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A three-step classification algorithm to assist criteria grid assessment

Nowadays, companies and the educational system are using more and more diagnostic assessments like criteria grids. But manually marking criteria grids is burdensome. We propose a modelling of criteria grid assessment and a domainindependent classification algorithm to suggest appropriate assessment to teachers. Empirical results on toy data indicate that our approach is reliable even with small amount of training data and fast enough to be used without perceivable delay.

Introduction

Nowadays, companies and the educational system are using more and more diagnostic assessments. Diagnosis allows companies to find the best suited person to hold a specific post. It also allows teachers to identify more precisely student gaps and to focus customized courses on these critical points [START_REF] Rust | Improving students' learning by developing their understanding of assessment criteria and processes[END_REF].

Criteria grids support diagnostic assessment and give a richer insight of a student skill profile than a mere scoring mark. However marking becomes harder because teachers have to assess more than one single criteria, because a criteria grid is composed of a set of ordinal scales. With an ordinal scale, a person can express ordinal levels of agreement with a proposition. Ordinal values are ordered qualitative values [START_REF] Smith | On the theory of scales of measurement[END_REF]. Applied to pedagogical means, a teacher can match each skill or attribute with a qualitative level of mastering in relation to the student answers.

As marking becomes harder, suggesting appropriate assessments could relieve the teacher. In this paper no assumptions are made concerning the application field: Mathematics, History or Literature, or the nature of the items: Multiple Choice Question, short answers question, fill-in the gaps . . . We only assume that answers are nominal, i.e. qualitative values that do not have a natural ordering [START_REF] Smith | On the theory of scales of measurement[END_REF]. Therefore the only meaningful distances between two nominal values are frequency distances.

We aim at building a supervised learning algorithm which would assign nominal answers to ordinal levels based on a small set of manually assessed productions. In order to suit the teacher requirements, this algorithm must be of low computational complexity and reliable even with few manually assessed examples. Moreover the teacher should be able to modify the items or the field of application on its own, i.e. without any intervention of a knowledge engineering expert. Therefore our goal is a domain-independent learning algorithm.

Existing classification algorithms are not suited for nominal answers. Some of them use the information contained in the distance between two answers, like k-Nearest Neighbours using an euclidean metric or a learned Mahalanobis Metric [START_REF] Xiang | Learning a mahalanobis distance metric for data clustering and classification[END_REF] (MMk-NN). But distances that are not related to frequency are not suitable for nominal answers. Algorithms like Weighted k-Nearest Neighbours (Wk-NN) use frequency distance as Modified Value Difference Metric [START_REF] Cost | A weighted nearest neighbor algorithm for learning with symbolic features[END_REF]. But when an attribute depends on nominal answers that are associated to more than one item, the distance may be distorted and lead to a prediction error. Conversely, a frequency distance between nominal answers associated to all items may take into account answers whose an attribute does not depend on, and lead to a prediction error through overfitting. Some of them use notions closely related to invariant spaces under addition or multiplication by scalar, like Kernels: matrix algebra, Support Vector Machine: scalar product and Neural Networks: addition and multiplication of input data by scalar. But nominal answer spaces are not invariant under addition or multiplication by scalar [START_REF] Smith | On the theory of scales of measurement[END_REF]. Some of them use propositional logic, like Bayesian Networks. Each nominal answer and each nominal level is represented by one propositional variable and one boolean constraint which ensures that only one answer is affected to one item at the same time. Then the number of answer-level conditional dependencies is exponential compared to the number of answers and levels. Moreover the learning algorithm has to check all constraints for every considered conditional dependency in order to reject non-valid dependencies. Then its complexity is multiplied in vain and it will be slower than its polytomous equivalent. Some of them use Shannon entropy to classify nominal answers into nominal levels, like decision tree algorithm Iterative Dichotomiser 3 (ID3). However these algorithms often overfit the training data and mispredict new productions. Pruning methods can reduce this tendency but do not suppress it completely. We will use this algorithm as a reference for performance tests.

Thus a specific non-overfitting learning algorithm which assign nominal answers to ordinal levels need to be developed, based on a suited modelling.

