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1. Introduction. This article has roughly a threefold aim. The first is
to provide a series of upper and lower bounds for the number of points on
an abelian variety defined over a finite field. A simple typical result is

(q + 1−m)g ≤ |A(Fq)| ≤ (q + 1 +m)g

(Corollaries 2.14 and 2.2). Here A is an abelian variety of dimension g defined
over the field Fq of q elements, and m is the integer part of 2q1/2. This
inequality improves on

(q + 1− 2q1/2)g ≤ |A(Fq)| ≤ (q + 1 + 2q1/2)g,

which is an immediate consequence of Weil’s inequality. We also provide
bounds for |A(Fq)| depending on the trace of A. If, by chance, A is the Ja-
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cobian of a curve or the Prym variety of a covering of curves, the trace is
easily expressed in terms of the number of rational points on the correspond-
ing curves. We obtain two other lower bounds depending on the harmonic

mean η = η(A) of the numbers q + 1 + xi, namely

1

η
=

1

g

g
∑

i=1

1

q + 1 + xi
,

where

fA(t) =

g
∏

i=1

(t2 + xit+ q)

is the Weil polynomial of A.
Our second aim is to obtain specific lower bounds in the special case

where A = JC is the Jacobian of a smooth, projective, absolutely irreducible
algebraic curve C defined over Fq. M. Martin-Deschamps and the third
author proved in [9] that

|JC(Fq)| ≥ η
qg−1 − 1

g
· N + q − 1

q − 1
,

where g is the genus of C and N = |C(Fq)|. This article offers several
improvements to this bound, if q is large enough: for instance,

|JC(Fq)| ≥
(

1− 2

q

)(

q + 1 +
N − (q + 1)

g

)g

,

and also, with Stanley’s notation (3.4),

|JC(Fq)| ≥
η

g

[((

N + 1

g − 2

))

+

g−1
∑

n=0

qg−1−n

((

N

n

))]

.

The third aim is to give exact values for the maximum and the minimum
number of rational points on Jacobian varieties of dimension 2, namely, to
calculate, in the case g = 2, the numbers

Jq(g) = max
C

|JC(Fq)| and jq(g) = min
C

|JC(Fq)|,

where C ranges over the set of equivalence classes of smooth curves of genus
g over Fq. These numbers are the analogues for Jacobians of the numbers

Nq(g) = max
C

|C(Fq)| and nq(g) = min
C

|C(Fq)|,

introduced by J.-P. Serre. For g = 2, the bounds

(q + 1−m)2 ≤ jq(2), Jq(2) ≤ (q + 1 +m)2

are attained in most cases, with exceptions occurring when q is special. It
is worth pointing out that S. Ballet and R. Rolland [3] recently obtained
asymptotic lower bounds on the number of points on Jacobian varieties;
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these results are distinct from ours. Some of the results presented here come
from the thesis [7] of the second author, and the contents of the present
article are summarized in [1].

The contents of this article are as follows. Section 2 is devoted to the
number of points on general abelian varieties. In §2.1, we first prove an
upper bound (Theorem 2.1) obtained by H. G. Quebbemann in the case
of Jacobians, and M. Perret in the case of Prym varieties. Then we state
three sharper upper bounds, depending on the defect of A or on a specific
parameter r.

The lower bounds we discuss in §2.2 are based on auxiliary results, pre-
dominantly on inequalities between classical means, and depend on the trace
of A. The first one (Theorem 2.11) is based on Specht’s inequality (Propo-
sition 2.7), and is symmetric to the upper bound of Theorem 2.1. Another
important result is Theorem 2.13, and Corollary 2.14 gives the unconditional
lower bound stated at the beginning of this introduction.

The bounds stated in Theorem 2.15 and Proposition 2.16 are expressed
in terms of the harmonic mean η. In order to compare these bounds, we show
in §2.4 that if q ≥ 8, then η ≥ q + 1−m (Proposition 2.17). The convexity
method of Perret is used in §2.5 to give two other bounds in Theorem 2.18
and Proposition 2.19.

We discuss Jacobians in Section 3. The previous inequalities apply to
Jacobians, with the number of points on the related curve as a parameter,
and this is stated in §3.1. The bound for the number of points on Jacobians
given in [9] depends on the identity

g

η
|JC(Fq)| =

g−1
∑

n=0

An +

g−2
∑

n=0

qg−1−nAn,

where An is the number of positive divisors on C which are rational over Fq.
In §3.2, this identity is proved in an abstract framework, free of any geo-
metric setting (Theorem 3.5).

By using the combinatorics of the exponential formula, various inequal-
ities for the numbers An are obtained in §3.3, depending on two conditions
(B) and (N) which are satisfied by Jacobians. We discuss these conditions
by giving in Propositions 3.7 and 3.8 some results on a certain number Bn,
which, in the case of Jacobians, is the number of rational prime cycles of
degree n on the curve. For instance, for a curve of genus g,

nBn ≥ (qn/4 + 1)2((qn/4 − 1)2 − 2g).

This leads to three new lower bounds. All of these are gathered in §3.4,
where we compare them, and discuss their accuracy.

In Section 4, the last one, the complete calculation of Jq(2) in Theo-
rem 4.1 and of jq(2) in Theorem 4.2 is worked out.
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2. Abelian varieties

2.1. Upper bounds. Let A be an abelian variety of dimension g de-
fined over the finite field Fq of characteristic p, with q = pn. The Weil

polynomial fA(t) of A is the characteristic polynomial of its Frobenius en-
domorphism FA. Let ω1, . . . , ωg, ω1, . . . , ωg be the complex roots of fA(t),
with |ωi| = q1/2 by Weil’s inequality. For 1 ≤ i ≤ g, we put xi = −(ωi+ωi),
and we say that A is of type [x1, . . . , xg]. The type of A only depends on the
isogeny class of A. Let

τ = τ(A) = −
g

∑

i=1

(ωi + ωi) =

g
∑

i=1

xi.

The integer τ is the opposite of the trace of FA, and we say that A has trace

−τ . The number of rational points on A is |A(Fq)| = fA(1), and

(2.1) |A(Fq)| =
g
∏

i=1

(q + 1 + xi)

since

fA(t) =

g
∏

i=1

(t− ωi)(t− ωi) =

g
∏

i=1

(t2 + xit+ q).

Since |xi| ≤ 2q1/2, one deduces from (2.1) the classical bounds

(q + 1− 2q1/2)g ≤ |A(Fq)| ≤ (q + 1 + 2q1/2)g.

The arithmetic-geometric inequality states that

(c1 . . . ck)
1/k ≤ 1

k
(c1 + · · ·+ ck)

if c1, . . . , ck are non-negative real numbers, with equality if and only if c1 =
· · · = ck. Applying this inequality to (2.1), we obtain the following upper
bound, proved by H. G. Quebbemann [13] in the case of Jacobians, and M.
Perret [12] in the case of Prym varieties:

Theorem 2.1. Let A/Fq be an abelian variety of dimension g and

trace −τ . Then

|A(Fq)| ≤ (q + 1 + τ/g)g,

with equality if and only if A is of type [x, . . . , x].

Throughout this article, we shall denote m = [2q1/2], where [α] denotes
the integer part of the real number α. J.-P. Serre [16] proved that

(2.2) |τ | ≤ gm,

hence, by Theorem 2.1:
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Corollary 2.2. Let A/Fq be an abelian variety of dimension g. Then

|A(Fq)| ≤ (q + 1 +m)g,

with equality if and only if A is of type [m, . . . ,m].

We say that A (or τ) has defect d if τ = gm− d.

Proposition 2.3. If A has defect d, with d = 1 or d = 2, then

|A(Fq)| ≤ (q +m)d(q + 1 +m)g−d.

Proof. J.-P. Serre gives in [18] the list of types [x1, . . . , xg] such that
d = 1 or d = 2, and we prove the proposition by inspection. The various
possibilities are described in Table 1 below. In this table,

ϕ1 = (−1 +
√
5)/2, ϕ2 = (−1−

√
5)/2,

ωi = 1− 4 cos2(jπ/7), j = 1, 2, 3.

Moreover, βd is the right hand side of the inequality and b = q + 1 +m.

Table 1. Types with defect 1 or 2, with b = q + 1 +m

d [x1, . . . , xg] βd − |A(Fq)|
1 (m, . . . ,m,m− 1) 0

(m, . . . ,m,m+ ϕ1,m+ ϕ2) bg−2

2 (m, . . . ,m,m− 1,m− 1) 0

(m, . . . ,m,m− 2) bg−2

(m, . . . ,m,m+
√
2− 1,m−

√
2− 1) 2bg−2

(m, . . . ,m,m+
√
3− 1,m−

√
3− 1) 3bg−2

(m, . . . ,m,m− 1,m+ ϕ1,m+ ϕ2) bg−3(b− 1)

(m, . . . ,m,m+ ϕ1,m+ ϕ2,m+ ϕ1,m+ ϕ2) bg−4(2b2 − 2b− 1)

(m, . . . ,m,m+ ω1,m+ ω2,m+ ω3) bg−3(2b− 1)

Now assume g ≥ 2. The following result extends Proposition 2.3 some-
what. Let

yi = xi − [τ/g] (1 ≤ i ≤ g), r =

g
∑

i=1

yi = τ − g[τ/g],

so that r is the remainder of the division of τ by g.

Proposition 2.4. If r = 1 or r = g − 1, then

|A(Fq)| ≤ (q + 1 + [τ/g])g−r(q + 2 + [τ/g])r.

Proof. Take an integer k with 1 ≤ k ≤ g− 1. If H belongs to the set Pk

of subsets of {1, . . . , g} with k elements, we define

yH =
∑

i∈H

yi and fk(T ) =
∏

H∈Pk

(T − yH).
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Observe that fk ∈ Z[t], since the family (xi) is stable under Gal(Q̄/Q).
Moreover,

Tr yH
deg fk

=
1
(

g
k

)

∑

H∈Pk

yH =
1
(

g
k

)

(

g − 1

k − 1

) g
∑

i=1

yi =
kr

g
.

Now recall that, if y is a totally positive algebraic integer, then the arith-
metic-geometric inequality implies that

Tr y ≥ deg y.

Hence, if yH > 0 for every H ∈ Pk, then kr ≥ g. This shows that if kr < g,
then, after renumbering the numbers xi if necessary, we have

k
∑

i=1

yi ≤ 0, i.e.
k

∑

i=1

xi ≤ k[τ/g].

Now choose k = g − r, which implies r ≥ 0. Then
g

∑

i=g−r+1

xi ≥ r([τ/g] + 1).

