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The preparation of galactofuranosyl-containing disaccharidic parts of natural glycoconjugates was performed according to a chemo-

enzymatic synthesis. Our goals were firstly to develop an alternative approach to standard chemical strategies by limiting number of 

reaction and purification steps, and secondly to evaluate the scope of the Araf51 biocatalyst to transfer a galactofuranosyl moiety to a set 

of pyranosidic acceptors differing from each other by the series, the anomeric configuration as well as the conformation. The study of 

binding mode of the resulting disaccharides was also performed by molecular modeling and showed significant differences between 

(1→2)- and (1→6)-linked disaccharides. 

Introduction 

The complex heterogeneity of carbohydrates in living systems is a direct result of several carbohydrate characteristics: the ability of 

different types and numbers of sugar residues to form glycosidic bonds with one another, the type of anomeric linkage, the position and 

the absence or presence of branching, the more or less flexible conformations of the resulting oligo-, polysaccharides or 

glycoconjugates,1, 2 and the size of the monosaccharidic ring.3, 4 Indeed, sugars exhibit significant differences depending on whether they 

are present as pyranosides or as furanosides. It is now well established that the importance of the furanose ring in biology can no more be 

understated. A key characteristic of furanose ring systems is their higher flexibility compared to that of their pyranosidic counterparts,5 

and this profoundly influences their role in biological processes.6 While furanosyl-containing oligosaccharides are crucial constituents of 

surface glycoconjugates in cell walls of bacteria,7-9 fungi10 and parasitic11, 12 microorganisms, including some clinically significant 

pathogens, with an exception of 2-deoxy-D-ribose and D-ribose, furanosides are completely absent from mammals. This makes them 

interesting targets for development of new therapeutics. 

 A major limitation preventing the use of oligosaccharides as therapeutics is the difficulty in producing sufficient amount of these 

molecules in a desired purity. The isolation of these compounds from biological sources tends to be low yielding and presents the risk of 

contamination from infectious agents.13 Although a big progress in chemical synthesis of oligosaccharides has been made14-20 and 

synthesis of docosanaarabinofuranoside realized by Lowary’s research team21 is impressive evidence, this approach still remains a 

challenge. The chemical synthesis requires the stereo- and regioselective control of glycosidic bond formation, thus multiple protection 

and deprotection schemes are needed to achieve the required selectivity. Low yields of the desired products are also a result of the 

difficulty in purifying the deprotected compound along with product loss during each step of a multistep synthesis.13, 22 Nature's solution 

to the assembly of glycosidic bonds is the enzyme machinery belonging to the families of glycosyltransferases and of glycosidases. 

These enzymes have therefore enormous potential for the synthesis of biologically relevant carbohydrate structures.23 These biocatalysts 

offer a significant advantage over their chemical counterparts in their ability to form a specific glycosidic linkage in the presence of other 

reactive functional groups.22  

 In this context, only few groups are interested in the chemo-enzymatic synthesis of furanosyl-containing conjugates.3, 24-27 Furanosyl 

transferases are however rare and require both nucleotide-diphospho (NDP)-sugars as donors and suitable acceptors.28-30 Another 

approach, recently proposed by Thorson, is based on the glycosyl transferase reversibility, that uses simple glycosides as precursors of 

NDP-sugars for further transfer onto more complex natural products.31, 32 To the best of our knowledge, this strategy was not applied for 

the synthesis of furanosides. Recently, our team developed an enzyme-based protocol for the preparation of di- and oligofuranosides 

using the thermophilic Araf51 as biocatalyst.33 Considering structural similarity between L-arabino- and D-galactofuranosyl (D-Galf) 

entities, and the wide presence of D-Galf residues in natural glycoconjugates and polysaccharides, we now propose to expand the chemo-

enzymatic methodology to transglycosylation reactions in order to transfer a galactofuranosyl entity to a variety of pyranosidic acceptors 

(Figure 1). These substrates were chosen so as to perform the synthesis of furanosyl-pyranoside sequences relevant to pathogenic 

microorganisms3 as well as to estimate the specificity of this enzyme towards carbohydrate acceptors. As we expected that such 

pyranosides resist to hydrolysis by the furanosidase Araf51, the presence of the pNP group in the anomeric position was envisaged to 

enable simple UV detection of reaction products. Moreover, the D-gluco- (D-Glcp), D-galacto- (D-Galp) and D-mannopyranosidic (D-

Manp) epimers, as well as their anomeric configurations, offer stereochemical variations that may influence the fate of the coupling 



process. Finally, we made a focus on the L-rhamnopyranoside (L-Rhap) 8 for structural and biological reasons but also because it 

displays a 1C4 conformation instead a 4C1 one observed for other acceptors 2-7. 
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Fig. 1 Structure of glycosyl donor 1 and acceptors 2-8. 

Results 

At the first place, unavailability of -1 subsite of Araf51 to pyranosidic acceptors was confirmed spectrophotometrically (405 nm) by 

incubation of individual pNP pyranosides 2-8 with the enzyme for 2 h at 60 °C in a phosphate buffer at pH 7.4. No release of p-

nitrophenolate was recorded, indicating that these compounds cannot act as donors, thus confirming our first hypothesis. Subsequently, to 

screen enzyme readiness to catalyze transglycosylation, individual analytical-scale reactions were performed starting from donor 1 and 

each of pNP glycopyranoside, and in the presence of Araf51. Thin layer chromatography monitoring showed the formation of 

disaccharides when the donor 1 was incubated with an equal molar quantity or with a 5-fold molar excess of pyranosidic acceptor, after 

only short incubation periods (5-20 min). These compounds resulted from both self-condensation of 1 and desired transglycosylation 

reactions. 

 As a model of biocatalyzed coupling, the progress of the reaction of 1 with 2 (pNP -D-Glcp) was monitored by HPLC (Figure 2). 

Between 5 and 20 minutes, digalactofuranosides constituted the main reaction products.33 At the same time, these products of self-

condensation were hydrolyzed more rapidly than furanosyl-pyranoside disaccharides, which resisted to hydrolysis for more than 3h. This 

could be explained by the structures of the resulting disaccharides which significantly differ from those of natural substrates of the 

enzyme. In the present model reaction, traces of trisaccharides were observed from the early stage of the reaction (5-10 min) and 

confirmed by mass spectrum analysis, but precise structures could not be elucidated. Importantly, when the ratio donor/acceptor was 

increased to 1:10, no products of self-condensation were detected. Moreover, synthesis of furano-pyrano-disaccharides was strongly 

favored over hydrolysis of 1. After careful chromatographic purification, two main disaccharides 9 and 10 were isolated and their 

structures were elucidated by NMR spectroscopy. The major product 9 was obtained in the yield of 44%. It exhibited an intense three-

bond coupling in the 13C-1H (HMBC) spectrum between H-1’ (5.09 ppm) and C-2 (79.2 ppm) as well as C-1’ (109.4 ppm) and H-2 (3.69 

ppm) and was identified as pNP β-D-galactofuranosyl-(1→2)-α-D-glucopyranoside 9 (Figure 2). The second regioisomer, isolated in 

