
generalization of the Durante class of bivariate copulas. In fact, such a general-
ization was already proposed in the literature [13]:

Cf (u1, . . . , ud) = u(1)

d∏
i=2

f(u(i)),

where f is a generator in the usual sense of the Durante class of bivariate
copulas. Nonetheless, since there is only one generator to determine the whole
copula in arbitrary dimension, this generalization lacks flexibility to be used
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in applications. This issue is overcome by the FDG copula. To illustrate this
further, its pairwise dependence coefficients are given next. Note that, since the
bivariate margins of the FDG copula belong to the Durante class of bivariate
copulas, a more detailed account of their properties can be found in the original
paper [11]. Recall that the Spearman’s rho ρ, the Kendall’s tau τ , the lower
λ(L) and upper λ(U) tail dependence coefficients of a general bivariate copula C
are respectively given by

ρ = 12

∫
[0,1]2

C(u, v)dudv − 3, τ = 4

∫
[0,1]2

C(u, v)dC(u, v)− 1,

λ(L) = lim
u↓0

C(u, u)

u
, and λ(U) = lim

u↑1

1− 2u+ C(u, u)

1− u
.

In the case where C belongs to the Durante class with generator f , these coef-
ficients are respectively given by

ρ = 12

∫ 1

0

x2f(x)dx− 3, τ = 4

∫ 1

0

xf(x)2dx− 1,

λ(L) = f(0), and λ(U) = 1− f ′(1).

Hence, to get the dependence coefficients of the FDG bivariate margins, it is
enough to apply the above formulas and Proposition 1. The obtained coefficient
expressions are given in Proposition 2 below.

Proposition 2. The Spearman’s rho, the Kendall’s tau, the lower and upper
tail dependence coefficients of the FDG bivariate margins Cij are respectively
given by

ρij = 12

∫ 1

0

x2fi(x)fj(x)dx+ 3

∫ 1

0

x4f ′i(x)f ′j(x)dx− 3,

τij = 4

∫ 1

0

x

(
fi(x)fj(x) + x

∫ 1

x

f ′i(t)f
′
j(t)dt

)2

dx− 1,

λ
(L)
ij = λ

(L)
i λ

(L)
j and

λ
(U)
ij = λ

(U)
i λ

(U)
j ,

where λ
(L)
i := fi(0), λ

(U)
i := 1− f ′i(1), i = 1, . . . , d, are the lower and upper tail

dependence coefficients of the bivariate linking copulas respectively.

2.3 Examples of parametric families

Four examples of families indexed by a real parameter for the generators f1, . . . , fd
are given below.

Example 1 (Cuadras-Augé generators). In (3), let

fi(t) = t1−θi , θi ∈ [0, 1]. (4)

A copula belonging to the Durante class with generator (4) gives rise to the
well known Cuadras-Augé copula with parameter θi [7]. By Proposition 1, the
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generator for the bivariate margin Cij of the FDG copula is given by

fij(t) =

{
t2−θi−θj

(
1− (1−θi)(1−θj)

1−θi−θj

)
+ t

(1−θi)(1−θj)
1−θi−θj if θi + θj 6= 1

t(1− (1− θ)θ log t) if θ := θj = 1− θi.

The Spearman’s rho, the lower and upper tail dependence coefficients are respec-
tively given by

ρij =
3θiθj

5− θi − θj
, λ

(L)
ij = 0 and λ

(U)
ij = θiθj .

The Kendall’s tau is given by

τij =

{
θiθj(θiθj+6−2(θi+θj))
(θi+θj)2−8(θi+θj)+15 if θi + θj 6= 1

θ(θ−1)(θ2−θ−4)
8 if θ := θi = 1− θj .

Example 2 (Fréchet generators). In (3), let

fi(t) = (1− θi)t+ θi, θi ∈ [0, 1]. (5)

A copula belonging to the Durante class with generator (5) gives rise to the well
known Fréchet copula with parameter θi [17]. By Proposition 1, the generator
for the bivariate margin Cij of the FDG copula is given by

fij(t) = (1− θiθj) t+ θiθj .

By noting that fij is of the form (5) with parameter θiθj, one can see that the bi-
variate margins of the FDG copula based on Fréchet generators are still Fréchet
copulas. The Spearman’s rho, the lower and upper tail dependence coefficients
are respectively given by

ρij = λ
(L)
ij = λ

(U)
ij = θiθj ,

the Kendall’s tau is given by

τij =
θiθj(θiθj + 2)

3
.

Example 3 (Durante-sinus generators). In (3), let

fi(t) =
sin(θit)

sin(θi)
, θi ∈ (0, π/2]. (6)

This generator was proposed in [11]. By Proposition 1, the generator for the
bivariate margin Cij of the FDG copula is given by

fij(t) =
sin(θit) sin(θjt)

sin(θi) sin(θj)
+

tθiθj
2(θ2

j − θ2
i ) sin(θi) sin(θj)

×{
(θi + θj) [sin ((θi − θj)t) + sin (θj − θi)]

+ (θj − θi) [sin(θi + θj)− sin ((θi + θj)t)]

}
if θi 6= θj , and

fij(t) =
4 sin(tθ)2 + tθ (2(1− t)θ + sin(2θ)− sin(2tθ))

4 sin(θ)2
if θi = θj =: θ.
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The Spearman’s rho, the lower and upper tail dependence coefficients are respec-
tively given by

ρij =12(sin θi sin θj)
−1

∫ 1

0

x2 sin(θix) sin(θjx) +
1

4
θiθjx

4 cos(θix) cos(θjx)dx− 3,

(7)

λ
(L)
ij =0 and λ

(U)
ij =

(
1− θi

tan(θi)

)(
1− θj

tan(θj)

)
. (8)

Example 4 (Durante-exponential generators). In (3), let

fi(t) = exp

(
tθi − 1

θi

)
, θi > 0 (9)

This generator was proposed in [11]. By Proposition 1, the generator for the
bivariate margin Cij of the FDG copula is given by

fij(t) = exp

(
tθi − 1

θi
+
tθj − 1

θj

)
+ t

∫ 1

t

exp

(
xθi − 1

θi
+
xθj − 1

θj

)
xθi+θj−2dx.

