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A flexible and tractable class of one-factor copulas

Gildas Mazo, Stéphane Girard and Florence Forbes

MISTIS, Inria - Laboratoire Jean Kuntzmann, France

Abstract

Copulas are a useful tool to model multivariate distributions. While

there exist various families of bivariate copulas, the construction of flex-

ible and yet tractable copulas suitable for high-dimensional applications

is much more challenging. This is even more true if one is concerned

with the analysis of extreme values. In this paper, we construct a class

of one-factor copulas and a family of extreme-value copulas well suited

for high-dimensional applications and exhibiting a good balance between

tractability and flexibility. The inference for these copulas is performed

by using a least-squares estimator based on dependence coefficients. The

modeling capabilities of the copulas are illustrated on simulated and real

datasets.

Keywords: tractable, flexible, extreme-value copula, factor copula, multi-
variate, high-dimension, copula.

1 Introduction

The modelling of random multivariate events (i.e., of dimension strictly greater
than 2) is a central problem in various scientific domains and the construction
of multivariate distributions able to properly model the variables at play is
challenging. The challenge is even more diffcult if the data provide evidence
of tail dependencies or non Gaussian behaviors. To address this problem, the
concept of copulas is a useful tool as it permits to impose a dependence structure
on pre-determined marginal distributions. Standard books covering this subject
include [19,26]. See also [16] for an introduction to this topic. The most common
copula models used in high dimensional applications are discussed below.

The popular Archimedean copulas are tractable and allow to model a differ-
ent behavior in the lower and upper tails. For instance, the Gumbel copula is
upper, but no lower, tail dependent; the opposite holds for the Clayton copula.
Nevertheless, the dependence structure of Archimedean copulas is severely re-
stricted because they are exchangeable, implying that all the pairs of variables
have the same distribution. More details about these copulas can be found in
the above mentionned books.

Nested Archimedean copulas are a class of hierarchical copulas generalizing
the class of Archimedean copulas. They allow to introduce asymmetry in the
dependence structure but only between groups of variables. This hierarchical
structure is not desirable when no prior knowledge of the random phenomenon
under consideration is available. Furthermore, constraints on the parameters
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restrict the tractability of these copulas. These copulas first appeared in [19]
Section 4.2.

The class of elliptical copulas arises from the class of elliptical distributions.
These copulas are interesting in many respect but they are tail symmetric,
meaning that the lower tail dependence coefficient is equal to the upper tail
dependence coefficient (these coefficients are defined in Section 2.2). This may
not be the case in applications. See, e.g., [25] Section 5 or [14] for an introduction
to these copulas.

Pair copula constructions and Vines are flexible copula models based on the
decomposition of the density as a product of conditional bivariate copulas. How-
ever, these models are difficult to handle. Furthermore, the conditional bivariate
copulas are typically assumed not to depend on the conditioning variables. This
so called simplifying assumption can be misleading, as remarked in [2]. Pair-
copula constructions first appeared in [19] Section 4.5. See also [4, 5, 22] for
theoretical developments and [1] for a practical introduction to modelling with
Vines.

As shown above, most copula models are either tractable or flexible, but
rarely both. In this paper, we propose a tractable and yet flexible class of
one-factor copulas well suited for high-dimensional applications. This class is
nonparametric, and, therefore, encompasses many distributions with different
features. Unlike elliptical copulas, the members of this class allow for tail asym-
metry. Furthermore, we have derived the associated extreme-value copulas,
and, therefore, the analysis of extreme values can be carried out with the pre-
sented models. Finally, we show how to perform theoretically well-grounded,
and practically fast and accurate, inference of these copulas, thanks to the abil-
ity of calculating explicitly the dependence coefficients.

The remaining of this paper is as follows. Section 2 presents the proposed
class of one-factor copulas, Section 3 deals with inference, and, in Section 4, the
proposed copulas are applied to simulated and real datasets. The proofs are
postponed to the Appendix.

2 A tractable and flexible class of one-factor cop-

ulas

The class of copulas proposed in this paper, referred to as the FDG class (see
Section 2.2 for an explanation of this acronym), can be embedded in the frame-
work of one-factor models. We therefore introduce the later in Section 2.1. The
construction and properties of FDG copulas are given in Section 2.2. Paramet-
ric examples are proposed in Section 2.3. The extreme-value copulas associated
to the FDG class are derived in Section 2.4.

2.1 One-factor copulas

By definition, the coordinates of a random vector distributed according to a
one-factor copula [21] are independent given a latent factor. More precisely, let
U0, U1, . . . , Ud be standard uniform random variables such that the coordinates
of (U1, . . . , Ud) are conditionally independent given U0. The variable U0 plays
the role of a latent, or unobserved, factor. Let us write C0i the distribution
of (U0, Ui) and Ci|0(·|u0) the conditional distribution of Ui given U0 = u0 for
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i = 1, . . . , d. It is easy to see that the distribution of (U1, . . . , Ud), called a
one-factor copula, is given by

C(u1, . . . , ud) =

∫ 1

0

C1|0(u1|u0) . . . Cd|0(ud|u0) du0. (1)

The copulas C0i are called the linking copulas because they link the factor U0

to the variables of interest Ui. The one-factor model has many advantages to
address high dimensional problems. We recall and briefly discuss them below.

Nonexchangeability. The one-factor model is nonexchangeable. Recall that
a copula C is said to be exchangeable if C(u1, . . . , ud) = C(uπ(1), . . . , uπ(d)) for
any permutation π of (1, . . . , d). This means in particular that all the bivari-
ate marginal distributions are equal to each other. For example, Archimedean
copulas are exchangeable copulas. Needless to say, this assumption may be too
strong in practice.

Parsimony. The one-factor model is parsimonious. Indeed, only d linking
copulas are involved in the construction of the one-factor model, and since they
are typically governed by one parameter, the number of parameters in total is
no more than d, which increases only linearly with the dimension. Parsimony
is more and more desirable as the dimension increases.

Random generation. The conditional independence property of the one fac-
tor model allows to easily generate data (U1, . . . , Ud) from this copula.

1 Generate U0, V1, . . . , Vd independent standard uniform random variables.

2 For i = 1, . . . , d, put Ui = C−1
i|0 (Vi|U0) where V 7→ C−1

i|0 (V |U0) denotes the

inverse of V 7→ Ci|0(V |U0).

Dependence properties of the one-factor model have been studied in [21]. The
authors investigated how positive dependence properties of the linking copulas
extend to the bivariate margins

Cij(ui, uj) := C(1, . . . , 1, ui, 1, . . . , 1, uj , 1, . . . , 1).

These properties included positive quadrant dependence, increasing in the con-
cordance ordering, stochastic increasing, and tail dependence. For details about
these dependence concepts, see [19] Section 2. The copulas proposed in this
paper, presented in Section 2.2 and Section 2.4, possess simple expressions and
therefore the properties mentionned above can be made more precise.

