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ALGEBRAIC GEOMETRIC CODES ON SURFACES

Yves Aubry

Equipe “Arithmétique et Théorie de I'Information”
Laboratoire de Mathématiques Discrétes du C.N.R.S.
Luminy Case 916. 13288 Marseille Cedex 9. France.

Abstract : For a given algebraic variety V defined over a finite field
and a'very ample divisor D on V, we give a construction of a linear code
Cv,p. If V is a curve, we recover the algebraic geometric Goppa codes. We
are interested here to the case where V' is an algebraic surface, and we give in
some cases the parameters of such corresponding codes. We compare these
parameters to the Singleton bound and to those of Goppa codes. In order to
compute these parameters, we use the Riemann-Roch theorem for surfaces.

Résumé : Pour toute variétée algébrique V définie sur un corps fini
et pour tout diviseur trés ample D sur V, nous donnons une construc-
tion d’'un code linéaire Cy,p. Si V est une courbe, on retrouve les codes,
de Goppa géométriques. Nous nous intéressons ici au cas ol V' est une sur-
face algébrique, et 'on donne dans certains cas les paramétres des codes
correspondants. Nous comparons ces paramétres 4 la borne de Singleton et
a ceux des codes de Goppa. Nous utilisons pour calculer ces paramétres le
théoréme de Riemann-Roch pour les surfaces.

1. Introduction.

Algebraic geometric codes are already studied on curves. We give here a general
construction of linear codes from a given algebraic variety V. This will be done in two
steps : the first one is an embedding of V by means of a divisor D, and the second one
corresponds to hyperplane sections of the embedded variety. If we omit the first step, it is
just the projective Reed-Muller codes studied in [1].

Let [F, be the finite field with g elements, and [, an algebraic closure of [F;. Let V be
a nonsingular absolutely irreducible algebraic variety defined over [F, and D a divisor on
V defined over [F,. If [F(V) denotes the function field of V, and (f) the principal divisor
associated to a rational function f, we set

L(D) ={f e Fo(V)" | (f) 2 -D}u{0}.

The space L(D) is a finite-dimensional [F,-vector space for every D; we set (D) =
dimg, L(D) = m. We suppose that the divisor D is very ample, and let $p be the



associated embedding of V' in the projective space IP'""(F;). Let us in few words, explicit
this embedding.

Let {®0,®1,---,¥m—1} be a basis of the vector space L(D) over [Fy, and Do = D + (o).
We have an isomorphism between the vector spaces L(D) and L(Do) sending f to f.pp?t,

which sends the basis {¢0, ¢1,---,¢m-1} to {1, -:5:,...,-’;—0"-}.

Let
Ag: L(Dy) —  [Fy[Xo, X1,.. oy Xm—1]¢
N+ I NE — DA
be an isomorphism of L(Do) onto the vector space of linear homogeneous polynomials with
m variables over [F,. We have Ag'(X;) = £¢. Denote Ag 1(X;) by f3. Finally, if Supp D
denotes the support of the divisor D, let
&g: V —Supp(Dy) — pm-t
P — (1 f@) - 5 HP)
We can proceed in the same way to define regular maps &; with divisors D; = D + (). It
is easy to see that if p € V, if p ¢ Supp(D;,) and if p € Supp(Dj, ), then &4, (p) = &5, (p)-
Moreover, since the divisor D is very ample, in particular the complete linear system | D | has
no base points, and then for all p € V, there exist an effective divisor D; linearly equivalent
to D, D; = D + (i), such that p ¢ Supp(D;). Thus, all the points of V can be embedded
in P™! via a map ®;, and we define the embedding ®p by ®p(p) = ®:(p)-
Furthermore, V = &p(V) is not contained in any hyperplane (indeed, since L(D) and
Fql X0, X1s:- s Xm-1]? are isomorphic, the only rational function which is zero everywhere
is the zero function). Thus, we have :

PROPOSITION 1.1. — Under the above hypothesis, V = ®p(V) is a smooth projective
subvariety of P™(FF,), and we have a one-to-one and onto map

3p : V(F,) — V(F,) c P™\(F,)
Furthermore, V is not contained in any hyperplane.