The Spearman’s rho, the lower and upper tail dependence coefficients are respec-
tively given by

ρij =12

∫ 1

0

exp

(
xθi − 1

θi
+
xθj − 1

θj

)(
x2 +

1

4
x2+θi+θj

)
dx− 3,

λ
(L)
ij = exp

(
− 1

θi
− 1

θj

)
, and λ

(U)
ij = 0.

Remark 1. The calculation of the integral in (7) with θi = θj = π/2 shows
that for the FDG copula with Durante-sinus generators, the Spearman’s rho is
such that

0 ≤ ρij ≤
3π4 − 100π2 + 840

40π2
' 0.37.

The Spearman’s rho values for all the other models in the examples above spread
the entire interval [0, 1].

The four above examples allow to get all possible types of tail dependencies,
as shown in Table 1. The Cuadras-Augé and Durante-sinus families allow for
upper but no lower tail dependence, the Durante-exponential family allows for
lower but no upper tail dependence, and the Fréchet family allows for both. In
the Fréchet case, furthermore, the lower and upper tail dependence coefficients
are equal: this is called tail symmetry, a property of elliptical copulas.

2.4 Extreme-value attractors associated to FDG copulas

Extreme-value copulas are theoretically well-grounded copulas to perform a sta-
tistical analysis of extreme values such as maxima of random samples. Recall
that a copula C# is an extreme-value copula if there exists a copula C̃ such that

C#(u1, . . . , ud) = lim
n↑∞

C̃n(u
1/n
1 , . . . , u

1/n
d ), (u1, . . . , ud) ∈ [0, 1]d, (10)
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family of generators λ
(L)
ij λ

(U)
ij

Cuadras-Augé 0 θiθj
Fréchet θiθj θiθj

Durante-sinus 0 (1− θi
tan θi

)(1− θj
tan θj

)

Durante-exponential exp(− 1
θi
− 1

θj
) 0

Table 1: Lower λ
(L)
ij and upper λ

(U)
ij tail dependence coefficients for the four

families presented in Section 2.3.

see, e.g. [21]. The extreme-value copula C# is called the attractor of C̃ and

C̃ is said to belong to the domain of attraction of C#. The class of extreme-
value copulas corresponds exactly to the class of max-stable copulas, that is,
the copulas C# such that

Cn#(u
1/n
1 , . . . , u

1/n
d ) = C#(u1, . . . , ud), n ≥ 1, (u1, . . . , ud) ∈ [0, 1]d.

The upper tail dependence coefficient of a (bivariate) extreme-value copula C#

has the particular form

λ(U) = 2 + logC#(e−1, e−1). (11)

This coefficient is a natural dependence coefficient for extreme-value copulas
because of the following representation on the diagonal of the unit square:

C#(u, u) = u2−λ, (12)

where λ := λ(U). If λ = 0 then C#(u, u) = Π(u, u) = u2, where Π stands for the
independence copula. If λ = 1 then C#(u, u) = M(u, u) = min(u, u) = u, where
M stands for the Fréchet-Hoeffding upper bound for copulas, that is, the case
of perfect dependence. In the case of extreme-value copulas, this interpolation
between Π and M allows to interpret λ as a coefficient that measures general
dependence, not only dependence in the tails. In order to emphasize this in-
terpretation, λ will be referred to as the extremal dependence coefficient of an
extreme-value copula. See [6] for more about extreme-value statistics, and, see,
e.g. [21] for an account about extreme-value copulas.

In the case of FDG copulas, the limit (10) can be calculated. This leads to
a new family of extreme-value copulas, referred to as the EV-FDG family. The
bivariate margins C#,ij of this new family are Cuadras-Augé copulas. These
results are specified in Theorem 2 and Proposition 3 below.

Theorem 2. Assume that the generators fi of the FDG copula are twice con-
tinuously differentiable on [0, 1]. Then, the attractor C# of the FDG copula
exists and is given by

C#(u1, . . . , ud) =

d∏
i=1

uχi

(i), (13)

where

χi =

i−1∏
j=1

(1− λ(j))

λ(i) + 1− λ(i),
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with the convention that
∏0
j=1(1−λ(j)) = 1 and where λi = 1−f ′i(1). As in (3),

u(i) = uσ(i) and f ′(i)(1) = f ′σ(i)(1) where σ is the permutation of (1, . . . , d) such
that u(1) ≤ · · · ≤ u(d).

Proposition 3. Let C#,ij be a bivariate margin of the EV-FDG copula (13).
Then C#,ij is a Cuadras-Augé copula with parameter (and therefore extremal
dependence coefficient) λiλj. In other words,

C#,ij(ui, uj) = min(ui, uj) max(ui, uj)
1−λiλj . (14)

Remark 2. In view of Table 1, the FDG copulas with Cuadras-Augé and
Fréchet generators both lead to the same EV-FDG copula.