2.2 Construction and properties of FDG copulas

The class of FDG copulas is constructed by choosing appropriate linking copulas
for the one-factor copula model (1). The class of linking copulas which served
to build the FDG copulas is referred to as the Durante class [9] of bivariate
copulas, which can also be viewed as part of the framework of [3]. The Durante
class consists of the copulas C of the form

C(u, v) = min(u, v)f(max(u, v)), (2)
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where f : [0, 1] → [0, 1], called the generator of C, is a differentiable and in-
creasing function such that f(1) = 1 and t 7→ f(t)/t is decreasing. Hence the
choice of the acronym, FDG, which stands for “one-Factor copula with Durante
Generators”. The advantages of taking Durante linking copulas are twofold:
the integral (1) can be calculated and the resulting multivariate copula is non-
parametric.

Theorem 1. Let C be defined by (1) and assume that C0i belongs to the Durante
class (2) with given generator fi. Then

C(u1, . . . , ud) = u(1)






d∏

j=2

u(j)




∫ 1

u(d)

d∏

j=1

f ′
j(x)dx+ f(1)(u(2))




d∏

j=2

f(j)(u(j))




(3)

+

d∑

k=3




k−1∏

j=2

u(j)







d∏

j=k

f(j)(u(j))




∫ u(k)

u(k−1)

k−1∏

j=1

f ′
(j)(x)dx


 ,

where u(i) := uσ(i), f(i) := fσ(i) and σ is the permutation of (1, . . . , d) such that
uσ(1) ≤ · · · ≤ uσ(d).

The particularity of the copula expression (3) is that it depends on the
generators through their reordering underlain by the permutation σ. For in-
stance, with d = 3 and u1 < u3 < u2 we have u(1) = u1, u(2) = u3, u(3) = u2,
σ = {1, 3, 2} and f(1) = fσ(1) = f1, f(2) = fσ(2) = f3, f(3) = fσ(3) = f2. This
feature gives its flexibility to the model. Observe also that C(u1, . . . , ud) writes
as u(1) multiplied by a functional of u(2), . . . , u(d), form that is similar to (2).
Although the expression of a FDG copula has the merit to be explicit, it is
rather cumbersome. Hence, we shall continue its analysis through the prism of
its bivariate margins.

Proposition 1. Let Cij be a bivariate margin of the FDG copula (3). Then
Cij belongs to the Durante class (2) with generator

fij(t) = fi(t)fj(t) + t

∫ 1

t

f ′
i(x)f

′
j(x)dx.

In other words,

Cij(ui, uj) = Cfij (ui, uj) = min(ui, uj)fij(max(ui, uj)).

In view of Proposition 1, the FDG copula can be regarded as a multivari-
ate generalization of the Durante class of bivariate copulas. In fact, such a
generalization was already proposed in the literature [11]:

Cf (u1, . . . , ud) = u(1)

d∏

i=2

f(u(i)),

where f is a generator in the usual sense of the Durante class of bivariate
copulas. Nonetheless, since there is only one generator to determine the whole
copula in arbitrary dimension, this generalization lacks flexibility to be used
in applications. This issue is overcome by the FDG copula. To illustrate this
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further, its pairwise dependence coefficients are given next. (Note that, since
the bivariate margins of the FDG copula belong to the Durante class of bivariate
copulas, a more detailed account of their properties can be found in the original
paper [9]). Recall that the Spearman’s rho ρ, the Kendall’s tau τ , the lower
λ(L) and upper λ(U) tail dependence coefficients of a general bivariate copula C
are respectively given by

ρ = 12

∫

[0,1]2
C(u, v)dudv − 3, τ = 4

∫

[0,1]2
C(u, v)dC(u, v)− 1, (4)

λ(L) = lim
u↓0

C(u, u)

u
, and λ(U) = lim

u↑1

1− 2u+ C(u, u)

1− u
.

In the case where C belongs to the Durante class with generator f , these coef-
ficients are respectively given by

ρ = 12

∫ 1

0

x2f(x)dx− 3, τ = 4

∫ 1

0

xf(x)2dx− 1,

λ(L) = f(0), and λ(U) = 1− f ′(1). (5)

Hence, to get the dependence coefficients of the FDG bivariate margins, it is
enough to apply the above formulas and Proposition 1. The obtained coefficient
expressions are given in Proposition 2 below.

Proposition 2. The Spearman’s rho, the Kendall’s tau, the lower and upper
tail dependence coefficients of the FDG bivariate margins Cij are respectively
given by

ρij = 12

∫ 1

0

x2fi(x)fj(x)dx+ 3

∫ 1

0

x4f ′
i(x)f

′
j(x)dx− 3,

τij = 4

∫ 1

0

x

(
fi(x)fj(x) + x

∫ 1

x

f ′
i(t)f

′
j(t)dt

)2

dx− 1,

λ
(L)
ij = λ

(L)
i λ

(L)
j and

λ
(U)
ij = λ

(U)
i λ

(U)
j ,

where λ
(L)
i := fi(0), λ

(U)
i := 1− f ′

i(1), i = 1, . . . , d are the lower and upper tail
dependence coefficients of the bivariate linking copulas respectively.

2.3 Examples of parametric families

Four examples of families indexed by a real parameter for the generators f1, . . . , fd
are given below.

Example 1 (Cuadras-Augé generators). In (3), let

fi(t) = t1−θi , θi ∈ [0, 1]. (6)

A copula belonging to the Durante class with generator (6) gives rise to the
well known Cuadras-Augé copula with parameter θi [7]. By Proposition 1, the
generator for the bivariate margin Cij of the FDG copula is given by

fij(t) =

{
t2−θi−θj

(
1− (1−θi)(1−θj)

1−θi−θj

)
+ t

(1−θi)(1−θj)
1−θi−θj

if θi + θj 6= 1

t(1− (1− θ)θ log t) if θ = θj = 1− θi.
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The Spearman’s rho, the lower and upper tail dependence coefficients are respec-
tively given by

ρij =
3θiθj

5− θi − θj
, λ

(L)
ij = 0 and λ

(U)
ij = θiθj .

The Kendall’s tau is given by

τij =

{
θiθj(θiθj+6−2(θi+θj))
(θi+θj)2−8(θi+θj)+15 if θi + θj 6= 1

θ(θ−1)(θ2−θ−4)
8 if θ = θi = 1− θj .

Example 2 (Fréchet generators). In (3), let

fi(t) = (1− θi)t+ θi, θi ∈ [0, 1]. (7)

A copula belonging to the Durante class with generator (7) gives rise to the well
known Fréchet copula with parameter θi [15]. By Proposition 1, the generator
for the bivariate margin Cij of the FDG copula is given by

fij(t) = (1− θiθj) t+ θiθj .

By noting that fij is of the form (7) with parameter θiθj, one can see that the bi-
variate margins of the FDG copula based on Fréchet generators are still Fréchet
copulas. The Spearman’s rho, the lower and upper tail dependence coefficients
are respectively given by

ρij = λ
(L)
ij = λ

(U)
ij = θiθj ,

the Kendall’s tau is given by

τij =
θiθj(θiθj + 2)

3
.

Example 3 (Durante-sinus generators). In (3), let

fi(t) =
sin(θit)

sin(θi)
, θi ∈ (0, π/2]. (8)

This generator was proposed in [9]. By Proposition 1, the generator for the
bivariate margin Cij of the FDG copula is given by

fij(t) =
sin(θit) sin(θjt)

sin(θi) sin(θj)
+

tθiθj
2(θ2j − θ2i ) sin(θi) sin(θj)

×
{
(θi + θj) [sin ((θi − θj)t) + sin (θj − θi)]

+ (θj − θi) [sin(θi + θj)− sin ((θi + θj)t)]

}
if θi 6= θj , and

fij(t) =
4 sin(tθ)2 + tθ (2(1− t)θ + sin(2θ)− sin(2tθ))

4 sin(θ)2
if θi = θj = θ.

