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A nonparametric class of one-factor copulas to

balance flexibililty and tractability

Gildas Mazo, Stéphane Girard and Florence Forbes

April 14, 2014

Abstract

Copulas are a useful tool to model multivariate distributions. While

there exist various families of bivariate copulas, the construction of flexi-

ble and yet tractable high dimensional copulas is much more challenging.

This is even more true if one is concerned with extreme-value copulas.

In this paper, we construct a nonparametric one-factor copula exhibiting

a good balance between tractability and flexibility. This copula is built

upon nonparametric generators, thus allowing to get away from restrictive

parametric assumptions. Moreover, the analytical form of the copula al-

lows to explicitly calculate the dependence coefficients and the associated

extreme-value copula.

1 Introduction

The modelling of random multivariate events is a central problem in various
scientific domains and the construction of multivariate distributions able to
properly model the variables at play is challenging. To address this problem,
the concept of copulas is a useful tool as it permits to impose a dependence
structure on pre-determined marginal distributions.

While there are many copula families in the bivariate case, it is less clear how
to construct higher dimensional copulas, especially if the data provide evidence
of tail dependence or non Gaussian behaviors. To deal with such data, various
copula models exist in the literature.

The class of Archimedean copulas [7, 12, 17] is very popular. Indeed, these
copulas possess several advantages. First, they are explicit and tractable, a
feature more and more important as the dimension increases. Second, they
allow to model a different behavior in the lower and upper tails. For instance,
Gumbel copulas are upper tail dependent but not lower tail dependent, and the
opposite holds for Clayton copulas. However, Archimedean copulas also suffer
from a severe drawback. Indeed, in practice, they are typically governed by only
one or two parameters, hence the dependence structure is severly restricted. In
particular, their dependence structure is exchangeable, meaning that all the
pairs of variables have the same distribution.

Nested Archimedean copulas [10, 11] are a class of hierarchical copulas gen-
eralizing the class of Archimedean copulas. They allow to introduce asymmetry
in the dependence structure but only between groups of variables. This hi-
erarchical structure is not desirable when no prior knowledge of the random

1



phenomenon under consideration is available. Furthermore, constraints on the
parameters restrict the tractability of these copulas.

The class of elliptical copulas (see e.g. [16] Section 5) is radially symmetric.
This means that the same statistical behavior is expected in the lower and upper
tails, which may not be the case in applications.

Vines [1], or pair copula constructions, are flexible copula models but they
are not easy to handle, as the modeling process is rather cumbersome. Indeed,
modeling data with Vines demands to specify certain links between the variables
a priori. Furthermore, the computation of the likelihood is challenging, and one
is often obliged to require to a so called simplifying assumption, that is, to
assume that the conditional pair-copulas depend on the conditioning variables
only indirectly through the conditional margins. This simplifying assumption
can be misleading [2].

Recently, a model involving latent factors has been proposed [13]. This cop-
ula model can be regarded as a truncated Vine copula to simplify the modeling
process. The variables of interest are independent given the factors, thus al-
lowing to simulate easily from this copula. When there is only one factor, this
copula is parsimonious, as it requires only d parameters, where d is the number
of variables at play. Still, this copula presents a flexible dependence structure,
since various tail behaviors can be obtained. Nonetheless, only parametric fac-
tor copulas have been considered until now. This is a restriction, because one
has to hope that a parametric family would fit the data in a reasonable way.
Moreover, the copula expression, which writes as an univariate integral, could
not be calculated, thus preventing a finer analysis of its dependence properties.
Finally, this copula has not been proved to be an extreme-value copula, thus
discarding it from the theoretical well grounded copulas suited for extreme-value
analysis.

In this paper, we propose a nonparametric one-factor copula whose expres-
sion writes in closed form. This advantage permits to explicitely derive the
dependence coefficients thus allowing to see that all types of dependence struc-
tures can be obtained. Moreover, we are able to derive the extreme-value copu-
las associated to the nonparametric one-factor model by computing the limiting
distribution of the normalized maxima. Finally, even though the nonparamet-
ric one factor copula is not differentiable, we use recent theoretical results to
propose to base the inference on the dependence coefficients, whose resulting
estimator is proved to be consistent and asymptotically normal.