Multivariate generalizations of the bivariate Cuadras-Augé copula were already
proposed in the literature [14, 29], but they are less flexible than EV-FDG.
Indeed, let us consider the following exchangeable copula proposed in [29],

A(u1, . . . , ud) = u(1)

d∏
i=2

uai(i),

where (a1 = 1, a2, a3, . . . , ad) is a d-monotone sequence of real numbers, that is,
a sequence which satisfies Oj−1ak ≥ 0, k = 1, . . . , d, j = 1, . . . , d− k + 1 where
Ojak =

∑j
i=0(−1)i

(
j
i

)
ak+i, j, k ≥ 1 and O0ak = ak. In particular, the bivariate

margins are Cuadras-Augé copulas

Aij(ui, uj) = min(ui, uj) max(ui, uj)
a2

with the same parameter 1− a2. This means that all of them exhibit the same
statistical behavior. For instance, all the upper tail dependence coefficients are
equal and are given by 1− a2. This is far too restrictive for most applications.
Then let us consider the generalization proposed in [14],

B(u1, . . . , ud) =

d∏
i=1

u
1−

∑d
j=1,j 6=i λij

i

∏
i<j

min(ui, uj)
λij ,

where λij ∈ [0, 1], λij = λji and∑
j=1,...,d; j 6=i

λij ≤ 1, i = 1, . . . , d. (15)

The bivariate margins Bij are Cuadras-Augé copulas

Bij(ui, uj) = min(ui, uj) max(ui, uj)
1−λij

with parameters λij . Unlike the copula A, the tail dependence coefficients can
take distinct values. Unfortunately, the constraints (15) are quite restrictive,
as it was already stressed by the original authors in [14]. The EV-FDG class
achieves greater flexibility than these competitors. In particular, one can obtain
different bivariate marginal distributions with no conditions on the parameters.
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3 Parametric inference

Let (X1, . . . , Xd) be a random vector following a distribution F with continuous
margins F1, . . . , Fd. Suppose that its copula, C, is a FDG copula defined by (3).

Denote by (X
(k)
1 , . . . , X

(k)
d ), k = 1, . . . , n independent and identically distributed

observations obtained from F . Suppose that all the generators fi of the FDG
copula belong to the same parametric family {fθ, θ ∈ Θ ⊂ R}, that is, there
exists θ0 = (θ01, . . . , θ0d) ∈ Θd such that fθ0i = fi. The generators fi are
regarded as functions defined over the product space [0, 1] × Θ and we write
fi(t) = f(t, θi) for all t in [0, 1]. The nonparametric inference problem has
turned into a parametric one where the parameter vector θ0 ∈ Θd has to be
estimated.

In order to estimate the parameters of the FDG and EV-FDG copulas, a
least-squares estimator based on dependence coefficients is adopted. This esti-
mation strategy was considered in various articles, see e.g. [14,18–20,24,30,33].
Its construction is recalled below. Let us choose a type of dependence coeffi-
cient (Spearman’s rho, Kendall’s tau, tail dependence coefficient, etc) and let
us denote by r(θi, θj) the chosen dependence coefficient between the variables
Xi and Xj . Suppose that the map r is continuous and symmetric in its argu-
ments. Let p = d(d − 1)/2 be the number of variable pairs (Xi, Xj), i < j.
Denote by r be the p-variate map defined on Θd such that r(θ1, . . . , θd) =
(r(θ1, θ2), . . . , r(θd−1, θd)). The least-squares estimator based on dependence
coefficients is defined as

θ̂ = arg min
θ∈Θd

‖r̂− r(θ)‖2 , (16)

where the quantity r̂ = (r̂1,2, . . . , r̂d−1,d) is an empirical estimator of r(θ0). To
be more specific, r(θi, θj) may be the Spearman’s rho (4) of (Xi, Xj) and

r̂i,j =

∑n
k=1

(
Û

(k)
i − Û i

)(
Û

(k)
j − Û j

)
[∑n

k=1

(
Û

(k)
i − Û i

)2∑n
k=1

(
Û

(k)
j − Û j

)2
]1/2

, (17)

where Û i =
∑n
k=1 U

(k)
i /n and Û

(k)
i =

∑n
l=1 1(X

(l)
i ≤ X

(k)
i )/(n+ 1). In the case

where r(θi, θj) is the Kendall’s tau (4) of (Xi, Xj), then

r̂i,j =

(
n

2

)−1∑
k<l

sign
(

(X
(k)
i −X(l)

i )(X
(k)
j −X(l)

j )
)
, (18)

where sign(x) = 1 if x > 0, −1 if x < 0 and 0 if x = 0. Equation (12)
suggests that the extremal dependence coefficient can also be used to estimate
the parameters of an extreme-value copula. If the margins Fi are known, various
empirical estimators of the extremal dependence exist. For instance, assuming
that C is an extreme-value copulas, [15] introduced

r̂i,j = 3− 1

1−
∑n
k=1 max(U

(k)
i , U

(k)
j )/n

, (19)

where U
(k)
i = Fi(X

(k)
i ).
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In the context of non-absolutely continuous copulas with respect to the
Lebesgue measure – as FDG copulas –, asymptotic properties of (16) were
derived in [30], see the proposition below.

Proposition 4. Suppose that the following assumptions hold.

(A1)
√
n(r̂ − r(θ0))

d→ N(0,Σ) as n → ∞ for some symmetric and positive
definite matrix Σ.

(A2) The map r is a twice continuously differentiable homeomorphism from Θd

to its image r(Θd).

(A3) The Jacobian matrix J of the map r at θ0 is of full rank.

Then, as n → ∞, the estimator θ̂ defined in (16) is unique with probability
tending to one, consistent for θ0, and asymptotically normal

√
n(θ̂ − θ0)

d→ N(0,Ξ), where Ξ =
(
JTJ

)−1
JTΣJ

(
JTJ

)−1
.

There exist various situations where (A1) holds, as, for instance, in the context
of Spearman’s rho (estimator (17)) and Kendall’s tau dependence coefficients
(estimator (18)), see [22] for a proof. In the context of extreme-value copulas
with known margins, (A1) also holds for the extremal dependence coefficient
(estimator (19)), see [30] for a proof.