6



The Spearman’s rho, the lower and upper tail dependence coefficients are respec-
tively given by

ρij =12(sin θi sin θj)
−1

∫ 1

0

x2 sin(θix) sin(θjx) +
1

4
θiθjx

4 cos(θix) cos(θjx)dx− 3,

(9)

λ
(L)
ij =0 and λ

(U)
ij =

(
1− θi

tan(θi)

)(
1− θj

tan(θj)

)
. (10)

Example 4 (Durante-exponential generators). In (3), let

fi(t) = exp

(
tθi − 1

θi

)
, θi > 0 (11)

This generator was proposed in [9]. By Proposition 1, the generator for the
bivariate margin Cij of the FDG copula is given by

fij(t) = exp

(
tθi − 1

θi
+

tθj − 1

θj

)
+ t

∫ 1

t

exp

(
xθi − 1

θi
+

xθj − 1

θj

)
xθi+θj−2dx.

The Spearman’s rho, the lower and upper tail dependence coefficients are respec-
tively given by

ρij =12

∫ 1

0

exp

(
xθi − 1

θi
+

xθj − 1

θj

)(
x2 +

1

4
x2+θi+θj

)
dx− 3,

λ
(L)
ij =exp

(
− 1

θi
− 1

θj

)
, and λ

(U)
ij = 0.

Remark 1. The calculation of the integral in (9) with θi = θj = π/2 shows
that for the FDG copula with Durante-sinus generators, the Spearman’s rho is
such that

0 ≤ ρij ≤
3π4 − 100π2 + 840

40π2
≃ 0.37.

The Spearman’s rho values for all the other models in the examples above spread
the entire interval [0, 1].

The four examples above allow to get all possible types of tail dependencies,
as shown in Table 1. The Cuadras-Augé and Durante-sinus families allow for
upper but no lower tail dependence, the Durante-exponential family allows for
lower but no upper tail dependence, and the Fréchet family allows for both. In
the Fréchet case, furthermore, the lower and upper tail dependence coefficients
are equal: this is called tail symmetry, a property of elliptical copulas.

2.4 Extreme-value attractors associated to FDG copulas

Extreme-value copulas are theoretically well-grounded copulas to perform a sta-
tistical analysis of extreme values such as maxima of random samples. Recall
that a copula C# is an extreme-value copula if there exists a copula C̃ such that

C#(u1, . . . , ud) = lim
n↑∞

C̃n(u
1/n
1 , . . . , u

1/n
d ), (u1, . . . , ud) ∈ [0, 1]d, (12)
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family of generators λ
(L)
ij λ

(U)
ij

Cuadras-Augé 0 θiθj
Fréchet θiθj θiθj

Durante-sinus 0 (1− θi
tan θi

)(1− θj
tan θj

)

Durante-exponential exp(− 1
θi

− 1
θj
) 0

Table 1: Lower λ
(L)
ij and upper λ

(U)
ij tail dependence coefficients for the four

families presented in Section 2.3.

see, e.g. [17]. The extreme-value copula C# is called the attractor of C̃ and

C̃ is said to belong to the domain of attraction of C#. The class of extreme-
value copulas corresponds exactly to the class of max-stable copulas, that is,
the copulas C# such that

Cn
#(u

1/n
1 , . . . , u

1/n
d ) = C#(u1, . . . , ud), n ≥ 1, (u1, . . . , ud) ∈ [0, 1]d.

The upper tail dependence coefficient of a (bivariate) extreme-value copula C#

has the particular form

λ(U) = 2 + logC#(e
−1, e−1). (13)

This coefficient is a natural dependence coefficient for extreme-value copulas
because of the following representation on the diagonal of the unit square:

C#(u, u) = u2−λ, (14)

where λ := λ(U). If λ = 0 then C#(u, u) = Π(u, u) = u2, where Π stands for the
independence copula. If λ = 1 then C#(u, u) = M(u, u) = min(u, u) = u, where
M stands for the Fréchet-Hoeffding upper bound for copulas, that is, the case
of perfect dependence. In the case of extreme-value copulas, this interpolation
between Π and M allows to interpret λ as a coefficient that measures general
dependence, not only dependence in the tails. In order to emphasize this in-
terpretation, λ will be referred to as the extremal dependence coefficient of an
extreme-value copula. See [6] for more about extreme-value statistics, and, see,
e.g. [17] for an account about extreme-value copulas.

In the case of FDG copulas, the limit (12) can be calculated. This leads to
a new family of extreme-value copulas, referred to as the family EV-FDG. The
bivariate margins C#,ij of this new family are Cuadras-Augé copulas. These
results are precised in Theorem 2 and Proposition 3, given next.

Theorem 2. Assume that the generators fi of the FDG copula are twice con-
tinuously differentiable on [0, 1]. Then, the attractor C# of the FDG copula
exists and is given by

C#(u1, . . . , ud) =

d∏

i=1

uχi

(i), (15)

where

χi =




i−1∏

j=1

(1− λ(j))


λ(i) + 1− λ(i),

8



with the convention that
∏0

j=1(1−λ(j)) = 1 and where λi = 1−f ′
i(1). As in (3),

u(i) = uσ(i) and f ′
(i)(1) = f ′

σ(i)(1) where σ is the permutation of (1, . . . , d) such
that u(1) ≤ · · · ≤ u(d).

Proposition 3. Let C#,ij be a bivariate margin of an EV-FDG copula (15).
Then C#,ij is a Cuadras-Augé copula with parameter (and therefore extremal
dependence coefficient) λiλj. In other words,

C#,ij(ui, uj) = min(ui, uj)max(ui, uj)
1−λiλj . (16)

Remark 2. In view of Table 1, the FDG copulas with Cuadras-Augé and
Fréchet generators both lead to the same EV-FDG copula.

Multivariate generalizations of the bivariate Cuadras-Augé copula were al-
ready proposed in the literature [12,23], but they are less flexible than EV-FDG.
Thus, let

A(u1, . . . , ud) = u(1)

d∏

i=2

uai

(i),

where (a1 = 1, a2, a3, . . . , ad) is a d-monotone sequence of real numbers, that is,
a sequence which satisfies ▽j−1ak ≥ 0, k = 1, . . . , d, j = 1, . . . , d− k + 1 where
▽

jak =
∑j

i=0(−1)i
(
j
i

)
ak+i, j, k ≥ 1 and ▽

0ak = ak. This exchangeable copula
was proposed in [23]. In particular, the bivariate margins are Cuadras-Augé
copulas

Aij(ui, uj) = min(ui, uj)max(ui, uj)
a2

with the same parameter 1− a2. This means that all of them exhibit the same
statistical behavior. For instance, all the upper tail dependence coefficients are
equal and are given by 1− a2. This is far too restrictive for most applications.
Now let