Now, let us construct the “hyperplane section code” Cv,p associated to the projective
algebraic variety V.
Let W; be the set of points with homogeneous coordinates (zg : 21 : ** - : ZTm—1) iN Pm_l(qu)
such that
Io=11="-=1‘-_1=0, a:;;éO.
It is clear that the family {W;}ogigm—1 is a partition of [P"‘"I(F,).
Then, we define Cy,p to be the image of the following map v

¥ [Fq[Xo,X]_,.. '1Xm--1]? — . u:ql‘.’(Fq)
h = (_E‘_:l):=(zo:---:=..._;)E\?(F,)nW‘

where 1:*’([F.,) denotes the set of rational points over [F, of V. Furthermore, if we suppose
that V([F,) is not contained in H([Fy), for all hyperplane H of [P"'_I(F;), we can give an
estimation of the parameters of the code Cy,p.




THEOREM 1.2. — The code Cy,p defined above has parameters :
lengthCyv,p = §V(Fy) = #V(F,)
dimCy,p = £(D)
dist Cv,p = §V/(F,) — max{}(V n H(F,))}

where H describes the set of all hyperplanes of P™(F,).

Proof. The embedding of V is such that V is not contained in any hyperplane, so the
map ¥ is one-to-one, and thus the dimension of the code Cv,p is equal to the dimension
of Fy[Xo,X1,..., Xm-1]] over Fg, which is clearly m, i.e {(D). The length of Cy,p is
lﬂ-/(IFq) = §V(FF,) by the above proposition. The minimal distance of Cy,p is obvious. o

2. Algebraic geometric Goppa Codes.

If we take for the variety V a nonsingular curve C of genus g defined over [F,, take a
divisor D defined over [F, on it, such that deg D > 2g (then, D is a very ample divisor on
C). Let £ = {Py,...,Pa} C C(F,), with n > deg D and such that none of the P; belongs to
the support of D. Let {0, 1, ..,¥m-1} be a basis of the vector space L(D) over [F,, and
&p the corresponding embedding

&p : C(F,) — C(F,) c P™}(F,)
The restriction of Ehe map ®p to the set £ sends the point P € £ to the point zp = (@o(P) :
.+ @m-1(P)) € C(FF,). Denote by £ the image of £ by ®p.
Moreover, we have seen that the projective space P™!(IF,) can be partitioned using the
sets W;. Then, for each equivalence class corresponding to a projective point, we can
choose the representant which have for the first non-zero coordinate the value 1 (i.e. if *
z=(zq::ZTm-1) € Wi, we take z; = 1). Thus the map ¥ defined in § 1 is just the
following one
V: FolXo Xi o Xmold —  F
h —  (h(z));ez
If h = 75 A X; is a linear form in Fy[Xo, X1, ..., Xm—1]{, then
m=1
Mzp) =) Ajes(P) = fa(P)
=0
where fj belongs to L(D). Then, we have
(h(zp));peé = (fa(P))Pee-
But, it is nothing else that the geometric Goppa code defined over the curve C which is the
image of the map (see [2])
Gepe: L(D) — F
f — (f(P )‘3}’65



Remark. The hypothesis saying that the points P of £ not belong to the support of the
divisor D is not necessary in our construction. Furthermore, the embedded curve C has
degree equal to deg D and a curve € has at most deg € points in common with a hyperplane.
The estimation of the number of points of hyperplane sections of C is the same that the
estimation of the number of zeros of a rational function over the curve C of L(D). Thus,
the parameters of this code are the same as those of Goppa code where the set £ is C([Fy),
i.e. where the evaluation is made over all the rationals points over [Fy of C'; namely

lengthCc,p = §C(F)
dimCep =¢D)=degD+1-g
distCc,p > §C([F;) — deg D.

3. Surfaces.

Let S be a nonsingular projective algebraic surface, D a very ample divisor on S and
Cs,p the corresponding code. Recall the property that a divisor D on a surface is very ample
if and only if the linear system | D — P — @ | has dimension dim | D| =2, for all LQE S;
and that the arithmetic genus p,(S) of S is defined by pa(S) = Ps(0) — 1 where Ps is the
Hilbert polynomial of S. '

By the Riemann-Roch theorem, we have (see [3 p. 362]) :

¢D) = s(D) &K — D) + 5 D.(D - K) +1+pa(S)

where s(D) is the superabundance od D and K the canonical divisor on S.