The remaining of this section is devoted to show that, for certain (EV-)FDG
copulas, we are able to show that the assumptions of Proposition 4 hold.

Lemma 1. (i) Define the univariate function rθj (θi) := r(θi, θj) and as-
sume that it is a twice continuously differentiable homeomorphism. Let
r1,2, . . . , rd−1,d be p elements of r(Θd). Define si,j(θ) := r−1

θ (ri,j) for
θ ∈ Θ. Then, the function s1,3 ◦ s1,2 ◦ s2,3 has at least one fix point, that
is, the equation

s1,3 ◦ s1,2 ◦ s2,3(θ) = θ, θ ∈ Θ (20)

has at least one solution.

(ii) If, moreover, the function s1,3 ◦ s1,2 ◦ s2,3 has exactly one fix point, that is,
equation (20) has exactly one solution, then assumptions (A2) and (A3)
of Proposition 4 hold.

Remarking that the extremal dependence coefficients of the EV-FDG bivariate

margins write λi,j(θ) = λ(θi)λ(θj), with λ(θ) = 1− ∂f(t,θ)
∂t

∣∣∣
t=1

, θ ∈ Θ, allows to

apply Lemma 1 and therefore to satisfy the assumptions of Proposition 4. The
next theorem thus provides some situations where the least-squares estimator is
unique with probability tending to one, consistent, and asymptotically Gaussian.

Theorem 3. (i) Assume that (X1, . . . , Xd) has EV-FDG (13) as copula and
let r(θi, θj) be the extremal dependence coefficient of (Xi, Xj). Consider
one of the following cases:

• The generators are Cuadras-Augé (4) and Θ = (0, 1).

• The generators are Fréchet (5) and Θ = (0, 1).

• The generators are Durante-sinus (6) and Θ = (0, π/2).

11



Then, assumptions (A1), (A2) and (A3) of Proposition 4 hold with r̂ being
as in (19).

(ii) Assume that the copula of (X1, . . . , Xd) belongs to the class of FDG copulas
given in Example 2 and suppose that r(θi, θj) is Spearman’s rho coefficient
of (Xi, Xj) and r̂ is as in (17). Then, assumptions (A1), (A2) and (A3)
of Proposition 4 hold.

4 Applications to simulated and real datasets

The modeling of data with (EV-)FDG copulas is illustrated through numerical
experiments in Section 4.1 and a real dataset application in Section 4.2. In the
numerical experiments, we first provide empirical evidence that the proposed
FDG copulas are well suited for high-dimensional applications. In the real
dataset application, critical levels of potentially dangerous hydrological events
are estimated. Throughout this section, the four copulas of Example 1–4, are
respectively referred to as FDG-CA, FDG-F, FDG-sinus, and FDG-exponential.

The minimization of the loss function (16) was carried out with standard
gradient descent algorithms whose implementations can be found in the func-
tion optim from the R software [34]. In principle, several runs with different
starting points should be tested to ensure that the global minimizer is reached.
Also, formal statistical procedures can be performed to test wether the given
minimizer is indeed the global minimizer; see [8, 9, 35]. We found that a single
run was enough to find what appeared to be the global optimum. Thus, the loss
functions one encounters when dealing with FDG copulas seem to be easy to
minimize in practice. All the experiments were conducted using the FDG pack-
age that we developed and which is freely available on the CRAN archive at
http://cran.r-project.org/web/packages/FDG.

4.1 Numerical experiments

Our first goal is to investigate the numerical behavior of the estimation of FDG
copulas as the sample size varies from n = 10 to n = 500 with fixed d = 9
(as in the real dataset application). To this aim, 200 datasets are simulated
from each of the copulas FDG-CA, FDG-F, FDG-sinus, and FDG-exponential.
The coordinates of the parameter vector were chosen to be regularly spaced
within [0.3, 0.9], [0.3, 0.9], [1, 1.55] and [3, 20] for FDG-CA, FDG-F, FDG-sinus,
and FDG-exponential respectively. For each replication and each model, the
samples are simulated from the copula using the principle described in Sec-
tion 2. The model parameters are estimated by the least squares estimator (16)
combined with Spearman’s rho dependence coefficient as in (17). The accuracy
of the method is assessed using the mean absolute error and the relative mean
absolute error, respectively defined as

MAEr =
1

p

∑
i<j

|ri,j − r(θ̂i, θ̂j)| and RMAE =
1

d

d∑
i=1

|θ̂i − θ0i|
θ0i

,

computed and averaged over the replications. It appears on Figure 1 that the
MAEρs are very stable whatever the sample size. FDG-CA, FDG-F and FDG-
sinus models also provide good results in terms of RMAE provided that the
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sample size is larger than n = 30. At the opposite, it seems that the estimation
of FDG-exponential model requires large sample sizes.

The second experiment examines the scalability of the FDG copulas when
the dimension increases from d = 10 to d = 50 for a fixed sample size n =
500. Similarly to the previous experiment, the coordinates of the parameter
vector were chosen to be regularly spaced within [0.3, 0.9], [0.3, 0.9], [1, 1.55] and
[3, 20] for FDG-CA, FDG-F, FDG-sinus, and FDG-exponential respectively. It
appears on Figure 2 that the MAEρs and RMAEs are very stable whatever
the dimension. The inference for these models seems not to be sensitive to the
dimension. FDG-exponential has a larger RMAE, but it is still below 17%, and
its MAEρ is as good as that of the other models.