Hence, according to the arithmetic-geometric inequality,

|A(Fq)| =
g
∏

i=1

(q + 1 + xi)

≤
(

q + 1 +
1

g − r

g−r
∑

i=1

xi

)g−r(

q + 1 +
1

r

g
∑

i=g−r+1

xi

)r

≤ (q + 1 + [τ/g])g−r(q + 2 + [τ/g])r,

where the second inequality follows from Lemma 2.5 below. To complete the
proof of Proposition 2.4, it remains to establish that r(g−r) < g if and only
if r = 1 or r = g−1. Observe that the inequality r(g− r) < g holds in every
case if g ≤ 3. Now assume that g ≥ 4 and let

r±(g) =
1
2(g ± (g2 − 4g)1/2).

The inequality holds if and only if r < r−(g) or r > r+(g). If g = 4, then
r−(4) = r+(4) = 2. If g ≥ 5, then 1 < r−(g) < 2 and g−2 < r+(g) < g−1.

Lemma 2.5. Let 0 ≤ a ≤ c ≤ d ≤ b. If (g− r)a+ rb = (g− r)c+ rd, then

ag−rbr ≤ cg−rdr.

Proof. The barycenter of (a, log a) and (b, log b) with weights g − r and
r is

(

(g − r)a+ rb

g
,
(g − r) log a+ r log b

g

)
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and that of (c, log c) and (d, log d) with the same weights is
(

(g − r)c+ rd

g
,
(g − r) log c+ r log d

g

)

=

(

(g − r)a+ rb

g
,
(g − r) log c+ r log d

g

)

,

and the result follows from the concavity of the logarithm.

If τ has defect 1, then

τ/g = m− 1/g, [τ/g] = m− 1, r = (gm− 1)− (gm− g) = g − 1,

and Proposition 2.4 reduces to Proposition 2.3.

Corollary 2.6. If τ = gm− g + 1 (defect g − 1), then

|A(Fq)| ≤ (q +m)g−1(q + 1 +m).

Proof. Here

τ/g = m− 1 + 1/g, [τ/g] = m− 1, r = gm− g + 1− (gm− g) = 1,

and the result follows.

Remark. Smyth’s Theorem [20, p. 2] asserts that if x is a totally posi-
tive algebraic integer, then, with finitely many exceptions, explicitly listed,

Trx ≥ 1.7719 deg x.

From this, one deduces that the conclusion of Proposition 2.4 holds true
for every r if g ≤ 7 and if the polynomials x − 1 and x2 − 3x + 1 do not
divide fg−r.

2.2. Specht’s inequality. The first lower bound for |A(Fq)| that we
obtain is symmetrical to the upper bound given in Theorem 2.1, and depends
on Specht’s ratio, defined for h ≥ 1 as

S(h) =
h1/(h−1)

e log h1/(h−1)
, S(1) = 1.

This is the least upper bound of the ratio of the arithmetic mean to the
geometric mean, as a reverse of the arithmetic-geometric inequality (see [21]
and [6]).

Proposition 2.7 (Specht’s inequality). Let a and b be two numbers with

0 < a < b, and h = b/a. Let c = (c1, . . . , cn) be a sequence in [a, b]. Then

α(c) ≤ S(h)γ(c),

where α(c) = (c1 + · · ·+ cn)/n and γ(c) = (c1 . . . cn)
1/n.
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Proof. Let

λ =
b− a

log b− log a
, µ =

a log b− b log a

log b− log a
, S0 = λe(µ−λ)/λ,

so that λ is the logarithmic mean of a and b.

(a) We first prove that S0 = S(h). Indeed,

µ

λ
=

a log b− b log a

b− a
=

log(ah)− log ah

h− 1
=

log(ha1−h)

h− 1
= log(a−1h1/(h−1)),

and

λ =
b− a

log b− log a
=

a(h− 1)

log h
,

hence,

λeµ/λe−1 =
a(h− 1)

log h
a−1h1/(h−1)e−1.

(b) We now prove that

α(c) ≤ S0γ(c).

If t ∈ [log a, log b], the line D of equation y = λt + µ lies above the graph
of the function y = et, hence, in this interval, et ≤ λt+ µ. If ti = log ci and
log c = (log c1, . . . , log cn), we get

α(c) =
et1 + · · ·+ etn

n
≤ λ

(

t1 + · · ·+ tn
n

)

+ µ = λα(log c) + µ.

On the other hand, the function t 7→ S0e
t − λt − µ is convex on the whole

line R, with minimum 0 for t = (λ − µ)/λ, hence λt + µ ≤ S0e
t. Since

expα(log c) = γ(c), this implies

λα(log c) + µ ≤ S0 expα(log c) = S0γ(c).

The two preceding displays imply the required bound, and the proof of
Specht’s inequality is complete.

For the proof of Theorem 2.11 below, we need some preliminary results.

Lemma 2.8. We have S(h) → 1 if h → 1, and S(h) is an increasing

map from I = ]1,+∞[ onto itself. Moreover

logS(e2t) ≤ t2/2 if t > 0.

Proof. If t > 0,

logS(e2t) =
2t

e2t − 1
− log

2t

e2t − 1
− 1,

that is,

logS(e2t) = t coth t− 1 + log
sinh t

t
.
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The Taylor series

t coth t− 1 =

∞
∑

n=1

22nB2n

(2n)!
t2n,

where Bn is the nth Bernoulli number, is convergent if 0 < t < π. From this
one sees that logS(e2t) is an increasing map from ]0,+∞[ onto itself, with
limit 0 if t → 0. This proves the first statement. Since this Taylor series is
alternating, we have

(2.3) t coth t− 1 ≤ t2/3

if 0 < t < π, and this is obvious if t ≥ π. Now

d

dt
log

sinh t

t
= coth t− 1

t
.

By integrating, and with the help of (2.3), we get

log
sinh t

t
≤ t2

6
if t > 0.

Lemma 2.9. Let t0 = 2 log(1 +
√
2). If 0 < t < t0, define

f(t) = − log(1− 2 tanh2(t/2)).

Then f(t) ≥ t2/2.

Proof. The function f(t) is well defined, since tanh(t0/2) = 1/
√
2, and

f(t) is increasing from ]0, t0[ to I. We have

f ′(t) =
4 tanh(t/2)

3− cosh t
,

and cosh t0 = 3. The Taylor series of tanh t is convergent if 0 < t < π/2,
and alternating. This implies

tanh t ≥ t− t3/3,

and
4 tanh(t/2) ≥ t(2− t2/2) ≥ t(3− cosh t),

which means that f ′(t) ≥ t, and implies the result by integrating.

Proposition 2.10. The function S(H(q)) is a decreasing map from I

onto itself. If q > 2, then

(2.4) S(H(q)) ≤ 1 +
2

q − 2
.

Moreover S(H(2)) = 3.828 . . . .

Proof. The first statement comes from Lemma 2.8, since H(q) is a de-
creasing map of I onto itself. If 0 < t < t0, then H(e2t) > H(e2t0) = 2
and

H(e2t)

H(e2t)− 2
=

(et + 1)2

6et − e2t − 1
= f(t).
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Hence, Lemma 2.9 implies

log
H(e2t)

H(e2t)− 2
≥ t2

2
.

Combining this with Lemma 2.8, we get

logS(e2t) ≤ t2

2
≤ log

H(e2t)

H(e2t)− 2
.

Let x0 = e2t0 = (1 +
√
2)4. From the above relation we deduce that if

1 < x < x0,

S(x) ≤ H(x)

H(x)− 2
.

Now H(x) is a strictly decreasing map of I onto itself, and H(H(x)) = x.
Since H maps ]2,+∞[ onto ]1, x0[, we get the required inequality by letting
x = H(q).

Theorem 2.11. If q ≥ 2, let M(q) = 1/S(h(q)), where S(h) is Specht’s

ratio and

h(q) =

(

q1/2 + 1

q1/2 − 1

)2

.

Let A/Fq be an abelian variety of dimension g and trace −τ over Fq.

(i) We have

|A(Fq)| ≥ M(q)g(q + 1 + τ/g)g.

(ii) In particular,

|A(Fq)| ≥ (1− 2/q)g(q + 1 + τ/g)g,

where 1− 2/q has to be replaced by 0.261 if q = 2.

Proof. According to (2.1), we apply Proposition 2.7 with ci = q+1+xi,
1 ≤ i ≤ g. Then

c1 . . . cg = |A(Fq)|,
c1 + · · ·+ cg

g
= q + 1 + τ/g,

and this gives (i). By Proposition 2.10, the function M(q) is increasing, and

M(q) ≥ 1− 2/q if q ≥ 2.

Moreover M(2) = 0.261 . . . . Hence, (ii) follows from (i).

Theorems 2.1 and 2.11(ii) are summarized in the relation

(2.5) (1− 2/q)(q + 1 + τ/g) ≤ |A(Fq)|1/g ≤ q + 1 + τ/g.
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2.3. A general lower bound. It is natural to wonder whether |A(Fq)|
has a lower bound symmetrical to Corollary 2.2, and the answer turns out
to be in the affirmative.

Lemma 2.12. Let c1, . . . , cn be non-negative real numbers, and

F (T ) =
n
∏

i=1

(T + ci) ∈ R[T ].

Let

α = (c1 + · · ·+ cn)/n, γ = (c1 . . . cn)
1/n,

and assume that t ≥ 0 and 0 ≤ c ≤ γ.

(i) We have

F (t) ≥ (t+ c)n + n(α− c)tn−1,

and in particular F (t) ≥ (t+ c)n.
(ii) Moreover

F ′(t) ≥ n(t+ c)n−1 + n(n− 1)(α− c)tn−2,

and in particular F ′(t) ≥ n(t+ c)n−1.

These inequalities are strict unless c1 = · · · = cn and c = γ.

Proof. We exclude the case where c1 = · · · = cn. Let Pk be the set of
subsets of {1, . . . , n} with k elements. For 0 ≤ k ≤ n, let

sk =
∑

H∈Pk

∏

i∈H

ci

be the elementary symmetric polynomial of degree k in c1, . . . , cn. According
to Newton and Maclaurin, the sequence

k 7→
((

n

k

)−1

sk

)1/k

is strictly decreasing, in particular

γk <

(

n

k

)−1

sk < αk,

and since c < γ,
(

n

k

)

ck < sk.

Putting s0 = 1, and since s1 = nα, we obtain

F (t) =

n
∑

k=0

skt
n−k =

n
∑

k=0

(

n

k

)

cktn−k +

n
∑

k=0

(

sk −
(

n

k

)

ck
)

tn−k

> (t+ c)n + n(α− c)tn−1,
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which proves the first inequality of (i), and of course the second, since
α− c ≥ 0. Also,

F ′(t) =
n−1
∑

k=0

(n− k)skt
n−1−k,

and (ii) is proved along the lines of the proof of (i).