PROPOSITION 3.1. — (i) If the divisor D is such D? > K.D, then
dimCsp 2 %D(D — K) 4+ 1+ p4(S).
(ii) We have
distCs,p > §S(F,) — D3 (g + 1).

Proof. (i) If £(K — D) > 0, then the divisor K — D is effective, and since D is a very ample
divisor on S, we get (K — D).D >0, i.e D? < K.D. So, if we take D such that D? > K.D,
we have £(K — D) = 0. In this case, since s(D) > 0, we have :

UD) > %D.(D — K)+1+pa(5)

and we conclude by theorem 1.2.



(ii) Moreover, the degree of the surface S is equal to the self-intersection mimber D?, and
for any hyperplane H, SN H is a curve of degree equal to the degree of S. Then, using
the fact (communicated by Gilles Lachaud) that a curve of degree d has at most d(g + 1)

rational points over [Fy, we have :
#(3 N H(F,)) < deg§ - (g+1) = D*(g+1).
Thus, via the theorem 1.2, we obtain for the minimal distance of the code Cs,p the lower

bound :
distCs,p > #S(Fq) — D*(g +1).

4. An example : the nondegenerate hyperbolic quadric surface in

.

Let Q be the surface in [P*([F,) defined by the equation
XY -Zw=0.

We have §Q(F;) = (g + 1)%, and the arithmetic genus of Q is equal to 0. It is well-known
that the divisor class group C1(Q) of divisor modulo the linear equivalence (i.e. modulo the
principal divisors), is isomorphic to Z& Z. Let D and D’ be two divisors on Q of type (a,b)
and (a’, '), then the intersection pairing (used in the Riemann-Roch theorem) on Q is given
by (see [3]) :
D.D’ = ab’ + a'b.

The canonical divisor K has type (=2, —2), and a divisor D of type (a,b) is very ample if |
and only if a > 0 and b > 0. -
Thus for divisors D of type (a, b) with a and b > 0, we obtain a family of [n, k, d]-codes Cq,p
with :

n=q¢+2g+1, k>ab+a+b+1, d>g¢°+2(1-ab)g+1—2ab.

Indeed, the dimension and m;_rumal distance are given by the proposition 3.1 since D?* > K.D
(because ab > —a — b) and Q has degree D? = 2ab.

5. Ruled Surfaces.

We can generalize the previous example to ruled surfaces. Indeed, if S is a (geometri-
cally) ruled surface on a nonsingular curve C, we can associate to S an invariant e, and it
can be shown (see [3 p. 373]) that all divisor D on S is numerically equivalent to aCy + bf
for a,b € Z, with

Co.f=1 f*=0, Ci=-e (%)



(recall that two divisors D and D’ are said to be numerically equivalent if for any divisor E

on S, we have D.E = D'.E).
Thus, for a given ruled surface S with base curve C and a chosen divisor D on S (with the

notations above-mentioned), we have the

PROPOSITION 5.1. — Let D = aCy + bf be a very ample divisor on the ruled surface S of
invariant e, such that a(2b — e — ea — 2g + 2) + 2b > 0, and let g be the genus of the base
curve C. Then the [n, k, d]-code Cs,p is such that

n<(g+1)(g+1+9[2v7])
k> @+ D)b+1-9-3)
" d>(g+1)(g+1-9|2/7] —2ab+ea®).

Moreover, if D is a nonsingular curve of genus g(D), then

k>2b—ea?—g(D)+2—g.

Proof. The length of the code is equal to §S([F,) which is (g+ 1) x §C(F,) and by the
Serre-Weil bound (| | denotes the integer part), we have the result.

The dimension is given by the Riemann-Roch theorem, using the fact that the canonical
divisor K of S is numerically equivalent to —2Cj + (29 — 2 — e)f, using the properties (%),
knowing that the arithmetical genus of a ruled surface is the opposite of the genus of the
base curve, and that £(K — D) = 0 since the hypothesis on a and b is just D? > K.D.