Existing nominal answer modellings are not suited either. Andrich [START_REF] Andrich | A rating formulation for ordered response categories[END_REF], Bock [START_REF] Bock | Estimating item parameters and latent ability when responses are scored in two or more nominal categories[END_REF], Rost [START_REF] Rost | Measuring attitudes with a threshold model drawing on a traditional scaling concept[END_REF], Samejima [START_REF] Samejima | Estimation of latent ability using a response pattern of graded scores[END_REF] and Muraki [START_REF] Muraki | A generalized partial credit model: Application of an em algorithm[END_REF] can model nominal answers and ordinal levels using a parameter for each item, answer and level of attribute: they can not be used on different application domains without a knowledge engineering expert. Modellings based on Q-matrix [10][11][12] can model nominal answers thanks to a good-answer checking function and describes item-attribute dependencies as a boolean matrix. That way, Q-matrix can only express dichotomous attribute, but ordinal attributes are polytomous. Thus a specific modelling need to be developed too.

First we introduce notions and notations used in this article. Then we define assessment function and its associated abstract function to model human assessment. We propose a domain-independent algorithm which assign nominal answers to ordinal levels. Finally we present empirical evidences on toy data that suggest that our algorithm is fast and reliable even with small amount of training data.

Notions and notations

In this part, we introduce notions and notations that will be used thereafter.

i l is the item indexed by l. IS (Item Set) is the set of all items. A student associates an answer to every item. Dom(i l ) is the set of all possible answers to item i l . a m is the attribute indexed by m. AS (Attribute Set) is the set of all attributes. The teacher associates a level to every attribute for every student. Dom(a m ) is the set of all possible levels of the attribute a m .

A production p is a vector of answers. p| i l is the answer of p which is associated to the item i l . P S = ⊗Dom(i l ) i l ∈IS (Production Set) is the set of all possible productions. Given a set of items E, a reduced production p| E is a vector of answers associated to items belonging to E.

A profile pf is a vector of levels. pf | am is the level of pf associated to the attribute a m . P F S = ⊗Dom(a m ) am∈AS (ProFile Set) is the set of all possible profiles. Given a set of levels E, a reduced profile pf | E is a vector of levels associated to attributes belonging to E. #E is the cardinality of the set E.

Assessment function and search spaces

In order to give assessment suggestions to teachers, we have to mimic human assessment.

We assume that human assessment is deterministic under certain conditions: assessing a small set of anonymized and digitalized productions with criteria grids. We make this approximation because human assessment bias like central tendency effet, socio-arithmetical hypothesis, tiredness, halo effet, sequence effet, inertia effet, contamination effet, vagueness effect and automatic strictness [START_REF] Leclercq | Docimologie critique[END_REF] have less impact in this way: the less impact these bias have, the more determinist human assessment is. Therefore we will collect manually-assessed examples for the automatic learning algorithm according to these conditions. Assessment function will be used to mimic human assessment. Such function associates every possible production to a profile and satisfies one reasonable property: an assessment function is partitionable.

Definition. An assessment function f eval : P S → P F S is partitionable if and only if for every attribute a m , f eval | am is surjective.

⇔ ∀a m ∈ AS, ∀n ∈ Dom(a m ), ∃p ∈ P S as f eval (p)| am = n
Informally, for every attribute a m an assessment function associates at least one production of P S to each level n ∈ Dom(a m ).

Moreover an assessment function f eval is a mathematical function, so for every attribute a m it associates every production of P S to exactly one level n ∈ Dom(a m ). We can conclude that for every attribute a m , f eval | am is a a m -partition of P S such as each cluster of the partition stands for a specific level n ∈ Dom(a m ).

Therefore the assessment function space is identical to the juxtaposition of a m -partition spaces for every a m ∈ AS. This juxtaposition is exponential: given the number of items, attributes, answers per item and levels per attribute we can calculate its size #ASF S (ASsessment Function Space). Given D #IS i the size of P S, D #AS a the size of P F S and n p the Stirling number of second kind1 , the size of ASFS is:

#ASF S = #AS * D #IS i Da * D a !
This expression is not intuitive since the Stirling number is hard to express:

n p = 1 p! p k=0 (-1) p-k p k k n .
However we can easily express its lower bound: L(n, p) ≤ n p given n and p.

L(n, p) = 1 2 (p 2 + p + 2) * p n-p-1 -1 = O(p n-p+1
) Therefore we can express the lower bound of the size of ASFS: The size of assessment function space is exponential: the bigger this space is, the more errors an overfitting algorithm will do. In order to work on a smaller search space, we will use a less informative function called the abstract function. For every attribute a m , this function returns the set of items whose a m depends on.

#ASF S ≥ O(#AS * D D #IS i -Da+1 a * D a !)
Definition. An abstract function f abs : AS × (2 IS -{∅}) is associated to an assessment function f eval if and only if for every attribute a m , the function f = {(p| f abs (am) , pf | am ) as f eval (p) = pf } is a function, i.e. there is no f abs (a m )-reduced production associated to two different levels of attribute a m by f . The size of the ABFS (ABstract Function Space) is: #ABF S = #AS * (2 IS -1).