Remark. With the notation of Lemma 2.12, the basic inequality

F (t) ≥ (t+ λ)n

is just a consequence of the following Hölder inequality, where x1, . . . , xn
and y1, . . . , yn are non-negative real numbers:

n
∏

i=1

(xi + yi) >
(

n
∏

i=1

x
1/n
i +

n
∏

i=1

y
1/n
i

)n
,

unless x1 = · · · = xn and y1 = · · · = yn.

The real Weil polynomial of A is

hA(T ) =

g
∏

i=1

(T + xi).

Then fA(t) = tghA(t+ qt−1) and |A(Fq)| = hA(q + 1).

Theorem 2.13. Let A/Fq be an abelian variety of dimension g and

trace −τ . Then

|A(Fq)| ≥ (q + 1−m)g + (q −m)g−1(gm+ τ).

Proof. We apply Lemma 2.12 to the polynomial

F (T ) = hA(T +m+ 1) =

g
∏

i=1

(T +m+ 1 + xi).

Here ci = m+ 1 + xi, and

γ =

g
∏

i=1

(m+ 1 + xi)
1/g > 0.

Then γg ∈ Z, since this algebraic integer is left invariant by Gal(Q̄/Q),
hence γ ≥ 1. Now apply Lemma 2.12(i) with c = 1 and t = q −m. We get

hA(q + 1) = F (q −m) ≥ (q −m+ 1)g + g(q −m)g−1(α− 1),

and the result follows by observing that g(α− 1) = gm+ τ .

Remark. For g = 1, the inequality of Theorem 2.13 is an equality (if
q ≤ 4 then q −m = 0 and we use the convention 00 = 1).
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Serre’s inequality (2.2) implies gm+ τ ≥ 0, hence:

Corollary 2.14. Let A/Fq be an abelian variety of dimension g. Then

|A(Fq)| ≥ (q + 1−m)g,

with equality if and only if A is of type [−m, . . . ,−m].

2.4. Harmonic mean. The harmonic mean η = η(A) of the family of
numbers q + 1 + xi (1 ≤ i ≤ g) is defined by

1

η
=

1

g

g
∑

i=1

1

q + 1 + xi
,

hence
1

η
=

1

g

g
∑

i=1

1

|1− ωi|2
.

The classical inequality between harmonic and geometric means leads to:

Theorem 2.15. Let A/Fq be an abelian variety of dimension g. Then

|A(Fq)| ≥ ηg.

The next proposition is similar to Theorem 2.13.

Proposition 2.16. Let A/Fq be an abelian variety of dimension g. Then

|A(Fq)| ≥ η(q + 1−m)g−1 + η
g − 1

g
(q −m)g−2(gm+ τ).

Proof. Since

h′A(t)

hA(t)
=

g
∑

i=1

1

t+ xi
,

we have

|A(Fq)| =
η

g
h′A(q + 1).

By applying Lemma 2.12(ii) with F (T ) as in the proof of Theorem 2.13, we
obtain

h′A(q + 1) ≥ g(q + 1−m)g−1 + (g − 1)(q −m)g−2(gm+ τ).

leading to the second inequality.

In order to compare the results of the previous section, a lower bound
for η is needed. The proof of the forthcoming proposition makes use of a
simple observation, following C. Smyth [20] and J.-P. Serre [19]: Let

P (T ) =

g
∏

i=1

(T − αi) ∈ Z[T ]
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and F ∈ Z[T ]. The resultant res(P, F ) is an integer, and if res(P, F ) 6= 0,
then

(2.6)

g
∑

i=1

log |F (αi)| = log |res(P, F )| ≥ 0.

Proposition 2.17. If q ≥ 8, then

η(A) ≥ q + 1−m.

Proof. (a) Assume c > 2. If −1 < t ≤ c(c− 2), then

log(1 + t) ≤ ct

c+ t
.

Indeed,

if f(t) =
ct

c+ t
− log(1 + t) then f ′(t) =

t(c2 − 2c− t)

(1 + t)(c+ t)2
.

Thus f ′(t) ≤ 0 if −1 ≤ t < 0 and f ′(t) ≥ 0 if 0 ≤ t ≤ c(c − 2). This proves
our statement, since f(−1) = ∞ and f(0) = 0.

(b) If q ≥ 8, and if |x| < m+ 1, then

log(x+m+ 1) ≤ (q + 1−m)

(

1− q + 1−m

q + 1 + x

)

.

Let c = q + 1−m. If q > 5, then q + 1−m > 2, and if q ≥ 11, then

2m+ 1 ≤ (q + 1−m)(q − 1−m).

Putting t = x+m, the hypotheses of (a) are satisfied, and

log(x+m+ 1) ≤ (q + 1−m)(x+m)

q + 1 + x
= (q + 1−m)

(

1− q + 1−m

q + 1 + x

)

.

Finally, the conclusion may be verified by brute force for q = 8, 9.

(c) Now use (2.6) with F (t) = t + m + 1 and P (t) = (−1)ghA(−t).
Obviously res(P, F ) 6= 0, hence

g
∑

i=1

log(xi +m+ 1) ≥ 0.

One deduces from (b) that

g
∑

i=1

(

1− q + 1−m

q + 1 + xi

)

≥ 0, hence (q + 1−m)

g
∑

i=1

1

q + 1 + xi
≤ g.

Remarks. (i) Proposition 2.17 shows that Theorem 2.15 is stronger
than Corollary 2.14 if q ≥ 8.
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(ii) It can happen that η < q + 1 − m. Take q = 2 for instance. As
explained in Section 4, there is an abelian surface A/F2 with

fA(t) = t4 − t3 − 2t+ 4 and |A(F2| = 2.

Hence, A is of type [x+, x−], with x± = (−1 ±
√
17)/2, and η = 4/5, but

q + 1−m = 1.
(iii) It is easy to deduce an upper bound for |A(Fq)| from the har-

monic mean combined with Specht’s inequality. First, observe that if c =
(c1, . . . , cn) is a sequence in [a, b] as in Proposition 2.7, and if h = b/a > 1,
then

(2.7) γ(c) ≤ S(h)η(c)

as one sees by applying Specht’s inequality to c′ = (1/c1, . . . , 1/cn). Now
take ci = q + 1 + xi as above; we get

|A(Fq)| ≤ S(H(q))g η(A)g,

and by Proposition 2.10,

|A(Fq)| ≤
(

q

q − 2

)g

η(A)g.

2.5. Convexity. Another way to obtain lower bounds for |A(Fq)| is to
use convexity methods as performed by M. Perret. We give the statement
of [12, Th. 3], slightly rectified.

Theorem 2.18. Let A/Fq be an abelian variety of dimension g and

trace −τ . Then

|A(Fq)| ≥ (q − 1)g
(

q1/2 + 1

q1/2 − 1

)ω−2δ

, where ω =
τ

2q1/2
,

and where δ = 0 if g + ω is an even integer, and δ = 1 otherwise.

Proof. The idea is to find the minimum of the function

(x1, . . . , xg) 7→
g
∏

i=1

(q + 1 + xi)

on the set

{(x1, . . . , xg) ∈ [−2q1/2, 2q1/2]g | x1 + · · ·+ xg = τ}.
Let

yi =
xi

2q1/2
, c =

q + 1

2q1/2
.

The problem reduces to minimizing the function

F (y1, . . . , yg) =

g
∑

i=1

log(c+ yi)

on the polytope

P = {(y1, . . . , yg) ∈ [−1, 1]g | y1 + · · ·+ yg = ω}.
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The set of points in P where F is minimal is invariant under permutations.
Since F is strictly concave, the points in this set are vertices of P . But at
most one of the coordinates of a vertex of P is different from ±1. Hence the
minimum of F is attained at a vertex

γ = (1, . . . , 1,−1, . . . ,−1, β) with β ∈ [−1, 1].

Denote by u and v the respective numbers of occurrences of 1 and of −1
in γ, and set δ = 1 if β is in the open interval (−1, 1) and 0 otherwise. Then

u+ v + δ = g, u− v + δβ = ω,

and adding these equations, it follows that if δ = 0 then g + ω is an even
integer. The converse is true: if δ = 1 then β is in the open interval (−1, 1),
and either β 6= 0 and g + ω is not an integer, or β = 0 and g + ω = 2u+ 1.
Hence,

min
(y1,...,yg)∈P

expF (y1, . . . , yg) = (c+ β)δ(c+ 1)u(c− 1)v

= (c+ β)δ(c2 − 1)(u+v)/2

(

c+ 1

c− 1

)(u−v)/2

= (c+ β)δ(c2 − 1)(g−δ)/2

(

c+ 1

c− 1

)(ω−δβ)/2

,

and c+ β ≥ c− 1 and ω − δβ ≥ ω − δ.

One could improve Theorem 2.18 by computing more explicitly the co-
ordinates of the extremal points of P in the above proof.

Proposition 2.19. Let

r =

[

g + [ω]

2

]

, s =

[

g − 1− [ω]

2

]

, where ω =
τ

2q1/2
.

Then

|A(Fq)| ≥ (q + 1 + τ − 2(r − s)q1/2)(q + 1 + 2q1/2)r(q + 1− 2q1/2)s.

Proof. We keep the notation and results from the proof of Theorem 2.18.
If γ 6= (1, . . . , 1), we denote by r and s the number of occurrences of 1
and of −1 respectively in γ but now, without possibly counting β. Then
r − s = ω − β, thus β must be equal to {ω} = ω − [ω] or {ω} − 1 (after
perhaps a permutation of β with one of the coordinates equal to −1 in the
case where β = 1). Thus,

r + s = g − 1, r − s = [ω] + ǫ, β = {ω} − ǫ,

where ǫ ∈ {0, 1}. If γ = (1, . . . , 1), the previous identities remain true if
r = g and s = −1. The equations 2r = g−1+[ω]+ ǫ and 2s = g−1− [ω]− ǫ
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show that ǫ = 1 if and only if g + [ω] is even, and that

r =

[

g + [ω]

2

]

and s =

[

g − 1− [ω]

2

]

.

Proceeding as in the proof of Theorem 2.18, we obtain

min
(y1,...,yg)∈P

expF (y1, . . . , yg) = (c+ {ω} − ǫ)(c2 − 1)(g−1)/2

(

c+ 1

c− 1

)([ω]+ǫ)/2

.