The minimal distance follows seeing that D? = 2ab — ea®.

Moreover, if D is a nonsingular curve of genus g(D), by the Adjunction formula (see [3 p.
361]) we have : 2g(D) —2 = D.(D + K), thus D.K =2g(D) -2 - D32, So the result follows _
using the Riemann-Roch theorem. o

COROLLARY — Let D = aCo+ bf witha >0, b > ce and a(2b—e —ea+2) +2b >0 be a
divisor on the rational ruled surface S of invariant e > 0 with base curve C' = P, Then the
[n, k, d]-code Cs,p is such that

n=q¢"+2q+1

k> (a+l)(b+1-%)

d> (q+1)(g+ 1 — 2ab+ ea?).

Proof. In the case of rational ruled surface, we have a criterion for a divisor to be very
ample and this is exactly the hypothesis a > 0 and b > ae of the corollary (see [3 p. 380)),
furthermore a(2b — e — ea + 2) + 2b > 0 gives D? > K.D (remark that if 2b > a, we have
D? > K.D). The corollary follows knowing that H[P‘(in) = g+ 1, and that the genus of P!
is equal to 0. a




Remark. We recover the preceding example of the quadric in the particular case where C'
is equal to the projective line P! (and then e = g = 0).

It is easy to construct a ruled surface of any invariant e > 0. Indeed, (see [3 p. 374])

take C be any curve embedded in [P” of degree d, and consider the cone over C in P™*!
with vertex P. If we blow up the point P, we obtain a ruled surface S over C with invariant
e=d.
Hence, consider the algebraic-geometric Goppa code Gc,g £ defined over a rational curve C,
of degree d, with effective divisor G as in § 2. Then we can consider the ruled surface S of
base curve C as above, and take on it the divisor D = Cp + (deg G) f. If we suppose that
deg G > d then the divisor D is very ample (see the proof of the above corollary), and we
can consider the code Cs p. Note that, since C is a rational curve, the code G¢,c,e is M.D.S.
(see [2]), i.e. reaches the following Singleton bound

k+d<n+1

for any [n, k, d]-code. Let us compare the relative distance (i.e §(C) = T::T’:S'Z) of these codes.
With the above notations, we have
PROPOSITION 5.2. — If deg G = d + 1, the relative distances of Gc,c,e and Cs,p differ at
most of i?(!ﬁ)" and the code Cs p has a length which is (g + 1) times those of Go,c.-
Proof. Indeed, by the estimations of §2 we have
£ —degG .

8(Gece) 2 ﬁ_ﬂg_g__ with € < §C(Fy)
and by the corollary we have
§C(F,) — 2degG +d
P
Then, if we take degG = d + 1, we get the result and thus, the relative distances are
asymptotically equal. Moreover, since S is a ruled surface of base curve C, the length of the
code Cs,p is equal to (g+ 1)§C([F,), i.e. (g +1)? since the curve C is rational and thus has a
zero genus. Remark that the dimensions are d+4 for Cs,p and d+ 2 for the other one. O

We conclude this paper by a simple example where we can compute exactly the
parameters, and where we recover a projective Reed-Muller code.
Consider the simple rational ruled surface, namely the projective plane le(IF.,). The group
Cl([P’) is 2 Z and the class h of a line is a generator. We have the following relations :

R =1,C.D=nm, K=-3h

where C and D are divisors linearly equivalent to nh and mh, and where K is the canonical
divisor. Then, take the divisor D = h and consider the associated code C = Cpa p. We get :

length C = ¢* + ¢+ 1, dimC > 3, distC = ¢*.



Furthermore, by the Griesmer bound, for any [n, k, d]-code over [F;, we have
n-k-d+1;r$-1

where [4] denotes the smallest integer > 4, Then, we have
dmC< @ +q+1-¢*+1-q+1=3.

Thus, we get dimC = 3, and the code C reaches the Griesmer bound. We recover the well-
known projective Reed-Muller code of order 1 associated to P*(F,) (see [4]).
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