34% yield, presented a correlation between H-1’ (5.24 ppm) and C-3 (79.4 ppm) as well as between C-1’ (108.3 ppm) and H-3 (3.96 

ppm). The compound was identified as (1→3)-linked disaccharide 10. The time-course analysis monitored by HPLC revealed that the 

(1→3)-disaccharide 10 was kinetically synthesized, followed by the formation of the (1→2)-isomer 9. This monitoring also showed that 

these compounds disappeared with times in favor of a third regioisomer. The yield of the latter culminated after 4 hours of reaction and it 

was still present after 24 hours. The precise nature of the corresponding glycosidic linkage could however not be clearly elucidated. As a 

result, the overall yield of transglycosylation reach a maximum, slightly greater than 80%, between 5 and 20 minutes. In the present 

model reaction, traces of trisaccharides were observed from the early stage of the reaction (5-10 minutes) and confirmed by mass 

spectrum analysis, but precise structures could not be elucidated. 

 Under similar conditions, using the -glucopyranoside 3 as an acceptor (Figure 2), and after 20 minutes of reaction, three 

disaccharides were chromatographically separated: pNP β-D-Galf-(1→2)-β-D-Glcp 11, pNP β-D-Galf-(1→3)-β-D-Glcp 12, and pNP β-D-

Galf-(1→6)-β-D-Glcp 13 were isolated in 26%, 25% and 30% yields, respectively. The time-course analysis revealed that the (1→2)-

linked regioisomer 11 was the major kinetic product and is present together with the (1→3)-linked regioisomer 12 from the first minutes 

of the reaction. From about 15 minutes, the (1→6)-linked regioisomer 13 was formed and became the prevalent one after 1 hour. It was 

detected also with 15% yield after 24 hours. It is interesting to note that, when 12 was incubated with the biocatalyst and an excess of 3, 

it was transformed into 13. This emphasizes the striking stability of this (1→6)-bond in the presence of the furanosyl hydrolase Araf51. 



  To go further with this methodology, we applied the Araf-51-assisted synthesis of furanosyl-containing disaccharides to three other 

families of acceptors. The use of galactosidic acceptors 4 and 5 did not fundamentally change the observations previously exposed with 

the gluco series. Three disaccharides with (1→2)- (14), (1→3)- (15), and (1→4)-linkage (16) were obtained from the -anomer 4 and 

isolated in 73% overall yield (Table 1, entry 1). Substrate 5, characterized by a -configuration, afforded only the (1→2)- (17) and 

(1→6)-disaccharides (18) in a near equimolecular ratio and in a 52% overall yield (entry 2). 

 On another hand, the reaction with the -mannopyranoside 6 (entry 3) was relatively rapid compared to other pyranosidic acceptors 

and the degree of hydrolysis of formed disaccharides was slightly higher. The reaction in a preparative scale was thus carried out for only 

10 minutes. pNP β-D-Galf-(1→6)-α-D-Manp 19 was obtained in 15% yield. 2-D NMR analyses confirmed that three other regioisomers 

were obtained in a mixture in the overall yield of 43%. The time-course analysis monitored by TLC revealed that these regioisomers are 

readily formed from the first minutes of reaction with the maximal yields between 5 and 10 minutes. The (1→6)-linked regioisomer 19 

was formed from about 5 minutes of reaction. 

 

 
Fig. 2 Progress of the reaction of 1 with 2 or 3 catalyzed by Araf51. 

 The transglycosylation with the -anomer 7 was apparently slower than that of the α-anomer and the conversion of pNP β-D-Galf still 

did not reach maximum after two hours of reaction. However, the degree of hydrolysis was quite low, similarly to the other pNP 

pyranosides. After 25 minutes of the preparative-scale reaction, two regioisomers were isolated (entry 4). pNP β-D-Galf-(1→4)-β-D-

Manp 20 was obtained in a very high yield of 49%. The second regioisomer 21, identified as the (1→6)-disaccharide, was isolated in 

16% yield. The time-course analysis confirmed kinetic preferences for the (1→4)-linked disaccharide 20. In about 40 minutes of 

reaction, both regioisomers were present equivalently. At the end of 2 hours incubation, the favoured (1→6)-linked regioisomer 21 

prevailed. Structures were unambiguously established according to NMR data. 

 Finally, we also studied the L-rhamnopyranoside 8 since it presents a significantly different reactivity and because it is widely found in 

Nature. While three disaccharides were observed after 20 minutes of the biocatalytic process, exclusively one regioisomer 22, 

characterized by a (1→4)-connection, was indeed isolated and in a fairly good 38% yield (entry 5). Evidence of the precise structure was 

established on the basis of NMR data. More specifically, the C-4 signal in the starting substrate 8 (C-4=71.4 ppm) was shifted to 77.8 

ppm within the disaccharide 22, thus demonstrating the (1→4)-coupling, and this result was corroborated by 2D NMR experiments. 

Discussion 

All results obtained for the transfer of a galactofuranosyl residue to pyranosidic acceptors mediated by the arabinofuanosidase Araf51 

underline the ability of this enzyme to accept within its +1 sub-site all the seven tested pyranosidic acceptors. Importantly, the anomeric 

configuration of the latter modulated the behavior of the furanosyl transfer. Usually, the (1→2)-disaccharides were the most common in 

the gluco and galacto series, and readily formed and stable. The (1→3) linkage was formed subsequently and was also frequently 

presented in these series. Interestingly, none of these -anomers displayed the (1→6)-connection although for the -anomers, it 

represents the major thermodynamically formed linkage. In Nature, exo-acting -L-arabinofuranosidases release the arabinosyl 



decorations at C-2 and C-3 position of arabinogalacatans and arabinoxylans from a range of plant structural polysaccharides, where both 

the galactose and xylose moieties are presented in a -D-pyranose form. Thus, considering the structural similarity of xylose and glucose, 

kinetic or 

ermodynamic disaccharide with a very low quantity of the other regioisomer with respect to the time-course of the reaction. 

 

the transglycosylation preferences correspond to the hydrolytic activity on natural substrates. 

 Starting from -D-mannopyranoside and -L-rhamnopyranoside, the kinetically preferred linkage was the (1→4). It results from this 

observation that the adopted conformations within the active site of Manp and Rhap derivatives vary to some extent compared to the 

glucosidic and galactosidic monosaccharides. Thus the axial C-2 hydroxyl group in mannose, in contrast to glucose, seems to impact the 

conformation within the active site more markedly than the orientation of C-4 OH group distinguishing glucose from galactose. Overall, 

in all the three series where both anomers were tested (D-Glcp, D-Galp, D-Manp), the reactions involving the -anomer proceeded 

markedly faster than those of their -anomeric counterparts. The time-course analyses also revealed the crucial effect of the reaction time 

on the ratio of regioisomers formed in individual reactions. Thus, in most of cases, it is possible to isolate either 

th

Table 1 Araf51-mediated sy es identified in individual nthesis of disaccharides 9-22 using pNP -D-Galf 1 as donor and the linkag

regioisomers together with the isolated yields after two hours of reaction. 