Then

|A(Fq)| ≥ (q − 1)g−1
(

q + 1 + 2q1/2({ω} − ǫ)
)

(

q1/2 + 1

q1/2 − 1

)([ω]+ǫ)/2

where ǫ = 1 if g+[ω] is even and 0 otherwise, from which the result follows.

Remark. If q is not a square, the bound of Proposition 2.19 is reached
only if r = s (which implies that |τ | < 2q1/2) and τ is the trace of some
elliptic curve. If q is a square, this bound is not reached only if τ−2(r−s)q1/2

is not the trace of an elliptic curve (in particular, it is reached if τ is coprime
to p).

3. Jacobians

3.1. Jacobians as abelian varieties. Let C denote a nonsingular,
projective, absolutely irreducible curve defined over Fq, with Jacobian JC .
We define

Jq(g) = max
C

|JC(Fq)| and jq(g) = min
C

|JC(Fq)|,

where C ranges over the set of curves of genus g. Corollaries 2.2 and 2.14
imply

(q + 1−m)g ≤ jq(g) ≤ |JC(Fq)| ≤ Jq(g) ≤ (q + 1 +m)g.

Let N = |C(Fq)| be the number of Fq-rational points on C. If JC has trace
−τ , then N = q + 1 + τ , and (2.5) implies
(

1− 2

q

)g(

q + 1 +
N − (q + 1)

g

)g

≤ |JC(Fq)| ≤
(

q + 1 +
N − (q + 1)

g

)g

.

Hence,
(

1− 2

q

)g(

q+1+
Nq(g)− (q + 1)

g

)g

≤ Jq(g) ≤
(

q+1+
Nq(g)− (q + 1)

g

)g

,

where Nq(g) stands for the maximum number of rational points on a curve
defined over Fq of genus g. The quantity Jq(g) has the following asymptotic
behaviour. Define, as usual,

A(q) = lim sup
g→∞

Nq(g)

g
.
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The preceding inequalities imply

(1− 2/q)(q + 1 +A(q)) ≤ lim sup Jq(g)
1/g ≤ q + 1 +A(q).

On the one hand, the Drinfeld–Vlăduţ upper bound [26, p. 146]

A(q) ≤ q1/2 − 1

implies

lim sup
g→∞

Jq(g)
1/g ≤ q + q1/2

(the Weil bound would only give the upper bound q + 1 + 2q1/2). On the
other hand, S. Vlăduţ [27] has proved that if q is a square, then

q

(

q

q − 1

)q1/2−1

≤ lim sup
g→∞

Jq(g)
1/g.

Observe that, when q → ∞,

q

(

q

q − 1

)q1/2−1

= q + q1/2 − 1

2
+O

(

1

q1/2

)

.

Remark. Some observations on the relationship between Nq(g) and
Jq(g) are in order. The number of points on the Jacobian of a maximal
curve, that is, with Nq(g) points, does not necessarily reach Jq(g). For in-
stance, J.-P. Serre showed in [18, p. Se47] that there exist two curves of
genus 2 over F3 with N3(2) = 8 points whose Jacobians have 35 points
and 36 points respectively.

We shall see in Section 4 that a maximal Jacobian surface, that is, with
Jq(2) points, is always the Jacobian of a maximal curve (but there is no
reason that this could remain true if g > 2).

A curve reaching the Serre–Weil bound (i.e. with q + 1 +m points) has
type [m, . . . ,m] by (2.2), hence, in the case where the Serre–Weil bound is
reached for curves of genus g, a curve of genus g is maximal if and only if
its Jacobian is maximal.

We record the consequences for Jacobians of the results of Section 2.
Theorem 2.11(i) implies, with M(q) as defined there:

Proposition 3.1. If C is a curve of genus g over Fq as above, then

(I) |JC(Fq)| ≥ M(q)g
(

q + 1 +
N − (q + 1)

g

)g

.

Theorem 2.13 implies

|JC(Fq)| ≥ (q + 1−m)g + (gm+N − q − 1)(q −m)g−1,

and Proposition 2.19 leads to:
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Proposition 3.2. If C is a curve of genus g over Fq as above, then

(II) |JC(Fq)| ≥ (N − 2(r − s)q1/2)(q + 1 + 2q1/2)r(q + 1− 2q1/2)s,

with

r =

[

g + [ω]

2

]

, s =

[

g − 1− [ω]

2

]

, where ω =
N − q − 1

2q1/2
.

3.2. Virtual zeta functions. The usual numerical sequences associ-
ated to a curve over Fq (number of points, number of effective and prime
divisors) occur in expressions involving the numerator of its zeta func-
tion. These sequences are defined and their main properties are obtained
here by taking as starting point a polynomial satisfying suitable conditions,
without any geometric reference. If A is an abelian variety of dimension g
over Fq, with characteristic polynomial fA(t), the reciprocal Weil polynomial
P (t) = PA(t) = t2gfA(t

−1) fulfills the following conditions:

(i) P (t) satisfies the functional equation

P (t) = qgt2gP

(

1

qt

)

,

(ii) P (0) = 1 and P (1) 6= 0.

The inverse roots of P have modulus q1/2, but we do not need this condition
now. Condition (i) means that if

P (t) =

2g
∑

n=0

ant
n

then a2g−n = qg−nan for 0 ≤ n ≤ 2g, in other words the sequence q−n/2an is
palindromic. This condition implies that the possible multiplicity of ±q1/2 as
a root is even, as shown by H. Stichtenoth in the proof of [24, Th. 5.1.15(e)].
Now, let q ∈ N with q ≥ 2, and denote by Pg(q) the set of polynomials
of degree 2g in Z[t] satisfying (i) and (ii). If P ∈ Pg(q), the virtual zeta

function with numerator P is the power series

(3.1) Z(t) = ZP (t) =
P (t)

(1− t)(1− qt)
∈ Z[[t]],

which is convergent if |t| < q−1. For n ≥ 0, define An = An(P ) ∈ Z and
Nn = Nn(P ) ∈ Q as the coefficients of the power series

(3.2) Z(t) =
∞
∑

n=0

Ant
n, logZ(t) =

∞
∑

n=1

Nn
tn

n
,

and put

Bn = Bn(P ) =
1

n

∑

d|n

µ

(

n

d
u

)

Nd ∈ Q,
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where µ is the Möbius function. The Möbius inversion formula implies

(3.3) Nn =
∑

d|n

dBd.

We use R. P. Stanley’s notation [22, p. 15]: if S is a set with n elements,
recall that a combination with repetition of k elements (or a k-multiset) in
S is a function f : S → N such that

∑

x∈S

f(x) = k.

The number of all k-multisets in S is denoted by

(3.4)

((

n

k

))

=

(

n+ k − 1

k

)

=

(

n+ k − 1

n− 1

)

,

and these numbers have generating function

(3.5) (1− t)−n =

∞
∑

k=0

((

n

k

))

tk.

We now recall a result of Schur [15]:

Lemma 3.3. Let P ∈ Pg(q). With the previous notation:

(i) We have

Z(t) =

∞
∏

n=1

(1− tn)−Bn .

(ii) The numbers Bn and Nn are in Z for any n ≥ 1.
(iii) If n ≥ 1, then

(3.6) An =
∑

b∈Pn

n
∏

i=1

((

Bi

bi

))

,

with Pn = {b = (b1, . . . , bn) ∈ Nn | b1 + 2b2 + · · ·+ nbn = n}.
Proof. First, (i) is a consequence of (3.3). By using the negative binomial

formula (3.5), we get (iii) from (i) by comparison of the coefficients of these
power series.

We prove (ii) by induction. First, (i) implies A1 = B1, and also

Z(t)
n−1
∏

i=1

(1− ti)Bi =
∞
∏

i=n

(1− ti)−Bi = 1 +Bnt
n (mod tn+1).

IfBi ∈ Z for 1 ≤ i ≤ n−1, the left hand side is a power series with coefficients
in Z, and in particular the coefficient of tn. Then Nn ∈ Z by (3.3).
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For n∈Z we define πn = (qn+1−1)/(q−1), so that π−1 = 0 and

1

(1− t)(1− qt)
=

∞
∑

n=0

πnt
n.

The definition of Z(t) implies

(3.7) An =

min(n,2g)
∑

k=0

akπn−k, n ≥ 0.

Lemma 3.4. Let P ∈ Pg(q), and assume g ≥ 2. If n ∈ Z, then

(3.8) An = qn+1−gA2g−2−n + P (1)πn−g,

assuming that An = 0 if n < 0. In particular,

(3.9) An = P (1)πn−g, n ≥ 2g − 1.

Proof. The proof has three steps.

(a) If n ∈ Z, then

(q − 1)

2g
∑

k=0

akπn−k =

2g
∑

k=0

ak(q
n−k+1 − 1) = qn+1

2g
∑

k=0

akq
−k −

2g
∑

k=0

ak

= qn+1P (q−1)− P (1) = (qn+1−g − 1)P (1) = (q − 1)P (1)πn−g,

since P (q−1) = q−gP (1). Hence

2g
∑

k=0

akπn−k = P (1)πn−g.

This proves (3.9), since the left hand side is equal to An (if n = 2g − 1,
notice that the term with subscript k = 2g is zero).

(b) If 0 ≤ n ≤ 2g − 2, then

qn+1−gA2g−n−2 =
qn+1−g

q − 1

2g−n−2
∑

k=0

ak(q
2g−n−1−k − 1)

=
−1

q − 1

2g−n−2
∑

k=0

akq
g−k(qn−2g+k+1 − 1)

= −
2g−n−2
∑

k=0

a2g−kπn−2g+k = −
2g
∑

k=n+2

akπn−k.
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(c) If n ≥ 2g − 1, then A2g−2−n = 0 and (3.8) is equivalent to (3.9),
which has already been proved in (a). If 0 ≤ n ≤ 2g− 2, we deduce from (a)
that

An =

n
∑

k=0

akπn−k =

2g
∑

k=0

akπn−k − an+1π−1 −
2g
∑

k=n+2

akπn−k.

The first term is equal to P (1)πn−g by (a), the second is zero, and the third
is equal to qn+1−gA2g−n−2 by (b).

We have thus proved (3.8) if n ≥ 0. If n < 0, then (3.8) reduces to (3.9)
by putting m = 2g − 1− n.

As in the case of the zeta function of a curve [9], we deduce from
Lemma 3.4 that if g ≥ 2, then

(3.10)

g−1
∑

n=0

Ant
n +

g−2
∑

n=0

qg−1−nAnt
2g−2−n = ZP (t)−

P (1)tg

(1− t)(1− qt)
.

In particular, if t = q−1/2,

(3.11) Ag−1 + 2q(g−1)/2
g−2
∑

n=0

Anq
−n/2 = q(g−1)/2ZP (q

−1/2) +
P (1)

(q1/2 − 1)2
.