The remaining of this paper is as follows. Section 2 presents the nonpara-
metric one-factor model, Section 3 deals with inference, and Section 4. The
proofs are postponed to the Appendix.

2 A nonparametric class of one-factor copulas

to balance flexibility and tractability

Since the proposed nonparametric one-factor copulas are special cases of the
more general one-factor copulas, we introduce the later in Section 2.1. The
construction and properties of the nonparametric one-factor copula is given
in Section 2.2. Parametric examples are given in Section 2.3. The extreme-
value copula associated to the nonparametric one-factor copula are derived in
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Section 2.4.

2.1 One-factor copulas

Let U0, U1, . . . , Ud be standard uniform random variables such that the coordi-
nates of (U1, . . . , Ud) are independent given U0. Let us write C0i the distribution
of (U0, Ui) and Ci|0(·|u0) the conditional distribution of Ui given U0 = u0 for
i = 1, . . . , d. It is easy to see that the distribution of (U1, . . . , Ud) is given by

C(u1, . . . , ud) =

∫ 1

0

C1|0(u1|u0) . . . Cd|0(ud|u0) du0. (1)

Since the role played by U0 is that of a latent variable, or factor, this model has
been called a one factor model in [13]. The copulas C0i are called the linking
copulas because they link the factor U0 to the variables of interest Ui. The
one-factor model has many advantages to address high dimensional problems.
We recall and briefly discuss them below.

Nonexchangeability A copula C is said to be exchangeable if C(u1, . . . , ud) =
C(uπ(1), . . . , uπ(d)) for any permutation π of (1, . . . , d). This means in
particular that all the bivariate marginals are restricted to exhibit the same
statistical behaviour. For instance, the pairs (U1, U2) and (U3, U4) have the
same distribution. As an example, Archimdean copulas are exchangeable
copulas. Needless to say, this assumption may be too strong in practice.
That is why the class of Archimedean copulas was extended to the wider
class of nested Archimedean copulas (see [15] and [12] Section 4.2). The
one-factor model has the advantage to be, in general, nonexchangeable.

Parsimony The one-factor model is parsimonious, a feature of great impor-
tance in high dimension. Indeed, only d linking copulas are involved in
the construction of the one-factor model, and since they are typically gov-
erned by one parameter, the number of parameters in total is no more
than d, which increases only linearly with the dimension.

Random generation The conditional independence property of the one factor
model allows easily to generate data (U1, . . . , Ud) from this model.

1. Generate U0 = u0, V1 = v1, . . . , Vd = vd i.i.d. standard uniform
random variables.

2. For i = 1, . . . , d, put Ui = C−1
i|0 (vi|U0 = u0) where v 7→ C−1

i|0 (v|U0 =

u0) denotes the inverse of v 7→ Ci|0(v|U0 = u0).

Properties of the one-factor model have been investigated in [13]. Regarding
tail dependence, the authors studied how tail dependence properties are trans-
mitted from the linking copulas to the one-factor copula bivariate marginals

Cij(ui, uj) := C(1, . . . , 1, ui, 1, . . . , 1, uj , 1, . . . , 1).

A bivariate copula is lower (upper) tail dependent if its lower (upper) tail depen-
dence coefficient is positive. Recall that the lower and upper tail dependence
coefficients of a bivariate copula C are respectively given by

λ(L) = lim
u↓0

C(u, u)

u
∈ [0, 1], λ(U) = lim

u↑1

1− 2u+ C(u, u)

1− u
∈ [0, 1].
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If the linking copulas C0i and C0j are lower (upper) tail dependent, then so is the
one-factor copula bivariate marginal Cij . Although this property is of interest,
it would be better if one could say, for instance, how much the bivariate marginal
is tail dependent. In other words, can we explicitly derive the tail dependence
coefficients of the Cij? Of course, the same question applies to the Spearman’s
rho and Kendall’s tau dependence coefficients.