Figure 3 displays the associated computed times for one sample on a 8 GiB
memory and 3.20 GHz processor computer. The simulation time increases lin-
early with the dimension whereas the estimation time increases exponentially.
Simulating all the models even in high dimension is instantaneous because of
the conditional independence property seen in (1). Less than two minutes are
necessary to fit all the models. In particular, simulating or fitting FDG-F is
instantaneous. The computational costs for performing the inference of FDG-
exponential and FDG-sinus are larger because their dependence coefficient ex-
pressions, given in Example 3 and 4, involve integrals which have to be computed
numerically. To summarize, FDG copulas seem to scale up well.

1

1
1

1 1 1 1 1

0 100 200 300 400 500

0
.0

0
.5

1
.0

1
.5

2
.0

n

2

2

2
2

2 2 2 2

1

2

MAE rho

RMAE

1

1
1

1 1 1 1 1

0 100 200 300 400 500

0
.0

0
.5

1
.0

1
.5

2
.0

n

2

2

2

2

2
2 2

1

2

MAE rho

RMAE

1

1 1
1 1 1 1 1

0 100 200 300 400 500

0
.0

0
.5

1
.0

1
.5

2
.0

n

2

2
2

2
2 2 2 2

1

2

MAE rho

RMAE

1
1 1 1 1 1 1 1

0 100 200 300 400 500

0
.0

0
.5

1
.0

1
.5

2
.0

n

2

2

2

2
2

2 2 2

1

2

MAE rho

RMAE

Figure 1: Fitting errors as a function of the sample size n for a dimension
d = 9. Continuous line (1): MAEρ, Dashed line (2): RMAE. Four copulas were
tested (FDG-CA: upper left, FDG-exponential: upper right, FDG-F: lower left,
FDG-Sinus: lower right).
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Figure 2: Fitting errors as a function of the dimension d for a sample size
n = 500. Continous line (1): MAEρ, Dashed line (2): RMAE. Four copulas
were tested (FDG-CA: upper left, FDG-exponential: upper right, FDG-F: lower
left, FDG-Sinus: lower right).

4.2 Application to a hydrological dataset

4.2.1 Data and Context

The dataset consists of n = 32 observations (X
(k)
1 , . . . , X

(k)
d ), k = 1, . . . , n, of

annual maxima river flow rates located at d = 9 sites across south-east France
between 1969 and 2007 (some records are missing). Let us denote by F the dis-
tribution with continuous margins F1, . . . , Fd of the random vector (X1, . . . , Xd)
whose realizations provide the observed dataset. The location of the sites are
shown in Figure 4. The number of variable pairs is p = 36. Due to the hetero-
geneous dispersion of the sites, the span of positive dependence is almost maxi-
mum; for instance, Spearman’s rho dependence coefficients range from about 0
to 0.9.

In hydrology, it is of interest to get information about the statistical distri-
bution of a potentially dangerous event, such as {F1(X1) > q, . . . , Fd(Xd) > q},
or, equivalently, {min(F1(X1), . . . , Fd(Xd)) > q}, where q is the critical level
associated to that event. The return period T is defined as

T =
1

1−M(q)
, where M(q) = P (min(F1(X1), . . . , Fd(Xd)) ≤ q). (21)

For instance, a return period of T = 30 years and a critical level of q = 0.7 means
that each Xi exceeds its quantile of order 70% once every 30 years in average.
A common question in the study of extreme events is the following. Given a
return period T , how dangerous is the corresponding event? In other words,
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Figure 3: Computation times (in milliseconds) as a function of the dimension
d for a sample of size n = 500. Left panel: Simulation of the copula, right
panel: Estimation of the parameters. Four copulas were tested (C: FDG-CA,
F: FDG-F, S: FDG-Sinus, E: FDG-exponential).

what is the associated critical level q? The answer is obtained by inverting (21)

q = M−1

(
1− 1

T

)
. (22)

Thus, the answer q is the quantile of order 1 − 1/T of the distribution M .
This quantile can be estimated empirically from the data and parametrically by
fitting a model to the data.

Potentially dangerous events happen with the co-occurrence of extremely
high flow rates at several locations. Thus, it is clear that the models to de-
scribe this dataset should be upper tail dependent. Hence, good candidates are
the copulas of Example 1–3, referred to as FDG-CA, FDG-F, and FDG-sinus
respectively, and all the extreme-value copulas. However, as it was shown in
Remark 1, Spearman’s rho of FDG-sinus cannot take values greater than 0.37.
Hence, this copula is removed from the candidate models. So the considered
models are FDG-CA, FDG-F, and their extreme-value attractor EV-FDG-CAF
given in (13) (recall that FDG-CA and FDG-F lead to the same extreme-value
copula). Two other popular copula models, the Gumbel and Student copulas,
are also fitted to the data. The Gumbel copula is famous among hydrologists [36]
and the Student copula is well known in risk management [31]. They serve as
a benchmark for our models. A factor structure is assumed for the Student
copula, that is, its (i, j)-th element (i 6= j) of its correlation matrix writes θiθj ,
where θ1, . . . , θd belong to [−1, 1]. Recall that a Gumbel copula is an extreme-
value copula. More details about the Gumbel and the Student copula can be
found respectively in, e.g., [23, 32] and [10].

4.2.2 Method and Results

A practically convenient approach dictated the estimation of the copula param-
eters. For each copula model, the dependence coefficients with the simplest
mathematical forms were chosen to build the loss function (16). In other words,
the parameters of FDG-F, FDG-CA and EV-FDG-CAF were estimated with
Spearman’s rho as in (17). The parameters of the Gumbel and Student copulas
were estimated with Kendall’s tau as in (18). Finally, the degree of freedom of
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Figure 4: Location of the 9 sites for the flow rate dataset. The sea in dark blue
at the bottom (south) is the Mediterranean sea. The rivers are shown in light
blue. The river flowing from north to south in the green area is the Rhône.
Green indicates low altitude, and orange high altitude. The map of this figure
was drawn with Géoportail (www.geoportail.gouv.fr).

the Student copula was estimated by maximizing its likelihood but with all the
parameters of the correlation matrix held fixed. This approach improves the
speed, tractability, and chances of success of the minimization procedure.