B(u1, . . . , ud) =

d∏

i=1

u
1−

∑d
j=1,j 6=i λij

i

∏

i<j

min(ui, uj)
λij ,

where λij ∈ [0, 1], λij = λji and

∑

j=1,...,d; j 6=i

λij ≤ 1, i = 1, . . . , d. (17)

This copula was proposed in [12]. The bivariate margins Bij are Cuadras-Augé
copulas

Bij(ui, uj) = min(ui, uj)max(ui, uj)
1−λij

with parameters λij . Unlike the copula A, the tail dependence coefficients can
take distinct values from each other. Unfortunately, the constraints (17) are
quite restrictive, as it was already stressed by the original authors in [12]. To
summarize, the class EV-FDG achieves greater flexibility than its competitors.
In particular, one can obtain different bivariate marginal distributions with no
conditions on the parameters.
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3 Parametric inference

Let (X1, . . . , Xd) be a random vector following a distribution F with continuous
margins F1, . . . , Fd. Suppose that its copula, C, is a FDG copula defined by (3).
Denote by

(X
(k)
1 , . . . , X

(k)
d ), k = 1, . . . , n,

independent and identically distributed observations obtained from F . Suppose
that all the generators fi of the FDG copula belong to the same parametric
family {fθ, θ ∈ Θ ⊂ R}, that is, there exists θ0 = (θ01, . . . , θ0d) ∈ Θd such that
fθ0i = fi. The generators fi are regarded as functions defined over the product
space [0, 1]×Θ and we write fi(t) = f(t, θi) for all t in [0, 1]. The nonparametric
inference problem has turned into a parametric one where the parameter vector
θ0 ∈ Θd has to be estimated.

In order to estimate the parameters of the FDG and EV-FDG copulas, we
consider a least-squares estimator based on dependence coefficients. Its con-
struction is given below. Choose a type of dependence coefficient (Spearman’s
rho, Kendall’s tau, tail dependence coefficient, etc) and denote by r(θi, θj) the
chosen dependence coefficient between the variables Xi and Xj . Suppose that
the map r is continuous and symmetric in its arguments. Let p = d(d − 1)/2
be the number of variable pairs (Xi, Xj), i < j. Denote by r be the p-variate
map defined on Θd such that r(θ1, . . . , θd) = (r(θ1, θ2), . . . , r(θd−1, θd)). The
least-squares estimator based on dependence coefficients is defined as

θ̂ = argmin
θ∈Θd

‖r̂− r(θ)‖2 , (18)

where the quantity r̂ = (r̂1,2, . . . , r̂d−1,d) is an empirical estimator of r(θ0). The
empirical coefficient r̂ has to be chosen such that, as n → ∞,

r̂
P→ r(θ0) and

√
n(r̂− r(θ0))

d→ N(0,Σ), (19)

for some symmetric and positive definite matrix Σ. For example, the con-
vergences (19) hold for the Spearman’s rho and the Kendall’s tau dependence
coefficients, see [18].

Example 5 (Spearman’s rho). Let r(θi, θj) be the Spearman’s rho (4) of (Xi, Xj).

Let Û
(k)
i =

∑n
l=1 1(X

(l)
i ≤ X

(k)
i )/(n+ 1) and put

r̂i,j =

∑n
k=1

(
Û

(k)
i − Û i

)(
Û

(k)
j − Û j

)

[∑n
k=1

(
Û

(k)
i − Û i

)2 ∑n
k=1

(
Û

(k)
j − Û j

)2
]1/2 ,

where Û i =
∑n

k=1 U
(k)
i /n. Then (19) holds.

Example 6 (Kendall’s tau). Let r(θi, θj) be the Kendall’s tau (4) of (Xi, Xj)
and put

r̂i,j =

(
n

2

)−1 ∑

k<l

sign
(
(X

(k)
i −X

(l)
i )(X

(k)
j −X

(l)
j )

)
,

where sign(x) = 1 if x > 0, −1 if x < 0 and 0 if x = 0. Then (19) holds.
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The relationship (14) suggests that the extremal dependence coefficient can
be used to estimate the parameters of an extreme-value copula. If the margins
Fi are known, (19) holds with various empirical estimators of the extremal
dependence coefficient, see [24]. In the following example, an estimator proposed
in [13] is used.

Example 7 (extremal dependence coefficient). Assume that C is an extreme-

value copulas and put U
(k)
i = Fi(X

(k)
i ). Let r(θi, θj) be the extremal dependence

coefficient (4) of (Xi, Xj). Put

r̂i,j = 3− 1

1−∑n
k=1 max(U

(k)
i , U

(k)
j )/n

.

Then (19) holds.

The least-squares estimator is unique with probability tending to one, con-
sistent, and asymptotically normal under mild assumptions that are stated in
the following proposition, due to [24].

Proposition 4. Suppose that (19) and the following assumptions hold.

(A1) The map r is a twice continuously differentiable homeomorphism from Θd

to its image r(Θd).

(A2) The Jacobian matrix of the map r at θ0, that is,

J :=




∂r(θ)
∂θ1

∣∣∣
θ=θ0

∂r(θ)
∂θ2

∣∣∣
θ=θ0

· · · ∂r(θ)
∂θd

∣∣∣
θ=θ0

...
...

∂r(θ)
∂θ1

∣∣∣
θ=θ0

∂r(θ)
∂θ2

∣∣∣
θ=θ0

· · · ∂r(θ)
∂θd

∣∣∣
θ=θ0


 ,

is of full rank.

Then, as n → ∞, the estimator θ̂ defined in (18) is unique with probability
tending to one, consistent for θ0, and asymptotically normal

√
n(θ̂ − θ0)

d→ N(0,Ξ), where Ξ =
(
JTJ

)−1
JTΣJ

(
JTJ

)−1
.

Remark 3. From the asymptotic normality of θ̂, standard arguments in math-
ematical statistics yield, as n → ∞,

n(θ̂ − θ0)
TΞ(θ̂)−1(θ̂ − θ0)

d→ χ2
d,

where χ2
d stands for a chi-square distribution with d degrees of freedom. This

result will be useful in Section 4.1.1 to assess the accuracy of the inference.

The map r of one-factor copula models possesses the property that all of its
components involve the same bivariate function r. This allows to establish a
lemma that gives sufficient conditions for the assumptions of Proposition 4 to
hold.

11



Lemma 1. (i) Define the univariate function rθj (θi) := r(θi, θj) and as-
sume that it is a twice continuously differentiable homeomorphism. Let
r1,2, . . . , rd−1,d be p elements of r(Θd). Define si,j(θ) := r−1

θ (ri,j) for
θ ∈ Θ. Then, the function s1,3 ◦ s1,2 ◦ s2,3 has at least one fix point, that
is, the equation

s1,3 ◦ s1,2 ◦ s2,3(θ) = θ, θ ∈ Θ (20)

has at least one solution.

(ii) If, moreover, the function s1,3 ◦ s1,2 ◦ s2,3 has exactly one fix point, that
is, equation (20) has exactly one solution, then the assumptions (A1) and
(A2) of Proposition 4 hold.

The fact that the extremal dependence coefficients of the EV-FDG bivariate
margins write λi,j(θ) = λ(θi)λ(θj), where

λ(θ) = 1− ∂f(t, θ)

∂t

∣∣∣
t=1

, θ ∈ Θ,

allows to apply Lemma 1 and therefore to satisfy the assumptions of Proposi-
tion 4.