Another question related to extreme-value statistics is the following. Is the
one-factor copula an extreme-value copula (the definition of extreme-value cop-
ulas is postponed to Section 2.4)? If not, can we calculate the limit

Cn(u
1/n
1 , . . . , u

1/n
d )

as n → ∞ to get an extreme-value copula?
These questions are part of a more general global problem of constructing a

tail dependent copula in closed structure with the widest dependence structure
possible while keeping the advantageous one-factor form. This copula may be
nonparametric to get rid of restrictive parametric assumptions during the mod-
eling process. We believe that the so called nonparametric one-factor copulas
proposed in Section 2.2 permit to answer these questions.

2.2 Nonparametric one-factor copulas to balance tractabil-

ity and flexibility

In this section, we construct a class of nonparametric one-factor copulas by
choosing appropriate nonparametric linking copulas. The selected class of non-
parametric copulas is referred to as the Durante class [4]. This class consists in
the copulas of the form

C(u, v) = min(u, v)f(max(u, v)), (2)

where f : [0, 1] → [0, 1] called the generator of C is a differentiable and increasing
function such that f(1) = 1 and t 7→ f(t)/t is decreasing. The advantages of
taking Durante copulas are twofold: we can calculate the integral (1) and the
resulting multivariate copula is nonparametric.

Theorem 1. Let C be defined by (1) and assume that C0i belongs to the Durante
class (2) with given generator fi. Then

C(u1, . . . , ud) = u(1)









d∏

j=2

u(j)





∫ 1

u(d)

d∏

j=1

f ′
j(x)dx+ f(1)(u(2))





d∏

j=2

f(j)(u(j))





(3)

+

d∑

k=3





k−1∏

j=2

u(j)









d∏

j=k

f(j)(u(j))





∫ u(k)

u(k−1)

k−1∏

j=1

f ′
(j)(x)dx



 ,

where u(i) := uσ(i), f(i) := fσ(i) and σ is the permutation of (1, . . . , d) such that
uσ(1) ≤ · · · ≤ uσ(d).

The particularity of the nonparametric one-factor copula expression (3) is
that it depends on the generators through their reordering underlain by the
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permutation σ. For instance, with d = 3 and u1 < u3 < u2 we have u(1) =
u1, u(2) = u3, u(3) = u2, σ = {1, 3, 2} and f(1) = fσ(1) = f1, f(2) = fσ(2) =
f3, f(3) = fσ(3) = f2. This feature gives its flexibility to the model, referred
to as NPOF from now on (NonParametric One-Factor model). Although the
NPOF copula expression has the merit to be explicit, it is rather cumbersome.
Hence, we shall continue its analysis through the prism of its bivariate marginals,
which reveal to belong to the Durante class as well.

Proposition 1. Let Cij be a bivariate marginal of the NPOF copula (3). Then
it belongs to the Durante class (2) with generator

fij(t) = fi(t)fj(t) + t

∫ 1

t

f ′
i(x)f

′
j(x)dx.

In other words,

Cij(ui, uj) = Cfij (ui, uj) = min(ui, uj)fij(max(ui, uj)). (4)

Thus, the NPOF model is stable in the sense that its bivariate marginals
belong to the same class as that of the bivariate linking copulas. It can be
viewed as a flexible generalization in higher dimension of the Durante class of
bivariate copulas. Another generalization has been proposed in [5]:

Cf (u1, . . . , ud) = u(1)

d∏

i=2

f(u(i)),

where f is a generator in the usual sense of the Durante class of bivariate copulas.
Unfortunately, the fact that there is only one generator to determine the whole
copula in arbitrary dimension restricts much of the applicability of this copula.