The fit of the tested copulas was assessed by comparing the pairwise depen-
dence coefficients and the critical levels.

Pairwise dependence coefficients. The mean absolute error (MAE), de-
fined as

MAEr =
1

p

∑
i<j

∣∣r̂i,j − r(θ̂i, θ̂j)∣∣
was computed for Spearman’s rho (MAEρ) and Kendall’s tau (MAEτ ) depen-
dence coefficients. They are reported in Table 2. The Gumbel copula has the
largest errors (more than 0.17) and does not seem to fit the data well. This was
expected, because this model has only one parameter to account for a d = 9
dimensional phenomenon. All the remaining errors are smaller. Thus, according
to these criteria, the Gumbel copula is not appropriate.

Critical levels. The critical levels obtained from the empirical data and the
models were calculated by making use of (22). In statistical terms, this amounts
to compare the quantiles of the distribution M under the empirical data and
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FDG-F FDG-CA EV-FDG-CAF Gumbel Student
MAEρ 0.12 0.12 0.12 0.22 0.12
MAEτ 0.12 0.11 0.11 0.17 0.10

Table 2: Mean absolute errors for Spearman’s rho (MAEρ) and Kendall’s tau
(MAEτ ) dependence coefficients of the models.

under the different models. The results are presented in Figure 5, where the
independence copula C(u1, . . . , ud) = u1 . . . ud was added to emphasize the need
for a joint model on such a dataset. The Gumbel model is confirmed to perform
poorly. FDG-F, FDG-CA and EV-FDG-CAF seem to fit the data quite well.
In particular, FDG-F and FDG-CA are as close as the Student copula to the
empirical curve.
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Figure 5: Critical level q as a function of the return period T . “empirical” stands
for the empirical critical levels, and “independence” for the independence copula
C(u1, . . . , ud) =

∏d
i=1 ui.

With such a small sample size n = 32, one must be extremely careful when
looking at empirical data, because one is likely to observe a large deviation from
the true underlying statistical distribution. In view of this remark, one should
select a statistical model based not only on empirical data, but also on the model
properties. The class of FDG copulas is very interesting in this respect. Indeed,
the practitioner has with this class three models that fit well the data and with
different features: FDG-F is upper, lower, and symmetric tail dependent, FDG-
CA is upper tail dependent but no lower tail dependent, and EV-FDG-CAF is
an extreme-value copula. The user is then free to choose the model that most
suits his expert knowledge about the underlying phenomenon at play. The test
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of extreme-value dependence [25] gave a p-value of 0.21, which means that one
does not reject extreme-value copulas at the 5% level. Of course, as before, one
must be extremely careful when looking at the p-value because of the small data
sample size. Finally, goodness-of-fit tests for a given parametric family can be
found in [26].

5 Discussion

In this article, we have constructed a new class of copulas by combining one-
factor copulas, that is, a conditional independent property, together with a class
of bivariate copulas called the Durante class of bivariate copulas. This combi-
nation led to many advantageous properties. The copulas within the proposed
class, referred to as FDG copulas, are tractable, flexible, and cover all types
of tail dependencies. The theoretically well grounded least-squares inference
estimator is particularly well suited for FDG copulas because their dependence
coefficients are easy to compute, if not in closed form. This allows to perform
fast and reliable inference in the parametric case. We have demonstrated, fur-
thermore, that FDG copulas work well in practice and are able to model both
high-dimensional and real datasets. Finally, we have derived the extreme-value
copulas (EV-FDG) associated to FDG copulas, yielding a new extreme-value
copula, which can be viewed as a generalisation of the well-known Cuadras-Augé
copula. This copula benefits from almost all the many advantageous properties
of FDG copulas, and therefore opens the door for statistical analyses of extreme
data in high dimension.

One may argue that a model with a singular component, as a FDG copula, is
not natural nor realistic to model hydrological data. While this may be true in
the bivariate case, this argument becomes weaker when the dimension increases.
Indeed, in high-dimensional applications, the focus is less on the distribution
itself than on a feature of interest of the data, such as, for instance, the critical
levels defined in (22). If so-called “unrealistic” models are able to better estimate
these features than “realistic” models – compare the fit of the Gumbel copula
to the fit of FDG copulas in Section 4.2 – then one should consider using them.

This work raises several research questions. First, how to estimate the gen-
erators nonparametrically? The generator of a bivariate Durante copula was
estimated nonparametrically in [12], but the matter is more complicated in our
case because this bivariate relationship occurs between the variable of interest
and the unobserved latent factor. Second, one may add more factors when
building an FDG copula. Nonetheless, the model might not be as tractable as
it is and therefore it may be less appealing in practice. Finally, FDG copulas
possess the conditional independence property, but the extreme-value EV-FDG
copulas were not shown to do so. If this property held, this would be of great
interest for the simulation of datasets from this model.
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A Appendix

Proof of Theorem 1 Let Cj|0(·|u0) be the conditional distribution of Uj
given U0 = u0. The Uj ’s are conditionally independent given U0, hence,

C(u) =

∫ 1

0

d∏
j=1

Cj|0(uj |u0)du0 (23)

=

∫ 1

0

d∏
j=1

∂C0j(u0, uj)

∂u0
du0

=

∫ 1

0

d∏
j=1

∂C0(j)(u0, u(j))

∂u0
du0

=

∫ u(1)

0

d∏
j=1

∂C0(j)(u0, u(j))

∂u0
du0

+

d∑
k=2

∫ u(k)

u(k−1)

k−1∏
j=1

∂C0(j)(u0, u(j))

∂u0

d∏
j=k

∂C0(j)(u0, u(j))

∂u0

+

∫ 1

u(d)

d∏
j=1

∂C0(j)(u0, u(j))

∂u0
du0.