Corollary 1. Assume that (X1, . . . , Xd) has EV-FDG (15) as copula and con-
sider one of the following cases:

• The generators are Cuadras-Augé (6) and Θ = (0, 1).

• The generators are Fréchet (7) and Θ = (0, 1).

• The generators are Durante-sinus (8) and Θ = (0, π/2).

Then the assumptions (A1) and (A2) of Proposition 4 hold with r(θi, θj) and r̂

being as in Example 7.

Remark 4. For the FDG copula with Fréchet generators presented in Exam-
ple 2, the Spearman’s rho dependence coefficient is equal to the extremal depen-
dence coefficient, hence, one can also apply Lemma 1 to this copula. Therefore,
also for this model, the assumptions (A1) and (A2) of Proposition 4 hold with
r(θi, θj) and r̂ being as in Example 5.

Except for the FDG copula with Fréchet generators (see Remark 4), the
results of Corollary 1 could not be extended to general FDG copulas because
the analytical forms of the Spearman’s rho and Kendall’s tau dependence coef-
ficients are not as simple as the forms of the extremal dependence coefficients.
Nonetheless, we shall provide empirical evidence by means of numerical experi-
ments in Section 4.1 that the assumptions of Proposition 4 are likely to hold.

4 Applications to simulated and real datasets

The modeling of data with (EV-)FDG copulas is illustrated through numerical
experiments in Section 4.1 and a real dataset application in Section 4.2. In the
numerical experiments, we first provide empirical evidence to support the as-
sumptions (A1) and (A2) of Proposition 4. We then illustrate, by fitting d = 50
variables, that the proposed FDG copulas are well suited for high-dimensional
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applications. In the real dataset application, critical levels of potentially danger-
ous hydrological events are estimated. Throughout this section, the four copulas
of Example 1–4, are respectively referred to as FDG-CA, FDG-F, FDG-sinus,
and FDG-exponential.

The minimization of the loss function (18) was carried out with standard
gradient descent algorithms whose implementations can be found in the function
optim from the R software [27]. In principle, several runs with different starting
points should be tested to ensure that the global minimizer is reached. However,
we found that a single run was enough to find what appeared to be the global
optimum. Thus, the loss functions one encounters when dealing with FDG
copulas seem to be easy to minimize in practice.

4.1 Numerical experiments

4.1.1 Empirical evidence in favor of the assumptions of Proposition 4

The first step of this numerical experiment consists of generating 200 datasets
of dimension d = 4 and size n = 500 for each of the copulas FDG-CA, FDG-F,
FDG-sinus, and FDG-exponential. The true parameter vectors were respec-
tively set to

(0.6, 0.7, 0.8, 0.9), (0.3, 0.5, 0.7, 0.9), (1, 1.2, 1.37, 1.55) and (3, 8.7, 14.3, 20).

The second step consists of estimating the parameters of the models. To this
end, the loss function (18) was used with the Spearman’s rho dependence coeffi-
cient as in Example 5. The amount of time required with a 8 GiB memory and
3.20 GHz processor computer to carry out the simulation of one dataset of size
n = 500 and dimension d = 4 and perform the corresponding inference is given
in Table 2 (columns d = 4). The computational costs for performing the infer-
ence of FDG-exponential and FDG-sinus are larger because their dependence
coefficient expressions, given in Example 3 and 4, involve integrals which have
to be computed numerically. The third step consists of defining and computing

Time (ms)
Simulation Inference

Copula d = 4 d = 50 d = 4 d = 50
FDG-CA 1.3 16 8 920
FDG-F 0.2 1 2 390

FDG-sinus 0.7 7 62 9700
FDG-exponential 2.2 25 228 82700

Table 2: Time required, in milliseconds, to simulate a dataset of size n = 500
and dimension d, and to perform the corresponding inference.

error criteria in order to assess the inference method accuracy. For each dataset
and each model, the mean absolute error and the relative mean absolute error,
respectively defined as

MAEr =
1

p

∑

i<j

|ri,j − r(θ̂i, θ̂j)| and RMAE =
1

d

d∑

i=1

|θ̂i − θ0i|
θ0i

,
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were computed and averaged over the replications. These criteria are reported
in Table 3 (columns d = 4).

MAEr RMAE
Copula d = 4 d = 50 d = 4 d = 50
FDG-CA 0.03 0.03 0.08 0.06
FDG-F 0.03 0.03 0.08 0.06

FDG-sinus 0.03 0.02 0.08 0.05
FDG-exponential 0.03 0.03 0.08 0.17

Table 3: (Relative) mean absolute errors averaged over the 200 dataset replica-
tions for the four FDG copula models.

All the models giving the same small errors, it seems that the method pro-
posed in Section 3 to estimate the parameters of FDG copulas works well in prac-
tice. In order to check the validity of the estimator’s asymptotic distribution,
and since this distribution is multivariate – hence, not straightforward to study
–, we rely on the following argument. If the assumptions of Proposition 4 hold,

then, by Remark 3, the values n(θ̂
(k)−θ0)

TΞ(θ̂
(k)

)−1(θ̂
(k)−θ0), k = 1, . . . , 200,

should be approximately χ2
d distributed, where θ̂

(k)
denotes the parameter vec-

tor estimated on the k-th dataset replication. This approximation, shown in
Figure 1, appears to be satisfactory. Therefore, the assumptions of Proposi-
tion 4 are more likely. Recall that these assumptions lead to the consistency
and asymptotic normality of the parameter vector estimator for FDG copulas.

4.1.2 A high-dimensional illustration

The experiment carried out in Section 4.1.1 is repeated but the dimension is
increased to d = 50. The coordinates of the parameter vector were chosen to
be regularly spaced within [0.3, 0.9], [0.3, 0.9], [1, 1.55] and [3, 20] for FDG-CA,
FDG-F, FDG-sinus, and FDG-exponential respectively. The amount of time
required to simulate a dataset of size n = 500, d = 50 and to perform the
corresponding inference is given in Table 2 (columns d = 50). Simulating all
the models even in high dimension is instantaneous because of the conditional
independence property seen in (1). Less than 2 minutes are necessary to fit
all the models. In particular, simulating or fitting FDG-F is instantaneous.
The MAEs/RMAEs computed in this high-dimensional context are reported in
Table 3 (columns d = 50). The results are quite satisfying for FDG-CA, FDG-F
and FDG-sinus: although the sample size n did not increase, the error values are
similar to those found in Section 4.1.1. The inference for these models seems not
to be sensitive to the dimension. FDG-exponential has a larger RMAE, but it
is still below 17%, and its MAEr is as good as the other models. To summarize,
FDG copulas seem to scale up well.