Since the bivariate marginals of the NPOF copula belong to the Durante class
of bivariate copulas, we refer to the original paper [4] for a detailed account of
their properties. Here, we shall only report the formulas for the dependence
coefficients. The Spearman’s rho ρ, the Kendall’s tau τ , the lower λ(L) and
upper λ(U) tail dependence coefficients of a bivariate copula belonging to the
Durante class with generator f are respectively given by

ρ =12

∫ 1

0

x2f(x)dx− 3,

τ =4

∫ 1

0

xf(x)2dx− 1,

λ(L) =f(0),

λ(U) =1− f ′(1).

Hence, to get the dependence coefficients of the NPOF bivariate marginals, it
suffices to apply the above formulas and Proposition 1. The pairwise dependence
coefficients of the NPOF copula are summarized in the next proposition.

Proposition 2. The Spearman’s rho, the Kendall’s tau, the lower and upper
tail dependence coefficients of the NPOF bivariate marginals Cij are respectively
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given by

ρij = 12

∫ 1

0

x2fi(x)fj(x)dx+ 3

∫ 1

0

x4f ′
i(x)f

′
j(x)dx− 3,

τij = 4

∫ 1

0

x

(

fi(x)fj(x) + x

∫ 1

x

f ′
i(t)f

′
j(t)dt

)2

dx− 1,

λ
(L)
ij = λ

(L)
i λ

(L)
j and

λ
(U)
ij = λ

(U)
i λ

(U)
j ,

where λ
(L)
i := fi(0), λ

(U)
i := 1− f ′

i(1), i = 1, . . . , d are the lower and upper tail
dependence coefficients of the bivariate linking copulas respectively.

The ability to calculate the dependence coefficients in analytical form allows
to better understand the tail dependence structure of the NPOF copula, and, in
particular, how are passed tail dependence properties from the linking copulas
to the NPOF bivariate marginals.

The results of Proposition 2 are in accordance with the results about general
one-factor copulas. Recall that it was established that if the linking copulas C0i

and C0j are lower (upper) tail dependent, then so is the bivariate marginal
Cij . It is easily seen that, here, if the linking copulas C0i and C0j are lower
tail dependent, then fi(0) > 0 and fj(0) > 0, which happens if and only if
fi(0)fj(0) > 0. In Section 2.3, various forms for the dependence coefficients are
obtained by choosing parametric families for the linking copulas.

2.3 Examples of parametric families

The multivariate NPOFmodel is determined by d generators (f1, . . . , fd). In this
section, we assume that each of these generators belong to a same parametric
family whose parameter is real. We give four examples of such families, and we
show that these families allow to get all possible types of dependence structure.

Example 1 (Cuadras-Augé generators). In (3), let

fi(t) = t1−θi , θi ∈ [0, 1]. (5)

A copula belonging to the Durante class with generator given by (5) gives rise to
the well known Cuadras-Augé copula with parameter θi [3]. By Proposition 1,
the generator for the bivariate marginal Cij of the NPOF copula is given by

fij(t) =

{

t2−θi−θj
(

1−
(1−θi)(1−θj)

1−θi−θj

)

+ t
(1−θi)(1−θj)

1−θi−θj
if θi + θj 6= 1

t(1− (1− θi)(1− θj) log t) if θi + θj = 1.

The Spearman’s rho, the lower and upper tail dependence coefficients are respec-
tively given by

ρij =
3θiθj

5− θi − θj
, λ

(L)
ij = 0 and λ

(U)
ij = θiθj .

Example 2 (Fréchet generators). In (3), let

fi(t) = (1− θi)t+ θi, θi ∈ [0, 1]. (6)
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A copula belonging to the Durante class with generator given by (6) gives rise
to the well known Fréchet copula with parameter θi [8]. By Proposition 1, the
generator for the bivariate marginal Cij of the NPOF copula is given by

fij(t) = (1− θiθj) t+ θiθj .

By noting that fij is of the form (6) with parameter θiθj, one can see that
the bivariate marginals of the NPOF copula based on Fréchet generators are
still Fréchet copulas. The Spearman’s rho, the lower and upper tail dependence
coefficients are respectively given by

ρij = λ
(L)
ij = λ

(U)
ij = θiθj .