Since

∂C0j(u0, uj)

∂u0
=

{
fj(uj) if u0 < uj

ujf
′
j(u0) if u0 > uj ,

equation (23) yields

C(u) =u(1)

d∏
j=1

fj(uj) +

d∑
k=2

d∏
j=k

f(j)(u(j))

∫ u(k)

u(k−1)

k−1∏
j=1

u(j)f
′
(j)(u0)du0

+

d∏
j=1

uj

∫ 1

u(d)

f ′j(u0)du0.

Putting u(1) in factor and noting that
∫ u(2)

u(1)
f ′(1)(x)dx = f(1)(u(2)) − f(1)(u(1))

finishes the proof.

Proof of Proposition 1 It suffices to set all uk equal to one but ui and uj
in the formula (3).

Proof of Proposition 2 It suffices to apply the formulas (4) with fij given
in Proposition 1. To compute the Spearman’s rho, note that∫ 1

0

x2fij(x)dx =

∫ 1

0

x2fi(x)fj(x)dx+

∫ 1

0

x3

∫ 1

x

f ′i(z)f
′
j(z)dzdx.

An integration by parts yields
∫ 1

0
x3
∫ 1

x
f ′i(z)f

′
j(z)dzdx = (1/4)

∫ 1

0
x4f ′i(x)f ′j(x)dx

and the result follows.
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Proof of Theorem 2 Fix (u1, . . . , ud) ∈ [0, 1]d and let n ≥ 1 be an integer.
Let us introduce

αn := u
1/n
(1)

∏d
j=1

fj(u
1/n
j )

u
1/n
j

, βn :=

∫ 1

u
1/n

(d)

d∏
j=1

f ′j(u0)du0,

γn :=
∏d
j=k

f(j)(u
1/n

(j)
)

u
1/n

(j)

, δn,k :=

∫ u
1/n

(k)

u
1/n

(k−1)

k−1∏
j=1

f ′(j)(u0)du0,

and define

An := αn + βn +

d∑
k=2

γn,kδn,k.

Our goal is to derive asymptotic equivalent sequences for αn, βnγn and δn. Let
∼ denote the equivalent symbol at infinity (i.e., an ∼ bn means an/bn → 1
as n → ∞). By using the well known formulas ex ∼ 1 + x (when x → 0),
log x ∼ x− 1 (when x→ 1) and fj(x) ∼ 1 + (x− 1)f ′j(1) (when x→ 1), we get

αn ∼
(

1 +
1

n
log u(1)

)(
1− 1

n
log(u1 . . . ud)

)1 +
1

n

d∑
j=1

log u(j)f
′
(j)(1)

 and

γn,k ∼

1− 1

n

d∑
j=k

log u(j)

1 +
1

n

d∑
j=k

log u(j)f
′
(j)(1)

 .

For βn the equivalence is obtained as follows. Let F (x) be a primitive of∏d
j=1 f

′
j(x). It follows that βn = F (1)− F (u

1/n
(d) ). A Taylor expansion yields

F (u
1/n
(d) ) = F (1) + (u

1/n
(d) − 1)F ′(1) +

(u
1/n
(d) − 1)2

2
F ′′(xn)

where xn is between u
1/n
(d) and 1. Since F ′′ is assumed to be continuous on [0, 1],

it is uniformly bounded on this set and therefore (u
1/n
(d) − 1)2F ′′(xn)/2 = o(1/n)

where o(1/n) is a quantity such that no(1/n) → 0 as n → ∞. Hence, since

u
1/n
(d) = exp(log(u(d))/n) ∼ 1 + log(u(d))/n, we have as n→∞

F (1)− F (u
1/n
(d) ) ∼ − 1

n
log(u(d))F

′(1).

The same arguments apply to get

βn ∼ −
1

n
log u(d)

d∏
j=1

f ′j(1)

δn,k ∼
1

n
log

(
u(k)

u(k−1)

) k−1∏
j=1

f ′(j)(1).
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The quantity An is a polynomial with respect to n−1 of order at most three.
In (24), the coefficients of order 0, 2, and 3 vanish at infinity. Only remain the
terms of order 1, hence,

lim
n↑∞

n(An − 1) = log u(1) − log(u1 . . . ud) +

d∑
j=1

log u(j)f
′
(j)(1) (24)

− log u(d)

d∏
j=1

f ′(j)(1) +

d∑
k=2

k−1∏
j=1

f ′(j)(1) log

(
u(k)

u(k−1)

)
.

From Abel’s identity for two sequences (ai) and (bi) of real numbers, that is,

d−1∑
i=1

ai(bi+1 − bi) =

d−1∑
i=1

bi(ai−1 − ai) + ad−1bd − a1b1

it follows

lim
n↑∞

n(An − 1) =

d∑
k=1


k−1∏
j=1

f ′(j)(1)

 (1− f ′(k)(1)) + f ′(k)(1)− 1

︸ ︷︷ ︸
=:χk

 log u(k),

with the convention that
∏0
j=1 f

′
(j)(1) = 1. Then (3) entails that

Cn(u
1/n
1 , . . . , u

1/n
d ) =u1 . . . ud exp [n logAn]

=u1 . . . ud exp [n(An − 1)(1 + o(1))]

→
d∏
i=k

uχk

(k)

as n→∞.