If P ∈ Pg(q), the map ω 7→ q/ω is a permutation of the inverse roots
of P , and we order them in a sequence (ωi)1≤i≤2g such that ωg+i = q/ωi for
1 ≤ i ≤ g. We put

xi = −(ωi + q/ωi), 1 ≤ i ≤ g.

As in §2.4, we define η = η(P ) ∈ Q by

1

η
=

1

g

g
∑

i=1

1

q + 1 + xi
.

Since P (1) 6= 0, we kmow that q + 1 + xi 6= 0. As in the case of the zeta
function of a curve [9], the evaluation at t = 1 of (3.10) leads to

Theorem 3.5. Assume g ≥ 2. With notation as above, if P ∈ Pg(q),
then

g

η
P (1) =

g−1
∑

n=0

An +

g−2
∑

n=0

qg−1−nAn.

We now recall the exponential formula (see R. P. Stanley [23]), which
goes back to Euler. Let y = (yn)n∈N be a sequence of indeterminates. To an
element b = (b1, . . . , bn) ∈ Nn one associates the monomial yb = yb11 . . . ybnn
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in the ring Q[[y]]. Then

exp

( ∞
∑

n=1

yn
tn

n

)

=
∞
∏

n=1

exp

(

yn
tn

n

)

=
∞
∏

n=1

∞
∑

bn=0

1

bn!

(

yn
tn

n

)bn

=
∑

b1,...,bk∈N

yb

b1! . . . bk!

tb1+2b2+···+kbk

2b2 . . . kbk
.

Let C0(y) = 1 and for n ∈ N, n ≥ 1,

Cn(y) =
∑

b∈Pn

c(b)yb, c(b) =
n!

b1! . . . bn!

1

2b2 . . . nbn

where Pn is as above. We put

Cn(y) =
Cn(y)

n!
.

The previous computations show that the following classical identity, called
the exponential formula, holds in the ring Q[[y]][[t]]:

exp

( ∞
∑

n=1

yn
tn

n

)

=

∞
∑

n=0

Cn(y)tn.

The coefficients of Cn(y) are natural numbers, since

Cn(y) =
∑

σ∈Sn

yβ(σ),

where the summation extends over the symmetric group Sn, where

β(σ) = (b1(σ), . . . , bn(σ)),

and bk(σ) is the number of cycles of length k in the cycle decomposition of
σ as a product of disjoint cycles. Now come back to the zeta function ZP (t)
of a polynomial P ∈ Pg(q). From (3.2), we deduce

(3.12) An = Cn(N1, . . . , Nn).

3.3. Specific bounds for Jacobians. All the results of §3.2 apply if
we take for P the reciprocal Weil polynomial PA of an abelian variety A
over Fq, and |A(Fq)| = PA(1). We put

ZA(t) = ZP (t), An(A) = An(P ), Bn(A) = Bn(P ), Nn(A) = Nn(P )

(Nn(A) should not be confused with |A(Fqn)|). If A is of dimension g and
trace −τ , then

PA(t) =

2g
∑

n=0

ant
n, |an| ≤

(

2g

n

)

qn/2, a1 = τ.
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We deduce from (3.7) that, roughly speaking, if q is large with respect to g,
then

(3.13) An = πn + πn−1τ +O(qn−1) = qn + qn−1τ +O(qn−1),

where the implied constant depends only on n and g. Now consider a curve
C over Fq with Jacobian J as above, and take P = PJ . Then ZJ(t) = ZC(t)
is the zeta function of C. Moreover, An and Bn are respectively the number
of effective and prime rational divisors of degree n of C, and Nn = |C(Fqn)|.
We record for future use that in this case the following conditions hold:

Bn ≥ 0 for 1 ≤ n ≤ 2g,(B)

Nn ≥ N1 ≥ 0 for 1 ≤ n ≤ 2g.(N)

Actually, these conditions hold for any n≥ 1, and more preciselyNn ≥Nd

if d |n. The Jacobian of a curve satisfies (B) and (N), unlike a general abelian
variety. Notice that (B) is stronger than (N), since if (B) holds, one deduces
from (3.3) that

nBn ≤ Nn −N1 for n ≥ 2.

We discuss below some lower bounds for Nn and Bn which are valid for
any abelian variety. The results show that (B) and (N) can be peculiar to
Jacobians only if g is sufficiently large with respect to q.

Lemma 3.6. Let A be an abelian variety of dimension g ≥ 1 over Fq. If

g ≤ q/m, then N1 = B1 ≥ 1. If

g ≤ q − q1/2

2
, then Nn ≥ N1 for n ≥ 1,

and hence Bn ≥ 0 if n is prime.

Proof. The first statement comes from Serre’s inequality. By Weil’s in-
equality, Nn −N1 ≥ fq(g) with

fq(g) = qn − q − 2g(qn/2 + q1/2),

and g 7→ fq(g) is decreasing. If g ≤ g0 = (q − q1/2)/2, then

fq(g) ≥ fq(g0) = (qn/2 + q1/2)(qn/2 − q),

hence fq(g) ≥ 0 if n ≥ 2.

The following two propositions improve some results of N. Elkies et al.
[5, Lem. 2.1(i)].

Proposition 3.7. Let A be an abelian variety of dimension g ≥ 1
over Fq. If n ≥ 2, then

|nBn − qn| ≤ (2g + 2)qn/2 + 4gqn/4 − (4g + 2),

and

nBn ≥ (qn/4 + 1)2((qn/4 − 1)2 − 2g).
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Proof. Since

Nn = qn + 1 + τn, where τn = −
g

∑

i=1

(ωn
i + ω̄n

i ),

we find

nBn =
∑

d|n

µ(n/d)(qd + 1 + τd) =
∑

d|n

µ(n/d)qd + 0 +
∑

d|n

µ(n/d)τd,

|nBn−qn| ≤
∑

d|n, d<n

|µ(n/d)|qd +
∑

d|n

|µ(n/d)| |τd|

≤
∑

d|n, d<n

|µ(n/d)|qd+2g
∑

d|n

qd/2 ≤ 2gqn/2+
∑

d|n, d<n

(qd+2gqd/2).

Since q/(q − 1) ≤ 2, we have

∑

d|n, d<n

qd ≤ q+q2+· · ·+q[n/2] = q[n/2]+1 − 1

q − 1
−1 ≤ q

q − 1
(qn/2−1) ≤ 2qn/2−2,

and
∑

d|n, d<n

(qd + 2gqd/2) ≤ 2qn/2 + 4gqn/4 − (4g + 2).

This implies the first statement, and hence nBn ≥ F (qn/4), where

F (x) = x4 − (2g + 2)x2 − 4gx+ 4g + 2 = G(x) + 6g + 1,

G(x) = (x+ 1)2((x− 1)2 − 2g).

Since F (x) > G(x) for any real number x, the second statement follows.

Remark. Notice that if g = 0, then Bn is equal to the number Iq(n)
of irreducible monic polynomials in Fq[x] of degree n. The proof of Propo-
sition 3.7 holds in this case, and if n ≥ 1, we get the tight inequalities

|nIq(n)− qn| ≤ 2qn/2 − 2, nIq(n) ≥ (qn/2 − 1)2 + 1.

Proposition 3.8. Let A be an abelian variety of dimension g ≥ 2
over Fq, and let n ≥ 2.

(i) If n > 4 logq(1 + (2g)1/2), that is, if

g <
(qn/4 − 1)2

2
, then Bn ≥ 1.

(ii) If

g ≤ q − q1/2

2
, then Bn ≥ 0.

(iii) If n ≥ g, then Bn ≥ 1, unless 2 ≤ g ≤ 9 and q ≤ 5.
(iv) If n ≥ 2g, then Bn ≥ 1, unless 2 ≤ g ≤ 3 and q = 2, in which case

Bn ≥ 1 whenever n ≥ 2g + 1.
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Proof. The second statement of Proposition 3.7 implies (i), since Bn ∈ Z.
In the proof of (ii), we can assume n ≥ 4, since Lemma 3.6 implies B2 ≥ 0
and B3 ≥ 0. But q − q1/2 < (qn/4 − 1)2 if n ≥ 4, and (i) implies (ii). Let

fq(g) = 4 logq(1 + (2g)1/2).

Then q 7→ fq(g) is decreasing, and g 7→ fq(g) is increasing. If g ≥ 10, then
g > f2(g) and (i) implies Bn ≥ 1 for every n ≥ g. On the other hand, if
g ≥ 3 and q ≥ 7, then g > f7(g) as well. It is easy to see that a “strict”
version of (ii) holds, namely, if 2g < q− q1/2, and in particular if g = 2 and
q ≥ 7, then Bn > 0 for every n ≥ 2. This proves (iii).

Now observe that:

g ≥ 4 ⇒ 2g > f2(g); g ≥ 3 ⇒ 2g > f3(g); g ≥ 2 ⇒ 2g > f4(g).

This implies by (i) that Bn ≥ 1 for every n ≥ 2g if

g ≥ 4 and q ≥ 2; g ≥ 3 and q ≥ 3; g ≥ 2 and q ≥ 4.

The values excluded in the above relations are (g, q) = (2, 2), (2, 3), (3, 2).
Let F (x) be as in the proof of Proposition 3.7. We know that Bn ≥ 1 as
soon as F (qn/4) > 0. If g = 2, then F (qn/4) > 0 if qn > 59, hence,

(g, q) = (2, 3) ⇒ Bn ≥ 1 if n ≥ 2g = 4,

and this proves the first statement of (iv). In the same way,

(g, q) = (2, 2) ⇒ Bn ≥ 1 if n ≥ 2g + 2 = 6.

Moreover, if (g, q) = (2, 2) and n = 2g + 1 = 5, then B5 ≥ 4 by Serre’s
inequality. If g = 3 and n ≥ 7, then F (2n/4) ≥ F (27/4) > 0, hence,

(g, q) = (3, 2) ⇒ Bn ≥ 1 if n ≥ 2g + 1 = 7,

and this proves the second statement of (iv).

Example. Here are two instances of the exceptional cases appearing
in (iv). Consider the elliptic curves over F2:

E1 : y
2 + y = x3, E2 : y

2 + xy = x3 + x2 + 1.

Then fE1
(t) = t2+2 and fE2

(t) = t2−t+2. If A = E1×E2, then B4(A) = −1
and N4(A) − N1(A) = 6. If A = E2 × E2 × E2, then B6(A) = 0 and
N6(A)−N1(A) = 38.