Example 3 (Sinus generators). In (3), let

fi(t) =
sin(θit)

sin(θi)
, θi ∈ (0, π/2]. (7)

This generator was proposed in [4]. By Proposition 1, the generator for the
bivariate marginal Cij of the NPOF copula is given by

fij(t) =
sin(θit) sin(θjt)

sin(θi) sin(θj)
+

tθiθj
2(θ2j − θ2i ) sin(θi) sin(θj)

×

{

(θi + θj) [sin ((θi − θj)t) + sin (θj − θi)]

+ (θj − θi) [sin(θi + θj)− sin ((θi + θj)t)]

}

if θi 6= θj .

The Spearman’s rho, the lower and upper tail dependence coefficients are respec-
tively given by

ρij = 12(sin θi sin θj)
−1

∫ 1

0

x2 sin(θix) sin(θjx) +
1

4
θiθjx

4 cos(θix) cos(θjx)dx− 3,

λ
(L)
ij = 0 and λ

(U)
ij =

(

1−
θi

tan(θi)

)(

1−
θj

tan(θj)

)

.

Example 4 (Exponential generators). In (3), let

fi(t) = exp

(
tθi − 1

θi

)

, θi > 0 (8)

This generator was proposed in [4]. By Proposition 1, the generator for the
bivariate marginal Cij of the NPOF copula is given by

fij(t) = exp

(
tθi − 1

θi
+

tθj − 1

θj

)

+ t

∫ 1

t

exp

(
xθi − 1

θi
+

xθj − 1

θj

)

xθi+θj−2dx.

The Spearman’s rho, the lower and upper tail dependence coefficients are respec-
tively given by

ρij =12

∫ 1

0

exp

(
xθi − 1

θi
+

xθj − 1

θj

)(

x2 +
1

4
x3+θi+θj

)

dx− 3,

λ
(L)
ij =exp

(

−
1

θi
−

1

θj

)

, and λ
(U)
ij = 0.
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The tail dependence coefficients are summarized in Table 1. One can see
that all possible types of tail dependences can be obtained: the Cuadras-Augé
and sinus families allow for upper but no lower tail dependence, the exponential
family allows for lower but no upper tail dependence, and the Fréchet family
allows for both.

family of generators λ
(L)
ij λ

(U)
ij

Cuadras-Augé 0 θiθj
Fréchet θiθj θiθj
Sinus 0 (1− θi

tan θi
)(1−

θj
tan θj

)

Exponential exp(− 1
θi

− 1
θj
) 0

Table 1: Lower λ
(L)
ij and upper λ

(U)
ij tail dependence coefficients for the four

families presented in Section 2.3.

2.4 Extreme-value copulas attractors

In this section, we derive the extreme-value copulas attractors associated to
the NPOF model. This is an important result for extreme-value statistics.
Indeed, according to extreme-value theory, the proper copulas to be used for
the analysis of extreme values should be the extreme-value copulas. A copula
C# is an extreme-value copula if there exists a copula C such that

C#(u1, . . . , ud) = lim
n↑∞

Cn(u
1/n
1 , . . . , u

1/n
1 ), (9)

for every (u1, . . . , ud) ∈ [0, 1]d. We say that C# is the attractor of C and that
C belongs to the domain of attraction of C#. A popular representation of
extreme-value copulas involves the so called stable tail dependence function [9].
Let Sd−1 = {(y1, . . . , yd) ∈ [0,∞)d :

∑

j yj = 1} be the unit simplex in R
d.

Then there exists a finite Borel measure H on Sd−1 such that

C#(u1, . . . , ud) = exp [−l(− log u1, . . . ,− log ud)] , (10)

where l : [0,∞)d → [0,∞) is given by

l(x1, . . . , xd) =

∫

Sd−1

max
j=1,...,d

(yjxj)dH(y1, . . . , yd), (x1, . . . , xd) ∈ [0,∞)d,

(11)

with
∫

Sd−1

yjdH(y1, . . . , yd) = 1, j = 1, . . . , d.