Entry Acceptor Time (min) Product (yield, %) Overall yield (%) 

   (1→2) (1→3) (1→4) (1→6)  

1 4 (-D-Galp) 20 14 (41)   16 

                 (32) 

 73 15                        

2 5 (-D-Galp) 20 17 (27)   18 (25) 52 

3 6 (-D-Manp) 15 Mixture (1→2/3/4) (43) 19 (15) 58 

4 7 (-D-Manp) 25   20 (49) 21 (16) 65 

5 8 (-L-Rhap) 20   22 (38)  38 

 
 

 In order to elucidate binding modes of acceptors 2–7 in transglycosylation reactions, complexes of Araf51 with all putative 

transglycosylation products were subjected to molecular dynamics simulations (24 x 10 ns). Each putative product was docked into the 

active site by rigid fit of its Galf moiety onto the Araf moiety in the experimental structure. The pyranosyl and pNP-moieties were 

adjusted manually before the simulation. The results of simulations for disaccharides 11, 14, 17 and 18 are shown in figure 3. These 

selected products showed stable binding in the active site illustrated by low root-mean-square deviation (RMSD). The results also 

demonstrated that binding modes of (1→2) products are very similar. The pNP-moiety is oriented perpendicularly to the access of the 

active site. On the other hand, the pNP-moiety in 18 [-D-Galf-(1→6)--D-Galp], as an example of (1→6) product, is placed along the 

axis of the active site. The fact that the pNP-moiety may orient in different angles explains relatively broad acceptor specificity. Most 

other putative products have shown high RMSD which indicate either inability of the product to bind into the active site or incorrect 

docking. Unfortunately, attempts to quantitatively predict acceptors preferences from molecular simulations or free-energy methods were 

not successful (not shown). 

 Among the disaccharides prepared throughout this part, several display a configuration reported from uncommon cell wall 

glycoconjugates of some pathogenic species. Galactofuranosyl residue connected to D-Glcp moiety through the (1→3)-linkage has been 

identified e.g. in Streptococcus species,34 the one with the (1→6)-linkage is reported from Escherichia coli K-12 strain.35 The (1→3)-

linkage to D-Galp was identified in Fibrobacter succinogenes36 or in the O-antigen repeating unit of Klebsiella pneumoniae.36 In 



Mycobacterium species37-40 and Pleisiomonas shigelloides,41 -D-Galf is connected to L-Rhap through the (1→4)-linkage. The sequence 

-D-Galf-(1→2)-D-Manp is present in many microorganisms, among the pathogens notably Cryphonectria parasitica42 or 

Trichoderma.43 -D-Galf-(1→3)-D-Manp is frequent in Aspergillus,44 Trypanosoma cruzi 12, 45 and Leishmania,11 -D-Galf-(1→6)-D-

Manp e.g. in Aspergillus,44 Leishmania11or Paraccidioides brasiliensis.46 

 
Fig. 3 Predicted binding modes of 11, 14, 17 and 18 by 10 ns molecular dynamics simulations. The figure shows predicted binding modes at the end of 

each simulation (left) and corresponding RMSD profiles (right). These were obtained by fitting protein Cα atoms and calculating RMSD for the product. 

g targets were prepared disaccharides 

iosynthesized by Mycobacteria, Leishmania, Trypanosoma or Paraccidiodes microorganisms. 
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rbitrap XL (THERMO), where ESI+ spectra were recorded on 

Conclusions 

A chemo-enzymatic synthesis of galactofuranosyl-containing disaccharides was proposed mediated by the thermophilic 

arabinofuranosidase Araf51. We have first demonstrated that a large excess of acceptor allowed overcoming the self-condensation side 

reaction. Secondly, transglycosylation products were obtained in the early stage of the biocatalyzed process and increased reaction times 

did not affect the target furanosyl-pyranoside disaccharides since the degree of hydrolysis of the latter remained very low. These factors 

together were fruitful from a synthetic point of view. Consequently, and with regard to the very good yields obtained with the assistance 

of the hydrolytic furanosidase Araf51, this chemo-enzymatic approach constitutes a very interesting alternative to multi-step chemical 

synthesis of various mimetics of biologically significant structures. The +1 sub-site of Araf51 was able to recognize simple 

glycopyranosides as acceptors, even a Rhap derivative and its 1C4 conformation. Amon

b

Experimental S

General remarks 

Prior to NMR analysis, fractions were exchanged in D2O (99.9% purity) at room temperature with intermediate freeze-drying, and then 

dissolved in 400 μL of D2O. 1H, 13C, COSY, HSQC, HMBC, TOCSY and NOESY NMR spectra were recorded at the Laboratory of 

NMR spectroscopy (ICT Prague, Czech Republic) on a Bruker 600 Avance spectrometer equipped with a cryoprobe at 600 MHz for 1H 

and 125 MHz for 13C, and on a Bruker ARX 400 at 4

 units (ppm). Coupling constants J are given in Hz. 

 The HRMS were measured at the Centre Régional de Mesures Physiques de l’Ouest (CRMPO, Université de Rennes 1, France) with a 

MS/MS ZabSpec TOF Macromass using m-nitrobenzylic alcohol as a matrix and accelerated caesium ions for ionization and at the 

Laboratory of Mass Spectrometry (ICT Prague, Czech Republic) using a Q-TOF Micro (Waters, USA), where electrospray-ionisation 

mass spectra (ESI-MS) were recorded on samples dissolved in MeOH injected in a volume of 2-5 μL into a flow (100 μL.min-1) of 

MeOH. Sample cone voltage was 42 V and the source temperature was 150 °C. Measurements were performed in positive ([M+Na]+ ion 

detection) mode in the range of 100-1000 Da. Finally, at the Mass Spectrometry Group (Institute of Organic Chemistry and 

Biochemistry, Academy of Sciences of the Czech Republic) on LTQ-O

samples dissolved in MeOH/H2O (1:1), sample cone voltage was 40 V. 



 Thin layer chromatography (TLC) analyses were conducted on Kieselgel 60 F254 (Merck) plates with 0.2-mm layer thickness. Spots 

were visualized by UV (254 nm) and by exposure to 0.2% w/v orcinol in H2SO4 (20% v/v) in ethanol. For column chromatography, 

0 and 405 nm by operating software Biologic DuoFlow. Collected fractions were lyophilized (FreeZone Freeze Dry 

-D-Galp, pNP -D-Galp, pNP -D-Glcp, pNP -D-Glcp, pNP -D-Manp, pNP 

 of 

evaporated and lyophilized several times with intermediate dissolving in H2O, finally in D2O and subjected to structural 

C), 69.0 (4a-C), 62.7 

a]+ 486.12181; found 486.12173. 