We shall use the results of §3.2 in order to obtain lower bounds for
the number of rational points on the Jacobian of a curve. To do that, we
consider an abelian variety, and assume that Condition (B) or Condition (N)
is satisfied.

Lemma 3.9. Assume that (B) holds. If n ≥ 2, then

An ≥
((

N1

n

))

+

n
∑

i=2

Bi

((

N1

i

))

.
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Proof. All the terms on the right hand side of (3.6) are ≥ 0. In order to
get a lower bound, we sum over the subset of Pn consisting of

(n, 0, . . . , 0), (n− 2, 1, 0, . . . , 0), . . . , (1, 0, . . . , 0, 1, 0), (0, . . . , 0, 1).

From (3.9) we deduce

(3.14) |A(Fq)| =
q − 1

qg − 1
A2g−1.

From now on, for any abelian variety A over Fq, we put N = N1(A),
which should not be confused with |A(Fq)|. From (3.14) and Lemma 3.9 we
deduce:

Proposition 3.10. Let A be an abelian variety, and assume that (B)
holds. Then

(III) |A(Fq)| ≥
q − 1

qg − 1

[((

N

2g − 1

))

+

2g−1
∑

i=2

Bi

((

N

2g − 1− i

))]

.

In particular,

(3.15) |A(Fq)| ≥
q − 1

qg − 1

((

N

2g − 1

))

.

Remarks. (i) Notice that the bound (III) can be made more explicit,
using Proposition 3.7.

(ii) The bound (3.15) is not optimal for g ≥ 10 or q ≥ 7, by Proposi-
tion 3.8(iii).

Lemma 3.11. Let A be an abelian variety, and assume that (N) holds.

Then

An ≥
((

N

n

))

, n ≥ 1.

Proof. We recall two classical results. Let y = (yn)n∈N and z = (zn)n∈N
be two sequences of indeterminates, and take n ∈ N. Firstly, by applying
the exponential formula to

exp

( ∞
∑

n=1

(yn + zn)
tn

n

)

= exp

( ∞
∑

n=1

yn
tn

n

)

exp

( ∞
∑

n=1

zn
tn

n

)

,

and expanding the right hand side, we obtain

(3.16) Cn(y + z) =
n
∑

k=0

Ck(y)Cn−k(z).

Secondly, if M ∈ N, then

exp

( ∞
∑

n=1

M
tn

n

)

= exp

( ∞
∑

n=1

tn

n

)M

= (1− t)−M =

∞
∑

n=0

((

M

n

))

tn,
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hence

(3.17) Cn(M, . . . ,M) =

((

M

n

))

.

We define

n = (N,N, . . . ), d = (0, N2 −N,N3 −N, . . . ).

Then, by (3.12), (3.16) and (3.17),

An = Cn(n+ d) =

n
∑

k=0

Ck(n)Cn−k(d) ≥ Cn(n) =
((

N

n

))

.

We put, if k ≥ 2,

Xk(N) =

((

N

k

))

− q

((

N

k − 2

))

=

((

N

k − 2

))[(

N − 1

k
+ 1

)(

N − 1

k − 1
+ 1

)

− q

]

.

Lemma 3.12. Let A be an abelian variety, and assume that (N) holds.

If k ≥ 0, then Ck(n) ≥ 0, Ck(d) ≥ 0, and

|A(Fq)| = Cg(d) + (N − 1)Cg−1(d) +

g
∑

k=2

Xk(N)Cg−k(d).

Proof. By (N), the coordinates of n and d are ≥ 0, and this implies our
first assertion. Let y and z be two sequences of indeterminates. By (3.16),

Cg(y + z)− qCg−2(y + z) =

g
∑

k=0

Ck(y)Cg−k(z)− q

g−2
∑

k=0

Ck(y)Cg−2−k(z)

=

g
∑

k=0

Ck(y)Cg−k(z)− q

g
∑

k=2

Ck−2(y)Cg−k(z)

= C0(y)Cg(z) + C1(y)Cg−1(z)

+

g
∑

k=2

(Ck(y)− qCk−2(y))Cg−k(z).

Now, by applying (3.8) with n = g, we get

(3.18) |A(Fq)| = Ag − qAg−2,

and using (3.12),

|A(Fq)| = Cg(n+ d)− qCg−2(n+ d).
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Replacing y by n and z by d, and since (3.17) implies

Ck(n) =
((

N

k

))

,

we get the required expression for |A(Fq)|.
Proposition 3.13. Assume g ≥ 2. Let A be an abelian variety. Assume

that (N) holds and

(3.19)

(

N − 1

g
+ 1

)(

N − 1

g − 1
+ 1

)

− q > 0.

Then

(IV) |A(Fq)| ≥
((

N

g

))

− q

((

N

g − 2

))

.

Proof. The right hand side of (IV) is equal to Xg(N), and Xg(N) > 0
if and only if (3.19) holds, in which case N ≥ 1. For k = 2, . . . , g, we have

Xk(N) ≥
((

N

k − 2

))((

N − 1

g
+ 1

)(

N − 1

g − 1
+ 1

)

− q

)

≥ 0,

where the second inequality comes from (3.19). Applying Lemma 3.12 we
deduce

|A(Fq)| ≥ C0(n)Cg(d) + C1(n)Cg−1(d) + Xg C0(d) ≥ Xg C0(d),
and the result follows, since C0(d) = 1.

Remarks. (i) The condition (3.19) is satisfied if N ≥ g(q1/2 − 1) + 1.
This inequality has to be compared with the Drinfeld–Vlăduţ upper bound.

(ii) Notice that Proposition 3.13 can be improved: Since

Cn(d) =
∑

b∈Pn

c(b)db ≥ Nn −N

n
,

because the right hand side is the term of the sum corresponding to b =
(0, . . . , 0, 1), we get

C0(n)Cg(d) ≥
Ng −N

g
and C1(n)Cg−1(d) ≥ N

Ng−1 −N

g − 1
.

Therefore if (3.19) holds, then

|JC(Fq)| ≥
Ng −N

g
+N

Ng−1 −N

g − 1
+

((

N

g

))

− q

((

N

g − 2

))

,

and the numbers Ng and Ng−1 can be replaced by their standard lower
bounds in order to get a bound improving (IV).
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(iii) Lemma 3.4 provides some other identities than (3.14) and (3.18),
for instance

A2g−2 = |A(Fq)|πg−2 + qg−1.

On the other hand, ZA(t) < 0 if q−1 < t < 1, because fA(t) ≥ 0 for any
t ∈ R, and one deduces from (3.11) the inequality

Ag−1 ≤
|A(Fq)|

(q1/2 − 1)2
− 2q(g−1)/2,

as established by S. Ballet, C. Ritzenthaler and R. Rolland [2]. These rela-
tions lead to lower bounds similar to (III) and (IV).

Assume g ≥ 2. From Theorem 3.5, we know that

(3.20)
g

η
|A(Fq)| =

g−1
∑

n=0

An +

g−2
∑

n=0

qg−1−nAn,

where η = η(A) is the harmonic mean of the numbers q+ 1+ xi, as in §2.2.
We recall from [9] that

η ≥ (q1/2 − 1)2,(3.21)

η ≥ g(q − 1)2

(g + 1)(q + 1)−N
,(3.22)

and (3.22) is always tighter than (3.21) though the latter does not depend
on N . Moreover, if q ≥ 8, by Proposition 2.17 we know that

η ≥ q + 1−m.

This lower bound is better than the uniform lower bound deduced from (3.22),
namely

η ≥ g(q − 1)2

(g + 1)(q + 1)−N
≥ (q − 1)2

q + 1 +m
= q + 1−m− 4q −m2

q + 1 +m
.

Theorem 3.14. If g ≥ 2, and if (N) holds, then

(V) |A(Fq)| ≥
η

g

[((

N + 1

g − 2

))

+

g−1
∑

n=0

qg−1−n

((

N

n

))]

.

Proof. Since (N) holds, we apply the inequality of Lemma 3.11 in (3.20).
Noticing that

g−2
∑

n=0

((

N

n

))

=

((

N + 1

g − 2

))

,

we obtain the result.
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Remark. The expression in brackets in (V) is ≥ qg−1. Since N ≥ 0, we
recover as a corollary the bound [9, Th. 2(1)], which does not depend on N :

|JC(Fq)| ≥ qg−1 (q − 1)2

(q + 1)(g + 1)
.

The right hand side of (V) is cumbersome. Here is a simpler lower bound
using the partial sums of the exponential series. Let

en(x) =
n
∑

j=0

xj

j!
, n ∈ N, x > 0.

Then

en(x) = ex
Γ (n+ 1, x)

n!
, where Γ (n, x) =

∞�

x

tn−1e−tdt

is the incomplete Gamma function. Since
((

N

n

))

≥ Nn

n!
,

we get from Theorem 3.14:

Corollary 3.15. If g ≥ 2, then

|A(Fq)| ≥
[((

N + 1

g − 2

))

+ qg−1eg−1(q
−1N)

]

(q − 1)2

(g + 1)(q + 1)−N
.

3.4. Discussing the bounds. Let C be a curve of genus g ≥ 2 over Fq,
with N = |C(Fq)|. We recall the lower bounds for the number of rational
points on J = JC , respectively obtained from Proposition 3.1 (with M(q)
as defined there), Proposition 3.2 (with r and s as defined there), Proposi-
tion 3.10, Proposition 3.13, and Theorem 3.14:

(I) |J(Fq)| ≥ M(q)g
(

q + 1 +
N − (q + 1)

g

)g

,

(II) |J(Fq)| ≥ (N − 2(r − s)q1/2)(q + 1 + 2q1/2)r(q + 1− 2q1/2)s,

(III) |J(Fq)| ≥
q − 1

qg − 1

[((

N

2g − 1

))

+

2g−1
∑

i=2

Bi

((

N

2g − 1− i

))]

,

(IV) |J(Fq)| ≥
((

N

g

))

− q

((

N

g − 2

))

,

(V) |J(Fq)| ≥
η

g

[((

N + 1

g − 2

))

+

g−1
∑

n=0

qg−1−n

((

N

n

))]

.
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The following points are worth noticing.
(i) When q is large with respect to g, we have, for any abelian variety of

dimension g,

|A(Fq)| = qg +O(qg−1/2),

and (I) and (II) are the only bounds consistent with this estimate. More
precisely, since (II) is usually reached for abelian varieties when q is a square,
this bound is probably the best one as soon as g ≤ (q − q1/2)/2.

(ii) Assume that (N) holds. Then (3.20), together with the inequality
An ≥ N for n ≥ 1, gives

g

η
|A(Fq)| ≥ (qg−1 − 1)

N + q − 1

q − 1
.