The function l is called the stable dependence function and completely deter-
mines the extreme-value copulas. Extreme-value copulas have no lower tail
dependence. The dependence for extreme-value copulas is naturally measured
with the upper tail dependence coefficient, or simply tail dependence coefficient.
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The tail dependence coefficient λ of a bivariate extreme-value copula C# takes
the form

λ = 2 + logC#(e
−1, e−1).

The limit (9) can be calculated for the NPOF copula (3) leading to a new
extreme-value copula (referred to as EVNPOF from now on) which benefits
from most of the advantageous properties of the NPOF model.

Theorem 2. Assume that the generators fi of the NPOF copula are twice
continuously differentiable on [0, 1]. Then the attractor C# of the NPOF copula
exists and is given by

C#(u1, . . . , ud) =

d∏

i=1

uχi

(i), (12)

where

χi =





i−1∏

j=1

(1− λ(j))



λ(i) + 1− λ(i),

with the convention that
∏0

j=1(1 − λ(j)) = 1 and where λi = 1 − f ′
i(1). As in

(3), u(i) = uσ(i) and f ′
(i)(1) = f ′

σ(i)(1) where σ is the permutation of (1, . . . , d)
such that u(1) ≤ · · · ≤ u(d). The stable tail dependence function of C# is given
by

l(x1, . . . , xd) =

d∑

i=1

xσ(i)χi, x = (x1, . . . , xd) ∈ [0,∞)d.

Note that, because of (10), we have xσ(1) ≥ · · · ≥ xσ(d) if and only if uσ(1) ≤
· · · ≤ uσ(d).

Even though the copulas belonging to the domain of attraction of C# are
nonparametric, the attractor C# is parametric, since it depends on the generator
derivatives only at a single point. As for the NPOF model, we shall have a look
at the bivariate marginals

C#,ij = C#(1, . . . , 1, ui, 1, . . . , 1, uj , 1, . . . , 1)

to study the dependence properties of this extreme-value copula.

Proposition 3. Let C#,ij is a bivariate marginal of the EVNPOF copula. Then
C#,ij is a Cuadras-Augé copula with parameter λiλj. In other words,

C#,ij(ui, uj) = min(ui, uj)max(ui, uj)
1−λiλj . (13)

Hence, the bivariate marginals of the EVNPOF copula are Cuadras-Augé
copulas, and, therefore, belong the Durante class of bivariate copulas. Moreover,
the upper tail dependence coefficient of the EVNPOF copula bivariate marginal
is the same as the upper tail dependence coefficient of the NPOF copula bivariate
marginal with Cuadras-Augé (Example 1) and Fréchet (Example 2) generators.

The multivariate EVNPOF extreme-value copula can be regarded as a flex-
ible generalization of the Cuadras-Augé copula. To demonstrate this, we shall
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compare it to other multivariate generalizations of the bivariate Cuadras-Augé
copula. Let

A(u1, . . . , ud) = u(1)

d∏

i=2

uai

(i),

where (a1 = 1, a2, a3, . . . , ad) is a d-monotone sequence of real numbers, that is,
a sequence which satisfies ▽j−1ak ≥ 0, k = 1, . . . , d, j = 1, . . . , d− k + 1 where
▽

jak =
∑j

i=0(−1)i
(
j
i

)
ak+i, j, k ≥ 1 and ▽

0ak = ak. This exchangeable copula
was proposed in [14]. In particular, the bivariate marginals write

Aij(ui, uj) = min(ui, uj)max(ui, uj)
a2 .

One can see that all the bivariate marginals are governed by a single parameter
a2. This means that all of them exhibit the same statistical behavior. For
instance, all the upper tail dependence coefficients are equal and are given by
1− a2, which is far too restrictive for most applications.