-C), 67.5 (4a-C), 62.8 (6b-C), 60.1 (6a-C) ppm. HRMS (ESI): m/z calcd for C18H25O13NNa [M+Na]+ 486.12181; found 

.0 (4a-C), 62.7 (6b-C), 60.3 (6a-C) ppm. 

either Si 60 (40-63 μm) Silica gel or pre-packed Chromabond®Flash RS 15 SiOH columns (Macherey-Nagel) were used. 

 Gel permeation chromatography was performed on P-2 Bio-Gel (Bio-Rad) using FPLC system consisting of a solvent delivery system 

Biologic F40 DuoFlow, Biologic QuadTec UV-Vis Detector and Biologic BioFrac Fraction Collector (all Bio-Rad). Deionized filtrated 

(0.22 μm PVDF membrane, Millipore) water was used as a mobile phase with a flow rate of 0.15 mL.min-1. Separation was monitored by 

UV absorbance at 28

System, Labconco). 

 Recombinant arabinofuranosidase Araf51 was produces in E. coli and purified as already described.47 The hydrolytic activity toward 

p-nitrophenyl pyranosides was tested by incubation of the solution of enzyme (obtained after affinity Ni-NTA chromatography and 

exchanged to 50mM PBS pH 7.4 by PD10 gel chromatography) with individual glycopyranosides (5mM) in 50 mM potassium phosphate 

buffer pH 7.4 at 60 °C. The release of p-nitrophenolate was continuously measured at 405 nm (Microplate Spectrophotomerer 

PowerWave XS/XS2, BioTek) and data evaluated with Gen5 Data Analysis Software (BioTek). The synthesis of pNP -D-Galf is 

described in Supporting Information for this artcile. pNP 
-D-Manp and pNP -L-Rhap are commercially available. 

General procedure for the transglycosylation reactions 

Prior to preparative-scale reactions, the time-course analyses were performed in the analytical scale (5 μmol of individual pNP 

pyranosides, 0.5 μmol of pNP -D-galactofuranoside and 36 U of Araf51 in 100 μL of 50 mM PBS pH 7.4). The reaction was monitored 

by TLC (7:2:2 EtOAc/AcOH/H2O). Preparative-scale reactions were performed at 60 °C by incubation of the pNP -D-galactofuranoside 

(20 mg, 66 μmol; or 10 mg, 33 μmol) with individual pNP pyranosides (200 mg, 660 μmol for pNP D-Glcp and pNP D-Galp; 100 mg, 

330 μmol for pNP D-Manp and pNP L-Rhap) and 4800 U of Araf51 (for reactions with pNP D-Glcp and pNP D-Galp) or 2400 U of 

Araf51 (for reactions with pNP D-Manp and pNP L-Rhap) in 50 mM PBS pH 7.4 in a total volume with regard to the solubility

substrates: 5 mL (reactions with - and -D-Galp and -D-Glcp) or 10 mL (-D-Glcp and - and -D-Manp) or 15 mL (-L-Rhap). 

 Based on the results from analytical-scale reactions, individual reaction proceeded for 20 min with exception for -D-Manp (15 min) 

and -D-Manp (25 min) to obtain the maximum ratio of transglycosylation/hydrolysis. The reactions were stopped by enzyme 

denaturation at 100 °C for 10 min. The reactions products were repeatedly separated by silica gel flash chromatography using EtOAc-

AcOH-H2O in ratios from 15:1:1 to 40:1:1. Separations were monitored by TLC, fractions corresponding to individual regioisomers were 

collected, 

analyses. 

p-Nitrophenyl -D-galactofuranosyl-(1→2)--D-glucopyranoside (9) 

This compound was obtained according to the described general procedure by incubation of 20 mg (66 μmol) of 1 with 200 mg (660 

μmol) of pNP -D-glucopyranoside 2 in the presence of 4800 U of Araf51 and was isolated in 44% yield (13.3 mg) after purification. 

TLC: Rf = 0.45 (AcOEt/AcOH/H2O, 7/2/2). 1H NMR (400 MHz, D2O):  = 8.19 (d, 2H, J = 9.2 Hz, Hm, C6H4), 7.23 (d, 2H, J = 9.2 Hz, 

Ho, C6H4), 5.87 (d, 1H, J = 3.6 Hz, 1a-H), 5.08 (d, 1H, J = 2.0 Hz, 1b-H), 4.07 (dd, 1H, J = 2.0, 4.2 Hz, 2b-H), 3.93 (dd, 1H, J = 4.2, 6.8 

Hz, 3b-H), 3.92 (dd, 1H, J = 9.0, 9.8 Hz, 3a-H), 3.70 (dd, 1H, J = 3.6, 9.8 Hz, 2a-H), 3.60-3.50 (m, 3H, 6a-H, 5a-H), 3.56 (dd, 1H, J = 

3.1, 6.8 Hz, 4b-H), 3.53-3.47 (m, 1H, 5b-H), 3.50 (dd, 1H, J = 9.0, 9.8 Hz, 4a-H), 3.10 (dd, 1H, J = 8.1, 11.5 Hz, 6b-H), 2.86 (dd, 1H, J = 

4.0, 11.5 Hz, 6’b-H) ppm. 13C NMR (100 MHz, D2O):  = 161.6 (Cipso C6H4), 142.7 (Cp C6H4), 126.1 (Cm C6H4), 116.7 (Co C6H4), 

109.5 (1b-C), 96.3 (1a-C), 82.6 (4b-C), 81.1 (2b-C), 79.3 (2a-C), 76.1 (3b-C), 72.4 (5a-C), 71.5 (3a-C), 69.7 (5b-

(6b-C), 60.1 (6a-C) ppm. HRMS (ESI): m/z calcd for C18H25O13NNa [M+N

p-Nitrophenyl -D-galactofuranosyl-(1→3)--D-glucopyranoside (10) 

This compound was obtained according to the described general procedure by incubation of 1 (20 mg, 66 μmol) with pNP -D-

glucopyranoside 2 (200 mg, 660 μmol) in the presence of 4800 U of Araf51. It was isolated in 34% yield (10.5 mg). TLC: Rf = 0.5 

(AcOEt/AcOH/H2O, 7/2/2). 1H NMR (400 MHz, D2O):  = 8.12 (d, 2H, J = 9.2 Hz, Hm, C6H4), 7.18 (d, 2H, J = 9.2 Hz, Ho, C6H4), 5.70 

(d, 1H, J = 3.5 Hz, 1a-H), 5.24 (d, 1H, J = 1.5 Hz, 1b-H), 4.10 (dd, 1H, J = 1.5, 3.5 Hz, 2b-H), 4.03-3.99 (m, 2H, 3b-H, 4b-H), 3.96 (dd, 

1H, J = 9.2, 9.6 Hz, 3a-H), 3.80 (dd, 1H, J = 3.5, 9.6 Hz, 2a-H), 3.76 (ddd, 1H, J = 3.2, 4.4, 7.6 Hz, 5b-H), 3.67-3.57 (m, 5H, 6a-H, 6’a-