Proof of Lemma 1 (i) Since the p-uple (r1,2, . . . , rd−1,d) belongs to the image
space r(Θd), the system 

r(θ1, θ2) = r1,2

...
...

r(θd−1, θd) = rd−1,d

has at least one solution. In particular, there exists (θ1, θ2, θ3) in Θ3 such that r(θ1, θ2) = r1,2

r(θ1, θ3) = r1,3

r(θ2, θ3) = r2,3.
(25)

The system (25) rewrites  rθ2(θ1) = r1,2

rθ3(θ1) = r1,3

rθ3(θ2) = r2,3,
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or equivalently,  θ1 = s1,2(θ2)
θ1 = s1,3(θ3)
θ2 = s2,3(θ3).

This yields

s1,3(θ3) = s1,2 ◦ s2,3(θ3). (26)

Let us note that s1,3 is involutive at θ3, that is, s1,3 ◦ s1,3(θ3) = θ3. Indeed,
r(θ1, θ3) = rθ3(θ1) = r1,3 is equivalent to θ1 = r−1

θ3
(r1,3) = s1,3(θ3). This

implies r(s1,3(θ3), θ3) = r1,3, and, composing by r−1
s1,3(θ3) in both sides, we get

r−1
s1,3(θ3)(r1,3) = s1,3(s1,3(θ3)) = θ3. Therefore, one can compose both sides

of (26) by s1,3 to get
θ3 = s1,3 ◦ s1,2 ◦ s2,3(θ3).

Hence (20) has at least one solution.
(ii) If (20) admits exactly one solution θ3, then θ2 and θ1 are also unique.

Furthermore, for all j ≥ 3,

θj+1 = sj,j+1(θj)

which concludes the proof that assumption (A2) holds. It is now shown that
assumption (A3) holds as well. Define ∂1r, respectively, ∂2r, the derivative of r
with respect to the first, respectively, second, variable of r. Hence for all θi and
θj in Θ, the quantities ∂1r(θi, θj) and rθj (θi) only differ in the notation. The
first step in the proof is to consider the case d = 3. The Jacobian matrix of r
at θ0 is given by

J =

∂1r(θ01, θ02) ∂2r(θ01, θ02) 0
∂1r(θ01, θ03) 0 ∂2r(θ01, θ03)

0 ∂1r(θ02, θ03) ∂2r(θ02, θ03)

 .

To show that J has full rank, we show that its determinant

∂1r(θ01, θ02)∂2r(θ01, θ03)∂1r(θ02, θ03) + ∂2r(θ02, θ03)∂1r(θ01, θ03)∂2r(θ01, θ02)

is nonzero. Indeed, note that for all θ in Θ, the map rθ : Θ→ rθ(Θ) is a twice
continuously differentiable homeomorphism. Furthermore, by assumption, the
true parameter vector θ0 lies in the interior of Θ that is open. Finally, by
symmetry, for all i < j,

∂r1(θ0i, θ0j) > 0 (respectively ∂r1(θ0i, θ0j) < 0)

is equivalent to

∂r2(θ0j , θ0i) > 0 (respectively ∂r2(θ0j , θ0i) < 0).

For the general case, we proceed by mathematical induction. When the
dimension is d, write J(θ) = J(d)(θ) to emphasize the dependence on the di-
mension. Notice that it was already shown above that J(3)(θ) has full rank.
Now suppose that the kernel of J(d−1)(θ) is null when the dimension is d − 1.
Let A = J(d)(θ). Each row of A writes

(0, . . . , 0, ∂1r(θi, θj), 0 . . . , 0, ∂2r(θi, θj), 0, . . . , 0)
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where ∂1r(θi, θj) is at the i-th position and ∂2r(θi, θj) at the j-th position.
There are d−1 rows of A which depend on θd and p−d+1 which do not (recall
p = d(d− 1)/2 is the number of pairs). Since the kernel of a matrix is invariant
by permutation, we can without loss of generality put all the rows which do not
depend on θd on the top. More precisely, decompose A as

A =

(
A11 A12

A21 A22

)
such that A11 is a (p− d+ 1)× (d− 1) matrix containing all the rows which do
not depend on θd and A12 and A22 are (p− d+ 1)× 1 and (d− 1)× 1 matrices
respectively. Note that A12 is the null vector of size p− d+ 1× 1. Let x ∈ Rd,
x = (xT1 , x2)T where x1 ∈ Rd−1, x2 ∈ R. It follows that Ax = 0 is equivalent
to {

A11x1 + A12x2 = 0
A21x1 + A22x2 = 0.

But A12 = 0 and since A11 = J(d−1)(θ) whose kernel is null, x1 = 0. Then
A22x2 = 0 and the assumptions imply x2 = 0, which concludes the proof.

Proof of Theorem 3 To prove (i), it suffices to apply Lemma 1. Since
r(θi, θj) denotes the extremal dependence coefficient of the E copula bivariate
marginal C#,ij defined in (14), we have

r(θi, θj) = λ(θi)λ(θj), where λ(θ) := 1− ∂f(t, θ)

∂t

∣∣∣
t=1

. (27)

In the Cuadras-Augé and the Fréchet cases, (27) is given by λ(θ) = θ, and
in the sinus case, λ(θ) = 1 − θ/ tan(θ). In all these situations, it is easy to
see that the map rθj (·) is a twice continuously differentiable homeomorphism.
Therefore, Lemma 1 (i) applies. To apply the second part of Lemma 1, note
that equation (20) translates into

λ(θ)2 =
r1,3r2,3

r1,2
.

Since it has a unique solution, Lemma 1 (ii) applies, and the result is proved.
(ii) The proof is straightforward because under the assumptions of (ii),

r(θi, θj) = θiθj . But this is the precise form of r(θi, θj) in (i); hence, one
can also apply Lemma 1.
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