4.2 Application to a hydrological dataset

4.2.1 Data and context

The dataset consists of n = 32 observations (X
(k)
1 , . . . , X

(k)
d ), k = 1, . . . , n, of

annual maxima river flow rates located at d = 9 sites across south-east France
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Figure 1: Histograms of n(θ̂
(k) − θ0)

TΞ(θ̂
(k)

)−1(θ̂
(k) − θ0), k = 1, . . . , 200,

together with the density of a χ2
d distribution. From left to right, top to bottom:

FDG-CA, FDG-F, FDG-sinus, and FDG-exponential.

between 1969 and 2007 (some records are missing). Let us denote by F the dis-
tribution with continuous margins F1, . . . , Fd of the random vector (X1, . . . , Xd)
whose realizations provide the observed dataset. The location of the sites are
shown in Figure 2. The number of variable pairs is p = 36. Due to the het-
erogeneous dispersion of the sites, the span of positive dependence is almost
maximum; for instance, the Spearman’s rho dependence coefficients range from
about 0 to 0.9.

In hydrology, it is of interest to get information about the statistical distri-
bution of a potentially dangerous event, such as {F1(X1) > q, . . . , Fd(Xd) > q},
or, equivalently, {min(F1(X1), . . . , Fd(Xd)) > q}, where q is the critical level
associated to that event. The return period T is defined as

T =
1

1−M(q)
, where M(q) = P (min(F1(X1), . . . , Fd(Xd)) ≤ q). (21)

For instance, a return period of T = 30 years and a critical level of q = 0.7 means
that each Xi exceeds its quantile of order 70% once every 30 years in average.
A common question in the study of extreme events is the following. Given a
return period T , how dangerous is the corresponding event? In other words,
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Figure 2: Location of the 9 sites for the flow rate dataset. The sea in dark blue
at the bottom (south) is the Mediterranean sea. The rivers are shown in light
blue. The river flowing from north to south in the green area is the Rhône.
Green indicates low altitude, and orange high altitude. The map of this figure
was drawn with Géoportail www.geoportail.gouv.fr.

what is the associated critical level q? The answer is obtained by inverting (21)

q = M−1

(
1− 1

T

)
. (22)

Thus, the answer q is the quantile of order 1 − 1/T of the distribution M .
This quantile can be estimated empirically from the data and parametrically by
fitting a model to the data.

Potentially dangerous events happen with the co-occurrence of extremely
high flow rates at several locations. Thus, it is clear that the models to de-
scribe this dataset should be upper tail dependent. Hence, good candidates are
the copulas of Example 1–3, referred to as FDG-CA, FDG-F, and FDG-sinus
respectively, and all the extreme-value copulas. However, as it was shown in Re-
mark 1, the Spearman’s rho of FDG-sinus cannot take values greater than 0.37.
Hence, this copula is removed from the candidate models. So the considered
models are FDG-CA, FDG-F, and their extreme-value attractor EV-FDG-CAF
given in (15) (recall that FDG-CA and FDG-F lead to the same extreme-value
copula). Two other popular copula models, the Gumbel and Student copulas,
are also fitted to the data. The Gumbel copula is famous among hydrologists [29]
and the Student copula is well known in risk management [25]. They serve as
a benchmark for our models. A factor structure is assumed for the Student
copula, that is, its (i, j)-th element (i 6= j) of its correlation matrix writes θiθj ,
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where θ1, . . . , θd belong to [−1, 1]. Recall that a Gumbel copula is an extreme-
value copula. More details about the Gumbel and the Student copula can be
found respectively in, e.g., [19, 26] and [8].

4.2.2 Method

A practically convenient approach dicted the estimation of the copula param-
eters. For each copula model, the dependence coefficients with the simplest
mathematical forms were chosen to build the loss function (18). In other words,
the parameters of FDG-F and FDG-CA were estimated with the Spearman’s
rho as in Example 5. The parameters of EV-FDG-CAF were estimated with
the extremal dependence coefficient as in Example 7. The parameters of the
Gumbel and Student copulas were estimated with the Kendall’s tau as in Ex-
ample 6. Finally, the degree of freedom of the Student copula was estimated
by maximizing its likelihood but with all the parameters of the correlation ma-
trix held fixed. This approach improves the speed, tractability, and chances of
success of the minimization procedure.

To be valid, the asymptotic properties of the estimator based on the ex-
tremal dependence coefficients require the knowledge of the marginal distribu-
tions Fi. Assuming that the data come from an extreme-value distribution,
the marginal distributions theoretically pertain to the family of the Generalized
Extreme Value (GEV) distributions. The good results of the GEV fit to the
data margins are depicted by the quantile-quantile plot in Figure 3. In addi-
tion to transform the data to have standard uniform margins, these fitted GEV
distributions served to calculate the critical levels of (22) as well. This primary
step, that of fitting a parametric model to the margins, is standard in extreme-
value statistics; see, for instance, [6] Chapter 8 and [28]. Details for the GEV
distribution are to be found, e.g., in [6] Chapter 3.

4.2.3 Results

The fit of the tested copulas was assessed by comparing the pairwise dependence
coefficients and the critical levels.

Pairwise dependence coefficients. The mean absolute error (MAE), de-
fined as

MAEr =
1

p

∑

i<j

∣∣r̂i,j − r(θ̂i, θ̂j)
∣∣

was computed for the Spearman’s rho (MAEρ), the Kendall’s tau (MAEτ ) and
the extremal dependence coefficient (MAEλ). They are reported in Table 4.
MAEλ was computed only for EV-FDG-CAF and the Gumbel copula because,
with this dependence coefficient, (19) holds only for extreme-value copulas, see
Example 7. The Gumbel copula has the largest errors (more than 0.17) and does
not seem to fit the data well. This was expected, because this model has only one
parameter to account for a d = 9 dimensional phenomenon. All the remaining
errors (but MAEρ for EV-FDG-CAF) are smaller and of the same magnitude.
Thus, according to these criteria, the Gumbel copula is not appropriate.
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Figure 3: Quantile-Quantile plots with confidence intervals for the GEV fit of
the data margins.

FDG-F FDG-CA EV-FDG-CAF Gumbel Student
MAEρ 0.12 0.12 0.17 0.22 0.12
MAEτ 0.12 0.11 0.12 0.17 0.10
MAEλ 0.11 0.45

Table 4: Mean absolute error for the Spearman’s rho (MAEρ), Kendall’s tau
(MAEτ ) and extremal (MAEλ) dependence coefficient of the models.

Critical levels. The critical levels obtained from the empirical data and the
models were calculated by making use of (22). In statistical terms, this amounts
to compare the quantiles of the distribution M under the empirical data and
under the different models. The results are presented in Figure 4, where the
independence copula C(u1, . . . , ud) = u1 . . . ud was added to emphasize the need
for a joint model on such a dataset. The Gumbel model is confirmed to perform
poorly. FDG-F, FDG-CA and EV-FDG-CAF seem to fit the data quite well.
In particular, FDG-F and FDG-CA are as close as the Student copula to the
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empirical curve.

Figure 4: Critical level q as a function of the return period T . “empirical” stands
for the empirical critical levels, and “independence” for the independence copula
C(u1, . . . , ud) =

∏d
i=1 ui.

