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Abstract

Nowadays, companies and the educational system are using more and more di-
agnostic assessments like criteria grids. But manually marking criteria grids is
burdensome. We propose a modelling of criteria grid assessment and a domain-
independent classification algorithm to suggest appropriate assessment to teach-
ers. Empirical results on toy data indicate that our approach is reliable even with
small amount of training data and fast enough to be used without perceivable de-
lay.

1 Introduction

Nowadays, companies and the educational system are using more and more diagnostic assessments.
Diagnosis allows companies to find the best suited person to hold a specific post. It also allows
teachers to identify more precisely student gaps and to focus customized courses on these critical
points [1].

Criteria grids support diagnostic assessment and give a richer insight of a student skill profile than
a mere scoring mark. However marking becomes harder because teachers have to assess more than
one single criteria, because a criteria grid is composed of a set of ordinal scales. With an ordinal
scale, a person can express ordinal levels of agreement with a proposition. Ordinal values are ordered
qualitative values [2]. Applied to pedagogical means, a teacher can match each skill or attribute with
a qualitative level of mastering in relation to the student answers.

As marking becomes harder, suggesting appropriate assessments could relieve the teacher. In this
paper no assumptions are made concerning the application field: Mathematics, History or Literature,
or the nature of the items: Multiple Choice Question, short answers question, fill-in the gaps . . . We
only assume that answers are nominal, i.e. qualitative values that do not have a natural ordering [2].
Therefore the only meaningful distances between two nominal values are frequency distances.

We aim at building a supervised learning algorithm which would assign nominal answers to ordinal
levels based on a small set of manually assessed productions. In order to suit the teacher require-
ments, this algorithm must be of low computational complexity and reliable even with few manually
assessed examples. Moreover the teacher should be able to modify the items or the field of applica-
tion on its own, i.e. without any intervention of a knowledge engineering expert. Therefore our goal
is a domain-independent learning algorithm.

Existing classification algorithms are not suited for nominal answers. Some of them use the in-
formation contained in the distance between two answers, like k-Nearest Neighbours using an eu-
clidean metric or a learned Mahalanobis Metric [3] (MMk-NN). But distances that are not related
to frequency are not suitable for nominal answers. Algorithms like Weighted k-Nearest Neighbours
(Wk-NN) use frequency distance as Modified Value Difference Metric [4]. But when an attribute

1



depends on nominal answers that are associated to more than one item, the distance may be distorted
and lead to a prediction error. Conversely, a frequency distance between nominal answers associ-
ated to all items may take into account answers whose an attribute does not depend on, and lead to
a prediction error through overfitting.

Some of them use notions closely related to invariant spaces under addition or multiplication by
scalar, like Kernels: matrix algebra, Support Vector Machine: scalar product and Neural Networks:
addition and multiplication of input data by scalar. But nominal answer spaces are not invariant
under addition or multiplication by scalar [2].

Some of them use propositional logic, like Bayesian Networks. Each nominal answer and each
nominal level is represented by one propositional variable and one boolean constraint which ensures
that only one answer is affected to one item at the same time. Then the number of answer-level
conditional dependencies is exponential compared to the number of answers and levels. Moreover
the learning algorithm has to check all constraints for every considered conditional dependency in
order to reject non-valid dependencies. Then its complexity is multiplied in vain and it will be slower
than its polytomous equivalent.

Some of them use Shannon entropy to classify nominal answers into nominal levels, like decision
tree algorithm Iterative Dichotomiser 3 (ID3). However these algorithms often overfit the training
data and mispredict new productions. Pruning methods can reduce this tendency but do not suppress
it completely. We will use this algorithm as a reference for performance tests.

Thus a specific non-overfitting learning algorithm which assign nominal answers to ordinal levels
need to be developed, based on a suited modelling.

Existing nominal answer modellings are not suited either. Andrich [5], Bock [6], Rost [7], Same-
jima [8] and Muraki [9] can model nominal answers and ordinal levels using a parameter for each
item, answer and level of attribute: they can not be used on different application domains without
a knowledge engineering expert. Modellings based on Q-matrix [10][11][12] can model nominal
answers thanks to a good-answer checking function and describes item-attribute dependencies as a
boolean matrix. That way, Q-matrix can only express dichotomous attribute, but ordinal attributes
are polytomous. Thus a specific modelling need to be developed too.

First we introduce notions and notations used in this article. Then we define assessment function
and its associated abstract function to model human assessment. We propose a domain-independent
algorithm which assign nominal answers to ordinal levels. Finally we present empirical evidences
on toy data that suggest that our algorithm is fast and reliable even with small amount of training
data.