Example.

Given #IS = 5, #AS = 5, D i = 5 and D a = 4, there are only 5 * (2 5 -1) = 155 different abstract functions.

In the next section, we describe our classification algorithm based on abstract functions and assessment functions.

Classification algorithm

We developed an algorithm which classifies nominal answers into ordinal levels. It takes a set of manual examples T S (Training Set) and returns one assessment function f eval , associated to the abstract function f abs .

An example e is composed of a production e.p and a profile e.pf .

Algorithm summary

Our algorithm is divided in three steps: computing the compatible abstract function set, selecting the best compatible abstract function and deducing the associated assessment function. The next sections will describe these steps more precisely. Simple numerical application will illustrate each one of these steps using the following example set T S.

Given i 1 and i 2 two items, a 1 an attribute, Dom(i 1 ) = {a; b; c; d; e}, Dom(i 2 ) = {a; b; c; d; e}, Dom(a 1 ) = {1; 2; 3; 4} and T S = {(ac, 1); (bc, 1); (cd, 1); (dc, 2)} such as (ab, 1) means "production (i 1 ← a; i 2 ← b) is associated to (a 1 ← 1) by the assessment function". A graphical representation of T S is shown on figure 1. Definition.

An abstract function f abs (a m ) ⊆ IS is a m -incompatible with T S if and only if ∃ex 1 , ex 2 ∈ T S as ex 1 .c| f abs (am) = ex 2 .c| f abs (am) ∧ ex 1 .p| am = ex 2 .p| am . Otherwise it is a m -compatible with T S.

Note that this concept is closely related to assessment functions being mathematical functions: no production can be associated to two different levels of attribute.

Example.

1. i 1 ← {a; b; c} for a 1 = 1, i 1 ← {d} for a 1 = 2, {a; b; c} ∩ {d} = ∅ ⇒ i 1 is a 1 -compatible with T S 2. i 2 ← {c; d} for a 1 = 1, i 2 ← {c} for a 1 = 2, {c; d} ∩ {c} = {c} ⇒ i 2 is a 1 -incompatible with T S 3. {i 1 ; i 2 } ← {ac; bc; cd} for a 1 = 1, {i 1 ; i 2 } ← {dc} for a 1 = 2, {ac; bc; cd} ∩ {dc} = ∅ ⇒ {i 1 ; i 2 } is a 1 -compatible with T S

Choosing the best compatible abstract function

Secondly, for every attribute a m and every a m -compatible abstract function f abs (a m ) we compute its complexity score. The a m -compatible abstract function with the lowest score is the best one and is selected: "the simplest necessary hypothesis is the more likely".

Definition. The complexity score score(f abs (a m )) of an abstract function f abs (a m ) ⊆ IS for the attribute a m is the product of the size score and the total option score.

Definition. The size score s size (f abs (a m )) of an abstract function f abs (a m ) ⊆ IS for the attribute a m is the number of items belonging to f abs (a m ).

Definition. The total option score s alternatives (f abs (a m )) of an abstract function f abs (a m ) ⊆ IS for the attribute a m is the sum of each n-option score given the level n ∈ Dom(a m ).

Definition. The n-option score of f abs (a m ) ⊆ IS for the attribute a m given n ∈ Dom(a m ) is the number of different f abs (a m )-reduced answer vector associated to n: s alternatives (f abs (a m ), n) = #A such as A = {v r as ∃ex ∈ T S, ex.c| f abs (am) = v r ∧ ex.p| am = n}.

Example.

1. s size ({i 1 }) = 1, s alternatives ({i 1 }, a 1 ) = 3 + 1 = 4 because a 1 ← {a; b; c} for a 1 = 1 and {d} for a 1 = 2. ⇒ score({i 1 }, a 1 ) = 1 * 4 = 4. 2. s size ({i 1 ; i 2 }) = 2, s alternatives ({i 1 ; i 2 }, a 1 ) = 3 + 1 = 4 because i 2 ← {ac; bc; cd} for a 1 = 1 and {dc} for a 1 = 2. ⇒ score({i 1 ; i 2 a 1 ) = 2 * 4 = 8.
We computed all possible abstract function scores for a 1 and {i 1 } is the lowest scoring of all. Then f abs (a 1 ) = {i 1 }.

Deducing the associated assessment function

Finally, we compute the partial assessment function f eval from T S and f abs (a m ) for every attribute a m . Thereafter the teacher can correct or complete this partial function through interactions that add new examples to T S.

Example.