With such a small sample size n = 32, one must be extremely careful when
looking at empirical data, because one is likely to observe a large deviation from
the true underlying statistical distribution. In view of this remark, one should
select a statistical model based not only on empirical data, but also on the model
properties. The class of FDG copulas is very interesting in this respect. Indeed,
the practitioner has with this class three models that fit well the data and with
different features: FDG-F is upper, lower, and symmetric tail dependent, FDG-
CA is upper tail dependent but no lower tail dependent, and EV-FDG-CAF is
an extreme-value copula. The user is then free to choose the model that most
suits his expert knowledge about the underlying phenomenon at play. The test
of extreme-value dependence [20] gave a p-value of 0.21, which means that one
does not reject extreme-value copulas at the 5% level. Of course, as before, one
must be extremely careful when looking at the p-value because of the small data
sample size. However, no other statistical tests are available in such a situation.
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5 Discussion

In this article, we have constructed a new class of copulas by combining one-
factor copulas, that is, a conditional independent property, together with a class
of bivariate copulas called the Durante class of bivariate copulas. This combi-
nation led to many advantageous properties. The copulas within the proposed
class, referred to as FDG copulas, are tractable, flexible, and cover all types
of tail dependencies. The theoretically well grounded least-squares inference
estimator is particularly well suited for FDG copulas because their dependence
coefficients are easy to compute, if not in closed form. This allows to perform
fast and reliable inference in the parametric case. We have demonstrated, fur-
thermore, that FDG copulas work well in practice and are able to model both
high-dimensional and real datasets. Finally, we have derived the extreme-value
copulas (EV-FDG) associated to FDG copulas, yielding a new extreme-value
copula, which can be viewed as a generalisation of the well known Cuadras-Augé
copula. This copula benefits from almost all the many advantageous properties
of FDG copulas, and therefore opens the door for statistical analyses of extreme
data in high dimension.

One may argue that a model with a singular component, as a FDG copula, is
not natural nor realistic to model hydrological data. While this may be true in
the bivariate case, this argument becomes weaker when the dimension increases.
Indeed, in high-dimensional applications, the focus is less on the distribution
itself than on a feature of interest of the data, such as, for instance, the critical
levels defined in (22). If alleged “unrealistic” models are able to better estimate
these features than “realistic” models – compare the fit of the Gumbel copula
to the fit of FDG copulas in Section 4.2 – then one should consider using them.

This work raises several research questions. First, how to estimate the gen-
erators nonparametrically? The generator of a bivariate Durante copula was
estimated nonparametrically in [10], but the matter is more complicated in our
case because this bivariate relationship occurs between the variable of interest
and the unobserved latent factor. Second, one may add more factors when
building an FDG copula. Nonetheless, the model might not be as tractable as
it is and therefore it may be less appealing in practice. Finally, FDG copulas
possess the conditional independence property, but the extreme-value EV-FDG
copulas were not shown to do so. If this property held, this would be of great
interest for the simulation of datasets from this model.

Acknowledgment. The authors thank “Banque HYDRO du Ministère de
l’Écologie, du Développement durable et de l’Énergie” for providing the data and
Benjamin Renard for fruitful discussions about statistical issues in hydrological
science.

20



A Appendix

Proof of Theorem 1

Let Cj|0(·|u0) be the conditional distribution of Uj given U0 = u0. The Uj ’s are
conditionally independent given U0, hence,

C(u) =

∫ 1

0

d∏

j=1

Cj|0(uj |u0)du0 (23)

=

∫ 1

0

d∏

j=1

∂C0j(u0, uj)

∂u0
du0

=

∫ 1

0

d∏

j=1

∂C0(j)(u0, u(j))

∂u0
du0

=

∫ u(1)

0

d∏

j=1

∂C0(j)(u0, u(j))

∂u0
du0

+

d∑

k=2

∫ u(k)

u(k−1)

k−1∏

j=1

∂C0(j)(u0, u(j))

∂u0

d∏

j=k

∂C0(j)(u0, u(j))

∂u0

+

∫ 1

u(d)

d∏

j=1

∂C0(j)(u0, u(j))

∂u0
du0.

Since

∂C0j(u0, uj)

∂u0
=

{
fj(uj) if u0 < uj

ujf
′
j(u0) if u0 > uj ,

(23) yields

C(u) =u(1)

d∏

j=1

fj(uj) +

d∑

k=2

d∏

j=k

f(j)(u(j))

∫ u(k)

u(k−1)

k−1∏

j=1

u(j)f
′
(j)(u0)du0

+

d∏

j=1

uj

∫ 1

u(d)

f ′
j(u0)du0.

Putting u(1) in factor and noting that
∫ u(2)

u(1)
f ′
(1)(x)dx = f(1)(u(2)) − f(1)(u(1))

finishes the proof.

Proof of Proposition 1

It suffices to set all uk equal to one but ui and uj in the formula (3).

Proof of Proposition 2

It suffices to apply the formulas (5) with fij given in Proposition 1. To compute
the Spearman’s rho, note that

∫ 1

0

x2fij(x)dx =

∫ 1

0

x2fi(x)fj(x)dx+

∫ 1

0

x3

∫ 1

x

f ′
i(z)f

′
j(z)dzdx.
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An integration by parts yields
∫ 1

0
x3

∫ 1

x
f ′
i(z)f

′
j(z)dzdx = (1/4)

∫ 1

0
x4f ′

i(x)f
′
j(x)dx

and the result follows.

Proof of Theorem 2

Fix (u1, . . . , ud) ∈ [0, 1]d and let n ≥ 1 be an integer. Put

αn :=u
1/n
(1)

d∏

j=1

fj(u
1/n
j )

u
1/n
j

,

βn :=

∫ 1

u
1/n

(d)

d∏

j=1

f ′
j(u0)du0,

γn :=
d∏

j=k

f(j)(u
1/n
(j) )

u
1/n
(j)

,

δn,k :=

∫ u
1/n

(k)

u
1/n

(k−1)

k−1∏

j=1

f ′
(j)(u0)du0,

and define

An := αn + βn +

d∑

k=2

γn,kδn,k.

We are going to derive asymptotic equivalent sequences for αn, βnγn and δn.
Let ∼ denote the equivalent symbol at infinity (i.e., an ∼ bn means an/bn → 1
as n → ∞). By using the well known formulas ex ∼ 1 + x (when x → 0),
log x ∼ x− 1 (when x → 1) and fj(x) ∼ 1 + (x− 1)f ′

j(1) (when x → 1) we get

αn ∼
(
1 +

1

n
log u(1)

)(
1− 1

n
log(u1 . . . ud)

)
1 +

1

n

d∑

j=1

log u(j)f
′
(j)(1)


 and

γn,k ∼


1− 1

n

d∑

j=k

log u(j)





1 +

1

n

d∑

j=k

log u(j)f
′
(j)(1)


 .

For βn the equivalence is obtained as follows. Let F (x) be a primitive of∏d
j=1 f

′
j(x). It follows that βn = F (1)− F (u

1/n
(d) ). A Taylor expansion yields

F (u
1/n
(d) ) = F (1) + (u

1/n
(d) − 1)F ′(1) +

(u
1/n
(d) − 1)2

2
F ′′(xn)

where xn is between u
1/n
(d) and 1. Since F ′′ is assumed to be continuous on [0, 1],

it is uniformly bounded on this set and therefore (u
1/n
(d) − 1)2F ′′(xn)/2 = o(1/n)

where o(1/n) is a quantity such that no(1/n) → 0 as n → ∞. Hence, since

u
1/n
(d) = exp(log(u(d))/n) ∼ 1 + log(u(d))/n, we have as n → ∞

F (1)− F (u
1/n
(d) ) ∼ − 1

n
log(u(d))F

′(1).