2 Notions and notations

In this part, we introduce notions and notations that will be used thereafter.

il is the item indexed by l. IS (Item Set) is the set of all items. A student associates an answer to
every item. Dom(il) is the set of all possible answers to item il.

am is the attribute indexed by m. AS (Attribute Set) is the set of all attributes. The teacher associates
a level to every attribute for every student. Dom(am) is the set of all possible levels of the attribute
am.

A production p is a vector of answers. p|il is the answer of p which is associated to the item il.
PS = ⊗Dom(il)

il∈IS

(Production Set) is the set of all possible productions. Given a set of items E, a

reduced production p|E is a vector of answers associated to items belonging to E.

A profile pf is a vector of levels. pf |am
is the level of pf associated to the attribute am. PFS =

⊗Dom(am)
am∈AS

(ProFile Set) is the set of all possible profiles. Given a set of levels E, a reduced profile

pf |E is a vector of levels associated to attributes belonging to E.

#E is the cardinality of the set E.
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3 Assessment function and search spaces

In order to give assessment suggestions to teachers, we have to mimic human assessment.

We assume that human assessment is deterministic under certain conditions: assessing a small set
of anonymized and digitalized productions with criteria grids. We make this approximation because
human assessment bias like central tendency effet, socio-arithmetical hypothesis, tiredness, halo
effet, sequence effet, inertia effet, contamination effet, vagueness effect and automatic strictness
[13] have less impact in this way: the less impact these bias have, the more determinist human
assessment is.

Therefore we will collect manually-assessed examples for the automatic learning algorithm accord-
ing to these conditions.

Assessment function will be used to mimic human assessment. Such function associates every
possible production to a profile and satisfies one reasonable property: an assessment function is
partitionable.

Definition. An assessment function feval : PS → PFS is partitionable if and only if for every
attribute am, feval|am

is surjective.

⇔ ∀am ∈ AS, ∀n ∈ Dom(am), ∃p ∈ PS as feval(p)|am
= n

Informally, for every attribute am an assessment function associates at least one production of PS
to each level n ∈ Dom(am).

Moreover an assessment function feval is a mathematical function, so for every attribute am it
associates every production of PS to exactly one level n ∈ Dom(am). We can conclude that for
every attribute am, feval|am

is a am-partition of PS such as each cluster of the partition stands for
a specific level n ∈ Dom(am).

Therefore the assessment function space is identical to the juxtaposition of am-partition spaces for
every am ∈ AS. This juxtaposition is exponential: given the number of items, attributes, answers
per item and levels per attribute we can calculate its size #ASFS (ASsessment Function Space).

Given D
#IS
i the size of PS, D#AS

a the size of PFS and
{

n
p

}

the Stirling number of second kind1,

the size of ASFS is:

#ASFS = #AS ∗
{

D
#IS

i

Da

}

∗Da!

This expression is not intuitive since the Stirling number is hard to express:
{

n
p

}

=
1
p!

∑p

k=0 (−1)
p−k

(

p
k

)

kn. However we can easily express its lower bound: L(n, p) ≤
{

n
p

}

given

n and p.

L(n, p) = 1
2 (p

2 + p+ 2) ∗ pn−p−1 − 1 = O(pn−p+1)

Therefore we can express the lower bound of the size of ASFS:

#ASFS ≥ O(#AS ∗D
D

#IS

i
−Da+1

a ∗Da!)

Example.
Given #IS = 5, #AS = 5, Di = 5 and Da = 4, there are 3125 different productions and 625
different profiles. So there are more than #ASFS ≥ 30 ∗ 43123 ≃ 5 ∗ 101881 different assessment
functions.

The size of assessment function space is exponential: the bigger this space is, the more errors
an overfitting algorithm will do. In order to work on a smaller search space, we will use a less
informative function called the abstract function. For every attribute am, this function returns the
set of items whose am depends on.

Definition. An abstract function fabs : AS × (2IS − {∅}) is associated to an assessment function
feval if and only if for every attribute am, the function f = {(p|fabs(am), pf |am

) as feval(p) = pf}

1the Stirling number of second kind represents the number of possible partitions of a set composed of n
elements, such as every partition has exactly p unlabeled non-empty parts.
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is a function, i.e. there is no fabs(am)-reduced production associated to two different levels of
attribute am by f .

The size of the ABFS (ABstract Function Space) is: #ABFS = #AS ∗ (2IS − 1).

Example.
Given #IS = 5, #AS = 5, Di = 5 and Da = 4, there are only 5 ∗ (25 − 1) = 155 different
abstract functions.