H, 6b-H, 6’b-H, 5a-H), 3.48 (dd, 1H, J = 9.2, 9.6 Hz, 4a-H) ppm. 13C NMR (100 MHz, D2O):  = 161.1 (Cipso C6H4), 141.9 (Cp C6H4), 

125.7 (Cm C6H4), 116.4 (Co C6H4), 108.3 (1b-C), 96.6 (1a-C), 82.9 (4b-C), 81.2 (2b-C), 79.4 (3a-C), 76.7 (3b-C), 72.7 (5a-C), 70.8 (2a-

C), 70.6 (5b

486.12160. 

p-Nitrophenyl -D-galactofuranosyl-(1→2)--D-glucopyranoside (11) 

This compound was obtained according to the described general procedure by incubating 1 (20 mg, 66 μmol) with pNP -D-

glucopyranoside 3 (200 mg, 660 μmol) in the presence of 4800 U of Araf51, and was isolated in 26% yield (7.9 mg). TLC: Rf = 0.4 

(AcOEt/AcOH/H2O, 7/2/2). 1H NMR (400 MHz, D2O):  = 8.18 (d, 2H, J = 9.2 Hz, Hm, C6H4), 7.17 (d, 2H, J = 9.2 Hz, Ho, C6H4), 5.28 

(d, 1H, J = 7.2 Hz, 1a-H), 5.26 (d, 1H, J = 1.4 Hz, 1b-H), 4.03 (dd, 1H, J = 1.4, 2.5 Hz, 2b-H), 3.94-3.90 (m, 2H, 3b-H, 4b-H), 3.81 (dd, 

1H, J = 5.7, 12.4 Hz, 6a-H), 3.70-3.65 (m, 2H, 5b-H, 2a-H), 3.65 (dd, 1H, J = 9.5, 9.5 Hz, 3a-H), 3.64 (dd, 1H, J = 2.2, 12.4 Hz, 6’a-H), 

3.59-3.55 (m, 1H, 5a-H), 3.44 (dd, 1H, J = 4.3, 11.6 Hz, 6b-H), 3.43 (t, 1H, J = 9.5 Hz, 4a-H), 3.39 (dd, 1H, J = 7.3, 11.6 Hz, 6’b-H) 

ppm. 13C NMR (100 MHz, D2O):  = 161.6 (Cipso C6H4), 142.7 (Cp C6H4), 126.1 (Cm C6H4), 116.5 (Co C6H4), 108.3 (1b-C), 98.1 (1a-

C), 83.7 (4b-C), 81.0 (2b-C), 78.2 (2a-C), 76.7 (3b-C), 76.1 (5a-C), 75.6 (3a-C), 70.8 (5b-C), 69



HRMS (ESI): m/z calcd for C18H25O13NNa [M+Na]+ 486.12181; found 486.12173. 

6 (5b-C), 67.7 (4a-C), 62.8 (6b-C), 60.5 (6a-C) ppm. HRMS 

. 

.8 (5b-C), 69.4 (4a-C), 66.3 (6a-C), 62.7 (6b-C) ppm. HRMS (ESI): m/z calcd for C18H25O13NNa 

0 (4a-C), 68.0 (3a-C), 62.6 (6b-

86.12181; found 486.12163. 

3a-C), 67.8 (2a-C), 62.7 (6b-C), 61.3 (6a-C) ppm. HRMS (ESI): m/z calcd for C18H25O13NNa [M+Na]+ 486.12181; 

.6 (5b-C), 66.9 

NNa [M+Na]+ 486.12181; found 486.12162. 

p-Nitrophenyl -D-galactofuranosyl-(1→3)--D-glucopyranoside (12) 

This disaccharide was prepared as described in the general procedure starting from donor 1 (20 mg, 66 μmol) and pNP -D-

glucopyranoside 3 (200 mg, 660 μmol) in the presence of 4800 U of Araf51. The target compound 12 was isolated in 25% yield (7.6 mg) 

after purification. TLC: Rf = 0.48 (AcOEt/AcOH/H2O, 7/2/2). 1H NMR (400 MHz, D2O):  = 8.18 (d, 2H, J = 9.2 Hz, Hm, C6H4), 7.17 

(d, 2H, J = 9.2 Hz, Ho, C6H4), 5.26 (d, 1H, J = 1.7 Hz, 1b-H), 5.21 (d, 1H, J = 7.6 Hz, 1a-H), 4.10 (dd, 1H, J = 1.7, 3.3 Hz, 2b-H), 4.02 

(dd, 1H, J = 3.8, 6.4 Hz, 4b-H), 4.01 (ddd, 1H, J = 0.4, 3.3, 6.4 Hz, 3b-H), 3.87-3.84 (m, 1H, 6a-H), 3.77-3.72 (m, 1H, 5b-H), 3.72-3.68 

(m, 1H, 3a-H), 3.70-3.66 (m, 2H, 2a-H, 6’a-H), 3.66-3.57 (m, 2H, 5a-H, 6b-H), 3.61-3.55 (m, 1H, 6’b-H), 3.49 (dd, 1H, 4a-H) ppm. 13C 

NMR (100 MHz, D2O):  = 161.6 (Cipso C6H4), 142.7 (Cp C6H4), 126.1 (Cm C6H4), 116.5 (Co C6H4), 108.1 (1b-C), 99.2 (1a-C), 83.0 

(4b-C), 81.5 (2a-C), 81.1 (2b-C), 76.6 (3b-C), 76.0 (5a-C), 72.8 (3a-C), 70.

(ESI): m/z calcd for C18H25O13NNa [M+Na]+ 486.12181; found 486.12171

p-Nitrophenyl -D-galactofuranosyl-(1→6)--D-glucopyranoside (13) 

This compound was synthesized as described in the general procedure using 1 (20 mg, 66 μmol), pNP -D-glucopyranoside 3 (200 mg, 

660 μmol), and 4800 U of Araf51. The desired disaccharide 13 was isolated in 30% yield (9.2 mg). TLC: Rf = 0.4 (AcOEt/AcOH/H2O, 

7/2/2). 1H NMR (600 MHz, D2O):  = 8.22 (d, 2H, J = 9.1 Hz, Hm, C6H4), 7.21 (d, 2H, J = 9.1 Hz, Ho, C6H4), 5.22 (d, 1H, J = 2.7 Hz, 

1a-H), 4.94 (d, 1H, J = 1.5 Hz, 1b-H), 4.04-3.97 (m, 2H, 6a-H, 2b-H), 4.98 (dd,1H, J = 3.4, 6.2 Hz, 3b-H), 3.90-3.86 (m, 1H, 4b-H), 

3.80-3.71 (m, 3H, 5a-H, 5b-H, 6’a-H), 3,57-3.48 (m, 5H, 3a-H, 2a-H, 6b-H, 6’b-H, 4a-H) ppm; 13C NMR (125 MHz, D2O):  = 161.6 