Using (3.21), we recover [9, Th. 2(2)]:

(3.23) |A(Fq)| ≥ (q1/2 − 1)2
qg−1 − 1

g

N + q − 1

q − 1
.

But if n ≥ 1 and N ≥ 1, the inequality in Lemma 3.11 is better than
An ≥ N , since

((

N

n

))

≥ N.

Hence, (V) is always better than (3.23).
(iii) The tables in [9] provide numerical evidence that these bounds can

be better than those which hold for general abelian varieties, at least when
q is not too large.

(iv) Assume q ≥ 4, and let A be any abelian variety of dimension g ≤
(q − q1/2)/2 with N1 ≥ 0. Then the bounds (IV) and (V) hold for A, by
Lemma 3.6. Likewise, the bound (III) holds for A, by Proposition 3.8(ii).

(v) The numerical experiments that we performed lead to the following
observations. The bound (IV) can be good even if g ≥ 9. However, when
g is large, (V) seems to be better than (III) and (IV), and probably (V)
becomes better than (II) when g is very large.

4. Jacobian surfaces. The characteristic polynomial of an elliptic curve
determines the number of its rational points, and vice versa. Therefore, the
values of Jq(1) and jq(1) are given by the Deuring–Waterhouse Theorem
(see [4], [28]): if q = pn, then

Jq(1) =

{

q + 1 +m if n = 1, n is even, or p ∤ m,

q +m otherwise,

jq(1) =

{

q + 1−m if n = 1, n is even, or p ∤ m,

q + 2−m otherwise.
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The description of the set of characteristic polynomials of abelian surfaces
has been given by H.-G. Rück [14]. The question of describing the set of
isogeny classes of abelian surfaces which contain a Jacobian has been widely
studied, especially by J.-P. Serre [16], [17], [18], whose aim was to determine
Nq(2). A complete answer to this question was finally given by E. Howe,
E. Nart, and C. Ritzenthaler [8]. In the remainder of this section, we explain
how to deduce from these results the value of Jq(2) and jq(2).

Let A be an abelian surface over Fq of type [x1, x2]. Its characteristic
polynomial has the form

fA(t) = t4 + a1t
3 + a2t

2 + qa1t+ q2,

with

a1 = x1 + x2 and a2 = x1x2 + 2q.

By elementary computations, H. G. Rück [14] showed that the fact that
the roots of fA(t) are q-Weil numbers (i.e. algebraic integers whose images
under every complex embedding have absolute value q1/2) is equivalent to

(4.1) |a1| ≤ 2m and 2|a1|q1/2 − 2q ≤ a2 ≤ a21/4 + 2q.

We have

(4.2) |A(Fq)| = fA(1) = q2 + 1 + (q + 1)a1 + a2.

Table 2 gives all the possibilities for (a1, a2) such that a1 ≥ 2m− 2. Here

ϕ1 = (−1 +
√
5)/2, ϕ2 = (−1−

√
5)/2.

Table 2. Couples (a1, a2) maximizing |A(Fq)| (b = q + 1 +m)

a1 a2 Type |A(Fq)|

2m m2 + 2q [m,m] b2

2m− 1 m2 −m+ 2q [m,m− 1] b(b− 1)

m2 −m− 1 + 2q [m+ ϕ1,m+ ϕ2] b2 − b− 1

2m− 2 m2 − 2m+ 1 + 2q [m− 1,m− 1] (b− 1)2

m2 − 2m+ 2q [m,m− 2] b(b− 2)

m2 − 2m− 1 + 2q [m− 1 +
√
2,m− 1−

√
2] (b− 1)2 − 2

m2 − 2m− 2 + 2q [m− 1 +
√
3,m− 1−

√
3] (b− 1)2 − 3

The numbers of points are classified in decreasing order and an abelian
variety with (a1, a2) not in the table has fewer points than any value in the
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table. Indeed, if −2m ≤ a1 < 2m− 2, then

(q + 1)a1 + a2 ≤ [(q + 1)a1 + a21/4 + 2q]

≤ [(q + 1)(2m− 3) + (2m− 3)2/4 + 2q]

= (q + 1)(2m− 2) + (m2 − 2m− 2 + 2q) + (3− (q +m))

< (q + 1)(2m− 2) + (m2 − 2m− 2 + 2q)

(notice that the function x 7→ (q+1)x+ (x2/4) is increasing on the interval
[−2m, 2m− 3]). And therefore, for any couple (a′1, a

′
2) in Table 2, we have

q2 + 1 + (q + 1)a1 + a2 ≤ q2 + 1 + (q + 1)a′1 + a′2.

In the same way, we build the table of couples (a1, a2) with a1 ≤ −2m+2.
Notice that the ends of the interval containing a2 given by (4.1) depend only
on the absolute value of a1, hence the possible entries for a2 are the same
as in the previous table. If q > 4, the numbers of points are classified in
increasing order. Moreover, if q > 5, and an abelian variety with (a1, a2)
not in the next table has more points than any value in the table. Indeed,
if q > 5 and −2m+ 2 < a1 ≤ 2m, then

(q + 1)a1 + a2 ≥ (q + 1)a1 + 2|a1|q1/2 − 2q

≥ (q + 1)(−2m+ 3) + 2(2m− 3)q1/2 − 2q

= (q + 1)(−2m+ 2) + (m2 − 2m+ 1 + 2q)

− (2q1/2 −m+ 1)2 + (q1/2 − 1)2

> (q + 1)(−2m+ 2) + (m2 − 2m+ 1 + 2q)

(notice that x 7→ (q + 1)x + 2|x|q1/2 is increasing on [−2m + 3, 2m]). And
therefore, for any couple (a′1, a

′
2) in Table 3, we have

q2 + 1 + (q + 1)a1 + a2 ≥ q2 + 1 + (q + 1)a′1 + a′2.

Table 3. Couples (a1, a2) minimizing |A(Fq)|, with q > 5, and b′ = q + 1−m

a1 a2 Type A(Fq)

−2m m2 + 2q [−m,−m] b′2

−2m+ 1 m2 −m− 1 + 2q [−m− ϕ1,−m− ϕ2] b′2 + b′ − 1

m2 −m+ 2q [−m,−m+ 1] b′(b′ + 1)

−2m+ 2 m2 − 2m− 2 + 2q [−m+ 1 +
√
3,−m+ 1−

√
3] (b′ + 1)2 − 3

m2 − 2m− 1 + 2q [−m+ 1 +
√
2,−m+ 1−

√
2] (b′ + 1)2 − 2

m2 − 2m+ 2q [−m,−m+ 2] b′(b′ + 2)

m2 − 2m+ 1 + 2q [−m+ 1,−m+ 1] (b′ + 1)2
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Most of the cases of Theorems 4.1 and 4.2 will be proved in the following
way:

(i) Look at the highest row of Table 2 or 3 (depending on the propo-
sition being proved).

(ii) Check if the corresponding polynomial is the characteristic polyno-
mial of an abelian variety.

(iii) If yes, check if this abelian variety is isogenous to a Jacobian variety.
(iv) Otherwise, look at the following row and come back to the second

step.

For the second step, we use the results of H.-G. Rück [14] who solved
the problem of describing characteristic polynomials of abelian surfaces, in
particular we use the fact that if (a1, a2) satisfy (4.1) and p does not divide
a2 then the corresponding polynomial is the characteristic polynomial of an
abelian surface.

For the third step, we use [8] where we can find a characterization of
isogeny classes of abelian surfaces containing a Jacobian.

For q = 4, it turns out that none of the entries in Tables 2 and 3 corre-
spond to a Jacobian; therefore the general method does not apply and the
computation of Jq(2) and jq(2) needs to be done “by hand”. Moreover, for
q = 2, 3, 5, the couples (a1, a2) in Table 3 might not minimize |A(Fq)| and
also, for q < 5, the numbers of points in Table 3 are not classified in increas-
ing order. To remedy this, we will prove that for q = 2, 3, 5, the Jacobian
surfaces arising from the third step of the proof of Theorem 4.2 are actually
minimal.

The determination of Jq(2) in Theorem 4.1 is closely related to that
of Nq(2), as done by J.-P. Serre [18]. In order to simplify the proof of The-
orem 4.2, we use the fact that, given a curve of genus 2, if we denote by
(a1, a2) the coefficients associated to its characteristic polynomial, there ex-
ists a curve (its quadratic twist) whose coefficients are (−a1, a2). This allows
us to adapt the proof of Theorem 4.1.

Let us recall the definition of special numbers introduced by J.-P. Serre.
An odd power q of a prime number p is special if one of the following
conditions is satisfied (recall that m = [2q1/2]):

(i) m is divisible by p,
(ii) there exists x ∈ Z such that q = x2 + 1,
(iii) there exists x ∈ Z such that q = x2 + x+ 1,
(iv) there exists x ∈ Z such that q = x2 + x+ 2.

Remark. In [17], J.-P. Serre asserts that if q is prime then the only
possible conditions are (ii) and (iii). When q is not prime, then (ii) is im-
possible, (iii) is possible only if q = 73, and (iv) is possible only if q = 23, 25
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or 213. Moreover, using basic arithmetic, it can be shown (see [10] for more
details) that (ii), (iii) and (iv) are respectively equivalent to m2 − 4q = −4,
−3 and −7.

Theorem 4.1. We have

Jq(2) = (q + 1 +m)2,

except in the following cases:

q Jq(2)

4 55

9 225

q special:

{2q1/2} ≥ ϕ1 (q+1+m+ϕ1)(q+1+m+ϕ2)

{2q1/2} < ϕ1, p 6= 2 or p |m (q +m)2

otherwise (q + 1 +m)(q − 1 +m)

Here ϕ1 = (−1 +
√
5)/2, ϕ2 = (−1−

√
5)/2, and {x} is the fractional part

of a real number x.

Proof. (a) Assume that q is a square.
If q 6= 4, 9, Nq(2) is the Serre–Weil bound [17], thus there exists a curve

of type [m,m].
If q = 4, then m = 4. First we prove that J4(2) ≤ 55. Every curve of

genus 2 over Fq is hyperelliptic, so the number of rational points is at most
2(q+1) = 10. We deduce that a Jacobian of dimension 2 over F4 must have
a1 ≤ 10− (q + 1) = 5.

If a1 = 5 then a2 ≤ 14 by (4.1). An abelian surface over F4 with (a1, a2) =
(5, 14) is of type [3, 2] and is never a Jacobian (because x1−x2 = 3− 2 = 1,
see [8]). Thus we have a2 ≤ 13 and a Jacobian surface over F4 with a1 = 5
has at most q2 + 1 + 5(q + 1) + 13 = 55 points. If a1 < 5, then

q2 + 1 + (q + 1)a1 + a2 ≤ q2 + 1 + (q + 1)a1 + a21/4 + 2q ≤ 49

(notice that the function x 7→ 5x + x2/4 is increasing on [−8, 4], and
a1 ≥ −8). Thus an abelian surface over F4 with a1 < 5 has less than 55
points, hence J4(2) ≤ 55.