22



The same arguments apply to get

βn ∼ − 1

n
log u(d)

d∏

j=1

f ′
j(1)

δn,k ∼ 1

n
log

(
u(k)

u(k−1)

) k−1∏

j=1

f ′
(j)(1).

The quantity An is a polynomial with respect to n−1 of order at most three.
In (24), the coefficients of order 0, 2, and 3 vanish at infinity. Only remain the
terms of order 1, hence,

lim
n↑∞

n(An − 1) = log u(1) − log(u1 . . . ud) +

d∑

j=1

log u(j)f
′
(j)(1) (24)

− log u(d)

d∏

j=1

f ′
(j)(1) +

d∑

k=2

k−1∏

j=1

f ′
(j)(1) log

(
u(k)

u(k−1)

)
.

From Abel’s identity, that is,
∑d−1

i=1 ai(bi+1−bi) =
∑d−1

i=1 bi(ai−1−ai)+ad−1bd−
a1b1 for two sequences (ai) and (bi) of real numbers, we can write

lim
n↑∞

n(An − 1) =

d∑

k=1







k−1∏

j=1

f ′
(j)(1)


 (1− f ′

(k)(1)) + f ′
(k)(1)− 1

︸ ︷︷ ︸
=:χk




log u(k),

with the convention that
∏0

j=1 f
′
(j)(1) = 1. From (3) it follows that

Cn(u
1/n
1 , . . . , u

1/n
d ) =u1 . . . ud exp [n logAn]

=u1 . . . ud exp [n(An − 1)(1 + o(1))]

→
d∏

i=k

uχk

(k)

as n → ∞.

Proof of Lemma 1

(i) Since the p-uple (r1,2, . . . , rd−1,d) belongs to the image space r(Θd), the
system

r(θ1, θ2) =r1,2

...

r(θd−1, θd) =rd−1,d

has at least one solution. In particular, there exists (θ1, θ2, θ3) in Θ3 such that

r(θ1, θ2) =r1,2

r(θ1, θ3) =r1,3

r(θ2, θ3) =r2,3. (25)
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The system (25) rewrites

rθ2(θ1) =r1,2

rθ3(θ1) =r1,3

rθ3(θ2) =r2,3,

or equivalently,

θ1 =s1,2(θ2)

θ1 =s1,3(θ3)

θ2 =s2,3(θ3).

This yields

s1,3(θ3) = s1,2 ◦ s2,3(θ3). (26)

Note that s1,3 is involutive at θ3, that is, s1,3 ◦s1,3(θ3) = θ3. Indeed, r(θ1, θ3) =
rθ3(θ1) = r1,3 is equivalent to θ1 = r−1

θ3
(r1,3) = s1,3(θ3). This implies r(s1,3(θ3), θ3) =

r1,3, and, composing by r−1
s1,3(θ3)

in both sides, we get r−1
s1,3(θ3)

(r1,3) = s1,3(s1,3(θ3)) =

θ3. Therefore, one can compose both sides of (26) by s1,3 to get

θ3 = s1,3 ◦ s1,2 ◦ s2,3(θ3).

Hence (20) has at least one solution.
(ii) If (20) admits exactly one solution θ3, then θ2 and θ1 are also unique.

Furthermore, for all j ≥ 3,

θj+1 = sj,j+1(θj)

which concludes the proof that assumption (A1) holds. It is now shown that
assumption (A2) holds as well. Define ∂1r, respectively, ∂2r, the derivative of r
with respect to the first, respectively, second, variable of r. Hence for all θi and
θj in Θ, the quantities ∂1r(θi, θj) and rθj (θi) only differ in the notation. The
first step in the proof is to consider the case d = 3. The Jacobian matrix of r
at θ0 is given by

J =



∂1r(θ01, θ02) ∂2r(θ01, θ02) 0
∂1r(θ01, θ03) 0 ∂2r(θ01, θ03)

0 ∂1r(θ02, θ03) ∂2r(θ02, θ03)


 .

To show that J has full rank, we show that its determinant

∂1r(θ01, θ02)∂2r(θ01, θ03)∂1r(θ02, θ03) + ∂2r(θ02, θ03)∂1r(θ01, θ03)∂2r(θ01, θ02)

is nonzero. Indeed, note that for all θ in Θ, the map rθ : Θ → rθ(Θ) is a twice
continuously differentiable homeomorphism. Furthermore, by assumption, the
true parameter vector θ0 lies in the interior of Θ that is open. Finally, by
symmetry, for all i < j,

∂r1(θ0i, θ0j) > 0 (respectively ∂r1(θ0i, θ0j) < 0)

is equivalent to

∂r2(θ0j , θ0i) > 0 (respectively ∂r2(θ0j , θ0i) < 0).
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For the general case, we proceed by mathematical induction. When the
dimension is d, write J(θ) = J(d)(θ) to emphasize the dependence on the di-
mension. Notice that it was already shown above that J(3)(θ) has full rank.
Now suppose that the kernel of J(d−1)(θ) is null when the dimension is d − 1.
Let A = J(d)(θ). Each row of A writes

(0, . . . , 0, ∂1r(θi, θj), 0 . . . , 0, ∂2r(θi, θj), 0, . . . , 0)

where ∂1r(θi, θj) is at the i-th position and ∂2r(θi, θj) at the j-th position.
There are d−1 rows of A which depend on θd and p−d+1 which do not (recall
p = d(d− 1)/2 is the number of pairs). Since the kernel of a matrix is invariant
by permutation, we can without loss of generality put all the rows which do not
depend on θd on the top. More precisely, decompose A as

A =

(
A11 A12

A21 A22

)

such that A11 is a (p− d+1)× (d− 1) matrix containing all the rows which do
not depend on θd and A12 and A22 are (p− d+1)× 1 and (d− 1)× 1 matrices
respectively. Note that A12 is the null vector of size p− d+ 1× 1. Let x ∈ R

d,
x = (xT

1 , x2)
T where x1 ∈ R

d−1, x2 ∈ R. It follows that Ax = 0 is equivalent
to

{
A11x1 +A12x2 = 0

A21x1 +A22x2 = 0.

But A12 = 0 and since A11 = J(d−1)(θ) whose kernel is null, x1 = 0. Then
A22x2 = 0 and the assumptions imply x2 = 0, which concludes the proof.

Proof of Corollary 1

To prove Corollary 1, it suffices to apply Lemma 1. Since r(θi, θj) denotes the
extremal dependence coefficient of the E copula bivariate marginal C#,ij defined
in (16), we have

r(θi, θj) = λ(θi)λ(θj), where

λ(θ) := 1− ∂f(t, θ)

∂t

∣∣∣
t=1

. (27)

In the Cuadras-Augé and the Fréchet cases, (27) is given by λ(θ) = θ, and in the
sinus case, λ(θ) = 1− θ/ tan(θ). In all these situations, it is easy to see that the
map rθj (·) is a twice continuously differentiable homeomorphism. Therefore,
Lemma 1 (i) applies.

To apply the second part of Lemma 1, note that equation (20) translates
into

λ(θ)2 =
r1,3r2,3
r1,2

.

Since it has a unique solution, Lemma 1 (ii) applies, and the result is proved.
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