Now let

B(u1, . . . , ud) =

d∏

i=1

u
1−

∑d
j=1,j 6=i λij

i

∏

i<j

min(ui, uj)
λij ,

where λij ∈ [0, 1], λij = λji and

∑

j=1,...,d; j 6=i

λij ≤ 1, i = 1, . . . , d. (14)

This copula was proposed in [6]. It is easy to see that the bivariate marginals
Bij are Cuadras-Augé copulas with parameter (and thus upper tail dependence
coefficient) λij . Unlike the copula A, the tail dependence coefficients can take
distinct values from each other. Unfortunately, the constraints (14) on the
parameters λij are quite restrictive, as it was already stressed by the original
authors.

In the light of the above, one can see that the EVNPOF model achieves
greater flexibility than its competitors. In particular, one can obtain distinct
distributions for the bivariate marginals without imposing restrictive conditions
on the parameters.

3 Parametric inference

Here the results of the working paper weighted least square inference for multi-
variate copulas based on dependence coefficients will be used.

10



4 Numerical illustrations

A Appendix

Proof of Theorem 1

Let Cj|0(·|u0) be the conditional distribution of Uj given U0 = u0. The Uj ’s are
conditionally independent given U0, hence,

C(u) =

∫ 1

0

d∏

j=1

Cj|0(uj |u0)du0 (15)

=

∫ 1

0

d∏

j=1

∂C0j(u0, uj)

∂u0
du0

=

∫ 1

0

d∏

j=1

∂C0(j)(u0, u(j))

∂u0
du0

=

∫ u(1)

0

d∏

j=1

∂C0(j)(u0, u(j))

∂u0
du0

+
d∑

k=2

∫ u(k)

u(k−1)

k−1∏

j=1

∂C0(j)(u0, u(j))

∂u0

d∏

j=k

∂C0(j)(u0, u(j))

∂u0

+

∫ 1

u(d)

d∏

j=1

∂C0(j)(u0, u(j))

∂u0
du0.

Since

∂C0j(u0, uj)

∂u0
=

{
fj(uj) if u0 < uj

ujf
′
j(u0) if u0 > uj ,

(15) yields

C(u) =u(1)

d∏

j=1

fj(uj) +
d∑

k=2

d∏

j=k

f(j)(u(j))

∫ u(k)

u(k−1)

k−1∏

j=1

u(j)f
′
(j)(u0)du0

+

d∏

j=1

uj

∫ 1

u(d)

f ′
j(u0)du0.

Putting u(1) in factor and noting that
∫ u(2)

u(1)
f ′
(1)(x)dx = f(1)(u(2)) − f(1)(u(1))

finishes the proof.

Proof of Proposition1

It suffices to set all uk equal to one but ui and uj in the formula (3).

Proof of Proposition 2

It suffices to apply the formula of the dependence coefficients for the Durante
class of bivariate copulas given in Section 2.2. To compute the Spearman’s rho,

11



note that
∫ 1

0
x2fij(x)dx =

∫ 1

0
x2fi(x)fj(x)dx +

∫ 1

0
x3

∫ 1

x
f ′
i(z)f

′
j(z)dzdx. An

integration by parts yields
∫ 1

0
x3

∫ 1

x
f ′
i(z)f

′
j(z)dzdx = (1/4)

∫ 1

0
x4f ′

i(x)f
′
j(x)dx

and the result follows.

Proof of Theorem 2

Fix (u1, . . . , ud) ∈ [0, 1]d and let n ≥ 1 an integer. Put

αn :=u
1/n
(1)

d∏

j=1

fj(u
1/n
j )

u
1/n
j

,

βn :=

∫ 1

u
1/n

(d)

d∏

j=1

f ′
j(u0)du0,

γn :=

d∏

j=k

f(j)(u
1/n
(j) )

u
1/n
(j)

,

δn,k :=

∫ u
1/n

(k)

u
1/n

(k−1)

k−1∏

j=1

f ′
(j)(u0)du0,

and define

An := αn + βn +

d∑

k=2

γn,kδn,k.