Given f abs (a 1 ) = {i 1 } from the previous step and T S = {(ac, 1); (bc, 1); (cd, 1); (dc, 2)},

1. (ac, 1) ⇒ ({i 1 ← a}, a 1 ← 1) 3. (cd, 1) ⇒ ({i 1 ← c}, a 1 ← 1) 2. (bc, 1) ⇒ ({i 1 ← b}, a 1 ← 1) 4. (dc, 2) ⇒ ({i 1 ← d}, a 1 ← 2)
The assessment function f eval is composed of the 4 couples given above. Figure 2a gives a graphical representation of f eval .

Using the assessment function

We can use this assessment function f eval during the decision stage: we can infer the level of a 1 from answers associated to i 1 , as shown in figure 2b.

Testing on toy data set

In order to estimate our algorithm performances, we compared it to three reference algorithms: ID3 [START_REF] Quinlan | Induction of decision trees[END_REF], Wk-NN [START_REF] Cost | A weighted nearest neighbor algorithm for learning with symbolic features[END_REF] and MMk-NN (k-NN using Mahalanobis Metric Learning [START_REF] Xiang | Learning a mahalanobis distance metric for data clustering and classification[END_REF]). As recommended in [START_REF] Cost | A weighted nearest neighbor algorithm for learning with symbolic features[END_REF], we used k = 1 for Wk-NN. Further to preliminary tests on equivalent T S, the best performances of MMk-NN correspond with m = 5 and k = 10 so we used these values for this test. We arbitrarily set the following constants: #IS = 8 items, D i = 5 different answers per item, #AS = 5 attributes, D a = 4 different level per attribute. The two sets P T S (Training Set) and P DS (Decision Set) are composed of 10 productions each such as P T S ∩ P DS = ∅. We randomly generated 100 couples (P T S , P DS ) ; each one was tested with 100 randomly generated assessment functions. These assessment functions are generated as follow: for every attribute a m , we randomly choose a subset of IS to be the abstract function for a m . Then for every attribute a m we affect a random level n ∈ Dom(a m ) to each set of answers associated to f abs (a m ): result is the random assessment function f eval .

In order to test an assessment function f eval with a couple (P T S , P DS ), we used f eval to label P T S to constitute the training set T S. For each algorithm, T S was given during the training stage. Then during the decision stage, we asked the algorithm to predict labels of P DS , then we compared these predictions to DS the real labels of P DS using f eval .

To summarise: #IS = 8, D i = 5, #AS = 5, D a = 4, #T S = 10, #DS = 10 on 10 000 simulations. Results are displayed in the table 1. They show that our algorithm is the more reliable: the mean percentage error for our algorithm is 21%, compared with 49% for ID3, 64% for Wk-NN and 65% for MMk-NN.

They also show that during the learning stage ID3 is the quickest, closely followed by MMk-NN ; our algorithm is 20 times slower than ID3 but still quite brief with less than 7 ms, and Wk-NN is 60 times slower than ID3. However during the decision stage, ID3 and our algorithm are the quickest with about 50 µs, MMk-NN is 12 times slower and Wk-NN is 130 times slower.

Conclusion

We have presented a new representation for criteria grid assessment: the assessment function associated to an abstract function, and a new domain-independent algorithm suited to classify nominal answers into ordinal levels. According to empirical results on toy data, our algorithm is reliable even with small amount of training data and fast enough to be used without perceivable delay.

We now have to extend our empirical comparison to real data and use optimization methods to speed up our algorithm. Moreover, it could be interesting to study the relationship between our complexity score and the well-known Kolmogorov complexity [START_REF] Kolmogorov | On tables of random numbers[END_REF][16] [START_REF] Ray | Algorithmic probability: Theory and applications[END_REF] and to describe the differences between our approach and Minimum Description Length theory [18] [19]. Finally, we could extend this algorithm to classify complex answers like nominal-labeled graphs.
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 1 Figure 1: Graphical representation of T S
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 2 Figure 2: Learned assessment function f eval and 4 new productions assessed using it.

Table 1 :

 1 Toy data tests results

			delay (µs)		error (%)
	algorithms	learning σ learning decision σ decision error σ error
	our algorithm 6 252,2	1 303,7	55,2	38,1	20,8	7,3
	ID3	343,1	97,0	43,0	14,9	49,1	9,1
	MMk-NN	364,6	129,5	595,1	108,6	65,2	7,1
	Wk-NN	20 942,5 1 318,1	6 673	502,8	63,5	7,5

the Stirling number of second kind represents the number of possible partitions of a set composed of n elements, such as every partition has exactly p unlabeled non-empty parts.