In the next section, we describe our classification algorithm based on abstract functions and assess-
ment functions.

4 Classification algorithm

We developed an algorithm which classifies nominal answers into ordinal levels. It takes a set of
manual examples TS (Training Set) and returns one assessment function feval, associated to the
abstract function fabs.

An example e is composed of a production e.p and a profile e.pf .

4.1 Algorithm summary

Our algorithm is divided in three steps: computing the compatible abstract function set, selecting
the best compatible abstract function and deducing the associated assessment function. The next
sections will describe these steps more precisely. Simple numerical application will illustrate each
one of these steps using the following example set TS.

Given i1 and i2 two items, a1 an attribute, Dom(i1) = {a; b; c; d; e}, Dom(i2) = {a; b; c; d; e},
Dom(a1) = {1; 2; 3; 4} and TS = {(ac, 1); (bc, 1); (cd, 1); (dc, 2)} such as (ab, 1) means ”pro-
duction (i1 ← a; i2 ← b) is associated to (a1 ← 1) by the assessment function”. A graphical
representation of TS is shown on figure 1.
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1

a
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d
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1

2

1

1

Figure 1: Graphical representation of TS

4.1.1 Compatible abstract functions

First, for every attribute am we compute the set of all possible am-compatible abstract function with
TS.

Definition. An abstract function fabs(am) ⊆ IS is am-incompatible with TS if and only if
∃ex1, ex2 ∈ TS as ex1.c|fabs(am) = ex2.c|fabs(am) ∧ ex1.p|am

6= ex2.p|am
. Otherwise it is

am-compatible with TS.

Note that this concept is closely related to assessment functions being mathematical functions: no
production can be associated to two different levels of attribute.

Example.

1. i1 ← {a; b; c} for a1 = 1, i1 ← {d} for a1 = 2,

{a; b; c} ∩ {d} = ∅ ⇒ i1 is a1-compatible with TS

2. i2 ← {c; d} for a1 = 1, i2 ← {c} for a1 = 2,

{c; d} ∩ {c} = {c} ⇒ i2 is a1-incompatible with TS

3. {i1; i2} ← {ac; bc; cd} for a1 = 1, {i1; i2} ← {dc} for a1 = 2,
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{ac; bc; cd} ∩ {dc} = ∅ ⇒ {i1; i2} is a1-compatible with TS

4.1.2 Choosing the best compatible abstract function

Secondly, for every attribute am and every am-compatible abstract function fabs(am) we compute
its complexity score. The am-compatible abstract function with the lowest score is the best one and
is selected: ”the simplest necessary hypothesis is the more likely”.

Definition. The complexity score score(fabs(am)) of an abstract function fabs(am) ⊆ IS for the
attribute am is the product of the size score and the total option score.

Definition. The size score ssize(fabs(am)) of an abstract function fabs(am) ⊆ IS for the attribute
am is the number of items belonging to fabs(am).

Definition. The total option score salternatives(fabs(am)) of an abstract function fabs(am) ⊆ IS
for the attribute am is the sum of each n-option score given the level n ∈ Dom(am).

Definition. The n-option score of fabs(am) ⊆ IS for the attribute am given n ∈ Dom(am) is the
number of different fabs(am)-reduced answer vector associated to n: salternatives(fabs(am), n) =
#A such as A = {vr as ∃ex ∈ TS, ex.c|fabs(am) = vr ∧ ex.p|am

= n}.

Example.

1. ssize({i1}) = 1, salternatives({i1}, a1) = 3 + 1 = 4

because a1 ← {a; b; c} for a1 = 1 and {d} for a1 = 2.

⇒ score({i1}, a1) = 1 ∗ 4 = 4.

2. ssize({i1; i2}) = 2, salternatives({i1; i2}, a1) = 3 + 1 = 4

because i2 ← {ac; bc; cd} for a1 = 1 and {dc} for a1 = 2.

⇒ score({i1; i2 a1) = 2 ∗ 4 = 8.

We computed all possible abstract function scores for a1 and {i1} is the lowest scoring of all. Then
fabs(a1) = {i1}.

4.1.3 Deducing the associated assessment function

Finally, we compute the partial assessment function feval from TS and fabs(am) for every attribute
am. Thereafter the teacher can correct or complete this partial function through interactions that add
new examples to TS.

Example.
Given fabs(a1) = {i1} from the previous step and TS = {(ac, 1); (bc, 1); (cd, 1); (dc, 2)},

1. (ac, 1)⇒ ({i1 ← a}, a1 ← 1) 3. (cd, 1)⇒ ({i1 ← c}, a1 ← 1)

2. (bc, 1)⇒ ({i1 ← b}, a1 ← 1) 4. (dc, 2)⇒ ({i1 ← d}, a1 ← 2)

The assessment function feval is composed of the 4 couples given above. Figure 2a gives a graphical
representation of feval .