(Cipso C6H4), 142.7 (Cp C6H4), 126.1 (Cm C6H4), 116.5 (Co C6H4), 107.9 (1b-C), 99.3 (1a-C), 83.0 (4b-C), 81.0 (2b-C), 76.8 (3b-C), 

75.3 (3a-C), 75.2 (5a-C), 72.7 (2a-C), 70

[M+Na]+ 486.12181; found 486.12172. 

p-Nitrophenyl -D-galactofuranosyl-(1→2)--D-galactopyranoside (14) 

This compound was obtained according to the general procedure starting from donor 1 (20 mg, 66 μmol), acceptor 4 (200 mg, 660 μmol) 

and 4800 U of Araf51. Compound 14 was isolated in 41% yield (12.6 mg). TLC: Rf = 0.4 (AcOEt/AcOH/H2O, 7/2/2). 1H NMR (400 

MHz, D2O):  = 8.19 (d, 2H, J = 9.2 Hz, Hm, C6H4), 7.23 (d, 2H, J = 9.2 Hz, Ho, C6H4), 5.89 (d, 1H, J = 3.2 Hz, 1a-H), 5.08 (s, 1H, 1b-

H), 4.10 (dd, 1H, J = 3.3, 10.4 Hz, 3a-H), 4.07 (dd,1H, J = 2.1, 4.3 Hz, 2b-H), 3.99 (dd, 1H, J = 2.0, 3.3 Hz, 4a-H), 3.93 (ddd, 1H, J = 

0.7, 4.3, 6.9 Hz, 3b-H), 3.91 (dd, 1H, J = 3.7, 10.3 Hz, 2a-H), 3.89 (ddd, 1H, J = 1.9, 4.7, 7.7 Hz, 5a-H), 3.67-3.57 (m, 2H, 6a-H, 6’a-H), 

3.56 (dd, 1H, J = 2.9, 6.9 Hz, 4b-H), 3.52 (ddd, 1H, J = 2.9, 4.2, 8.2 Hz, 5b-H), 3.42 (dd, 1H, J = 4.0, 6.4 Hz, 6b-H), 3.11 (dd, 1H, J = 

8.0, 11.2 Hz, 6’b-H) ppm. 13C NMR (100 MHz, D2O):  = 161.6 (Cipso C6H4), 142.7 (Cp C6H4), 126.2 (Cm C6H4), 116.8 (Co C6H4), 

109.7 (1b-C), 96.6 (1a-C), 82.5 (4b-C), 81.2 (2b-C), 76.2 (2a-C and 3b-C), 71.8 (5a- C), 69.6 (5b-C), 69.

C), 60.8 (6a-C) ppm. HRMS (ESI): m/z calcd for C18H25O13NNa [M+Na]+ 4

p-Nitrophenyl -D-galactofuranosyl-(1→3)--D-galactopyranoside (15) 

The disaccharide 15 was obtained according to the described general procedure by incubation of donor 1 (20 mg, 66 μmol) with acceptor 

4 (200 mg, 660 μmol) in the presence of 4800 U of Araf51, and was isolated in regioisomeric mixture with 16 in 32% yield (9.9 mg). 

According to the 1H NMR signal integration, it was obtained in 18% yield. TLC: Rf = 0.48 (AcOEt/AcOH/H2O, 7/2/2). 1H NMR (400 

MHz, D2O):  = 8.19 (d, 2H, J = 9.2 Hz, Hm, C6H4), 7.23 (d, 2H, J = 9.2 Hz, Ho, C6H4), 5.74 (d, 1H, J = 3.8 Hz, 1a-H), 5.12 (d, 1H, J = 

2.1 Hz, 1b-H), 4.10 (dd, 1H, J = 3.7, 10.2 Hz, 3a-H), 4.07 (dd,1H, J = 2.2, 4.7 Hz, 2b-H), 4.02 (dd, 1H, J = 1.3, 3.0 Hz, 4a-H), 3.97 (dd, 

1H, J = 3.7, 10.4 Hz, 2a-H), 3.95 (dd, 1H, J = 4.4, 7.1 Hz, 3b-H), 3.92-3.87 (m, 1H, 5a-H), 3.85 (dd, 1H, J = 3.7, 7.1 Hz, 4b-H), 3.72-

3.67 (m, 1H, 5b-H), 3.57-3.50 (m, 4H, 6a-H, 6’a-H, 6b-H, 6’b-H) ppm; 13C NMR (100 MHz, D2O):  = 161.6 (Cipso C6H4), 142.7 (Cp 

C6H4), 126.2 (Cm C6H4), 116.8 (Co C6H4), 108.9 (1b-C), 96.6 (1a-C), 82.2 (4b-C), 81.4 (2b-C), 76.1 (3b-C), 75.6 (4a-C), 71.9 (5a-C), 

70.1 (5b-C), 69.6 (

found 486.12161. 

p-Nitrophenyl -D-galactofuranosyl-(1→4)--D-galactopyranoside (16) 

This compound was synthesized according to the described general procedure starting from 1 (20 mg, 66 μmol), pNP -D-

galactopyranoside 4 (200 mg, 660 μmol), 4800 U of Araf51, and was isolated in regioisomeric mixture with 15 in 32% yield (9.9 mg). 

According to the 1H NMR signal integration, this compound was obtained in 14% yield. TLC: Rf = 0.5 (AcOEt/AcOH/H2O, 7/2/2). 1H 

NMR (400 MHz, D2O):  = 8.19 (d, 2H, J = 9.2 Hz, Hm, C6H4), 7.23 (d, 2H, J = 9.2 Hz, Ho, C6H4), 5.75 (d, 1H, J = 3.2 Hz, 1a-H), 5.15 

(d, 1H, J = 1.8 Hz, 1b-H), 4.10 (dd, 1H, J = 1.8, 3.6 Hz, 2b-H), 4.09-4.02 (m,2H,  4a-H, 3a-H), 4.03 (dd, 1H, J = 3.3, 10.4 Hz, 2a-H), 

3.96 (ddd, 1H, J = 0.9, 3.4, 6.7 Hz, 3b-H), 3.94 (dd, 1H, J = 4.0, 6.6, 4a-H), 3.90-3.86 (m, 1H, 5a-H), 3.74-3.68 (m, 1H, 5b-H), 3.58-3.52 

(m, 4H, 6a-H, 6’a-H, 6b-H, 6’b-H) ppm; 13C NMR (100 MHz, D2O):  = 161.6 (Cipso C6H4), 142.7 (Cp C6H4), 126.2 (Cm C6H4), 116.8 

(Co C6H4), 109.2 (1b-C), 96.6 (1a-C), 82.7 (4b-C), 81.4 (2b- C), 76.7 (3b-C), 72.0 (3a-C), 71.9 (5a-C), 71.9 (5a-C), 70

(2a-C), 62.6 (6b-C), 60.8 (6a-C) ppm. HRMS (ESI): m/z calcd for C18H25O13

p-Nitrophenyl -D-galactofuranosyl-(1→2)--D-galactopyranoside (17) 