We are going to derive equivalence at infinity for αn, βnγn and δn. Let ∼ denote
the equivalent symbol at infinity (i.e., an ∼ bn means an/bn → 1 as n → ∞).
By using the well known formulas ex ∼ 1+x (when x → 0), log x ∼ x−1 (when
x → 1) and fj(x) ∼ 1 + (x− 1)f ′

j(1) (when x → 1) we get

αn ∼

(

1 +
1

n
log u(1)

)(

1−
1

n
log(u1 . . . ud)

)


1 +
1

n

d∑

j=1

log u(j)f
′
(j)(1)



 and

γn,k ∼



1−
1

n

d∑

j=k

log u(j)







1 +
1

n

d∑

j=k

log u(j)f
′
(j)(1)



 .

For βn the equivalence is obtained as follows. Let F (x) be a primitive of
∏d

j=1 f
′
j(x). Then βn = F (1)− F (u

1/n
(d) ). A Taylor expansion yields

F (u
1/n
(d) ) = F (1) + (u

1/n
(d) − 1)F ′(1) +

(u
1/n
(d) − 1)2

2
F ′′(xn)

where xn is between u
1/n
(d) and 1. Since F ′′ is assumed to be continuous on [0, 1],

it is uniformly bouned on this set and therefore (u
1/n
(d) − 1)2F ′′(xn)/2 = o(1/n)

where o(1/n) is a quantity such that no(1/n) → 0 as n → ∞. Hence, since

u
1/n
(d) = exp(log(u(d))/n) ∼ 1 + log(u(d))/n, we have as n → ∞

F (1)− F (u
1/n
(d) ) ∼ −

1

n
log(u(d))F

′(1).

12



The same arguments apply to get

βn ∼ −
1

n
log u(d)

d∏

j=1

f ′
j(1)

δn,k ∼
1

n
log

(
u(k)

u(k−1)

) k−1∏

j=1

f ′
(j)(1).

The quantity An is a polynomial with respect to n−1 of order at most three.
In (16), the coefficients of order 0, 2, and 3 vanish at infinity. Only remain the
terms of order 1, hence,

lim
n↑∞

n(An − 1) = log u(1) − log(u1 . . . ud) +

d∑

j=1

log u(j)f
′
(j)(1)

− log u(d)

d∏

j=1

f ′
(j)(1) +

d∑

k=2

k−1∏

j=1

f ′
(j)(1) log

(
u(k)

u(k−1)

)

.

By using Abel’s identity, that is,
∑d−1

i=1 ai(bi+1 − bi) =
∑d−1

i=1 bi(ai−1 − ai) +
ad−1bd − a1b1 for two sequences (ai) and (bi) of real numbers, we can write

lim
n↑∞

n(An − 1) =

d∑

k=1














k−1∏

j=1

f ′
(j)(1)



 (1− f ′
(k)(1)) + f ′

(k)(1)− 1

︸ ︷︷ ︸

=:χk










log u(k),

with the convention that
∏0

j=1 f
′
(j)(1) = 1. From (3) we have

Cn(u
1/n
1 , . . . , u

1/n
d ) = u1 . . . ud exp [n logAn]

which is equivalent at infinity to

u1 . . . ud exp [n(An − 1)] . (16)

Hence

C(u
1/n
1 , . . . , u

1/n
d )n →

d∏

i=k

uχk

(k)

as n → ∞.
To derive the expression for the stable tail dependence dependence function,

it suffices to apply the definition. By (10) we have

ℓ(− log u1, . . . ,− log ud) =−

d∑

k=1

χk log u(k)

=−

d∑

k=1

χk log uσ(k)

(recall that σ is the permutation of (1, . . . , d) such that uσ(1) ≤ · · · ≤ uσ(d)).
Putting xk = − log uk we get the result (observe that xσ(1) ≥ · · · ≥ xσ(d)).
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F. Durante, W.K. Härdle, and T. Rychlik, editors, Copula Theory and Its
Applications, volume 198, pages 3–31. Springer, 2010.
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