It remains to prove that J4(2) ≥ 55. An abelian surface over F4 with
(a1, a2) = (5, 13) is of type [3 + ϕ1, 3 + ϕ2]. Such an abelian surface exists
(because p = 2 does not divide 13) and by [8] it is isogenous to a Jacobian.
This Jacobian has q2 + 1 + 5(q + 1) + 13 = 55 points.

If q = 9, thenm = 6. Since 2(q+1) = 20, we must have a1 ≤ 20−(q+1) =
10 = 2m− 2. The highest row of Table 2 such that a1 = 2m− 2 is that with
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type [m−1,m−1], and this is the type of some Jacobian with (q+m)2 = 225
points.

(b) Assume that q is not a square. This part of the proof follows easily
from Serre’s results. He proved in [18] the following facts:

• There exists a Jacobian of type [m,m] if and only if q is not special.
• An abelian surface of type [m,m− 1] is never a Jacobian.
• If q is special, then there exists a Jacobian of type [m+ϕ1,m+ϕ2] if and

only if {2q1/2} ≥ ϕ1. Note that {2q1/2} ≥ ϕ1 is equivalent to m+ϕ1 ≤ 2q1/2,
thus it is obvious that this condition is necessary.

• If q is special, {2q1/2} < ϕ1, p 6= 2 or p |m, then there exists a Jacobian
of type [m− 1,m− 1].

• If q is special, {2q1/2} < ϕ1, p = 2 and p ∤ m, that is, q = 25 or
213 (if q = 23, then {2q1/2} ≥ ϕ1), then there exists a Jacobian of type
[m,m− 2].

It remains to prove that for q = 25 and 213, there does not exist a
Jacobian of type [m − 1,m − 1]. In fact, when q = 25 and 213, an abelian
variety with all xi equal tom−1 must have dimension respectively a multiple
of 5 and 13 (see [11, Prop. 2.5]).

Theorem 4.2. We have

jq(2) = (q + 1−m)2,

except in the following cases:

q jq(2)

4 5

9 25

q special:

{2q1/2} ≥ ϕ1 (q + 1−m− ϕ1)(q + 1−m− ϕ2)
√
2− 1 ≤ {2q1/2} < ϕ1 (q + 2−m+

√
2)(q + 2−m−

√
2)

{2q1/2} <
√
2− 1, p ∤ m and q 6= 73 (q + 1−m)(q + 3−m)

otherwise (q + 2−m)2

Proof. (a) Assume that q is a square.
• If q 6= 4, 9, we saw that there exists a curve of type [m,m], and its

quadratic twist is of type [−m,−m].
• If q = 4, then m = 4. First we prove that j4(2) ≥ 5. We have a1 ≥ −5

since the quadratic twist of a curve with a1 < −5 would have a1 > 5 and
we saw that it is not possible.

If a1 = −5 then a2 ≥ 12 by (4.1). An abelian surface over F4 with
(a1, a2) = (−5, 12) is of type [−4, 1] and is never a Jacobian. Thus a2 ≥ 13
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and a Jacobian surface over F4 with a1 = −5 has at least q2+1− 5(q+1)+
13 = 5 points. If a1 > −5, then

q2+1+(q+1)a1+a2 ≥ q2+1+(q+1)a1+2|a1|q1/2−2q = 9+5a1+4|a1| ≥ 5

(note that x 7→ 5x + 4|x| is increasing on [−4, 8]). Thus an abelian surface
over F4 with a1 > −5 has more than five points, hence j4(2) ≥ 5.

It remains to prove that j4(2) ≤ 5. There exists a curve with (a1, a2) =
(−5, 13): the quadratic twist of the curve with (a1, a2) = (5, 13) in the proof
of Theorem 4.1. The number of points on its Jacobian is

q2 + 1− 5(q + 1) + 13 = 5.

• If q = 9, then m = 6. Using the same argument as in the last step, we
must have a1 ≥ −2m+2. We look at the rows of Table 3, starting with the
rows on the top for which a1 = −2m+2. The first two can be ignored since
{2q1/2} = 0 is less than

√
3 − 1 and less than

√
2 − 1. An abelian surface

of type [−m,−m+ 2] is not a Jacobian (this is an almost ordinary abelian
surface, m2 = 4q and m− (m−2) is squarefree, see [8]). The product of two
copies of an elliptic curve of trace (m− 1) is isogenous to a Jacobian (such
a curve exists since 3 ∤ (m− 1)).

(b) Assume that q is not a square. Using twisting arguments and the
proof of Theorem 4.1, we see that:

• There exists a Jacobian of type [−m,−m] if and only if q is not special.

• If q is special, there exists a Jacobian of type [−m − ϕ1,−m − ϕ2]
if and only if {2q1/2} ≥ ϕ1. Notice that this last condition is satisfied for
q = 2 but not for q = 3 or 5. If q = 2, then m = 2 and a Jacobian of type
[−2− ϕ1,−2− ϕ2] has (2 + 1− 2− ϕ1)(2 + 1− 2− ϕ2) = 1 point, so it has
to be minimal.

• An abelian surface of type [−m,−m+ 1] is never a Jacobian.

In the remainder of the proof, we suppose that q is special and
{2q1/2} < ϕ1.

• In order to ensure the existence of an abelian surface of type
[−m + 1 +

√
3,−m + 1 −

√
3], it is necessary to have {2q1/2} ≥

√
3 − 1.

When {2q1/2} < ϕ1, this condition is never satisfied (since ϕ1 <
√
3− 1).

• In order to ensure the existence of an abelian surface of type
[−m+1+

√
2,−m+1−

√
2], it is necessary to have {2q1/2} ≥

√
2−1. Suppose

that this condition holds. We shall show that there exists an abelian surface
of type [−m+1+

√
2,−m+1−

√
2]. We use the same kind of argument that

J.-P. Serre used in [18]. If p |m, we are done since p ∤ a2 = m2− 2m− 1+2q.
Otherwise, (m− 2q1/2)(m+ 2q1/2) = m2 − 4q ∈ {−3,−4,−7}, hence

{2q1/2} = 2q1/2 −m =
4q −m2

m+ 2q1/2
≤ 7

2m
,
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and if m ≥ 9, then 7
2m <

√
2 − 1. It remains to consider by hand the

non-square prime powers of the form x2 + 1, x2 + x + 1 and x2 + x + 2
with m < 9 (i.e. q < 21). These prime powers are precisely 2, 3, 5, 7, 8, 13
and 17. If q = 2, 8, then {2q1/2} ≥ ϕ1. If q = 3, then p |m. If q = 7, 13, 17,
then {2q1/2} <

√
2 − 1. If q = 5, then m = 4 and p = 5 do not divide

a2 = m2−2m−1+2q = 17, and we are done. Finally, using [8], we conclude
that this abelian surface is isogenous to a Jacobian.

If q = 3, then m = 3 and a Jacobian of type [−3 + 1+
√
2,−3 + 1−

√
2]

has (a1, a2) = (−4, 8) and q2+1−4(q+1)+8 = 2 points. We shall show that
such a Jacobian is minimal. We just proved that the entries in Table 3 above
[−m + 1 +

√
2,−m + 1 −

√
2] do not correspond to a Jacobian. Moreover,

the entries below [−m + 1 +
√
2,−m + 1 −

√
2] would obviously give more

than two points. Therefore, it is sufficient to prove that a Jacobian whose
(a1, a2) is not in Table 3 (i.e. with a1 > −2m+ 2 = −4) has more than two
points. If a1 > −4, then

(q+1)a1+ a2 ≥ (q+1)a1+2|a1|q1/2− 2q = 4a1+2|a1|
√
3− 6 ≥ −18+6

√
3

(the function x 7→ 4x + 2|x|
√
3 is increasing on [−3, 6]). Thus an abelian

surface over F3 with a1 > −4 has more than q2 + 1 + ([−18 + 6
√
3] + 1) =

10− 7 = 3 points, and the result is proved.

If q = 5, then m = 4 and a Jacobian of type [−4 + 1+
√
2,−4 + 1−

√
2]

has (a1, a2) = (−6, 17) and q2 + 1 − 6(q + 1) + 17 = 7 points. Again, we
shall show that such a Jacobian is minimal. Arguing as for q = 3, we see
that a Jacobian with a1 ≤ −6 must have at least seven points. If a1 > −6,
then

(q+1)a1+a2 ≥ (q+1)a1+2|a1|q1/2−2q = 6a1+2|a1|
√
5−10 ≥ −40+10

√
5

(the function x 7→ 6x + 2|x|
√
5 is increasing on [−5, 8]). Thus an abelian

surface over F5 with a1 > −6 has more than q2 + 1+ ([−40 + 10
√
5] + 1) =

26− 17 = 9 points, and the result is proved.

• If {2q1/2} <
√
2 − 1, p ∤ m and q 6= 73, then p ∤ (m − 2). To see this,

take p 6= 2 (if p = 2, this is obvious) and use the remark about special
numbers in this section. Suppose that p divides m − 2; then p also divides
m2 − 4 − 4q = (m + 2)(m − 2) − 4q. Since p 6= 2, we must have m2 − 4q ∈
{−3,−4}. If m2 − 4q = −3, p divides −3− 4 = −7 thus p = 7. But q is not
prime (since for q = 7, p ∤ (m− 2) = 5), therefore we must have q = 73 and
this case is excluded. If m2 − 4q = −4, p divides −4− 4 = −8, thus p = 2,
which contradicts our assumption. This proves our assertion, and therefore
there exist elliptic curves of trace m and m − 2 and by [8] their product is
isogenous to a Jacobian.

• Suppose that {2q1/2} <
√
2 − 1 and p |m, or q = 73. By [28], if p |m,

there does not exist an elliptic curve of trace m (q = 2 and 3 are excluded
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since in those cases, {2q1/2} ≥
√
2 − 1). If q = 73 (thus m − 2 = 35) there

does not exist an elliptic curve of trace m− 2. Therefore, in both cases, an
abelian surface of type [−m,−m+ 2] cannot exist.

• If {2q1/2} <
√
2 − 1 and p |m, or q = 73, there exists a curve of type

[−m+1,−m+1]: the quadratic twist of the curve of type [m− 1,m− 1] in
the proof of Theorem 4.1.
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and
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