The disaccharide was synthesized as described in the general procedure incubating furanosyl donor 1 (20 mg, 66 μmol) with pNP -D-

galactopyranoside 5 (200 mg, 660 μmol) in the presence of 4800 U of Araf51, and was isolated in 27% yield (8.1 mg). TLC: Rf = 0.4 

(AcOEt/AcOH/H2O, 7/2/2). 1H NMR (400 MHz, D2O):  = 8.18 (d, 2H, J = 9.2 Hz, Hm, C6H4), 7.17 (d, 2H, J = 9.2 Hz, Ho, C6H4), 5.25 

(d, 1H, J = 1.5 Hz, 1b-H), 5.24 (d, 1H, J = 7.5 Hz, 1a-H), 4.05 (dd, 1H, J = 2.9, 1.5 Hz, 2b-H), 3.95 (dd,1H, J = 2.9, 5.8 Hz, 3b-H), 3.96-

3.91 (m, 1H, 5a-H), 3.91 (dd, 1H, J = 4.1, 5.8 Hz, 4b-H), 3.88 (dd, 1H, J = 7.5, 9.7 Hz, 2a-H), 3.84-3.78 (m, 2H, 3a-H, 4a-H), 3.73-3.67 

(m, 3H, 5b-H, 6a-H, 6’a-H), 3.45 (dd, 1H, J = 4.4, 11.7 Hz, 6b-H), 3.39 (dd, 1H, J = 7.3, 11.7 Hz, 6’b-H) ppm. 13C NMR (100 MHz, 

D2O):  = 161.9 (Cipso C6H4), 142.6 (Cp C6H4), 125.9 (Cm C6H4), 116.4 (Co C6H4), 108.4 (1a-C), 98.5 (1b-C), 83.5 (4a-C), 81.0 (2a-C), 



76.7 (3a-C), 76.4 (2b-C), 75.5 (4b-C), 72.6 3b-C), 70.8 (5a-C), 68.4 (5b-C), 62.6 (6a-C), 60.6 (6b-C) ppm. HRMS (ESI): m/z calcd for 

.2 (2a-C), 68.5 (4a-C), 66.9 (6a-C), 62.5 (6b-C) ppm. HRMS (ESI): m/z calcd for C18H25O13NNa [M+Na]+ 486.12181; 

2.5 (4b-C), 81.1 (2b-C), 76.5 (3b-C), 

), 62.8 (6b-CH ) ppm. 

a-C), 62.6 (6b-C), 61.1 (5a-C), 60.3 (6a-C) ppm. HRMS (ESI): 

, 80.9 (2b-C), 76.8 (3b-C), 

), 62.7 (6b-CH2) ppm.  

.9 (2a-C), 68.2 (5a-C), 

) ppm. HRMS (ESI): m/z calcd for C18H25O12NNa [M+Na]+ 470.12690; found 470.12665. 

C18H25O13NNa [M+Na]+ 486.12181; found 486.12190. 

p-Nitrophenyl -D-galactofuranosyl-(1→6)--D-galactopyranoside (18) 

This compound was prepared according to the described general procedure by incubation of 1 (20 mg, 66 μmol) with of pNP -D-

galactopyranoside 5 (200 mg, 660 μmol) in the presence of 4800 U of Araf51, and was isolated in 25% yield (7.6 mg). TLC: Rf = 0.4 

(AcOEt/AcOH/H2O, 7/2/2). 1H NMR (400 MHz, D2O):  = 8.18 (d, 2H, J = 9.2 Hz, Hm, C6H4), 7.17 (d, 2H, J = 9.2 Hz, Ho, C6H4), 5.12 

(d, 1H, J = 7.6 Hz, 1a-H), 4.90 (dd, 1H, J = 1.2, 0.6 Hz, 1b-H), 4.00 (ddd, 1H, J = 0.9, 3.8, 8.4 Hz, 4a-H), 3.97 (d, 1H, J = 1.2 Hz, 2b-H), 

3.96 (ddd, 1H, J = 3.3, 0.6 Hz, 3b- H), 3.93 (dd, 1H, J = 0.9, 3.4 Hz, 4a-H), 3.91 (dd, 1H, J = 1.5, 4.4 Hz, 4b-H), 3.83 (dd, 1H, J = 3.8, 

11.6 Hz, 6a-H), 3.76 (dd, 1H, J = 7.6, 9.9 Hz, 2a-H), 3.73-3.72 (m, 1H, 5b-H), 3.71 (dd, 1H, J = 8.4, 11.6 Hz, 6’a-H), 3.70 (dd, 1H, J = 

3.4, 9.9 Hz, 3a-H), 3,63-3.57 (m, 1H, 6b-H), 3.56-3.51 (m, 1H, 6’b-H) ppm. 13C NMR (100 MHz, D2O):  = 161.6 (Cipso C6H4), 142.7 

(Cp C6H4), 126.1 (Cm C6H4), 116.5 (Co C6H4), 107.8 (1b-C), 99.8 (1a-C), 83.1 (4b-C), 82.0 (2b-C), 76.7 (3b-C), 74.5 (5a-C), 72.3 (3a-

C), 70.7 (5b-C), 70

found 486.12172. 

p-Nitrophenyl -D-galactofuranosyl-(1→6)--D-mannopyranoside (19) 

This compound was prepared according to the described general procedure by incubation of 1 (20 mg, 66 μmol) with of pNP -D-

mannopyranoside 6 (200 mg, 660 μmol) in the presence of 4800 U of Araf51, and was isolated in 15% yield (4.6 mg). 1H NMR (600 

MHz, D2O): δ = 8.22 (d, 2H, J = 9.3 Hz, Hm, C6H4), 7.23 (d, 2H, J = 9.3 Hz, Ho, C6H4), 5.71 (d, 1H, J = 1.7 Hz, 1a-H), 4.91 (d,1H, J = 

1.7 Hz, 1b-H), 4.14 (dd, 1H, J = 1.7, 3.4 Hz, 2a-H), 3.99 (dd, 1H, J = 3.4, 9.1 Hz, 3a-H), 3.91-3.82 (m, 3H, 5a-H, 2b-H, 3b-H), 3.72-3.62 

(m, 3H, 4a-H, 6a-H, 6a‘-H), 3.62-3.56 (m, 1H, 5b-H), 3.52-3.44 (m, 3H, 4b-H, 6b-H, 6a‘-H) ppm. 13C NMR (125 MHz, D2O): δ = 160.7 

(Cipso C6H4), 142.0 (Cp C6H4), 126.0 (Cm C6H4), 116.8 (Co C6H4), 108.1 (1b-C), 97.6 (1a-C), 8

73.2 (4a-C), 70.5 (5b-C), 70.2 (3a-C), 69.6 (2a-C), 67.3(6a-CH2), 66.7 (5a-C 2

p-Nitrophenyl -D-galactofuranosyl-(1→4)--D-mannopyranoside (20) 

This compound was obtained according to the general procedure by incubation of 1 (10 mg, 33 μmol) with mannopyranosidic acceptor 7 