4.2 Using the assessment function

We can use this assessment function feval during the decision stage: we can infer the level of a1
from answers associated to i1, as shown in figure 2b.

5 Testing on toy data set

In order to estimate our algorithm performances, we compared it to three reference algorithms: ID3
[14], Wk-NN [4] and MMk-NN (k-NN using Mahalanobis Metric Learning [3]). As recommended
in [4], we used k = 1 for Wk-NN. Further to preliminary tests on equivalent TS, the best perfor-
mances of MMk-NN correspond with m = 5 and k = 10 so we used these values for this test.
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Figure 2: Learned assessment function feval and 4 new productions assessed using it.

Table 1: Toy data tests results

delay (µs) error (%)

algorithms learning σlearning decision σdecision error σerror

our algorithm 6 252,2 1 303,7 55,2 38,1 20,8 7,3

ID3 343,1 97,0 43,0 14,9 49,1 9,1

MMk-NN 364,6 129,5 595,1 108,6 65,2 7,1

Wk-NN 20 942,5 1 318,1 6 673 502,8 63,5 7,5

We arbitrarily set the following constants: #IS = 8 items, Di = 5 different answers per item,
#AS = 5 attributes, Da = 4 different level per attribute. The two sets PTS (Training Set) and
PDS (Decision Set) are composed of 10 productions each such as PTS ∩ PDS = ∅. We randomly
generated 100 couples (PTS , PDS) ; each one was tested with 100 randomly generated assessment
functions. These assessment functions are generated as follow: for every attribute am, we randomly
choose a subset of IS to be the abstract function for am. Then for every attribute am we affect a
random level n ∈ Dom(am) to each set of answers associated to fabs(am): result is the random
assessment function feval.

In order to test an assessment function feval with a couple (PTS , PDS), we used feval to label PTS

to constitute the training set TS. For each algorithm, TS was given during the training stage. Then
during the decision stage, we asked the algorithm to predict labels of PDS , then we compared these
predictions to DS the real labels of PDS using feval .

To summarise: #IS = 8, Di = 5,#AS = 5, Da = 4, #TS = 10,#DS = 10 on 10 000
simulations. Results are displayed in the table 1. They show that our algorithm is the more reliable:
the mean percentage error for our algorithm is 21%, compared with 49% for ID3, 64% for Wk-NN
and 65% for MMk-NN.

They also show that during the learning stage ID3 is the quickest, closely followed by MMk-NN ;
our algorithm is 20 times slower than ID3 but still quite brief with less than 7ms, and Wk-NN is 60
times slower than ID3. However during the decision stage, ID3 and our algorithm are the quickest
with about 50 µs, MMk-NN is 12 times slower and Wk-NN is 130 times slower.

6 Conclusion

We have presented a new representation for criteria grid assessment: the assessment function asso-
ciated to an abstract function, and a new domain-independent algorithm suited to classify nominal
answers into ordinal levels. According to empirical results on toy data, our algorithm is reliable even
with small amount of training data and fast enough to be used without perceivable delay.

We now have to extend our empirical comparison to real data and use optimization methods to speed
up our algorithm. Moreover, it could be interesting to study the relationship between our complex-
ity score and the well-known Kolmogorov complexity [15][16][17] and to describe the differences
between our approach and Minimum Description Length theory [18] [19]. Finally, we could extend
this algorithm to classify complex answers like nominal-labeled graphs.
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tics, Series A, 25(4):369–376, 1963.

[16] S Legg. Solomonoff induction (technical report cdmtcs-030), centre for discrete mathematics
and theoretical computer science, university of auckland, 2011.

[17] Ray J Solomonoff. Algorithmic probability: Theory and applications. In Information Theory
and Statistical Learning, pages 1–23. Springer, 2009.

[18] J. Rissanen. Modeling by shortest data description. Automatica, 14(5):465 – 471, 1978.

[19] Pieter Adriaans and Paul Vitanyi. The power and perils of mdl. In Information Theory, 2007.
ISIT 2007. IEEE International Symposium on, pages 2216–2220. IEEE, 2007.

7


	Introduction
	Notions and notations
	Assessment function and search spaces
	Classification algorithm
	Algorithm summary
	Compatible abstract functions
	Choosing the best compatible abstract function
	Deducing the associated assessment function

	Using the assessment function

	Testing on toy data set
	Conclusion