(100 mg, 330 μmol) in the presence of 2400 U of Araf51, and was isolated in 49% yield (7.5 mg). TLC: Rf = 0.49 (AcOEt/AcOH/H2O, 

7/2/2). 1H NMR (400 MHz, D2O):  = 8.16 (d, 2H, J = 9.2 Hz, Hm, C6H4), 7.13 (d, 2H, J = 9.2 Hz, Ho, C6H4), 5.43 (s, 1H, 1a-H), 5.02 

(d, 1H, J = 1.80 Hz, 1b-H), 4.18 (d, 1H, J = 2.6 Hz, 2a-H), 4.06-4.03 (m, 2H, 4b-H, 3b-H), 4.02 (d, 1H, 2b-H), 3.87 (dd, 1H, J = 1.9, 12.2 

Hz, 6a-H), 3.79 (dd, 1H, J = 2.6, 9.2 Hz, 3a-H), 3.80-3.76 (m, 1H, 4a-H), 3.75-3.73 (m, 1H, 5b-H), 3.72 (dd, 1H, J = 4.5, 12.2 Hz, 6’a-

H), 3.63 (ddd, 1H, J = 1.9, 5.4, 9.5 Hz, 5a-H), 3.60 (d, 1H, J = 6.7, 11.9 Hz, 6b-H), 3.58 (dd, 1H, J = 4.1, 11.9 Hz, 6’b-H) ppm. 13C NMR 

(100 MHz, D2O):  = 161.5 (Cipso C6H4), 142.4 (Cp C6H4), 126.1 (Cm C6H4), 116.2 (Co C6H4), 108.0 (1b-C), 97.0 (1a-C), 82.8 (3b-C), 

81.0 (4b-C), 76.0 (2b-C), 74.6 (4a-C), 71.2 (3a-C), 70.5 (5b-C), 70.1 (2

m/z calcd for C18H25O13NNa [M+Na]+ 486.12181; found 486.12204. 

p-Nitrophenyl -D-galactofuranosyl-(1→6)--D-mannopyranoside (21) 

This compound was prepared according to the described general procedure by incubation of 1 (20 mg, 66 μmol) with of pNP -D-

mannopyranoside 6 (200 mg, 660 μmol) in the presence of 4800 U of Araf51, and was isolated in 15% yield (4.9 mg). 1H NMR (600 

MHz, D2O): δ = 8.20 (d, 2H, J = 9.3 Hz, Hm, C6H4), 7.17 (d, 2H, J = 9.3 Hz, Ho, C6H4), 5.46 (br s, 1H, 1a-H), 4.95 (d, J = 4.4 Hz, 1H, 

1b-H), 4.18 (d, 1H, J = 3.0 Hz, 2a-H), 4.00-3.00 (m, 2H, 5a-H, 2b-H), 3.97 (dd, 1H, J = 3.5, 6.0 Hz, 3b-H), 3.91 (dd, 1H, J = 4.3, 6.0 Hz, 

4b-H), 3.76-3.63 (m, 5H, 3a-H, 4a-H, 5b-H, 6a-H, 6a‘-H), 3.60-3.53 (m, 2H, 6b-H, 6b‘-H) ppm. 13C NMR (125 MHz, D2O): δ = 161.5 

(Cipso C6H4), 142.5 (Cp C6H4), 126.1 (Cm C6H4), 116.3 (Co C6H4), 107.9(1b-C), 97.0 (1a-C), 83.1 (4b-C)

75.5 (4a-C), 72.5 (3a-C), 70.8 (5b-C), 70.2 (2a-C), 66.6 (5a-C), 66.6 (6a-CH2

p-Nitrophenyl -D-galactofuranosyl-(1→4)--L-rhamnopyranoside (22) 

This compound was obtained according to the described general procedure by incubation of pNP -D-galactofuranoside 1 (10 mg, 33 

μmol) with pNP -L-rhamnopyranoside 8 (100 mg, 330 μmol) in the presence of 2400 U of Araf51, and was isolated in 38% yield (5.5 

mg). TLC: Rf = 0.5 (AcOEt/AcOH/H2O, 7/2/2). 1H NMR (400 MHz, D2O):  = 8.15 (d, 2H, J = 9.2 Hz, Hm, C6H4), 7.13 (d, 2H, J = 9.2 

Hz, Ho, C6H4), 5.55 (d, 1H, J = 1.2 Hz, 1a-H), 5.21 (d, 1H, J = 1.7 Hz, 1b-H), 4.06 (dd, 1H, J = 1.2, 3.4 Hz, 2a-H), 4.04 (dd, 1H, J = 1.8, 

3.9 Hz, 2b-H), 4.04-4.00 (m, 1H, 3a-H), 3.97 (dd, 1H, J = 3.9, 6.3 Hz, 3b-H), 3.87 (dd, J = 3.8, 6.3 Hz, 1H, 4b-H), 3.72 (ddd, J = 4.4, 4.5, 

7.2 Hz, 1H, 5b-H), 3.58 (dd, 1H, J = 4.4, 11.6 Hz, 6b-H), 3.59-3.55 (m, 1H5a-H), 3.57-3.53 (m, 1H, 4a-H), 3.54 (dd, 1H, J = 7.2, 11.6 

Hz, 6’b-H), 1.11 (d, 1H, J = 5.7 Hz, CH3) ppm. 13C NMR (100 MHz, D2O):  = 161.3 (Cipso C6H4), 142.0 (Cp C6H4), 125.8 (Cm C6H4), 

116.2 (Co C6H4), 108.4 (1b-C), 97.5 (1a-C), 82.7 (4b-C), 81.5 (2b-C), 77.8 (4a-C), 70.4 (5b-C), 70.3 (3a-C), 69

62.7 (6a-C), 17.1 (6a-C

Molecular modeling 

All simulations were performed in Gromacs 4.5.5.48 Each system included one molecule of Araf51 (from the experimental structure, 

PDB I.D. 2C8N),49 one molecule of putative transglycosylation product, ~18 300 water molecules and 15 sodium counter-ions. Protein 

was modelled using Amber99SB force field,50 transglycosylation products were modelled using Glycam0651 (carbohydrates) and General 

Amber Force Field52 (pNP-moiety). Charges were calculated by RESP method on the basis of HF/6-31G*//HF/6-31G* wavefunction 

calculated for individual fragments in Gaussian 0353. Molecules of putative products were placed to the active site by 3D-alignment of 

the Galf moiety with the Araf moiety in the experimental structure. This was followed by manual adjustment of glycosidic bond torsions 

to avoid steric clashes. Finally, the system was minimized (3 000 steps of L-BFGS and 500 steps of steepest descent) and simulated by 



1 ns of equilibration and 10 ns of production simulation. Non-hydrogen atoms of the protein and Galf were restrained during the 

equilibration run by a harmonic restraint potential. 

and 7AMB13FR014). The authors are finally grateful to the 

GlycoOuest network, supported by the Région Bretagne and the Région Pays de la Loire. 
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